[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008111178A - Electrolytic polishing method, electrolytic polishing device and electrode rod - Google Patents

Electrolytic polishing method, electrolytic polishing device and electrode rod Download PDF

Info

Publication number
JP2008111178A
JP2008111178A JP2006296414A JP2006296414A JP2008111178A JP 2008111178 A JP2008111178 A JP 2008111178A JP 2006296414 A JP2006296414 A JP 2006296414A JP 2006296414 A JP2006296414 A JP 2006296414A JP 2008111178 A JP2008111178 A JP 2008111178A
Authority
JP
Japan
Prior art keywords
sample
pulse voltage
tip
electrolytic
electrode rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006296414A
Other languages
Japanese (ja)
Inventor
Takashi Shimatani
孝 島谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2006296414A priority Critical patent/JP2008111178A/en
Publication of JP2008111178A publication Critical patent/JP2008111178A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and surely polish the surface of a sample by reducing the boiling of an electrolyte solution caused by the heat generation of the electrolyte solution, and at the same time, to polish not only a flat surface but also the inside of a small hole by easily, surely and automatically supplying the electrolyte solution, with respect to an electrolytic polishing method comprising electrically polishing the surface of a sample by providing an electrolyte solution between the sample and an electrode rod and applying a voltage between the sample and the electrode rod, an electrolytic polishing device, and the electrode rod. <P>SOLUTION: The electrolytic polishing method includes a step for repeatedly performing an operation generating a pulse-like pulse voltage and generating a pulse-like pulse voltage after the lapse of a break time, and a step for applying the generated pulse voltage between the tip of an electrode rod and a sample. In the electrode rod, sponge-like tip parts 12, 13 processed into various shapes are attached exchangeably to the tip of a supporting part 11. The electrolyte solution is supplied to the tip part by providing a cartridge or a sponge-like member including the electrolyte solution at the inside of the supporting part 11. Polishing is performed by incorporating the electrolyte solution into the tip part, then lightly bringing the tip part into contact with the surface of a sample and rubbing the surface. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、試料と電解棒との間に電解液を浸して電圧を印加し当該試料の表面を電解研磨する電解研磨方法、電解研磨装置およびその電極棒に関するものである。   The present invention relates to an electropolishing method, an electropolishing apparatus, and an electrode rod thereof in which an electrolytic solution is immersed between a sample and an electrolytic rod and a voltage is applied to electrolytically polish the surface of the sample.

従来、電解研磨装置として、電極棒と研磨しようとする試料との間に直流電圧を印加し、当該電極棒に電解質を含ませた帽子状のものを被せて電流を流し電解液の作用で試料表面をイオン化して溶かして研磨する装置がある。   Conventionally, as an electropolishing apparatus, a direct current voltage is applied between an electrode rod and a sample to be polished, a cap-like material containing an electrolyte is put on the electrode rod, and an electric current is applied to the sample by the action of the electrolyte. There are devices that ionize, melt, and polish the surface.

この際、試料の材料によって、印加する直流電圧の極性(正から負、あるいは負から正)に手動でいずれか一方に切り換えて試料の表面を研磨していた。また、材料によっては交流の電圧を印加して、試料の表面を研磨していた。   At this time, depending on the material of the sample, the surface of the sample was polished by manually switching the polarity of the DC voltage to be applied (positive to negative or negative to positive). Further, depending on the material, an AC voltage is applied to polish the surface of the sample.

上述したように、従来は、電極棒と試料との間に直流電圧、あるいは必要に応じていずれかの極性の直流電圧に切り換えたり、更に、交流電圧を印加して試料の表面を研磨するようにしていた。   As described above, conventionally, the direct current voltage between the electrode rod and the sample is switched to a DC voltage of any polarity or, if necessary, the surface of the sample is polished by applying an AC voltage. I was doing.

しかし、電極棒と試料との間に電解質を浸して電圧を印加する手法では、電解力が電解液と試料とによって異なり、一般に、印加する電圧を高くしていくと、ある電圧よりも高い電圧になると電解力は強くなるが、逆に電解液自身にも電流が流れて当該電解液が発熱し沸騰して当該電解液が短時間に蒸発してなくなってしまうために限度がある。逆に電圧を低くしていくと、電圧と電解力の関係は比例関係ではなく電解力(試料の表面の電解研磨による力)はある電圧で急激に減ってしまい、そのため、最適な電解力が得られる電圧の調整範囲は狭く制御し難いという問題があった。   However, in the method of applying a voltage by immersing the electrolyte between the electrode rod and the sample, the electrolytic force differs depending on the electrolyte and the sample. Generally, as the applied voltage is increased, the voltage is higher than a certain voltage. In this case, the electrolysis force becomes strong, but conversely, a current also flows in the electrolyte solution itself, the electrolyte solution generates heat, boils, and the electrolyte solution does not evaporate in a short time. Conversely, when the voltage is lowered, the relationship between the voltage and the electrolysis power is not a proportional relationship, and the electrolysis power (force due to electropolishing of the surface of the sample) rapidly decreases at a certain voltage. There is a problem that the adjustment range of the obtained voltage is narrow and difficult to control.

また、電解研磨装置は、試料の表面を研磨するのみで、電子顕微鏡などで用いる電子銃を構成するウェーネルトの小さい穴(通常1mmφ程度の穴)の内部に付着した汚れを研磨し得ないという問題もあった。   In addition, the electrolytic polishing apparatus only polishes the surface of the sample, and it cannot polish the dirt attached to the inside of a small Wehnelt hole (usually a hole of about 1 mmφ) constituting an electron gun used in an electron microscope or the like. There was also.

本発明は、これらの問題を解決するため、電解研磨装置において、電極棒と試料との間に電解液を浸した状態でパルス電圧を間欠的に印加すると共に電解液を自動補給する電極棒(先端形状を種々のものに取替え可能)を設けて研磨するようにしている。   In order to solve these problems, the present invention provides an electrode rod that intermittently applies a pulse voltage and automatically replenishes the electrolyte in an electrolytic polishing apparatus in a state where the electrolyte is immersed between the electrode rod and the sample. The tip shape can be changed to various ones) for polishing.

