JP2008112592A - Organic el element having microstructure - Google Patents
Organic el element having microstructure Download PDFInfo
- Publication number
- JP2008112592A JP2008112592A JP2006293388A JP2006293388A JP2008112592A JP 2008112592 A JP2008112592 A JP 2008112592A JP 2006293388 A JP2006293388 A JP 2006293388A JP 2006293388 A JP2006293388 A JP 2006293388A JP 2008112592 A JP2008112592 A JP 2008112592A
- Authority
- JP
- Japan
- Prior art keywords
- organic
- light
- layer
- emitting layer
- transparent substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Electroluminescent Light Sources (AREA)
Abstract
Description
本発明は、高効率に光を取り出すことができる、微細構造を持つ有機EL素子とその製造方法に関し、特に面光源として利用される有機EL素子に関するものである。 The present invention relates to an organic EL element having a fine structure capable of extracting light with high efficiency and a manufacturing method thereof, and more particularly to an organic EL element used as a surface light source.
ボトムエミッション方式の有機EL素子は、図7に示すように、透明基板10上に透明電極20(陽極)、有機発光層24、金属電極22(陰極)を順に積層して構成される。ここで有機発光層24は、少なくとも発光層26と、その他ホール注入層、ホール輸送層、電子注入層、電子輸送層等の複数の層を含み得る。そして、陽極20と陰極22の2つの電極間に直流電圧をかけると、発光層26に正孔と電子が送り込まれ、発光層26中で再結合を起こして発生するエネルギーによって、発光層26に含まれる有機分子の電子状態が励起状態に励起される。この不安定な電子状態が基底状態に落ちる際にエネルギーを光として下側の透明基板10側から放出し、有機EL素子101が発光する。
As shown in FIG. 7, the bottom emission type organic EL element is configured by sequentially laminating a transparent electrode 20 (anode), an organic
一方、トップエミッション方式の有機EL素子は、基板または陽極を金属で形成し、陰極を透明とすることにより、上側の透明電極(陰極)側から光を取り出す。 On the other hand, in a top emission type organic EL device, light is extracted from the upper transparent electrode (cathode) side by forming a substrate or an anode from a metal and making a cathode transparent.
上記いずれの方式の有機EL素子でも同様のメカニズムで発光が生じるが、例えば図7に示すボトムエミッション方式の有機EL素子101では、透明基板10を透過する光量の割合は、有機発光層26で発光した光量の20パーセント程度であることが知られている。この光量の減少は、光を取り出す方向と略垂直の層方向の発光や、各層間や透明基板表面で生じる反射や散乱などに起因する光の導波モードにより主に生じる。主に有機発光層24及び透明電極20で生じる導波モード1により約60%、主に透明基板10で生じる導波モード2により約20%、光の損失が生じることが知られている。
Light emission is generated by the same mechanism in any of the above-described organic EL elements. For example, in the bottom emission
有機EL素子は、ディスプレイへの用途のみではなく、室内の照明や液晶用バックライトの光源など、照明用の面光源としても期待されている。これは、従来の蛍光灯や白熱電球よりも厚さが非常に薄いうえ、低い消費電力で同程度の輝度を得ることが期待されるからである。ディスプレイの表示用素子に用いられる有機EL素子は、輝度が200cd/m2程度であれば、使用に堪えることができるが、照明用の光源として使用する場合には、一般的には8000cd/m2以上の輝度が必要とされている。従って、特に照明用の光源として用いる場合、有機EL素子の光取り出し効率を高めることは必須の技術課題である。 The organic EL element is expected not only as a display but also as a surface light source for illumination such as a light source for indoor illumination and a backlight for liquid crystal. This is because the thickness is much thinner than conventional fluorescent lamps and incandescent lamps, and it is expected to obtain the same level of brightness with low power consumption. An organic EL element used as a display element of a display can be used with a luminance of about 200 cd / m 2, but generally 8000 cd / m when used as a light source for illumination. A luminance of 2 or more is required. Therefore, particularly when used as a light source for illumination, increasing the light extraction efficiency of the organic EL element is an essential technical problem.
このため、有機EL素子の光取り出し効率を向上させる技術が種々開発されている。例えば、ガラス基板とITO間にエアロゲルを挿入して導波モード1を軽減したもの(非特許文献1)、メサ型凹凸ドットを形成して導波モード1を軽減したもの(非特許文献2)、ガラス基板側にマイクロレンズを形成して導波モード2を軽減したもの、ガラス基板側に550nmシリカ球を配列して導波モード2を軽減したもの(非特許文献3)、ELドットを形成し、三角形状マイクロミラーを配置して導波モード1、2を軽減したもの(非特許文献4)、有機発光層と同程度の屈折率の基板を用いて導波モード1を軽減したものなどが考案されている。 For this reason, various techniques for improving the light extraction efficiency of the organic EL element have been developed. For example, an airgel inserted between a glass substrate and ITO reduces waveguide mode 1 (Non-patent document 1), and a mesa-shaped uneven dot is formed to reduce waveguide mode 1 (non-patent document 2). A microlens is formed on the glass substrate side to reduce the waveguide mode 2, and a 550 nm silica sphere is arranged on the glass substrate side to reduce the waveguide mode 2 (Non-Patent Document 3), and EL dots are formed. In addition, a triangular micromirror is disposed to reduce the waveguide modes 1 and 2 (Non-patent Document 4), and a waveguide mode 1 is reduced using a substrate having a refractive index similar to that of the organic light emitting layer. Has been devised.
しかし、これらの光取り出し技術はいずれも開発途上であり、面光源用有機EL素子の光取り出し技術としては満足できるレベルには至っていない。 However, all of these light extraction technologies are under development, and have not reached a satisfactory level as a light extraction technology for an organic EL element for a surface light source.
