[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008116349A - Microcompression testing machine - Google Patents

Microcompression testing machine Download PDF

Info

Publication number
JP2008116349A
JP2008116349A JP2006300389A JP2006300389A JP2008116349A JP 2008116349 A JP2008116349 A JP 2008116349A JP 2006300389 A JP2006300389 A JP 2006300389A JP 2006300389 A JP2006300389 A JP 2006300389A JP 2008116349 A JP2008116349 A JP 2008116349A
Authority
JP
Japan
Prior art keywords
sample
stage
lower platen
indenter
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006300389A
Other languages
Japanese (ja)
Other versions
JP4775579B2 (en
Inventor
Tsukasa Nishimura
司 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006300389A priority Critical patent/JP4775579B2/en
Publication of JP2008116349A publication Critical patent/JP2008116349A/en
Application granted granted Critical
Publication of JP4775579B2 publication Critical patent/JP4775579B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a microcompression testing machine capable of sequentially and automatically performing a compression test with respect to the granular sample scattered on a lower pressure plate at random and reducing the load of an operator. <P>SOLUTION: The microcompression testing machine dispenses with the participation of an operator from the searching of the sample to the execution of a test by providing an imaging means 20 for imaging the sample scattered over a lower pressure plate 13 through an object lens 15, an image processing means 32 for calculating the position data of the sample in a visual field by image processing using the imaging output of the imaging means, a discrimination means 33 for identifying whether a compression test is possible alone with respect to the sample the position data of which are calculated and a control means 34 for automatically driving a slide stage 18 and an X-Y stage 16 even the sample identified to be tested alone to move the sample to the area just under an intender 14 and driving a load mechanism to perform a compression test using the intender 14. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、粒径が数μm〜数百μm程度の粒状の試料の圧縮強度等を評価するための微小圧縮試験機に関する。   The present invention relates to a micro-compression tester for evaluating the compressive strength and the like of a granular sample having a particle size of about several μm to several hundred μm.

例えば金属やセラミックスの粉末等、粒径が数μm〜数百μm程度の粒状(略球形状)の圧縮特性を評価する試験機として、微小圧縮試験機と称される試験機が知られている。従来のこの種の微小圧縮試験機は、下部圧盤(試料台)上の上方に下面が平坦面に形成された圧子(上部圧盤)を設け、その圧子を負荷機構により駆動して下部圧盤上に載せられた粒状試料を加圧する構造を採り、下部圧盤はX−Yステージにより水平面に沿って移動することができるとともに、Zステージにより鉛直方向に移動できるようになっている。 また、圧子の配設位置の側方には、光学観測装置(顕微鏡)の対物レンズが配置されており、スライドステージによって、下部圧盤はX−YステージおよびZステージとともに、圧子の直下と光学観測装置の対物レンズの直下の間で移動できるようになっている(例えば特許文献1参照)。   For example, a testing machine called a micro-compression testing machine is known as a testing machine for evaluating the compression characteristics of particles (substantially spherical) having a particle size of about several μm to several hundred μm, such as metal or ceramic powder. . In this type of conventional micro-compression tester, an indenter (upper platen) having a flat bottom surface is provided above the lower platen (sample stage), and the indenter is driven by a load mechanism on the lower platen. The structure which presses the mounted granular sample is taken, and the lower platen can be moved along the horizontal plane by the XY stage, and can be moved in the vertical direction by the Z stage. In addition, an objective lens of an optical observation device (microscope) is arranged on the side of the position where the indenter is arranged, and the lower platen, together with the XY stage and Z stage, is optically observed directly below the indenter by the slide stage. It can move between directly under the objective lens of the apparatus (see, for example, Patent Document 1).

試験に際しては、圧子により1個の粒状試料に圧縮荷重を加えられるように、光学観測装置で圧盤上にランダムにばら撒かれた粒状試料を認識し、試験予定位置、つまり圧子の直下にまで移動する。この作業はオペレータが手動によりX−Yステージやスライドステージを操作することによって行われる。   In the test, the optical observation device recognizes the granular sample randomly scattered on the platen so that a compressive load can be applied to one granular sample by the indenter, and moves it to the planned test position, that is, directly below the indenter. To do. This operation is performed by the operator manually operating the XY stage and the slide stage.