本発明は、電解研磨装置において、電極棒と試料との間に電解液を浸した状態でパルス電圧を間欠的に印加すると共に電解液を自動補給する電極棒を設けたことにより、最適な電解力を得ると共に電解液の発熱による沸騰を低減し、簡易かつ確実に試料の表面の研磨を行うと共に電解液を簡易かつ確実に自動補給し、更に、電極棒の先端を種々の形状のものに交換可能にしたことで平面のみならず、小さな穴の内部も研磨することが可能となる。   According to the present invention, in an electropolishing apparatus, an optimum electrolysis can be achieved by providing an electrode rod that intermittently applies a pulse voltage while the electrolyte solution is immersed between the electrode rod and the sample and automatically supplies the electrolyte solution. The surface of the sample is polished easily and reliably, the electrolyte solution is easily and surely replenished, and the tip of the electrode rod has various shapes. By making it replaceable, not only a flat surface but also the inside of a small hole can be polished.

本発明は、電解研磨装置において、電極棒と試料との間に電解液を浸した状態でパルス電圧を間欠的に印加すると共に電解液を自動補給する電極棒を設け、最適な電解力を得ると共に電解液の発熱による沸騰を低減し、簡易かつ確実に試料の表面の研磨を行うと共に電解液を簡易かつ確実に自動補給し、更に、電極棒の先端を種々の形状のものに交換可能にしたことで平面のみならず、小さな穴の内部も研磨することを実現した。   According to the present invention, in an electropolishing apparatus, an electrode rod that intermittently applies a pulse voltage with an electrolytic solution immersed between an electrode rod and a sample and automatically replenishes the electrolytic solution is provided to obtain an optimum electrolytic power. At the same time, the boiling due to heat generation of the electrolyte is reduced, the surface of the sample is polished easily and reliably, the electrolyte is automatically and reliably replenished, and the tip of the electrode rod can be replaced with various shapes As a result, it was possible to polish not only flat surfaces but also the inside of small holes.

図1は、本発明のシステム構成図を示す。
図1において、電源1は、直流電源を発生するものであって、ここでは、制御回路4から指示された所定の直流電圧(例えば20VDC)を発生して出力するものである。
FIG. 1 shows a system configuration diagram of the present invention.
In FIG. 1, a power source 1 generates a DC power source. Here, a power source 1 generates and outputs a predetermined DC voltage (for example, 20 VDC) designated by the control circuit 4.

スイッチ2,3は、半導体(IC)のスイッチであって、電源1から出力された所定電圧の直流電圧のうちの正あるいは負の直流電圧を選択、および所定時間通電、所定時間休止を繰り返し、正あるいは負のパルス電圧を発生させ、試料8と電極棒6との間に印加するものである(図2参照)。   The switches 2 and 3 are semiconductor (IC) switches, select a positive or negative DC voltage from among the DC voltages of a predetermined voltage output from the power supply 1, repeat energization for a predetermined time, and pause for a predetermined time. A positive or negative pulse voltage is generated and applied between the sample 8 and the electrode rod 6 (see FIG. 2).

制御回路4は、試料8と電極棒6との間に印加するパルス電圧の電圧値、パルス幅、および繰り返し周期(周者数)を制御するものであって、外部からの指示(図示外のタッチパネル、キーボードからの利用者の指示)に従い、パルス電圧を発生するように、電源1およびスイッチ2,3について下記の制御を行うように制御するものである。   The control circuit 4 controls the voltage value of the pulse voltage applied between the sample 8 and the electrode rod 6, the pulse width, and the repetition period (number of circulators). The power supply 1 and the switches 2 and 3 are controlled to perform the following control so as to generate a pulse voltage in accordance with a user instruction from the touch panel and keyboard.

・パルス電圧の極性(正、負、正と負の交互、正と負の任意数毎の交互):
・パルス電圧:例えば20VDC
・パルス電圧のパルス幅:例えばデューティが10から50%などの範囲内の任意の値
・パルス電圧の繰り返し周期(周波数、休止期間):繰り返し周波数が1から5ヘルツなどの任意の値
・その他:過電流保護の有無とその値
ここで、
・パルス電圧の極性は、試料8に対して電極棒6に印加するパルス電圧を、正のパルス電圧の繰り返し、負のパルス電圧の繰り返し、正と負のパルス電圧の交互に繰り返し、正と負のパルス電圧の任意数毎の交互の繰り返しのいずれかの極性に選択(利用者が外部からいずれかを選択(あるいはデフォルトで設定))できるようにしたものである。
・ Pulse voltage polarity (positive, negative, alternating positive and negative, alternating every arbitrary number of positive and negative):
・ Pulse voltage: For example, 20VDC
・ Pulse width of the pulse voltage: Any value within a range of, for example, 10 to 50% of a duty ・ Repetition period (frequency, pause period) of a pulse voltage: Any value such as a repetition frequency of 1 to 5 hertz ・ Others: Overcurrent protection and its value
The polarity of the pulse voltage is such that the pulse voltage applied to the electrode rod 6 with respect to the sample 8 is a positive pulse voltage, a negative pulse voltage, a positive pulse and a negative pulse voltage are repeated alternately, positive and negative. The polarity can be selected for any number of alternating repetitions for any number of pulse voltages (the user can select one from the outside (or set by default)).

・パルス電圧は、電源1が発生して電極棒6に印加するパルス電圧の電圧値であって、低すぎると電解力(電解液による試料8の電解研磨力)が弱すぎ、高すぎると電解力は強くなるが更に電解液自体に電流が流れて発熱して沸騰してしまい電解液が蒸発して無くなってしまう事態が発生するので、電解力が適度に強くかつ電解液が沸騰して短時間に無くなってしまわない適度なパルス電圧の電圧値に調整(利用者が外部から電解力、電解液の沸騰状態を見て適度に調整(あるいはデフォルトで設定))できるようにしたものである。   The pulse voltage is a voltage value of the pulse voltage generated by the power source 1 and applied to the electrode rod 6. If the pulse voltage is too low, the electrolysis power (electrolytic polishing power of the sample 8 by the electrolytic solution) is too weak, and if it is too high, electrolysis is performed. Although the force becomes stronger, current flows in the electrolyte itself and heats up and boils, causing the electrolyte to evaporate and disappear, so the electrolyte is moderately strong and the electrolyte is boiled and short. The voltage value of the appropriate pulse voltage that does not disappear in time can be adjusted (the user can appropriately adjust (or set by default) by looking at the electrolytic power and the boiling state of the electrolytic solution from the outside).

・パルス電圧のパルス幅は、スイッチ2,3(半導体素子)によって、所定極性のパルス電圧のパルス幅を調整(利用者が外部から電解力、電解液の沸騰状態、特に、沸騰状態を見て適度に調整(あるいはデフォルトで設定))できるようにしたものである。   ・ The pulse width of the pulse voltage is adjusted by the switches 2 and 3 (semiconductor elements). The pulse width of the pulse voltage of a predetermined polarity is adjusted by the user (seeing the electrolytic power, the boiling state of the electrolyte, especially the boiling state from the outside. It can be adjusted moderately (or set by default).