その他、新規な面光源用有機EL素子の装置構成が特許文献1に公開されている。特許文献1に記載された複合発光装置(有機EL素子)は、2つの電極に挟まれた発光媒体に隣接して、光取り出し方向とは略垂直な方向に蛍光膜を載置し、発光媒体から電極と略水平方向に発せられた光を蛍光膜が吸収し、蛍光膜から光を発するものである。従って、上記導波モード1により損失される発光の一部を、蛍光膜による光の吸収・放出で補うことができる。 In addition, Patent Document 1 discloses a device configuration of a novel organic EL element for a surface light source. A composite light-emitting device (organic EL element) described in Patent Document 1 has a phosphor film placed in a direction substantially perpendicular to a light extraction direction adjacent to a light-emitting medium sandwiched between two electrodes. The phosphor film absorbs the light emitted from the electrode substantially in the horizontal direction and emits light from the phosphor film. Therefore, a part of light emission lost by the waveguide mode 1 can be supplemented by absorption and emission of light by the fluorescent film.
しかし、特許文献1の発明は、蛍光膜から光取り出し方向へ放出された光のみが補われ、従来例に比べ導波モード1の一部が補償されるのみである。また、導波モード2による損失は、従来の面光源用有機EL素子と略同等であると考えられる。 However, in the invention of Patent Document 1, only light emitted from the fluorescent film in the light extraction direction is supplemented, and only part of the waveguide mode 1 is compensated as compared with the conventional example. In addition, it is considered that the loss due to the waveguide mode 2 is substantially the same as that of a conventional organic EL element for a surface light source.
一方、特許文献2は、主として導波モード2による光の損失を補償する発明を開示している。特許文献2の発明は、例えば上記図7における透明基板10の下面に複数の微小な凸部を設けることによって、有機発光層24で発光した光の取り出し効率を向上させる。即ち、凸部によって、透明基板10の表面と空気との界面における光の反射を防止し、透明基板10を透過した光の散乱を防止している。
On the other hand, Patent Document 2 discloses an invention that mainly compensates for light loss due to the waveguide mode 2. The invention of Patent Document 2 improves the extraction efficiency of light emitted from the organic
しかし、照明用の面光源として、多様な色の光を取り出すには、あるいはより美しい白色を得るには、その所望の色について発光層の材料の選択等、様々な設計変更を余儀なくされる。例えば、図5のようなMPE(Multi-Photon Emission)による白色化では、有機発光層の構造が複雑となり、製造コストが高くなる。 However, in order to extract light of various colors as a surface light source for illumination, or to obtain a more beautiful white color, various design changes such as selection of a material of the light emitting layer for the desired color are unavoidable. For example, whitening by MPE (Multi-Photon Emission) as shown in FIG. 5 complicates the structure of the organic light emitting layer and increases the manufacturing cost.
そこで、本発明は、高効率に有機発光層の発光を有機EL素子の外部に取り出す光取り出し構造を有するとともに、有機発光層の構造を徒に複雑化することなく、比較的安価に所望の色の光を得ることができる色変換モードを備えた有機EL素子を得ることを目的とする。 Therefore, the present invention has a light extraction structure for extracting light emitted from the organic light emitting layer to the outside of the organic EL element with high efficiency, and a desired color at a relatively low cost without complicating the structure of the organic light emitting layer. An object of the present invention is to obtain an organic EL element having a color conversion mode capable of obtaining the above light.
本発明の微細構造を持つ有機EL素子は、少なくともいずれか一方の表面に微細構造層を有する透明基板と、前記透明基板上に形成された透明電極と、前記透明電極上に形成され、発光を行う発光層を含む有機発光層と、を含み、少なくとも一方の前記微細構造層は、該微細構造中に蛍光材料が略一様に分散されている。 An organic EL device having a microstructure of the present invention is a transparent substrate having a microstructure layer on at least one surface thereof, a transparent electrode formed on the transparent substrate, and formed on the transparent electrode to emit light. An organic light emitting layer including a light emitting layer to be performed, and at least one of the fine structure layers has a fluorescent material substantially uniformly dispersed in the fine structure.
本発明の微細構造を持つ有機EL素子は、前記微細構造層は複数の凸部または凹部を含み、前記凸部または凹部の形状は、円錐、角錐、円柱、角柱、円錐台、または、角錐台を含み得る。 In the organic EL element having a microstructure according to the present invention, the microstructure layer includes a plurality of convex portions or concave portions, and the shape of the convex portions or concave portions is a cone, a pyramid, a cylinder, a prism, a truncated cone, or a truncated pyramid. Can be included.
本発明の微細構造を持つ有機EL素子は、前記透明基板と前記微細構造層の屈折率は略等しいことを特徴とする。 The organic EL element having a microstructure of the present invention is characterized in that the refractive index of the transparent substrate and the microstructure layer is substantially equal.
本発明の微細構造を持つ有機EL素子は、前記透明基板はガラス基板であり、前記微細構造層は有機無機ハイブリッド材料により形成されることが好ましい。 In the organic EL device having a microstructure of the present invention, the transparent substrate is preferably a glass substrate, and the microstructure layer is preferably formed of an organic-inorganic hybrid material.
本発明の微細構造を持つ有機EL素子は、前記透明基板と前記透明電極間に平坦化層を形成し、前記平坦化層の屈折率は、前記透明電極の屈折率と略等しいことを特徴とする。 The organic EL device having a microstructure of the present invention is characterized in that a planarization layer is formed between the transparent substrate and the transparent electrode, and the refractive index of the planarization layer is substantially equal to the refractive index of the transparent electrode. To do.
本発明の微細構造を持つ有機EL素子は、前記透明電極はIZO(Indium Zinc
Oxide)またはITO(Indium Tin Oxide)から形成され、前記平坦化層はチタンの金属酸化物を含むのが好ましい。
In the organic EL device having the microstructure according to the present invention, the transparent electrode is made of IZO (Indium Zinc).
Oxide) or ITO (Indium Tin Oxide), and the planarization layer preferably includes a metal oxide of titanium.
本発明の微細構造を持つ有機EL素子は、前記蛍光材料は蛍光染料または蛍光顔料であり得る。 In the organic EL device having the microstructure of the present invention, the fluorescent material may be a fluorescent dye or a fluorescent pigment.
本発明の微細構造を持つ有機EL素子は、前記蛍光顔料は有機色素レーザー材料から選択されるのが好ましく、前記蛍光顔料はシアニン系色素から選択されてもよい。 In the organic EL device having a microstructure of the present invention, the fluorescent pigment is preferably selected from organic dye laser materials, and the fluorescent pigment may be selected from cyanine dyes.