ここで、以上の試験動作を自動化する場合には、X−YステージおよびZステージを電動化するとともに、下部圧盤上にあらかじめ格子状の正確な位置に試料をセットし、x方向およびy方向のピッチを設定して各ステージを駆動する手法が採られる。
特開平5−93683号公報
Here, when automating the above test operation, the XY stage and the Z stage are motorized, and a sample is set on the lower platen in advance in a grid-like accurate position, and the x and y directions are set. A method of driving each stage by setting a pitch is employed.
Japanese Patent Application Laid-Open No. 5-93683

ところで、上記した従来の微小圧縮試験機においては、下部圧盤上にランダムにばら撒かれた粒状試料に対し、自動的に逐次試験を行うことができない。そして、このような試験のための操作は、オペレータに多大な労力が必要である。すなわち、例えば粒状試料が分散しにくい性状のものである場合には試料間隔が狭くなり、圧子のサイズとの関係で1個の粒状試料が他と十分に離れているものを探す必要があるのであるが、適切な試料が見つからずに労力を要する。また、分散は簡単であるが、粒状試料が非常にまばらに分散されてしまった場合には、試料を見つけるのに多くの労力を要する。いずれの場合も、試料が小さいために大きな視野の拡大率の低い顕微鏡では確認できず、視野の狭い高倍率の顕微鏡を使って試料を探す必要があるためである。   By the way, in the above-described conventional micro-compression tester, it is not possible to automatically perform sequential tests on granular samples randomly scattered on the lower platen. Such an operation for the test requires a great deal of labor for the operator. That is, for example, when a granular sample is difficult to disperse, the sample interval becomes narrow, and it is necessary to search for one granular sample that is sufficiently separated from the other in relation to the size of the indenter. However, it takes effort to find an appropriate sample. Also, although dispersion is simple, it takes a lot of effort to find the sample if the granular sample has been dispersed very sparsely. In either case, because the sample is small, it cannot be confirmed with a microscope with a large field of view and a low magnification, and it is necessary to search for the sample using a high magnification microscope with a narrow field of view.

更に、自動試験ができないが故に、試験中の待ち時間も試験機の近傍で待機しておく必要があり、時間的なロスも大きいという問題もある。   Furthermore, since the automatic test cannot be performed, it is necessary to wait in the vicinity of the testing machine for the waiting time during the test, and there is a problem that the time loss is large.

本発明はこのような実情に鑑みてなされたもので、下部圧盤上にランダムにばら撒かれた粒状試料に対し、逐次自動的に圧縮試験を行うことができ、もってオペレータの負担を軽減することのできる微小圧縮試験機の提供をその課題としている。   The present invention has been made in view of such circumstances, and can sequentially and automatically perform compression tests on granular samples randomly scattered on the lower platen, thereby reducing the burden on the operator. The challenge is to provide a micro-compression tester that can be used.

上記の課題を解決するため、本発明の微小圧縮試験機は、粒状試料が載せられる下部圧盤と、その下部圧盤を保持して水平面に沿って移動させるX−Yステージと、上記下部圧盤を鉛直方向に沿って移動させるZステージと、上記下部圧盤の上方に設けられ、平坦な下面を有する圧子と、その圧子を鉛直方向に沿って駆動して上記下部圧盤上の粒状の試料に圧縮負荷を加える負荷機構と、上記圧子の配設位置と水平方向に所定の距離だけ離れた位置に設けられた対物レンズを含む試料の撮像手段と、上記下部圧盤を上記X−Yステージごと上記圧子の下方と上記対物レンズの下方の間で移動させるスライドステージを備えた微小圧縮試験機において、上記X−Yステージ、Zステージおよびスライドステージがそれぞれ電動ステージによって構成されているとともに、上記下部圧盤上にランダムに載せられた複数の粒状試料の上記撮像手段による撮像出力を取り込み、あらかじめ入力されている粒状試料のパターンを用いて上記下部圧盤上の粒状試料の位置情報を求める画像処理手段と、その画像処理手段による粒状試料の位置情報と、あらかじめ入力されている条件に基づき、その粒状試料が単体で圧縮試験が可能か否かを判別する判別手段と、その判別手段により単体での試験が可能であると判別されたとき、上記スライドステージおよび上記X−Yステージを駆動して当該粒状試料を圧子の直下に位置決めした後、上記Zステージを駆動してその粒状粒子と圧子との距離を規定の試験開始前距離とした後、上記負荷機構を駆動して圧縮試験を行う制御手段を備えていることによって特徴づけられる(請求項1)。   In order to solve the above problems, a micro compression tester according to the present invention includes a lower platen on which a granular sample is placed, an XY stage that holds the lower platen and moves along a horizontal plane, and the lower platen is moved vertically. A Z stage that moves along the direction, an indenter that is provided above the lower platen, has a flat lower surface, and drives the indenter along the vertical direction to apply a compressive load to the granular sample on the lower platen. A load mechanism to be applied; an imaging means for a sample including an objective lens provided at a predetermined distance in the horizontal direction from the position where the indenter is disposed; and the lower platen together with the XY stage below the indenter. And a lower stage of the objective lens, the XY stage, the Z stage, and the slide stage are each driven by an electric stage. The imaging output of the plurality of granular samples randomly placed on the lower platen is captured by the imaging means, and the granular sample pattern on the lower platen is input using a granular sample pattern input in advance. Image processing means for obtaining position information, position information for the granular sample by the image processing means, and determination means for determining whether or not the granular sample can be subjected to a compression test alone, based on pre-input conditions; When it is determined by the determination means that a single test is possible, the slide stage and the XY stage are driven to position the granular sample directly under the indenter, and then the Z stage is driven. Having a control means for driving the load mechanism and performing a compression test after setting the distance between the granular particles and the indenter to a prescribed pre-test start distance. It characterized me (claim 1).