・パルス電圧の繰り返し周期(周波数、休止期間)は、スイッチ2,3(半導体素子)によって、所定の極性のパルス電圧の繰り返し周期を調整(利用者が外部から電解力、電解液の沸騰状態、特に、試料8の表面の付着物やゴミの除去状態(繰り返し周期は遅いと付着物が取れず、また速すぎても付着物が取れないのでその間の適度に付着物が除去される周期(通常は、1から5ヘルツが望ましい)を調整(あるいはデフォルトで設定))できるようにしたものである。   -The repetition period (frequency, pause period) of the pulse voltage is adjusted by the switches 2 and 3 (semiconductor elements), and the repetition period of the pulse voltage with a predetermined polarity is adjusted (the user can externally apply electrolytic power, the boiling state of the electrolyte, In particular, the state of removal of adhering matter and dust on the surface of the sample 8 (the adhering matter cannot be removed if the repetition period is slow, and the adhering matter cannot be removed even if it is too fast, so the adhering matter is removed moderately during that period (normally Can be adjusted (or set by default)).

・その他の過電流保護の有無とその値は、パルス電圧を電極棒6に供給し、利用者が当該電極棒6で試料8の研磨したい場所をなぞったときに強く力を入れすぎで過大電流が流れようとしたときに電流制限(あるいは一時的に電流遮断)を行うなどの保護的制御およびリセットについて調整(デフォルトで設定)できるようにしたものである。   -The presence or absence of other overcurrent protection and its value are determined by supplying a pulse voltage to the electrode bar 6 and overpowering the user with too much force when tracing the place where the sample 8 is to be polished. It is possible to adjust (set by default) the protective control and reset, such as performing current limiting (or temporarily interrupting current) when current flows.

調整回路5は、パルス電圧の電圧値、パルス電圧のパルス幅、パルス電圧の繰り返し周期(周波数、休止期間)などを、外部から利用者が調整(あるいはデフォルトで設定)するための調整回路(ボリュームあるいは画面上に表示したボリューム調整イメージなど)である。   The adjustment circuit 5 is an adjustment circuit (volume) that allows the user to adjust (or set by default) the voltage value of the pulse voltage, the pulse width of the pulse voltage, the repetition period (frequency, pause period) of the pulse voltage, and the like. Or a volume adjustment image displayed on the screen).

電極棒6は、パルス電圧を印加するための電極棒である(図3から図6参照)。
先端部7は、電解液を浸したスポンジ状の棒状かつ先端が丸み、尖らした、細くしたなどの形状を持つものである(図3から図6参照)。電子顕微鏡の電子銃を構成するウェーネルトの穴は、通常1mmφ程度であるので、これよりも若干細くして当該穴の内部に付着したコンタミを除去する。また、真空蒸着装置、イオンスパッタ装置などの内部に支柱や平坦な部分に付着した不要な蒸着物などを除去するときは、先端が平坦で若干丸みを帯びた先端部7が研磨し易く。その他、研磨対象の形状(平面、棒、穴など)に適合した形状の先端部で当該研磨対象の部分を軽く触れてなぞることで研磨の作業性を大幅に向上させることが可能となる。
The electrode bar 6 is an electrode bar for applying a pulse voltage (see FIGS. 3 to 6).
The tip 7 has a sponge-like rod shape soaked with an electrolytic solution and has a shape such as a rounded, sharpened, or thinned tip (see FIGS. 3 to 6). Since the Wehnelt hole constituting the electron gun of the electron microscope is usually about 1 mmφ, the contamination attached to the inside of the hole is removed by making it slightly narrower than this. Further, when removing unnecessary deposits or the like adhering to a column or a flat part in a vacuum vapor deposition apparatus, an ion sputtering apparatus or the like, the tip part 7 having a flat tip and slightly rounded tip is easily polished. In addition, it is possible to greatly improve the workability of polishing by gently touching and tracing the portion to be polished with the tip of the shape suitable for the shape to be polished (plane, bar, hole, etc.).

試料8は、電解研磨対象の試料であって、例えば電子顕微鏡、光学顕微鏡などの観察対象の試料や、更に、上記した真空蒸発装置、イオンスパッタ装置などで不要な物質が付着した部分、即ち研磨して綺麗にする対象の部分(支柱、平坦な部分、ベルジャーなどの部分)である。   The sample 8 is a sample to be electropolished, for example, a sample to be observed such as an electron microscope or an optical microscope, and a portion to which unnecessary substances are attached by the above-described vacuum evaporation apparatus, ion sputtering apparatus, or the like, that is, polishing. This is the part to be cleaned (the part of the column, flat part, bell jar, etc.).

次に、図2の波形図を用いて図1の構成で、電極棒6に印加するパルス電圧の発生について詳細に説明する。   Next, generation of a pulse voltage applied to the electrode rod 6 in the configuration of FIG. 1 will be described in detail using the waveform diagram of FIG.

図2は、本発明の波形図を示す。
図2の(a)は、+制御波形の例を示す。図示の+制御波形を持つパルス電圧は、図1の電源1から発生された+電源の直流電圧について、スイッチ2がパルス制御時間Δtの間だけ導通状態にし、繰り返し周期Tで繰り返したときに発生されるパルス電圧であって、図示のように、パルス制御時間Δtの幅のパルス電圧を繰り返し周期Tで繰り返した波形である。パルス制御時間Δtは、図示の最大パルス幅Δtmaxから図示外の最小パスる幅Δtminの間で、任意に調整(通常は10から50%のデューティの範囲内で調整)するものである。
FIG. 2 shows a waveform diagram of the present invention.
FIG. 2A shows an example of a + control waveform. The pulse voltage having the + control waveform shown in the figure is generated when the switch 2 is in a conductive state only during the pulse control time Δt with respect to the + power DC voltage generated from the power supply 1 in FIG. As shown in the figure, the pulse voltage is a waveform obtained by repeating a pulse voltage having a width of the pulse control time Δt with a repetition period T. The pulse control time Δt is arbitrarily adjusted (usually adjusted within the range of 10 to 50% duty) between the maximum pulse width Δtmax shown in the figure and the minimum pass width Δtmin not shown in the figure.