本発明の微細構造を持つ有機EL素子は、前記発光層の発光を吸収した前記蛍光材料は、該発光の波長より長波長の光を発生させることを特徴とする。 The organic EL device having a microstructure according to the present invention is characterized in that the fluorescent material that absorbs light emitted from the light emitting layer generates light having a wavelength longer than the wavelength of the light emitted.
本発明の微細構造を持つ有機EL素子は、前記発光層は、緑または青の光を発光するのが好適である。 In the organic EL device having a fine structure of the present invention, it is preferable that the light emitting layer emits green or blue light.
本発明の微細構造を持つ有機EL素子は、前記透明基板の両面に形成された前記微細構造層中に、それぞれ異なる波長の光を放出する前記蛍光材料が分散されていてもよい。前記発光層の発光と、該発光を吸収したそれぞれの前記蛍光材料が発光する光との合成光は、白色光であり得る。 In the organic EL device having a microstructure of the present invention, the fluorescent materials that emit light of different wavelengths may be dispersed in the microstructure layer formed on both surfaces of the transparent substrate. The combined light of the light emission of the light emitting layer and the light emitted from each of the fluorescent materials that has absorbed the light emission may be white light.
本発明の微細構造を持つ有機EL素子は、透明基板の少なくともいずれか一方の表面に複数の凸部または凹部を含む微細構造層を有するため、光取り出し効率を向上させることができる。即ち、有機発光層から透明基板に向かう方向を下方向とすると、透明基板の下側(光取り出し側)に上記微細構造層を設けることにより、透明基板表面と空気との界面における光の反射を防止し、透明基板を透過した光の散乱を防止することにより光取り出し効率を向上させることができる(基板モード制御による光取り出し機能)。同様に、透明基板の上側(透明電極側)に微細構造層を設け、透明電極の屈折率に近い材料で微細構造層を充填して平坦化層を形成することにより、平坦化層と微細構造層間の光の反射・散乱を防止することにより光取り出し効率を向上させることができる(薄膜モード制御による光取り出し機能)。 Since the organic EL device having the microstructure of the present invention has a microstructure layer including a plurality of convex portions or concave portions on at least one surface of the transparent substrate, the light extraction efficiency can be improved. That is, assuming that the direction from the organic light emitting layer toward the transparent substrate is the downward direction, by providing the fine structure layer on the lower side (light extraction side) of the transparent substrate, light reflection at the interface between the transparent substrate surface and the air is performed. The light extraction efficiency can be improved by preventing light scattering through the transparent substrate (light extraction function by substrate mode control). Similarly, by providing a fine structure layer on the upper side (transparent electrode side) of the transparent substrate and filling the fine structure layer with a material close to the refractive index of the transparent electrode to form the flattening layer, the flattening layer and the fine structure are formed. Light extraction efficiency can be improved by preventing reflection and scattering of light between layers (light extraction function by thin film mode control).
さらに、透明基板をガラス基板とし、微細構造層を有機無機ハイブリッド材料により形成して、透明基板と微細構造層の屈折率は略等しくすることにより、上記基板モード制御による光取り出し機能をより高めることができる。 In addition, the transparent substrate is a glass substrate, the microstructure layer is formed of an organic-inorganic hybrid material, and the refractive index of the transparent substrate and the microstructure layer is substantially equal, thereby further enhancing the light extraction function by the substrate mode control. Can do.
同様に、透明電極をIZO(Indium Zinc Oxide)またはITO(Indium Tin Oxide)から形成し、平坦化層をチタン等の金属酸化物を含んで形成して、平坦化層の屈折率と透明電極の屈折率と略等しくすることによって、上記薄膜モード制御による光取り出し機能をより高めることができる。 Similarly, the transparent electrode is formed from IZO (Indium Zinc Oxide) or ITO (Indium Tin Oxide), and the planarization layer is formed to contain a metal oxide such as titanium, and the refractive index of the planarization layer and the transparent electrode By making it substantially equal to the refractive index, the light extraction function by the thin film mode control can be further enhanced.
また、本発明の微細構造を持つ有機EL素子は、透明基板に形成された少なくとも一方の微細構造層は、当該微細構造中に蛍光材料が略一様に分散されているので、発光層の発光を吸収した蛍光材料が発光の波長より長波長の光を発生させることにより、発光層と蛍光材料から放出された光の混合光を取り出すことができる(色変換モード)。従来のMPE(Multi-Photon Emission)構造と異なり、有機発光層の構成を複雑化することなくより低コストで、蛍光材料と発光層材料等の選択・組み合わせにより様々な混合光を取り出すことができる。発光層に青や緑の短波長の光を発光させ、蛍光材料として蛍光染料または蛍光顔料等の材料から好適な材料を選択することにより、上記様々な混合光の取り出しを可能とする。 In addition, in the organic EL device having the microstructure of the present invention, since at least one microstructure layer formed on the transparent substrate has a fluorescent material dispersed substantially uniformly in the microstructure, the light emission of the light emitting layer The fluorescent material that has absorbed the light generates light having a wavelength longer than the emission wavelength, whereby mixed light of the light emitted from the light emitting layer and the fluorescent material can be extracted (color conversion mode). Unlike the conventional MPE (Multi-Photon Emission) structure, various mixed lights can be extracted by selecting and combining fluorescent materials and light emitting layer materials at a lower cost without complicating the structure of the organic light emitting layer. . By making the light emitting layer emit blue or green short-wavelength light and selecting a suitable material from fluorescent dyes or fluorescent pigments as the fluorescent material, the above-mentioned various mixed lights can be extracted.
さらに、透明基板の両面に形成された微細構造層中に、それぞれ異なる波長の光を放出する蛍光材料を分散させることにより、3色の混合光を取り出すことができる。好適な発光層材料、蛍光材料の選択・組み合わせにより合成光を白色光とし、白色面発光の有機EL素子を得ることができる。 Furthermore, mixed light of three colors can be extracted by dispersing fluorescent materials that emit light of different wavelengths in the fine structure layers formed on both surfaces of the transparent substrate. By selecting / combining a suitable light emitting layer material and fluorescent material, the synthesized light can be converted into white light to obtain an organic EL device that emits white light.