ここで、本発明においては、上記撮像手段の視野を順次変更して、上記画像処理手段、判別手段および制御手段による動作を繰り返し実行するように構成すること(請求項2)ができる。   Here, in the present invention, the field of view of the imaging means can be sequentially changed, and the operations by the image processing means, the discrimination means and the control means can be repeatedly executed (claim 2).

本発明は、下部圧盤上にランダムにばら撒かれた粒状試料を撮影し、あらかじめ入力した粒状試料のパターンを用いた画像処理により視野内の粒状試料の位置情報を得て、その位置情報とあらかじめ設定されている条件から、その粒状試料が単体で圧縮試験が可能か否かを判別し、可能である場合には電動X−Yステージの駆動により自動的に圧子の直下に位置決めし、電動Zステージの駆動により圧子と粒状試料との鉛直方向距離を規定距離とした上で、負荷機構を駆動して圧縮試験を行うことで、課題を解決しようとするものである。   The present invention takes a granular sample randomly scattered on the lower platen, obtains positional information of the granular sample in the field of view by image processing using a granular sample pattern inputted in advance, From the set conditions, it is determined whether or not the granular sample can be subjected to a compression test alone. If so, it is automatically positioned directly under the indenter by driving the electric XY stage, and the electric Z An attempt is made to solve the problem by driving the load mechanism and performing a compression test after setting the vertical distance between the indenter and the granular sample to a specified distance by driving the stage.

すなわち、本発明では、下部圧盤上にランダムにばら撒かれた粒状試料を撮影し、その視野内の粒状試料の位置情報を得た後、その粒状粒子があらかじめ入力されている条件、例えば圧子の下面のサイズと粒状試料のサイズにより定まる領域に他の粒状粒子が存在しないか否か等、に基づき、その粒状試料が単体で圧縮試験を行うことのできる状態であるか否かを自動的に判別し、単体で試験可能と判別された場合には、電動のスライドステージ、X−Yステージ並びにZステージを自動的に駆動して圧縮試験を行うことで、試験開始後はオペレータが関与することなく、粒状試料の探索から試験まで自動的に行うことのできる微小圧縮試験機が実現する。   That is, in the present invention, after taking a granular sample randomly scattered on the lower platen, obtaining the position information of the granular sample in the field of view, the condition that the granular particles are input in advance, for example, the indenter Whether or not the granular sample is in a state where it can be subjected to a compression test on its own based on whether or not there are other granular particles in the area determined by the size of the lower surface and the size of the granular sample If it is determined that it is possible to test alone, the electric slide stage, XY stage and Z stage are automatically driven to perform a compression test, and the operator is involved after the test starts. In addition, a micro-compression tester that can automatically perform from a search for a granular sample to a test is realized.

請求項2に係る発明のように、撮像手段の視野を順次変更して同じ動作を繰り返すことにより、より多数個の粒状試料の圧縮試験を連続して自動的に行うことができる。   As in the invention according to claim 2, by sequentially changing the field of view of the imaging means and repeating the same operation, a compression test of a larger number of granular samples can be performed automatically in succession.

本発明によれば、下部圧盤上に粒状試料をランダムにばら撒いた状態でも、自動的に粒状試料を探して試験を行うので、オペレータの作業負荷を軽減することができる。また、請求項2に係る発明のように粒状試料の探索と試験を連続的に行うように構成すれば、多数個の試料についての長時間にわたる試験中において、オペレータは他の作業を行うことが可能となる。   According to the present invention, even when the granular sample is randomly scattered on the lower platen, the granular sample is automatically searched for and the test is performed, so that the operator's workload can be reduced. Further, if the configuration is such that the search and test of the granular sample are continuously performed as in the invention according to claim 2, the operator can perform other work during the long-time test on a large number of samples. It becomes possible.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明の実施の形態の構成図で、機械的構成を表す正面図とシステム構成を表すブロック図とを併記して示す図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of an embodiment of the present invention, and is a diagram illustrating a front view representing a mechanical configuration and a block diagram representing a system configuration.

試験機本体1は、ベッド11の一端(図において奥側)にコラム12を立てた構造を有し、ベッド11側に下部圧盤13が、コラム12側に圧子14と対物レンズ15がそれぞれ配されている。   The testing machine main body 1 has a structure in which a column 12 is erected on one end of the bed 11 (the back side in the figure), a lower platen 13 is arranged on the bed 11 side, and an indenter 14 and an objective lens 15 are arranged on the column 12 side. ing.