図2の(b)は、−制御波形の例を示す。図示の−制御波形を持つパルス電圧は、図1の電源1から発生された−電源の直流電圧について、スイッチ3がパルス制御時間Δtの間だけ導通状態にし、繰り返し周期Tで繰り返したときに発生されるパルス電圧であって、図示のように、パルス制御時間Δtの幅のパルス電圧を繰り返し周期Tで繰り返した波形である。パルス制御時間Δtは、図示の最大パルス幅Δtmaxから図示外の最小パスる幅Δtminの間で、任意に調整(通常は10から50%のデューティの範囲内で調整)するものである。   FIG. 2B shows an example of a -control waveform. The pulse voltage having the control waveform shown in FIG. 1 is generated when the switch 3 is in a conductive state only during the pulse control time Δt with respect to the DC voltage generated from the power source 1 in FIG. As shown in the figure, the pulse voltage is a waveform obtained by repeating a pulse voltage having a width of the pulse control time Δt with a repetition period T. The pulse control time Δt is arbitrarily adjusted (usually adjusted within the range of 10 to 50% duty) between the maximum pulse width Δtmax shown in the figure and the minimum pass width Δtmin not shown in the figure.

図2の(c)は、交番発生波形の例を示す。図示の交番発生波形を持つパルス電圧は、図2の(a)と図2の(b)の波形を交互に繰り返したパルス電圧である。尚、図示のパルス電圧は、正と負の極性のパルス電圧を交互に発生させたが、これに限らず、正のパルス電圧を所定数、負のパルス電圧を他の所定数に指定(試料8の研磨の状態を利用者が観察して最適値に調整(あるいはデフォルトで設定))し、これらを繰り返すようにしてもよい。   FIG. 2C shows an example of an alternating waveform. The pulse voltage having the alternating waveform shown in the figure is a pulse voltage obtained by alternately repeating the waveforms shown in FIGS. 2 (a) and 2 (b). In addition, although the pulse voltage shown in the figure is generated by alternately generating positive and negative polarity pulse voltages, the present invention is not limited to this, and a predetermined number of positive pulse voltages and a predetermined number of negative pulse voltages are specified (samples). The user may observe the state of polishing No. 8 and adjust it to an optimum value (or set as a default)), and repeat these steps.

以上のように、電源1で発生された直流電圧(+、−)をもとに所定パルス幅Δtで所定繰り返し周期Tのパルス電圧を発生させ、電極棒6に供給することが可能となる。この際、既述したように、図1の調整回路5を用いて、パルス電圧の電圧値V、パルス幅Δt、繰り返し周期Tは、外部から任意に調整(あるいはデフォルトで任意に設定)することが可能である。   As described above, a pulse voltage having a predetermined repetition period T with a predetermined pulse width Δt can be generated based on the DC voltage (+, −) generated by the power source 1 and supplied to the electrode rod 6. At this time, as described above, the voltage value V, the pulse width Δt, and the repetition period T of the pulse voltage are arbitrarily adjusted (or arbitrarily set by default) from the outside using the adjustment circuit 5 of FIG. Is possible.

図3は、本発明の説明図(その1)を示す。
図3の(a)は、ピンセット11の先端に電解液を含ませる綿棒12等を装着した全体構成図を示す。図示の例では、市販品のピンセット11の先端をカットおよび加工し、拡大図の(b−1)に示すようにし、綿棒12などを掴みやすいようにする。
FIG. 3 shows an explanatory diagram (part 1) of the present invention.
FIG. 3 (a) shows an overall configuration diagram in which a cotton swab 12 or the like containing an electrolytic solution is attached to the tip of the tweezers 11. In the illustrated example, the tip of a commercially available tweezer 11 is cut and processed, as shown in (b-1) of the enlarged view, so that the swab 12 and the like can be easily grasped.

図3の(b)は、ピンセット11の先端部分を拡大した模式図を示す。
図3の(b−1)は、図3の(a)のピンセット11の先端部を拡大した様子を模式的に示す。
FIG. 3B is a schematic diagram in which the tip portion of the tweezers 11 is enlarged.
FIG. 3B-1 schematically shows an enlarged state of the tip of the tweezers 11 of FIG.

図3の(b−2)は、市販品の綿棒12の先端部分をカットした様子(カットしなくて取り扱い難いだけでそのままでもよい)を模式的に示す。利用者が図示の綿棒12の軸部分を、図3の(b−1)のピンセット11の拡大した先端部分に入れて当該ピンセット11を挟むことで固定する。そして、綿棒12の部分を、図示外の電解液(中性、酸性、アルカリ性(電解研磨する試料8の材料に依存して電解するために適切な酸度の電解液))に浸して含ませ、電解研磨対象の試料8の該当部分に軽く接して擦ると、所定電圧パルスが試料8に接触して電解液が浸させた部分に流れて電解研磨かつ電解液が若干発熱して対流(あるいは若干の泡が連続的に発生)し、ゴミを除去かつ綺麗にいわば磨かれることとなる。そして、電解液がなくなったり、綿棒12に研磨したゴミや汚染物で黒く汚れた場合には、新品の綿棒12に交換し、綿棒12をいわば使い捨てで使用する。   (B-2) of FIG. 3 schematically shows a state in which the tip portion of a commercially available cotton swab 12 is cut (it may not be cut and it may be difficult to handle as it is). The user inserts the shaft portion of the illustrated swab 12 into the enlarged tip portion of the tweezers 11 shown in FIG. Then, the part of the swab 12 is immersed in an electrolyte solution (not shown) (neutral, acidic, alkaline (electrolyte solution having an acidity suitable for electrolysis depending on the material of the sample 8 to be electropolished)), and included. When lightly touching and rubbing the corresponding part of the sample 8 to be electropolished, a predetermined voltage pulse flows into the part where the sample 8 is in contact with the electrolytic solution and the electrolytic solution is immersed in the electropolishing, and the electrolytic solution generates a little heat to generate convection (or slightly Bubbles are continuously generated), and the dust is removed and beautifully polished. When the electrolytic solution runs out or the cotton swab 12 is stained black with dirt or contaminants, the cotton swab 12 is replaced with a new cotton swab 12, and the cotton swab 12 is used in a disposable manner.