本実施形態の有機EL素子1は、図1に示すように、両表面に複数の凸部14を含む微細構造層12を有する透明基板10と、透明基板10上に形成された透明電極20と、透明電極20上に形成され、発光を行う発光層26を含む有機発光層24とを含み、有機発光層24上に光反射電極22が形成されている。本実施形態において、有機EL素子1はボトムエミッション方式であり、透明電極20から下方向(有機発光層24から透明電極20に向かう方向)に光を取り出すものとする。
As shown in FIG. 1, the organic EL element 1 of the present embodiment includes a
本発明の有機EL素子1において、微細構造層12の少なくとも一方は、微細構造12(凸部14)中に蛍光材料が略一様に分散されている。 In the organic EL element 1 of the present invention, at least one of the fine structure layers 12 has the fluorescent material dispersed substantially uniformly in the fine structure 12 (convex portion 14).
有機発光層24は、発光層26以外にホール注入層、ホール輸送層、電子注入層、電子輸送層等の複数の有機層を含み得るが、本明細書においては簡単のため、発光層26とその他の有機層をまとめて有機発光層24とする。
The organic light-emitting
有機発光層24、光反射電極22など、微細構造層12以外の有機EL素子1の構成物の構造および材料等は、公知の構成であってよく、特に限定されない。
The structures and materials of the components of the organic EL element 1 other than the
したがって、透明基板10はガラス、その他透明な樹脂等で形成されてもよく、特に限定されないが、微細構造層12の屈折率は透明基板10の屈折率と略等しいことが望ましい。微細構造層12の材料は透明基板10の屈折率と略等しければ特に限定されないが、例えば透明基板10として屈折率約1.5のガラス基板を採用すると、微細構造層12は、ガラス基板と屈折率の近い有機無機ハイブリッド材料により形成するのが好適である。透明基板10と微細構造層12の屈折率の差違は、±0.01以内であることが好ましい。
Accordingly, the
上記微細構造層12の形成方法は後述するが、これを形成するための有機無機ハイブリッド材料を用いた膜は、金属アルコキシド組成物を溶剤に希釈した液体をガラス基板の上に塗布し、これを膜状にして硬化させて得ることができる。
A method of forming the
上記金属アルコキシド組成物は、(a)メチル基又はフェニル基を有する有機ポリシロキサンと(b)ヒドロキシル基又は加水分解性官能基を有する有機シロキサンと(c)硬化剤とを含有することが好ましい。 The metal alkoxide composition preferably contains (a) an organic polysiloxane having a methyl group or a phenyl group, (b) an organic siloxane having a hydroxyl group or a hydrolyzable functional group, and (c) a curing agent.
上記(a)のメチル基又はフェニル基を有する有機ポリシロキサンとしては、例えば、メチル基又はフェニル基及び炭素数1〜4のアルコキシ基を有する液状有機ポリシロキサンが挙げられる。炭素数1〜4のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。 Examples of the organic polysiloxane having a methyl group or a phenyl group in (a) above include liquid organic polysiloxanes having a methyl group or a phenyl group and an alkoxy group having 1 to 4 carbon atoms. Examples of the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, and a butoxy group.
上記(b)のヒドロキシル基または加水分解性官能基を有する有機シロキサンにおける加水分解性基としては、例えば、アルコキシ基、アシロキシ基、ケトオキシム基、アミド基、アルケニルオキシ基、およびハロゲン原子などが例示される。また、(b)成分の有機シロキサンは、1価の有機基もしくは水素原子を有することがあり、1価の有機基としては、例えば、メチル、エチル、プロピル、ブチル、ヘキシル等のアルキル基;ビニル、アリル等のアルケニル基;フェニル、トリル、キシリル等のアリール基;フェネチル、β−フェニルプロピル等のアラルキル基;N−(β−アミノエチル)−γ−アミノプロピル等のアミノアルキル基;γ−グリシドキシプロピル、3,4−エポキシシクロヘキシル等のエポキシ基含有基;γ−メタクリロキシプロピル等の(メタ)アクリル基含有基;γ−メルカプトプロピル等のメルカプトアルキル基;シアノエチル等のシアノアルキル基;β−クロロエチル、γ−クロロエチル等のクロロアルキル基;3,3,3−トリフルオロプロピル等のフルオロアルキル基等が例示される。なお、(b)成分には、必要に応じてアルコキシの部分加水分解物(液状シリコーンレジン)が含まれる場合がある。 Examples of the hydrolyzable group in the organic siloxane having a hydroxyl group or a hydrolyzable functional group (b) include an alkoxy group, an acyloxy group, a ketoxime group, an amide group, an alkenyloxy group, and a halogen atom. The The component (b) organosiloxane may have a monovalent organic group or a hydrogen atom. Examples of the monovalent organic group include alkyl groups such as methyl, ethyl, propyl, butyl and hexyl; vinyl , Alkenyl groups such as allyl; aryl groups such as phenyl, tolyl, xylyl; aralkyl groups such as phenethyl and β-phenylpropyl; aminoalkyl groups such as N- (β-aminoethyl) -γ-aminopropyl; Epoxy group-containing groups such as sidoxypropyl and 3,4-epoxycyclohexyl; (meth) acryl group-containing groups such as γ-methacryloxypropyl; mercaptoalkyl groups such as γ-mercaptopropyl; cyanoalkyl groups such as cyanoethyl; β A chloroalkyl group such as chloroethyl and γ-chloroethyl; a chloroalkyl group such as 3,3,3-trifluoropropyl; Examples include a uroalkyl group and the like. The component (b) may contain an alkoxy partial hydrolyzate (liquid silicone resin) as necessary.