下部圧盤13は、モータ16a,16bの駆動によって水平面上で互いに直交する2方向(x方向,y方向)に移動するX−Yステージ16上につかみ具17によって固定されており、そのX−Yステージ16は、モータ(図示せず)の駆動によりx方向に規定量だけ移動するスライドステージ18上に載せられている。そして、これらの全体が、モータ19aの駆動により鉛直方向(z方向)に移動するZステージ19上に載せられている。   The lower platen 13 is fixed by a gripping tool 17 on an XY stage 16 that moves in two directions (x direction and y direction) orthogonal to each other on a horizontal plane by driving motors 16a and 16b. The stage 16 is placed on a slide stage 18 that moves by a specified amount in the x direction by driving a motor (not shown). These components are mounted on the Z stage 19 that moves in the vertical direction (z direction) by driving the motor 19a.

コラム12は下部圧盤13の上方に迫り出しており、その迫り出し部分に圧子14と対物レンズ15が配置されている。圧子14は、例えば電磁力発生装置を利用して微小荷重を負荷することのできる公知の負荷機構により鉛直下方に微小変位し、下部圧盤13上の粒状試料に対して圧縮負荷を加えることができる。   The column 12 protrudes above the lower platen 13, and an indenter 14 and an objective lens 15 are disposed at the protruding portion. The indenter 14 is finely displaced vertically downward by a known load mechanism capable of applying a minute load using an electromagnetic force generator, for example, and can apply a compression load to the granular sample on the lower platen 13. .

対物レンズ15は、圧子14の配設位置に対してx方向に一定の距離だけ離れた位置に配置されており、前記したスライドステージ18はこれらの間で下部圧盤13を移動させるものであって、スライドステージ18の規定量の移動により、下部圧盤13上で対物レンズ15の直下に位置する部位が圧子14の直下に到来するように構成されている。
対物レンズ15への入射光はプリズム等の他の光学要素を介してCCDカメラ20の撮像面に導かれ、この対物レンズ15を介してその直下に位置決めされた下部圧盤13上の粒状試料の像を設定された拡大率のもとに撮影することができる。
The objective lens 15 is arranged at a position spaced apart from the arrangement position of the indenter 14 by a certain distance in the x direction, and the slide stage 18 moves the lower platen 13 between them. By the movement of the slide stage 18 by a specified amount, the portion located directly below the objective lens 15 on the lower platen 13 is configured to come directly below the indenter 14.
Incident light to the objective lens 15 is guided to the imaging surface of the CCD camera 20 via another optical element such as a prism, and an image of the granular sample on the lower platen 13 positioned immediately below the objective lens 15 through the objective lens 15. Can be taken under the set magnification.

CCDカメラ20の出力は画像取り込み回路31を介して画像処理部32に導かれ、この画像処理部32では、あらかじめ入力されている粒状試料のパターンおよび下部圧盤13の上面のパターンを用いて粒状試料を認識し、CCDカメラ20の視野内に粒状試料が存在していればその位置情報(x,y座標情報)を求める。また、この画像処理部32はオートフォーカス機能を有し、粒状試料の輪郭が明確となるように後述する制御部34を介してZステージ19を駆動する。   The output of the CCD camera 20 is guided to the image processing unit 32 via the image capturing circuit 31, and the image processing unit 32 uses the granular sample pattern and the upper surface pattern of the lower platen 13 which are input in advance. If a granular sample exists in the field of view of the CCD camera 20, the position information (x, y coordinate information) is obtained. Further, the image processing unit 32 has an autofocus function, and drives the Z stage 19 via a control unit 34 described later so that the outline of the granular sample becomes clear.

画像処理部32による位置情報は判別部33に送られ、この判別部33では、後述するように、その粒状試料が単体で圧縮試験が可能か否かを判別する。   Position information from the image processing unit 32 is sent to the determination unit 33, which determines whether or not the granular sample can be subjected to a compression test alone, as will be described later.

判別部33の判別結果に基づき、CCDカメラ20の視野内に単体で圧縮試験が可能な粒状試料が存在している場合には、モータ制御回路35を介してX−Yステージ16を駆動して、該当の試料が対物レンズ15の直下に位置するように位置決めし、同じくモータ制御回路35を介してスライドステージ19を駆動して、下部圧盤13を圧子14の下に移動させる。これにより、該当の粒状試料が圧子14の直下に位置決めされることになり、その状態で負荷機構を駆動して圧縮試験を行う。   Based on the determination result of the determination unit 33, when there is a granular sample that can be subjected to a compression test alone in the field of view of the CCD camera 20, the XY stage 16 is driven via the motor control circuit 35. Then, the sample is positioned so that the corresponding sample is located immediately below the objective lens 15, and the slide stage 19 is driven through the motor control circuit 35 to move the lower platen 13 below the indenter 14. As a result, the corresponding granular sample is positioned immediately below the indenter 14, and in this state, the load mechanism is driven to perform a compression test.