図3の(b−3)は、フェルト状のものの例を示す。図示のフェルト状のものは、図3の(b−2)の綿棒12に代わるものであって、同様に、取り付けて電解液を含ませ、電解研磨対象の試料8の該当部分に軽く接して擦ると、所定電圧パルスが試料8に接触して電解液が浸させた部分に流れて電解研磨かつ電解液が若干発熱して対流(あるいは若干の泡が連続的に発生)し、ゴミを除去かつ綺麗にいわば磨かれることとなる。   FIG. 3B-3 shows an example of a felt-like object. The felt-shaped one shown is an alternative to the cotton swab 12 of FIG. 3 (b-2). Similarly, it is attached and contains an electrolytic solution, and lightly touches the corresponding part of the sample 8 to be electropolished. When rubbed, a predetermined voltage pulse comes into contact with the sample 8 and flows into the part where the electrolyte is immersed, and the electrolytic polishing and the electrolyte generate a little heat and convection (or some bubbles are continuously generated) to remove dust. And so to speak, it will be polished.

以上のように、ピンセット11の先端部を加工し、綿棒12あるいはフェルト状のもの13を当該先端部に保持させ、電解液を含ませて試料8に軽く触れて擦ることにより、当該試料8の該当部分のゴミを除去および電解研磨して綺麗にし、電子顕微鏡や光学顕微鏡などの試料面を簡易に生成することが可能となる。そして、必要に応じて新品の綿棒12などに交換し、常に綺麗な綿棒12で試料8の表面を研磨して試料8の地肌が出現した綺麗な状態にする。   As described above, the tip of the tweezers 11 is processed, the cotton swab 12 or the felt-like member 13 is held at the tip, and the sample 8 is lightly touched and rubbed with the electrolyte solution. It is possible to remove the dust in the corresponding part and clean it by electrolytic polishing, and easily generate a sample surface such as an electron microscope or an optical microscope. Then, if necessary, it is replaced with a new cotton swab 12 or the like, and the surface of the sample 8 is always polished with a clean cotton swab 12 so that the surface of the sample 8 appears clean.

図4は、本発明の説明図(その2)を示す。図示の電極棒21は、図3がピンセット11の先端を加工して綿棒12を保持し、当該綿棒12に電解液を含ませた代わりに、チャッキング部22を設けて当該チャッキング部22に綿棒23などを固定した例を示す。   FIG. 4 shows an explanatory diagram (part 2) of the present invention. The electrode rod 21 shown in FIG. 3 holds the cotton swab 12 by processing the tip of the tweezers 11, and instead of containing the electrolyte solution in the cotton swab 12, a chucking portion 22 is provided to the chucking portion 22. The example which fixed cotton swab 23 etc. is shown.

図4の(a)は、電極棒21の先端にチャッキング部22を設け、当該電極棒21の右端(後端)の部分を押下して当該チャッキング部22を開いて綿棒23を固定する構造を模式的に示す。   4A, a chucking portion 22 is provided at the tip of the electrode rod 21, and the right end (rear end) portion of the electrode rod 21 is pressed down to open the chucking portion 22 and fix the cotton swab 23. FIG. The structure is shown schematically.

図4の(b)は、綿棒23の例を示す。図示の綿棒23を、図4の(a)の電極棒21の先端部に設けたチャッキング部22に挿入して固定する。   FIG. 4B shows an example of a cotton swab 23. The illustrated cotton swab 23 is inserted into a chucking portion 22 provided at the tip of the electrode rod 21 shown in FIG.

図4の(c)は、チャッキング部22の拡大した模式図を示す。ここでは、図4の(b)の綿棒23の軸芯を、チャッキング部22に挿入し、図示のように固定する。   FIG. 4C shows an enlarged schematic diagram of the chucking portion 22. Here, the shaft core of the cotton swab 23 in FIG. 4B is inserted into the chucking portion 22 and fixed as shown.

図4の(d)は、フェルトの例を示す。図示のフェルト24は、図4の(b)の綿棒23の代わりに、電極棒21の先端のチャッキング部22に挿入して固定する、他の例を示す。   FIG. 4D shows an example of felt. The felt 24 shown in the figure shows another example in which the felt 24 is inserted into the chucking portion 22 at the tip of the electrode bar 21 and fixed instead of the cotton swab 23 in FIG.

以上のように、電極棒21の先端部に設けたチャッキング部22に綿棒22の軸芯あるいはフェルト24を入れて固定し、電解液を含ませて試料8に軽く触れて擦ることにより、当該試料8の該当部分のゴミを除去および電解研磨して綺麗にし、電子顕微鏡や光学顕微鏡などの試料面を簡易に生成することが可能となる。   As described above, the shaft core or felt 24 of the cotton swab 22 is inserted and fixed to the chucking portion 22 provided at the tip of the electrode rod 21, and the sample 8 is lightly touched and rubbed with the electrolyte solution. It is possible to clean the corresponding portion of the sample 8 by removing the dust and electrolytic polishing, and to easily generate a sample surface such as an electron microscope or an optical microscope.

図5は、本発明の説明図(その3)を示す。
図5の(a)の電極棒31は、図4が電極棒21の先端部分にチャッキング部22を設けた代わりに、フェルト(棒状で先端が丸い)33を少し強い力でフォルダ(2箇所にスリットがあって若干拡大する部分がある)34に押し込んで固定したものを電極棒31の先端部分に差し込で固定した例を模式的に示す。電極棒31の握りの部分は、電解液容器32となっており、内部に液体の電解液が充填され、差し込んで固定したフェルト33に当該電解液が適度にしみ出す(尚、電解液が無用に流れ出ないように、スプリングで弁を通常は閉じておき、フェルト33を強く内部に押し込むと当該弁が開いて電解液がフェルト33に流れ出させ、フェルト33を内部に強く押すことを止めると弁が閉まる構造としてもよい)。キャップ36は、電解液容器32に電解液を入れるときに外し、電解液を入れた後に挿入して固定するためのものである。
FIG. 5 shows an explanatory diagram (part 3) of the present invention.
5A, instead of providing the chucking portion 22 at the tip portion of the electrode rod 21, the electrode rod 31 of FIG. 5A is a folder (two locations) with a slightly strong force 33. (There is a portion that has a slit and slightly expands.) An example in which an object fixed by being pushed into 34 is inserted and fixed at the tip of the electrode rod 31 is schematically shown. The grip portion of the electrode rod 31 is an electrolytic solution container 32. The electrolytic solution is filled inside, and the electrolytic solution exudes moderately into the felt 33 inserted and fixed (the electrolytic solution is unnecessary). The valve is normally closed with a spring so that it does not flow into the valve. When the felt 33 is pushed into the inside strongly, the valve opens to cause the electrolyte to flow into the felt 33 and stop pushing the felt 33 into the inside. May be a closed structure). The cap 36 is removed when the electrolytic solution is put into the electrolytic solution container 32, and is inserted and fixed after the electrolytic solution is put.