上記(c)の硬化剤は、通常、縮合硬化型シリコーン組成物に使用される硬化触媒が使用される。硬化剤の具体例としては、トリエタノールアミン等の有機アミン;オクチル酸スズ、オクチル酸亜鉛等のカルボン酸金属塩;ジブチルスズジラウレート、ジブチルスズジオクトエート等の有機錫化合物;テトラブチルチタネート、テトラプロピルチタネート等のチタン酸エステル;第四級アンモニウムカルボキシレート等の第四級アンモニウム化合物;γ−アミノプロピルトリエトキシシラン、N−(β−アミノエチル)−γ−アミノプロピルトリメトキシシラン等のアミン系シランカップリング剤が挙げられる。また、有機アルミニウム化合物、又はホウ素ハライドを使用することもできる。これらの中でも、有機錫化合物又はホウ素ハライドが好ましい。これらの硬化剤は、2種以上を併用することができる。 As the curing agent (c), a curing catalyst used in a condensation curable silicone composition is usually used. Specific examples of the curing agent include: organic amines such as triethanolamine; carboxylic acid metal salts such as tin octylate and zinc octylate; organotin compounds such as dibutyltin dilaurate and dibutyltin dioctoate; tetrabutyl titanate, tetrapropyl titanate Quaternary ammonium compounds such as quaternary ammonium carboxylates; amine-based silane cups such as γ-aminopropyltriethoxysilane and N- (β-aminoethyl) -γ-aminopropyltrimethoxysilane A ring agent is mentioned. An organoaluminum compound or boron halide can also be used. Among these, an organic tin compound or a boron halide is preferable. Two or more of these curing agents can be used in combination.
上記溶液に調製する際に使用する溶媒としては、(a)成分、(b)成分及び(c)成分を溶解、分散するものであれば特に限定されない。例えば、メタノール、エタノール、イソプロパノール等のアルコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテルアルコールおよびエーテル類;アセトン、メチルエチルケトン、ジエチルケトン等のケトン類;酢酸メチル、酢酸エチル、酢酸n−ブチル等のエステル類;n−ヘキサン、ガソリン、ゴム揮発油、ミネラルスピリット、灯油等の脂肪族炭化水素等が挙げられる。 The solvent used in preparing the solution is not particularly limited as long as it dissolves and disperses the component (a), the component (b), and the component (c). For example, alcohols such as methanol, ethanol and isopropanol; ether alcohols and ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, tetrahydrofuran and dioxane; ketones such as acetone, methyl ethyl ketone and diethyl ketone; methyl acetate and ethyl acetate And esters such as n-butyl acetate; aliphatic hydrocarbons such as n-hexane, gasoline, rubber volatile oil, mineral spirit, and kerosene.
上述のような金属アルコキシド組成物が基板に塗布され、比較的低温における金属アルコキシドの加水分解反応による脱水縮合反応を行うことにより、三次元架橋が形成された光透過性の被膜が形成される。 By applying the metal alkoxide composition as described above to the substrate and performing a dehydration condensation reaction by a hydrolysis reaction of the metal alkoxide at a relatively low temperature, a light-transmitting film in which three-dimensional crosslinking is formed is formed.
微細構造層12は、図2のように、複数の凸部14によって構成される。あるいは、上記有機無機ハイブリッド材料に凹部を設けて形成してもよい(図3参照)。凸部または凹部の形状は、円錐、角錐、円柱、角柱、円錐台、角錐台などを含み、凹凸部のピッチ及びその高さは、いずれも10nm〜10μmであるのが好適である。
As shown in FIG. 2, the
上記蛍光材料は、図2(a)のような蛍光染料16または図2(b)のような蛍光顔料17である。この蛍光染料16や蛍光顔料17のような蛍光材料は、透明基板10の両面に形成された少なくとも一方の微細構造層12中に略一様に分散される。したがって、当該微細構造層12を構成する凸部(または凹部物質)中にも、蛍光材料が略一様に分散されている。尚、蛍光顔料は、シアニン系色素などの有機色素レーザー材料から選択されるのが好ましい。
The fluorescent material is a
また、透明基板10上に形成された微細構造層12上に透明電極20を積層する場合、微細構造層12を平坦化する必要がある。微細構造層12の光取り出し効率を高めるためには、この微細構造層12を平坦化する平坦化層の屈折率を、透明電極20の屈折率と略同一になるように調整することが好ましい。そこで、例えば透明電極20として屈折率が2.0前後であるIZO(Indium Zinc Oxide)やITO(Indium Tin Oxide)を用いる場合は、チタンを主成分としたアルミニウム、ゲルマニウム、ジルコニウム等の金属酸化物等を微細構造層12が埋められるように充填して平坦化層を形成し、当該平坦化層の屈折率を上記ITO等の透明電極20の屈折率に近似させる。この平坦化層の屈折率の調整により、透明基板10上の微細構造層12による光取り出し効率を高めることができる。なお、平坦化層は微細構造層12がない場合であっても、透明基板10と透明電極20間に形成してもよい。
Further, when the
上記のような本実施形態の有機EL素子1においては、発光層26から放出された光は、有機発光層24、透明電極20を経て、あるいは光反射電極22で反射した後各層を経て、微細構造層12、透明基板10を透過して、そのままの波長で外部に取り出される場合がある(図4左の矢印)。一方で、発光層26からの放出光が微細構造層12中の蛍光材料にいったん吸収され、当該蛍光材料特有の波長の光が再放出されて透明基板10等を透過し、外部に取り出される場合も生じる(図4右の矢印)。
In the organic EL element 1 of the present embodiment as described above, the light emitted from the
この場合、微細構造層12中から再放出される光は、原理的に蛍光材料が吸収する光、即ち発光層26の放出光よりエネルギーが低くなるため、再放出される光の波長は発光層26から放出される光の波長より長くなる。したがって、有機EL素子1からの取り出し光は、発光層26と蛍光材料が放出する2色の光の混合光となる。
In this case, the light re-emitted from the
すなわち、発光層を構成する有機材料、および、蛍光材料を様々に選択して組み合わせることによって、様々に異なる波長の合成光を有機EL素子1から取り出すことができる。発光層の発光を吸収した蛍光材料が当該発光の補色を発生させる場合、白色の合成光を得ることもできる。ただし、上記のように、発光層26の放出光は蛍光材料の再放出光よりエネルギーが高い必要があるため、発光層26は緑〜青の波長の短い光を発光するのが好ましい。
That is, synthetic light having different wavelengths can be extracted from the organic EL element 1 by selecting and combining various organic materials and fluorescent materials constituting the light emitting layer. When the fluorescent material that has absorbed the light emission of the light emitting layer generates a complementary color of the light emission, white synthetic light can also be obtained. However, as described above, since the emitted light of the
次に、本発明の有機EL素子1の製造方法の一例を説明する。透明基板10の片面または両面に微細構造層12を形成するには、従来のフォトリソグラフィ法を用いてもよいが、本実施形態においては量産性に優れ低コスト化を図れるナノインプリント法を用いる。
Next, an example of the manufacturing method of the organic EL element 1 of the present invention will be described. In order to form the
(1) 透明基板10としてガラス基板を準備し、純水等を用いて超音波洗浄をおこなう。
(2) ガラス基板の片面または両面に、上述した有機無機ハイブリッド材料と蛍光材料の混合液を、スピンコートなどを用いて塗布する。
(3) 上記混合液が塗布された基板全体をホットプレート等で数十分、数10〜100℃位で加熱し、液状混合液を半硬化させる。
(4) 上記の表面が半硬化された基板を、微細構造層12を形成するために予め製作した金型で圧着後、加熱圧着する。圧着条件は数10〜2000N/cm2であり、加熱条件は数10〜500℃で数10分である。
(5) 金型を基板から離型し、基板を放置するなどして冷却する。この工程により、凸部よりなる微細構造層12(図3(a),(b))、または、凹部よりなる微細構造層12(図3(c),(d))がガラス基板の片面または両面に形成される。
(6) 硬化した微細構造層12上に例えばIZO等の透明電極20を積層する場合は、チタンを主成分としたアルミニウム、ゲルマニウム等の金属酸化物等を微細構造層12の穴部分に充填して、微細構造層12を平坦化する平坦化層を形成する。
(1) A glass substrate is prepared as the
(2) The liquid mixture of the organic-inorganic hybrid material and the fluorescent material described above is applied to one side or both sides of the glass substrate using spin coating or the like.