上記のモータ制御回路35は制御部34の制御下に置かれており、この制御部34には、後述する条件等を入力したり、あるいは各種指令を与えるための操作部36と、CCDカメラ20により撮影された試料の像や試験結果等表示するための表示器37、および操作部36による入力情報やCCDカメラ20からの画像データ等を記憶するメモリ38が接続されている。なお、この制御部34と、前記した画像処理部32並びに判別部33は、実際にはコンピュータとその周辺機器によって構成され、コンピュータにインストールされているプログラムに従って各種動作を実行するのであるが、この図1においては、説明のためにプログラムが実行する機能に対応するブロック図で表している。   The motor control circuit 35 is placed under the control of the control unit 34, and an operation unit 36 for inputting conditions and the like to be described later or giving various commands to the control unit 34, and the CCD camera 20. A display 37 for displaying an image of the sample photographed by the above, test results, and the like, and a memory 38 for storing input information from the operation unit 36, image data from the CCD camera 20, and the like are connected. The control unit 34, the image processing unit 32, and the determination unit 33 are actually configured by a computer and its peripheral devices, and execute various operations in accordance with programs installed in the computer. In FIG. 1, for the sake of explanation, a block diagram corresponding to functions executed by the program is shown.

図2は上記した動作を表すフローチャートであり、この図2を参照しつつ本発明の作用を詳細に説明する。
まず、下部圧盤13上に粒状試料をばら撒くとともに、必要な情報を入力する。この情報としては、圧子14のサイズ、対物レンズ15等の光学系を含んだCCDカメラ20の撮影倍率、試験対象である粒状試料の外観(サイズ・形状等)、下部圧盤13の外観(明るさ等)、最小試料間距離、および試料探索範囲等である。
FIG. 2 is a flowchart showing the above-described operation, and the operation of the present invention will be described in detail with reference to FIG.
First, a granular sample is scattered on the lower platen 13 and necessary information is input. This information includes the size of the indenter 14, the photographing magnification of the CCD camera 20 including the optical system such as the objective lens 15, the appearance of the granular sample to be tested (size, shape, etc.), and the appearance of the lower platen 13 (brightness). Etc.), the minimum distance between samples, the sample search range, and the like.

以上の入力を終わって試験開始の旨の指令を与えると、以降、自動的に以下の動作が実行される。まず、下部圧盤13の表面上の規定の角隅部がCCDカメラ20の視野に入るようにX−Yステージ16を位置決めした後、オートフォーカスを行って画像データを取り込む。先に入力されている試料と下部圧盤13のパターン情報を用いて、粒状試料を探索する。その際、後述する理由により、あらかじめ設定されている範囲内、具体的にはCCDカメラ20の視野の外縁から最小試料間距離だけ内側の範囲に存在する試料のみを候補とする。   When the above input is finished and a command to start the test is given, the following operation is automatically executed thereafter. First, after the XY stage 16 is positioned so that a specified corner on the surface of the lower platen 13 is in the field of view of the CCD camera 20, image data is captured by performing autofocus. The granular sample is searched for using the sample information input earlier and the pattern information of the lower platen 13. At that time, for the reason to be described later, only a sample existing in a preset range, specifically, a range within the minimum distance between the samples from the outer edge of the visual field of the CCD camera 20 is set as a candidate.

CCDカメラ20の視野内に試料があれば、その試料の周囲のあらかじめ設定されている最小試料間距離内に他の試料やごみなどがないか否かを判別する。この最小試料間距離は、主として圧子14のサイズ(下面の平坦面のサイズ)に基づいて決定される。すなわち、図3にCCDカメラ20による画像の例を示すように、試料W1の周囲の半径Cで示される最小試料間距離内に他の試料等が存在しなければ単体で圧縮試験が可能と判別し、試料W2はこれを中心とする半径C内に他の試料W3が存在するため、圧子14による加圧時に試料W3が同時に加圧される可能性があるために単体で試験不可能と判別する。また、前記した試料探索範囲は、最小試料間距離に準ずるものであり、視野の外縁近傍の試料W4については、最小試料間距離が当該視野の外縁に掛かってしまうため、当初から試験可能試料の判別のための候補とはしない。これが前記したように視野の外縁から最小試料間距離だけ内側の範囲内の試料のみを候補とする理由である。   If there is a sample in the field of view of the CCD camera 20, it is determined whether or not there is another sample or dust within a preset minimum sample distance around the sample. This minimum inter-sample distance is determined mainly based on the size of the indenter 14 (the size of the flat surface on the lower surface). That is, as shown in the example of the image by the CCD camera 20 in FIG. 3, if no other sample exists within the minimum distance between the samples indicated by the radius C around the sample W1, it is determined that the compression test can be performed alone However, since the sample W2 has another sample W3 within the radius C centered on the sample W2, the sample W3 may be simultaneously pressurized when being pressed by the indenter 14, and therefore, it is determined that the sample W2 cannot be tested alone. To do. The sample search range is based on the minimum inter-sample distance. For the sample W4 near the outer edge of the visual field, the minimum inter-sample distance is applied to the outer edge of the visual field. It is not a candidate for discrimination. This is the reason why only the samples within the range inward by the minimum inter-sample distance from the outer edge of the visual field are candidates as described above.