図5の(b)は、フェルト33をフォルダ34に取り付けた様子を模式的に示す。
図5の(c)は、綿棒35をフォルダ34に取り付けた様子を模式的に示す。図5の(b)、(c)のフォルダ34に取り付けたフェルト34、綿棒35を、図5の(a)に示すように、左側から右側に向けて電極棒31の先端部分から強い力で挿入することにより、当該フェルト34、綿棒35を電極棒31に装着し、かつ電解液容器32から適度の電解液を含ませることが可能ととなる。
FIG. 5B schematically shows a state where the felt 33 is attached to the folder 34.
FIG. 5C schematically shows a state in which the cotton swab 35 is attached to the folder 34. As shown in FIG. 5A, the felt 34 and the cotton swab 35 attached to the folder 34 in FIGS. 5B and 5C are moved from the left side to the right side by a strong force from the tip of the electrode bar 31. By inserting, it becomes possible to attach the felt 34 and the cotton swab 35 to the electrode rod 31 and to contain an appropriate electrolyte from the electrolyte container 32.

以上のように、電極棒21の先端部にフォルダ34に装着したフェルト33、綿棒35を、電解棒31の左側の先端部分から右方向に強い力で挿入して装着し、フェルト33、綿棒35に電解液を含ませて試料8に軽く触れて擦ることにより、当該試料8の該当部分のゴミを除去および電解研磨して綺麗にし、電子顕微鏡や光学顕微鏡などの試料面を簡易に生成することが可能となると共に、ウェーネルトの小さな穴の内部を綺麗に研磨sるうことが可能となる。   As described above, the felt 33 and the cotton swab 35 attached to the folder 34 at the tip of the electrode rod 21 are inserted with a strong force in the right direction from the left tip of the electrolytic rod 31 and attached. The sample 8 is lightly touched and rubbed to remove the dust from the corresponding part of the sample 8 and clean it by electrolytic polishing to easily generate a sample surface such as an electron microscope or an optical microscope. It becomes possible to polish the inside of the small hole of Wehnelt cleanly.

図6は、本発明の説明図(その4)を示す。
図6の(a)は、既述した図3の(a)のピンセット11の先端部に綿棒12を挟んで当該綿棒12を金属試料8に軽く触れて擦るときの様子を模式的に示す。図示のように、ピンセット11の先端部について、金属試料8との間の距離を所定距離Lに常にほぼ一定に保持し、パルス電圧を印加すると、電流を流したことによる電解作用と、更に、電解液自身に若干の電流が流れて発熱して当該電解液の温度が高くなると共に小さな気泡が連続して若干発生し、結果として、電解液14が図示のように、綿棒12と金属試料8との間に広がって充満し、ゴミを当該小さな気泡で金属試料8の表面から浮き上がらせてて除去すると共に電解研磨し、金属試料8の電解液14が充満した図示の部分について綺麗にすることが可能となると共に、距離Lをほぼ同じに保持することにより、再現性を非常に良くできることが実験で判明した。尚、距離Lをほぼ同じに保持するために、図示しないが、ピンセット11の先端部あるいは別の個所に、当該距離Lの長さにした非導電性の棒で、金属試料8との間の距離を一定に保持する構造を設けるようにしてもよい。
FIG. 6 is an explanatory diagram (part 4) of the present invention.
FIG. 6A schematically shows a state in which the cotton swab 12 is sandwiched between the tip portions of the tweezers 11 of FIG. 3A described above and the cotton swab 12 is lightly touched and rubbed against the metal sample 8. As shown in the drawing, the distance between the tip of the tweezers 11 and the metal sample 8 is always kept substantially constant at a predetermined distance L, and when a pulse voltage is applied, an electrolytic action caused by passing a current, A slight amount of current flows through the electrolyte itself to generate heat and the temperature of the electrolyte increases, and a small amount of small bubbles are continuously generated. As a result, the electrolyte solution 14 has a cotton swab 12 and a metal sample 8 as illustrated. And the dust is lifted from the surface of the metal sample 8 by the small bubbles and removed, and is electropolished to clean the portion of the metal sample 8 that is filled with the electrolytic solution 14. Experiments have shown that reproducibility can be greatly improved by keeping the distance L substantially the same. In order to keep the distance L substantially the same, although not shown in the figure, a non-conductive rod having a length of the distance L is provided between the tip of the tweezers 11 or another portion and the metal sample 8. A structure for keeping the distance constant may be provided.

図6の(b)は、綿棒12の先端の形状の例を示す。
図6の(b−1)は綿棒12の先端を図示のように尖らした例を示し、図6の(b−2)は綿棒12の先端を図示のように丸くした例を示し、図6の(b−3)は綿棒12の先端を図示のように細くして尖らした例を示す。これら綿棒12の先端を尖らした、丸くしたり、細くして尖らしたりし、図6の(a)の状態にしたときに、金属試料8の研磨対象の領域が最適に研磨される形状を実験によって選択する。
FIG. 6B shows an example of the shape of the tip of the cotton swab 12.
6B-1 shows an example in which the tip of the swab 12 is sharpened as shown, and FIG. 6B-2 shows an example in which the tip of the swab 12 is rounded as shown in FIG. (B-3) shows an example in which the tip of the cotton swab 12 is thinned and sharpened as shown in the figure. The tip of these cotton swabs 12 is sharpened, rounded, thinned, sharpened, and when the state shown in FIG. Select by.

尚、図6の(a)は、試料8が平坦な場合について説明したが、更に、電子顕微鏡の電子銃を構成するウェーネルトの小さな穴(約1mmφ)の内部に付着したコンタミを研磨して除去する場合には、図6の(b−3)のように、電極棒6の先端を細く若干長くし、穴(約1mmφ)の奥まで十分に挿入した状態で軽く回転させて電圧パルスを印加することで、当該穴の内部を全面に渡って研磨することができる。そして、電解液を浸さないで、その代わりに掃除用の溶剤を浸した他の綿棒12を当該穴の奥まで挿入して軽く回転させることで、研磨後の残留研磨液などを除去して綺麗に掃除することが可能となる。   Although FIG. 6A illustrates the case where the sample 8 is flat, the contamination adhered inside the small Wehnelt hole (about 1 mmφ) constituting the electron gun of the electron microscope is further polished and removed. To do this, as shown in Fig. 6 (b-3), apply a voltage pulse by making the tip of the electrode rod 6 narrow and slightly long and rotating it lightly with the tip fully inserted into the hole (about 1 mmφ). By doing so, the inside of the hole can be polished over the entire surface. Then, instead of immersing the electrolyte, insert another cotton swab 12 soaked with a cleaning solvent into the hole and rotate it lightly to remove residual polishing liquid after polishing and clean it. It becomes possible to clean it.