(3) The whole substrate coated with the mixed solution is heated with a hot plate or the like at several tens of minutes to several 10 to 100 ° C. to semi-cure the liquid mixed solution.
(4) The substrate on which the surface has been semi-cured is subjected to thermocompression bonding after being pressure-bonded with a mold manufactured in advance to form the
(5) Release the mold from the substrate and cool the substrate by leaving it alone. By this step, the fine structure layer 12 (FIGS. 3 (a) and (b)) made of convex portions or the fine structure layer 12 (FIGS. 3 (c) and (d)) made of concave portions is formed on one side of the glass substrate. Formed on both sides.
(6) When laminating the
以降、公知の有機EL素子の製造方法と同様に、平坦化した微細構造層12上に、透明電極20/有機発光層24/光反射電極22を材料の積層とパターニングを繰り返して形成する。それらの材料と厚みの一例は、透明電極IZO(200nm)/ホール輸送層TPD(50nm)/発光層Alq3(50nm)/電子注入層LiF(1nm)/光反射電極Al(70nm)である。材料の積層方法は、スパッタ法や真空蒸着などである。
Thereafter, similar to the known method for manufacturing an organic EL element, the
有機発光層24が外気に触れないように、有機発光層24などをキャップでカバーする。カバーする際、透明基板10とキャップで囲まれる部分は不活性ガスを充填することが好ましい。また、キャップの金属電極22と対向する面に乾燥剤を配置することも好ましい。
The organic
以上のように製造される本発明の有機EL素子1は、以下の3つの機能により、上記発明の目的の光取り出し構造及び色変換モードを実現している。即ち、
(機能1)透明基板10の下側(光取り出し側)に微細構造層12を設けることによる、基板モード制御による光取り出し機能。
(機能2)透明基板10の上側(透明電極20側)に微細構造層12を設け、透明電極20の屈折率に近い材料で微細構造層を充填して平坦化層を形成する、薄膜(平坦化層)モード制御による光取り出し機能。
(機能3)透明基板10の上側及び下側の微細構造層12を、蛍光材料を略一様に分散させて形成することによる、色変換モード及び光取り出し機能。
The organic EL element 1 of the present invention manufactured as described above realizes the light extraction structure and the color conversion mode, which are the objects of the above invention, by the following three functions. That is,
(Function 1) A light extraction function by substrate mode control by providing the
(Function 2) A thin film (flat surface) in which the
(Function 3) A color conversion mode and a light extraction function by forming the fine structure layers 12 on the upper and lower sides of the
上記各機能による光取り出し効率は、図6のように見込まれる。図6のグラフは、(0)が機能1〜3ともに持たない有機EL素子、(1)が機能1のみ備える有機EL素子、(2)が機能1及び2を備える有機EL素子、(3)機能3を備える有機EL素子の光取り出し効率(%)を示している。 The light extraction efficiency by the above functions is expected as shown in FIG. The graph of FIG. 6 shows that (0) is an organic EL element having no functions 1 to 3, (1) is an organic EL element having only function 1, (2) is an organic EL element having functions 1 and 2, and (3) The light extraction efficiency (%) of the organic EL element having the function 3 is shown.
本発明の有機EL素子1は、機能3を備える(3)の有機EL素子に相当するが、図6により、上記(1)及び/または(2)の機能を有する有機EL素子より光取り出し効率が高いことがわかる。 The organic EL element 1 of the present invention corresponds to the organic EL element (3) having the function 3, but the light extraction efficiency is higher than that of the organic EL element having the function (1) and / or (2) according to FIG. Is high.
また、機能3を備える本発明の有機EL素子1は、機能(1)及び/または(2)を有する有機EL素子と異なり色変換モードを備えるため、有機発光層24の構造を複雑化することなく、比較的安価に所望の色の光を得ることができる。
Moreover, since the organic EL element 1 of the present invention having the function 3 has a color conversion mode unlike the organic EL element having the functions (1) and / or (2), the structure of the organic
以上、本発明に係る微細構造を持つ有機EL素子1について説明したが、本発明の有機EL素子は、上記実施形態に限定されるものではない。上記実施形態においては、蛍光材料を分散させた微細構造層12は透明基板10の両面に形成されたが、片面のみに形成されてもよい。少なくとも一方の表面に蛍光材料を分散させた微細構造層12を形成すれば、両面に形成した場合よりも光取り出し効率は落ちるものの、上記光取り出し構造及び色変換モードを備えた本願の有機EL素子1を製造することが可能である。
The organic EL element 1 having a fine structure according to the present invention has been described above, but the organic EL element of the present invention is not limited to the above embodiment. In the above embodiment, the
蛍光染料及び蛍光顔料の材料の種類は上記例に特に限定されない。所望の色を得るために、蛍光材料は、発光層の材料や組成等による発光色との組み合わせ等により適宜選択することができる。 The kind of material of the fluorescent dye and fluorescent pigment is not particularly limited to the above examples. In order to obtain a desired color, the fluorescent material can be appropriately selected depending on the combination with the emission color depending on the material and composition of the emission layer.