さて、視野中に単体で圧縮試験が可能な試料があると判別された場合には、その試料がCCDカメラ20の視野中央に位置するようにX−Yステージ16を移動させ、再度オートフォーカスを行って試料サイズ(縦と横の長さ)を読み取る。この試料サイズは試料の強度計算に必要なものであり、その読み取りは画像処理部32において行われ、メモリ38に記憶される。次に、試料サイズの平均値の半分の距離分、Zステージ19を下降させる。これにより試料の頂点に焦点があう。このように試料の頂点に焦点があった状態で、その試料を圧子14の直下に移動させると、これら両者のz方向への位置関係が直ちに圧縮試験行える状態となるように、あらかじめ対物レンズ15と圧子14のz方向への相対位置が設定されている。その状態でスライドステージ18を駆動して、試料を圧子直下に移動させた後、負荷機構を駆動して圧縮試験を行う。   When it is determined that there is a sample that can be subjected to a compression test alone in the field of view, the XY stage 16 is moved so that the sample is positioned at the center of the field of view of the CCD camera 20, and autofocus is performed again. Go and read the sample size (length and width). This sample size is necessary for calculating the strength of the sample, and the reading is performed by the image processing unit 32 and stored in the memory 38. Next, the Z stage 19 is lowered by a distance that is half the average value of the sample size. This focuses on the top of the sample. When the sample is moved directly below the indenter 14 with the focus on the top of the sample in this way, the objective lens 15 is previously set so that the positional relationship between the two in the z direction can be immediately subjected to a compression test. The relative position of the indenter 14 in the z direction is set. In this state, the slide stage 18 is driven to move the sample directly under the indenter, and then the load mechanism is driven to perform a compression test.

試験の実行後、スライドステージ18を駆動して、下部圧盤13を対物レンズ15の下方の当初位置に移動させる。次の試験を続けて行う場合には、X−Yステージ16を駆動してCCDカメラ20の視野をずらし、上記と同じ動作を繰り返す。CCDカメラ20の視野の移動は、あらかじめ設定されている試料探索範囲の内側であり、x方向移動量並びにy方向に個別に移動させて試料探索範囲をカバーしていくのであるが、各回の移動の仕方は、図4に例示するように、x方向へは(視野のx方向サイズ)−(最小試料間距離)×2とし、同じくy方向へは(視野のy方向サイズ)−(最小試料間距離)×2とする。これにより、前回の視野中において視野の外縁にあるが故に候補とならなかった図4においてW5で示される試料が、今回の探索で候補となる可能性が生じる。   After execution of the test, the slide stage 18 is driven to move the lower platen 13 to the initial position below the objective lens 15. When the next test is continued, the XY stage 16 is driven to shift the visual field of the CCD camera 20 and the same operation as described above is repeated. The movement of the visual field of the CCD camera 20 is inside the preset sample search range, and the sample search range is covered by individually moving in the x-direction movement amount and the y-direction. As illustrated in FIG. 4, (x-direction size of field of view) − (minimum distance between samples) × 2 in the x-direction, and (y-direction size of field of view) − (minimum sample) in the y-direction. Distance) × 2. Accordingly, there is a possibility that the sample indicated by W5 in FIG. 4 that is not a candidate because it is at the outer edge of the visual field in the previous visual field becomes a candidate in the current search.

そして、全探索範囲を探索し終われば試験を終了する。視野中に単体での試験が可能な粒子がない場合にも、CCDカメラ20の視野を上記と同様に移動させ、同等の動作を行う。   When the entire search range is searched, the test is terminated. Even when there is no particle that can be tested alone in the field of view, the field of view of the CCD camera 20 is moved in the same manner as described above, and the same operation is performed.

以上の本発明の実施の形態によると、オペレータは最初に粒状試料を下部圧盤13の上にばら撒くとともに、必要な条件を設定入力するだけで、あとは全て試験機が自動的に実行するため、従来のこの種の試験機のように個々の粒状粒子を顕微鏡で探索して試験を行う場合に比して、その労力が飛躍的に軽減される。また、画像処理により試料サイズを読み取る方法を採用すれば、オペレータがサイズを読み取る場合のような個人差が生じず、試験の信頼性ないしは再現性が向上する。   According to the above-described embodiment of the present invention, the operator first disperses the granular sample on the lower platen 13, sets and inputs necessary conditions, and the test machine automatically executes all the rest. Compared to the case where a test is performed by searching for individual granular particles with a microscope as in the conventional testing machine of this type, the labor is remarkably reduced. Further, if a method of reading the sample size by image processing is adopted, there is no individual difference as in the case where the operator reads the size, and the reliability or reproducibility of the test is improved.