本発明は、電解研磨装置において、電極棒と試料との間に電解液を浸した状態でパルス電圧を間欠的に印加すると共に電解液を自動補給する電極棒を設け、最適な電解力を得ると共に電解液の発熱による沸騰を低減し、簡易かつ確実に試料の表面の研磨を行うと共に電解液を簡易かつ確実に自動補給し、更に、電極棒の先端を種々の形状のものに交換可能にしたことで平面のみならず、小さな穴の内部も研磨する電解研磨方法、電解研磨装置およびその電極棒に関するものである。   According to the present invention, in an electropolishing apparatus, an electrode rod that intermittently applies a pulse voltage with an electrolytic solution immersed between an electrode rod and a sample and automatically replenishes the electrolytic solution is provided to obtain an optimum electrolytic power. At the same time, the boiling due to heat generation of the electrolyte is reduced, the surface of the sample is polished easily and reliably, the electrolyte is automatically and reliably replenished, and the tip of the electrode rod can be replaced with various shapes Thus, the present invention relates to an electropolishing method, an electropolishing apparatus, and an electrode rod thereof that polish not only a flat surface but also the inside of a small hole.

本発明のシステム構成図である。It is a system configuration diagram of the present invention. 本発明の波形図である。It is a wave form diagram of the present invention. 本発明の説明図(その1)である。It is explanatory drawing (the 1) of this invention. 本発明の説明図(その2)である。It is explanatory drawing (the 2) of this invention. 本発明の説明図(その3)である。It is explanatory drawing (the 3) of this invention. 本発明の説明図(その3)である。It is explanatory drawing (the 3) of this invention.

符号の説明Explanation of symbols

1:電源
2、3:スイッチ
4:制御回路
5:調整回路
6、31,31:電極棒
7:先端部
8:試料(金属試料)
11:ピンセット
12、23、35:綿棒
13、24、33:フェルト
22:チャッキング部
32:電解液容器
36:キャップ
1: power supply 2, 3: switch 4: control circuit 5: adjustment circuit 6, 31, 31: electrode rod 7: tip 8: sample (metal sample)
11: Tweezers 12, 23, 35: Cotton swabs 13, 24, 33: Felt 22: Chucking part 32: Electrolyte container 36: Cap

Claims (9)

試料と電解棒との間に電解液を浸して電圧を印加し当該試料の表面を電解研磨する電解研磨方法において、
パルス状のパルス電圧を発生し、休止期間を経過した後にパルス状のパルス電圧を発生することを繰り返すステップと、
前記発生したパルス電圧を、前記電解棒と試料との間に供給するステップと
を有する電解研磨方法。
In an electropolishing method in which an electrolytic solution is immersed between a sample and an electrolytic rod and a voltage is applied to electropolish the surface of the sample,
Generating a pulsed pulse voltage and repeatedly generating a pulsed pulse voltage after the rest period has elapsed;
Supplying the generated pulse voltage between the electrolytic rod and the sample.
前記パルス電圧の極性を、正および負に交互、あるいは任意数毎に正および負に交互に繰り返したことを特徴とする請求項1記載の電解研磨方法。   2. The electrolytic polishing method according to claim 1, wherein the polarity of the pulse voltage is alternately repeated positively and negatively, or alternately alternately positively and negatively every arbitrary number. 前記パルス電圧の幅を調整する第1の調整回路を設け、利用者が当該第1の調整回路を調整して最適な電解研磨状態に調整可能にしたことを特徴とする請求項1あるいは請求項2記載の電解研磨方法。   The first adjustment circuit for adjusting the width of the pulse voltage is provided, and the user can adjust the first adjustment circuit to be adjusted to an optimum electrolytic polishing state. 2. The electrolytic polishing method according to 2. 前記休止期間あるいはパルス電圧の繰り返し周期あるいはパルス電圧の繰り返し周波数を調整する第2の調整回路を設け、利用者が当該第2の調整回路を調整して最適な電解研磨状態に調整可能にしたことを特徴とする請求項1から請求項3のいずれかに記載の電解研磨方法。   A second adjustment circuit for adjusting the pause period, the repetition period of the pulse voltage or the repetition frequency of the pulse voltage is provided, and the user can adjust the second adjustment circuit to adjust to the optimum electropolishing state. The electrolytic polishing method according to any one of claims 1 to 3, wherein: 前記パルス電圧の電圧を調整する第3の調整回路を設け、利用者が当該第3の調整回路を調整して最適な電解研磨状態に調整可能にしたことを特徴とする請求項1から請求項4のいずれかに記載の電解研磨方法。   The third adjustment circuit for adjusting the voltage of the pulse voltage is provided, and the user can adjust the third adjustment circuit to adjust to an optimum electrolytic polishing state. 4. The electrolytic polishing method according to any one of 4 above. 前記パルス電圧の周波数を1から5ヘルツの範囲内に設定したことを特徴とする請求項1から請求項5のいずれかに記載の電解研磨方法。   6. The electrolytic polishing method according to claim 1, wherein the frequency of the pulse voltage is set within a range of 1 to 5 hertz. 前記電極棒として、棒状の支持部の先端に、電解液を含むスポンジ状で棒状の先端を丸くした、あるいは先端を尖らせた、あるいは先端を細くした、棒状先端部を交換可能な機構で装着したことを特徴とする請求項1から請求項6のいずれかに記載の電解研磨方法に用いる電極棒。   The electrode rod is attached to the tip of the rod-like support part with a sponge-like electrolyte-containing sponge, the rod-like tip is rounded, the tip is sharpened, or the tip is narrowed, with a replaceable mechanism. The electrode rod used for the electropolishing method according to any one of claims 1 to 6, wherein the electrode rod is used. 前記支持部の内部に、電解液を入れたカートリッジあるいは電解液を浸したスポンジ状の部材を設け、当該カートリッジあるいは部材から、電解液を前記交換可能な前記棒状先端部に補給することを特徴とする請求項7記載の電解研磨方法に用いる電極棒。   A cartridge containing an electrolytic solution or a sponge-like member immersed in the electrolytic solution is provided inside the support portion, and the electrolytic solution is supplied from the cartridge or member to the replaceable rod-shaped tip. An electrode rod used in the electropolishing method according to claim 7. 電解棒と試料との間に電解液を浸して電圧を印加し当該試料の表面を電解研磨する電解研磨装置において、
パルス状のパルス電圧を発生し、休止期間を経過した後にパルス状のパルス電圧を発生することを繰り返す回路を備え、
前記回路で発生したパルス電圧を、前記電解棒と試料との間に供給して当該試料の表面を電解研磨することを特徴とする電解研磨装置。
In an electropolishing apparatus for electrolytically polishing the surface of the sample by applying a voltage by immersing an electrolyte between the electrolytic rod and the sample,
A circuit that generates a pulsed pulse voltage and repeats generating a pulsed pulse voltage after a pause period has elapsed,
An electropolishing apparatus characterized in that a pulse voltage generated in the circuit is supplied between the electrolytic rod and a sample to electropolish the surface of the sample.
JP2006296414A 2006-10-31 2006-10-31 Electrolytic polishing method, electrolytic polishing device and electrode rod Pending JP2008111178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006296414A JP2008111178A (en) 2006-10-31 2006-10-31 Electrolytic polishing method, electrolytic polishing device and electrode rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006296414A JP2008111178A (en) 2006-10-31 2006-10-31 Electrolytic polishing method, electrolytic polishing device and electrode rod