したがって、透明基板10の上方と下方の微細構造層12に、それぞれ別の色の光を放出する蛍光材料を分散させれば、発光層26の発光色と合わせて3色の光の合成光を有機EL素子1から取り出すこともできる。従って、青、緑、赤の3色を合成することにより、白色面光源とすることも可能である。
Therefore, if fluorescent materials that emit light of different colors are dispersed in the
また、発光層26から放出される光は、蛍光であっても燐光であっても良い。本発明の有機EL素子1は、発光層26の発光がいずれの光の場合であっても、図6に示す高い光取り出し効率を達成することができる。
Further, the light emitted from the
有機EL素子1はボトムエミッション方式としたが、トップエミッション方式であってもよい。即ち、図1において、基板10及び/または陽極20を金属で形成し、透明電極とした陰極側から光を取り出してもよい。有機発光層24と両電極20,22とを透明キャップで封止し、透明キャップに微細構造層および色変換モードを備えてもよい。
The organic EL element 1 is a bottom emission method, but may be a top emission method. That is, in FIG. 1, the
その他、本発明は、その主旨を逸脱しない範囲で当業者の知識に基づき種々の改良、修正、変更を加えた態様で実施できるものである。 In addition, the present invention can be carried out in a mode in which various improvements, modifications, and changes are added based on the knowledge of those skilled in the art without departing from the gist thereof.
本発明は、ディスプレイ、液晶ディスプレイ用のバックライト、建物内外の照明など、多様な用途に利用可能である。 The present invention can be used in various applications such as a display, a backlight for a liquid crystal display, and lighting inside and outside a building.
1、101:有機EL素子
10:透明基板
12:微細構造層
14:凸部
16:蛍光染料
17:蛍光顔料
20:透明電極(陽極)
22:光反射電極(陰極)
24:有機発光層
26:発光層
DESCRIPTION OF SYMBOLS 1, 101: Organic EL element 10: Transparent substrate 12: Fine structure layer 14: Convex part 16: Fluorescent dye 17: Fluorescent pigment 20: Transparent electrode (anode)
22: Light reflecting electrode (cathode)
24: Organic light emitting layer 26: Light emitting layer
Claims (15)
前記透明基板上に形成された透明電極と、
前記透明電極上に形成され、発光を行う発光層を含む有機発光層と、
を含み、
少なくとも一方の前記微細構造層は、該微細構造中に蛍光材料が略一様に分散されている有機EL素子。 A transparent substrate having a microstructure layer on at least one of the surfaces;
A transparent electrode formed on the transparent substrate;
An organic light-emitting layer formed on the transparent electrode and including a light-emitting layer that emits light; and
Including
At least one of the microstructure layers is an organic EL element in which a fluorescent material is dispersed substantially uniformly in the microstructure.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006293388A JP2008112592A (en) | 2006-10-28 | 2006-10-28 | Organic el element having microstructure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006293388A JP2008112592A (en) | 2006-10-28 | 2006-10-28 | Organic el element having microstructure |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008112592A true JP2008112592A (en) | 2008-05-15 |
Family
ID=39445001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006293388A Pending JP2008112592A (en) | 2006-10-28 | 2006-10-28 | Organic el element having microstructure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008112592A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012003074A (en) * | 2010-06-17 | 2012-01-05 | Mitsubishi Rayon Co Ltd | Optical film and optical device using the same |
JP2012142270A (en) * | 2010-12-16 | 2012-07-26 | Semiconductor Energy Lab Co Ltd | Light-emitting device and illuminating device |
JP2012199230A (en) * | 2011-03-04 | 2012-10-18 | Semiconductor Energy Lab Co Ltd | Light emitting device, lighting system, substrate, and method of manufacturing substrate |
KR101248904B1 (en) * | 2010-10-18 | 2013-03-28 | 한국과학기술원 | Organic light emitting device, lighting equipment comprising the same, and organic light emitting apparatus comprising the same |
JP2013105653A (en) * | 2011-11-15 | 2013-05-30 | Semiconductor Energy Lab Co Ltd | Light-emitting device, electronic apparatus and illuminating device |
JP2013138018A (en) * | 2013-03-01 | 2013-07-11 | Hitachi Ltd | Organic light-emitting diode and light source device using the same |
JP2013163384A (en) * | 2013-04-04 | 2013-08-22 | Nippon Zeon Co Ltd | Optical laminate |
KR101339440B1 (en) | 2012-01-26 | 2013-12-10 | 한국전자통신연구원 | Organic electroluminescent device and method for menufacturing thereof |
JP2016066620A (en) * | 2010-09-14 | 2016-04-28 | 株式会社半導体エネルギー研究所 | Solid light-emitting element |
US9722209B2 (en) | 2008-09-25 | 2017-08-01 | Lg Display, Co., Ltd. | Organic light-emitting diodes (OLEDS) with high efficiency and its manufacturing method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10172756A (en) * | 1996-12-13 | 1998-06-26 | Idemitsu Kosan Co Ltd | Organic el light emitting device |
JP2003249381A (en) * | 2002-02-26 | 2003-09-05 | Asahi Glass Co Ltd | Organic electroluminescence element and its manufacturing method |
JP2004311153A (en) * | 2003-04-04 | 2004-11-04 | Nitto Denko Corp | Organic electroluminescent element, surface light source, and display device |
JP2005276581A (en) * | 2004-03-24 | 2005-10-06 | Aitesu:Kk | Planar light emitting device |
JP2006190633A (en) * | 2004-08-24 | 2006-07-20 | Fuji Electric Holdings Co Ltd | Color conversion filter substrate and multicolor light emitting device employing the substrate |
JP2006269328A (en) * | 2005-03-25 | 2006-10-05 | Seiko Epson Corp | Light emitting device |
-
2006
- 2006-10-28 JP JP2006293388A patent/JP2008112592A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10172756A (en) * | 1996-12-13 | 1998-06-26 | Idemitsu Kosan Co Ltd | Organic el light emitting device |
JP2003249381A (en) * | 2002-02-26 | 2003-09-05 | Asahi Glass Co Ltd | Organic electroluminescence element and its manufacturing method |
JP2004311153A (en) * | 2003-04-04 | 2004-11-04 | Nitto Denko Corp | Organic electroluminescent element, surface light source, and display device |