なお、試料の材質等によっては、圧縮試験後に圧子に試料が付着しやすいものもあるが、このような場合、圧子に付着した試料を自動的に除去する機能を追加すれば、より広い範囲の試料に対して自動試験が行えるようになる。   Depending on the material of the sample, etc., there is a sample that easily adheres to the indenter after the compression test. In such a case, if a function for automatically removing the sample attached to the indenter is added, a wider range can be obtained. An automatic test can be performed on the sample.

本発明の実施の形態の構成図で、機械的構成を表す正面図とシステム構成を表すブロック図とを併記して示す図である。It is a block diagram of embodiment of this invention, and is the figure which writes and shows together the front view showing a mechanical structure, and the block diagram showing a system structure. 本発明の実施の形態における自動試験動作の手順を示すフローチャートである。It is a flowchart which shows the procedure of the automatic test operation | movement in embodiment of this invention. 本発明の実施の形態において単体で圧縮試験が可能か否かを判別する手法の説明図である。It is explanatory drawing of the method of discriminate | determining whether a compression test is possible independently in embodiment of this invention. 本発明の実施の形態においてCCDカメラの視野を移動させる手法の説明図である。It is explanatory drawing of the method of moving the visual field of a CCD camera in embodiment of this invention.

符号の説明Explanation of symbols

1 試験機本体
11 ベッド
12 コラム
13 下部圧盤
14 圧子
15 対物レンズ
16 X−Yステージ
17 つかみ具
18 スライドステージ
19 Zステージ
20 CCDカメラ
31 画像データ取り込み回路
32 画像処理部
33 判別部
34 制御部
35 モータ制御回路
36 操作部
37 表示器
38 メモリ
DESCRIPTION OF SYMBOLS 1 Test machine body 11 Bed 12 Column 13 Lower platen 14 Indenter 15 Objective lens 16 XY stage 17 Grasp 18 Slide stage 19 Z stage 20 CCD camera 31 Image data acquisition circuit 32 Image processing part 33 Discriminating part 34 Control part 35 Motor Control circuit 36 Operation unit 37 Display 38 Memory

Claims (2)

粒状試料が載せられる下部圧盤と、その下部圧盤を保持して水平面に沿って移動させるX−Yステージと、上記下部圧盤を鉛直方向に沿って移動させるZステージと、上記下部圧盤の上方に設けられ、平坦な下面を有する圧子と、その圧子を鉛直方向に沿って駆動して上記下部圧盤上の粒状の試料に圧縮負荷を加える負荷機構と、上記圧子の配設位置と水平方向に所定の距離だけ離れた位置に設けられた対物レンズを含む試料の撮像手段と、上記下部圧盤を上記X−Yステージごと上記圧子の下方と上記対物レンズの下方の間で移動させるスライドステージを備えた微小圧縮試験機において、
上記X−Yステージ、Zステージおよびスライドステージがそれぞれ電動ステージによって構成されているとともに、上記下部圧盤上にランダムに載せられた複数の粒状試料の上記撮像手段による撮像出力を取り込み、あらかじめ入力されている粒状試料のパターンを用いて上記下部圧盤上の粒状試料の位置情報を求める画像処理手段と、その求められた位置情報とあらかじめ入力されている条件に基づき、その粒状試料が単体で圧縮試験が可能か否かを判別する判別手段と、その判別手段により当該粒状試料が単体での試験が可能であると判別されたとき、上記スライドステージおよび上記X−Yステージを駆動して当該粒状試料を圧子の直下に位置決めした後、上記Zステージを駆動してその粒状粒子と圧子との距離を規定の試験開始前距離とした後、上記負荷機構を駆動して圧縮試験を行う制御手段を備えていることを特徴とする微小圧縮試験機。
A lower platen on which a granular sample is placed, an XY stage that holds the lower platen and moves along a horizontal plane, a Z stage that moves the lower platen along a vertical direction, and a position above the lower platen An indenter having a flat lower surface, a load mechanism for driving the indenter along the vertical direction to apply a compressive load to the granular sample on the lower platen, and a predetermined position in the horizontal direction with respect to the placement position of the indenter. A sample imaging means including an objective lens provided at a position separated by a distance, and a micro stage provided with a slide stage that moves the lower platen together with the XY stage between the lower side of the indenter and the lower side of the objective lens. In the compression tester,
The XY stage, the Z stage, and the slide stage are each constituted by an electric stage, and the imaging output by the imaging means of a plurality of granular samples randomly placed on the lower platen is captured and input in advance. Based on the image processing means for determining the position information of the granular sample on the lower platen using the pattern of the granular sample, and the compression test of the granular sample alone based on the obtained position information and pre-input conditions A discriminating means for discriminating whether or not it is possible, and when the discriminating means discriminates that the granular sample can be tested alone, the slide stage and the XY stage are driven to After positioning directly under the indenter, the Z stage is driven to determine the distance between the granular particles and the indenter before starting the prescribed test. After the release, micro-compression testing machine, characterized in that it comprises a control means for compression testing by driving the loading mechanism.
上記撮像手段の視野を順次変更して、上記画像処理手段、判別手段および制御手段による動作を繰り返し実行することを特徴とする請求項1に記載の微小圧縮試験機。   2. The micro-compression tester according to claim 1, wherein the field of view of the imaging unit is sequentially changed, and the operations of the image processing unit, the discrimination unit, and the control unit are repeatedly executed.
JP2006300389A 2006-11-06 2006-11-06 Micro compression tester Expired - Fee Related JP4775579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006300389A JP4775579B2 (en) 2006-11-06 2006-11-06 Micro compression tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006300389A JP4775579B2 (en) 2006-11-06 2006-11-06 Micro compression tester