Publications (1)

Publication Number Publication Date
JP2008111178A true JP2008111178A (en) 2008-05-15

Family

ID=39443855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006296414A Pending JP2008111178A (en) 2006-10-31 2006-10-31 Electrolytic polishing method, electrolytic polishing device and electrode rod

Country Status (1)

Country Link
JP (1) JP2008111178A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030021A (en) * 2007-06-27 2009-02-12 Tateho Chem Ind Co Ltd Illuminant and its manufacturing method
JP2010110722A (en) * 2008-11-07 2010-05-20 Hitachi Zosen Corp Recovering of reduced metal from electrically conductive metal oxide, method and facility for reproducing liquid crystal substrate
CN107227486A (en) * 2017-07-11 2017-10-03 北京科技大学 A kind of metal partial electrolysis burnishing device
RU2699140C2 (en) * 2017-12-04 2019-09-03 Публичное Акционерное Общество "Одк-Сатурн" Method of electrochemical debinding and rounding of edges in crossing channels
CN110318092A (en) * 2019-06-27 2019-10-11 江苏省沙钢钢铁研究院有限公司 Auxiliary device for electrolytic polishing and using method thereof
CN114892256A (en) * 2022-04-22 2022-08-12 合肥工业大学 Electrolytic polishing device for blade
JP7477816B2 (en) 2020-07-06 2024-05-02 株式会社X線残留応力測定センター METAL SURFACE ELECTROPOLYMERIZATION APPARATUS AND METAL SURFACE ELECTROPOLYMERIZATION METHOD

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030021A (en) * 2007-06-27 2009-02-12 Tateho Chem Ind Co Ltd Illuminant and its manufacturing method
JP2010110722A (en) * 2008-11-07 2010-05-20 Hitachi Zosen Corp Recovering of reduced metal from electrically conductive metal oxide, method and facility for reproducing liquid crystal substrate
CN107227486A (en) * 2017-07-11 2017-10-03 北京科技大学 A kind of metal partial electrolysis burnishing device
RU2699140C2 (en) * 2017-12-04 2019-09-03 Публичное Акционерное Общество "Одк-Сатурн" Method of electrochemical debinding and rounding of edges in crossing channels
CN110318092A (en) * 2019-06-27 2019-10-11 江苏省沙钢钢铁研究院有限公司 Auxiliary device for electrolytic polishing and using method thereof
CN110318092B (en) * 2019-06-27 2022-01-18 江苏省沙钢钢铁研究院有限公司 Auxiliary device for electrolytic polishing and using method thereof
JP7477816B2 (en) 2020-07-06 2024-05-02 株式会社X線残留応力測定センター METAL SURFACE ELECTROPOLYMERIZATION APPARATUS AND METAL SURFACE ELECTROPOLYMERIZATION METHOD
CN114892256A (en) * 2022-04-22 2022-08-12 合肥工业大学 Electrolytic polishing device for blade
CN114892256B (en) * 2022-04-22 2024-04-09 合肥工业大学 Electrolytic polishing device for blade

Similar Documents

Publication Publication Date Title
JP2008111178A (en) Electrolytic polishing method, electrolytic polishing device and electrode rod
EP3094969B1 (en) Electric pulse generation systems using capacitive coupling
US20070170072A1 (en) Electrolytic facility having pulses for killing germs and for removing fouling
US10562796B2 (en) Liquid treatment apparatus including first electrode, second electrode, and third electrode, and liquid treatment method using liquid treatment apparatus
JP2008027602A (en) Holder device and processing observation method
JP2014054512A (en) Beauty apparatus
JP6917597B2 (en) A device for generating sterilizing water that sterilizes the object to be treated and a method for generating sterilizing water that sterilizes the object to be contacted.
Chang et al. Diagnostic studies of ac-driven plasmas in saline solutions: the effect of frequency on the plasma behavior
JP2006167088A (en) Surgical medical tool cleaning apparatus
TWI668338B (en) Metal surface processing apparatus
JP2001162444A (en) Process and device for electric discharge machining
KR100940293B1 (en) Plasmer cleaning apparatus for hard lens by atmosphere type plasmer
JP6129982B2 (en) electronic microscope
JP2006150493A (en) Method and device for deburring and cleaning
AU2010312312B2 (en) An apparatus and method for cleaning using a combination of electroylsis, ultrasonics and disinfection
US10421956B2 (en) Electric pulse generation systems using capacitive coupling
JPH07128367A (en) Method and apparatus for cleaning tip of probe for probe card
JPH05148699A (en) Electrolytic cleaning method and device
Sakairi et al. Formation of area and thickness controlled porous type aluminum anodic oxide films by Sf-MDC
JP2016037622A (en) Electrolytic polishing method for aluminum member, and aluminum member
CN108441936A (en) A kind of preparation method of spongy tantalum piece
WO2006007639A1 (en) An improved apparatus and method for cleaning using a combination of electrolysis and ultrasonics
WO2019237810A1 (en) Metal surface treatment apparatus
JP7076782B2 (en) Pulse power application device and liquid processing method
JP2017201286A (en) Method for determining whether capillary filled with electrophoretic medium can be used appropriately for electrophoresis