JP2005276581A (en) * | 2004-03-24 | 2005-10-06 | Aitesu:Kk | Planar light emitting device |
JP2006190633A (en) * | 2004-08-24 | 2006-07-20 | Fuji Electric Holdings Co Ltd | Color conversion filter substrate and multicolor light emitting device employing the substrate |
JP2006269328A (en) * | 2005-03-25 | 2006-10-05 | Seiko Epson Corp | Light emitting device |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9722209B2 (en) | 2008-09-25 | 2017-08-01 | Lg Display, Co., Ltd. | Organic light-emitting diodes (OLEDS) with high efficiency and its manufacturing method |
JP2012003074A (en) * | 2010-06-17 | 2012-01-05 | Mitsubishi Rayon Co Ltd | Optical film and optical device using the same |
JP2016066620A (en) * | 2010-09-14 | 2016-04-28 | 株式会社半導体エネルギー研究所 | Solid light-emitting element |
US9876151B2 (en) | 2010-09-14 | 2018-01-23 | Semiconductor Energy Laboratory Co., Ltd. | Solid-state light-emitting element, light-emitting device, and lighting device |
KR101248904B1 (en) * | 2010-10-18 | 2013-03-28 | 한국과학기술원 | Organic light emitting device, lighting equipment comprising the same, and organic light emitting apparatus comprising the same |
KR101802409B1 (en) | 2010-12-16 | 2017-11-28 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light-emitting device and lighting device |
US9502690B2 (en) | 2010-12-16 | 2016-11-22 | Semiconductor Energy Laboratory Co., Ltd. | Organic light-emitting device and lighting device with organic resin and glass substrate |
JP2012142270A (en) * | 2010-12-16 | 2012-07-26 | Semiconductor Energy Lab Co Ltd | Light-emitting device and illuminating device |
US9882165B2 (en) | 2010-12-16 | 2018-01-30 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device and lighting device |
US9401498B2 (en) | 2011-03-04 | 2016-07-26 | Semiconductor Energy Laboratory Co., Ltd. | Light-emitting device, lighting device, substrate, and manufacturing method of substrate |
JP2012199230A (en) * | 2011-03-04 | 2012-10-18 | Semiconductor Energy Lab Co Ltd | Light emitting device, lighting system, substrate, and method of manufacturing substrate |
KR101922603B1 (en) * | 2011-03-04 | 2018-11-27 | 가부시키가이샤 한도오따이 에네루기 켄큐쇼 | Light-emitting device, lighting device, substrate, and manufacturing method of substrate |
JP2013105653A (en) * | 2011-11-15 | 2013-05-30 | Semiconductor Energy Lab Co Ltd | Light-emitting device, electronic apparatus and illuminating device |
KR101339440B1 (en) | 2012-01-26 | 2013-12-10 | 한국전자통신연구원 | Organic electroluminescent device and method for menufacturing thereof |
JP2013138018A (en) * | 2013-03-01 | 2013-07-11 | Hitachi Ltd | Organic light-emitting diode and light source device using the same |
JP2013163384A (en) * | 2013-04-04 | 2013-08-22 | Nippon Zeon Co Ltd | Optical laminate |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008112592A (en) | Organic el element having microstructure | |
US10319878B2 (en) | Stratified quantum dot phosphor structure | |
US7960909B2 (en) | Light-emitting device, method for producing the same and fluorescent device | |
KR101647527B1 (en) | Phosphor-coated light extraction structures for phosphor-converted light emitting devices | |
TWI417487B (en) | Color-stable phosphor converted led | |
CN104298001B (en) | Direct type backlight module and production method thereof | |
US20060099449A1 (en) | Light-emitting device | |
KR101114352B1 (en) | Substrate for organic electronic devices and method for manufacturing thereof | |
JP2007324475A (en) | Wavelength conversion member and light emitting device | |
KR20120024358A (en) | Substrate for organic electronic devices and method for manufacturing thereof | |
CN101044632A (en) | Luminescent light source, method for manufacturing the same, and light-emitting apparatus | |
CN107077028A (en) | Substrate, its manufacture method and the display device including it changed for color | |
EP1786884A1 (en) | Light-emitting body, lighting device and display device using the same | |
TW201729434A (en) | Light-emitting element and the manufacturing method thereof | |
US20130241390A1 (en) | Metal-containing encapsulant compositions and methods | |
JP4932144B2 (en) | LED lamp | |
CN101040397A (en) | Electroluminescent light source | |
KR101676291B1 (en) | White organic light-emitting device including light conversion layer and preparing method of the same | |
JP2009538955A (en) | Inorganic phosphors for light-emitting diodes | |
CN102522483B (en) | Optical wavelength conversion chip, manufacturing method of optical wavelength conversion chip and light source device | |
JP6177433B2 (en) | Method for producing an optoelectronic component comprising a conversion element | |
TW201327933A (en) | Encapsulating sheet, producing method of optical semiconductor device, optical semiconductor device, and lighting device | |
KR101765183B1 (en) | Light extraction layer for light emitting apparatus and method of forming the light extraction layer | |
Wang et al. | Phosphor glass-coated sapphire with moth-eye microstructures for ultraviolet-excited white light-emitting diodes | |
JP6661113B2 (en) | Light emitting electrochemical element and light emitting device having the light emitting electrochemical element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091007 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20091007 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091008 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110720 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110727 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111227 |