Publications (2)

Publication Number Publication Date
JP2008116349A true JP2008116349A (en) 2008-05-22
JP4775579B2 JP4775579B2 (en) 2011-09-21

Family

ID=39502393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006300389A Expired - Fee Related JP4775579B2 (en) 2006-11-06 2006-11-06 Micro compression tester

Country Status (1)

Country Link
JP (1) JP4775579B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131042A1 (en) 2008-04-24 2009-10-29 京セラ株式会社 Mobile electronic device
JP2010181301A (en) * 2009-02-06 2010-08-19 Mitsutoyo Corp Particle compression testing machine and sample table for the same
JP2012202842A (en) * 2011-03-25 2012-10-22 Sii Nanotechnology Inc Sample positioning method, and thermal analyzer using the same
CN104111195A (en) * 2014-07-25 2014-10-22 上海烟草集团有限责任公司 Method for analyzing breakage strength of essence capsule applied to cigarette filter

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226646A (en) * 1990-01-31 1991-10-07 Shimadzu Corp Testing method of compression of particulate material
JPH0593683A (en) * 1991-09-30 1993-04-16 Shimadzu Corp Microcompression tester
JPH06229894A (en) * 1993-01-29 1994-08-19 Shimadzu Corp Automatic material testing machine
JP2002148164A (en) * 2000-11-10 2002-05-22 Asahi Soken:Kk Method and apparatus for measuring physical properties of granules

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03226646A (en) * 1990-01-31 1991-10-07 Shimadzu Corp Testing method of compression of particulate material
JPH0593683A (en) * 1991-09-30 1993-04-16 Shimadzu Corp Microcompression tester
JPH06229894A (en) * 1993-01-29 1994-08-19 Shimadzu Corp Automatic material testing machine
JP2002148164A (en) * 2000-11-10 2002-05-22 Asahi Soken:Kk Method and apparatus for measuring physical properties of granules

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131042A1 (en) 2008-04-24 2009-10-29 京セラ株式会社 Mobile electronic device
JP2010181301A (en) * 2009-02-06 2010-08-19 Mitsutoyo Corp Particle compression testing machine and sample table for the same
JP2012202842A (en) * 2011-03-25 2012-10-22 Sii Nanotechnology Inc Sample positioning method, and thermal analyzer using the same
CN104111195A (en) * 2014-07-25 2014-10-22 上海烟草集团有限责任公司 Method for analyzing breakage strength of essence capsule applied to cigarette filter

Also Published As

Publication number Publication date
JP4775579B2 (en) 2011-09-21

Similar Documents

Publication Publication Date Title
JP6559023B2 (en) Hardness tester and hardness test method
EP2784475B1 (en) Method and apparatus for hardness tester
KR100969413B1 (en) Indentation Hardness Test System
US8566735B2 (en) Hardness tester with a user interface for setting test locations
JP4939156B2 (en) Re-registration method of registration object and recording medium recording the method
EP2645079B1 (en) Hardness tester
JPS62173731A (en) Inspection device for surface of article to be inspected
CN103900919A (en) Hardness tester and method for hardness test
JP4775579B2 (en) Micro compression tester
KR102333004B1 (en) Method of operating a probing apparatus
JP7459331B2 (en) Microscope system control method, microscope system
JP2018165643A (en) Hardness testing machine and program
US10001432B2 (en) Hardness test apparatus and hardness testing method
US7991219B2 (en) Method and apparatus for detecting positions of electrode pads
JP6560937B2 (en) Hardness tester and hardness test method
JP4932202B2 (en) Part program generating apparatus for image measuring apparatus, part program generating method for image measuring apparatus, and part program generating program for image measuring apparatus
JP4783271B2 (en) Wafer electrode registration method, wafer alignment method, and recording medium recording these methods
JP2007033372A (en) Visual inspection device
CN113175879B (en) Method, device, equipment and medium for detecting T face of sharp-mouth ceramic column
KR101266270B1 (en) Wafer inspection system and wager inspection method thereof
JPH076754U (en) Appearance inspection device
JPH08122031A (en) Apparatus and method for inspection of component
CN111678429A (en) Microscopic measurement system and microscopic measurement method
JP2018146465A (en) Hardness testing machine and program
JP2007127578A (en) Defect inspecting apparatus and method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110614

R151 Written notification of patent or utility model registration

Ref document number: 4775579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees