JP2008108876A - Thermoelectric conversion element and manufacturing method therefor - Google Patents
Thermoelectric conversion element and manufacturing method therefor Download PDFInfo
- Publication number
- JP2008108876A JP2008108876A JP2006289718A JP2006289718A JP2008108876A JP 2008108876 A JP2008108876 A JP 2008108876A JP 2006289718 A JP2006289718 A JP 2006289718A JP 2006289718 A JP2006289718 A JP 2006289718A JP 2008108876 A JP2008108876 A JP 2008108876A
- Authority
- JP
- Japan
- Prior art keywords
- thermoelectric conversion
- conversion material
- conversion element
- particles
- pores
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006243 chemical reaction Methods 0.000 title claims abstract description 55
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000000463 material Substances 0.000 claims abstract description 36
- 239000011148 porous material Substances 0.000 claims abstract description 26
- 239000002245 particle Substances 0.000 claims abstract description 19
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 6
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 6
- 150000003839 salts Chemical class 0.000 claims abstract description 6
- 238000000034 method Methods 0.000 claims abstract description 5
- 238000005245 sintering Methods 0.000 claims abstract description 5
- 229910018989 CoSb Inorganic materials 0.000 claims description 6
- 239000002105 nanoparticle Substances 0.000 description 6
- 229910052787 antimony Inorganic materials 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- 238000007088 Archimedes method Methods 0.000 description 1
- 229910005347 FeSi Inorganic materials 0.000 description 1
- 229910017639 MgSi Inorganic materials 0.000 description 1
- 229910017028 MnSi Inorganic materials 0.000 description 1
- 229910002665 PbTe Inorganic materials 0.000 description 1
- 230000005678 Seebeck effect Effects 0.000 description 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 1
- 229910007657 ZnSb Inorganic materials 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- OCGWQDWYSQAFTO-UHFFFAOYSA-N tellanylidenelead Chemical compound [Pb]=[Te] OCGWQDWYSQAFTO-UHFFFAOYSA-N 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
本発明は、熱電変換素子及びその製造方法に関する。 The present invention relates to a thermoelectric conversion element and a manufacturing method thereof.
熱電変換材料は、熱エネルギーと電気エネルギーを相互に変換することができる材料であり、熱電冷却素子や熱電発電素子として利用される熱電素子を構成する材料である。この熱電変換材料はゼーベック効果を利用して熱電変換を行うものであるが、その熱電変換性能は、性能指数と呼ばれる下式で表される。
Z=α2(σ/κ)
(上式中、Zは性能指数を、αはゼーベック係数を、σは電気伝導率を、そしてκは熱伝導率を示す)
The thermoelectric conversion material is a material that can mutually convert heat energy and electric energy, and is a material that constitutes a thermoelectric element used as a thermoelectric cooling element or a thermoelectric power generation element. This thermoelectric conversion material performs thermoelectric conversion using the Seebeck effect, and the thermoelectric conversion performance is represented by the following formula called a figure of merit.
Z = α 2 (σ / κ)
(Where Z is a figure of merit, α is the Seebeck coefficient, σ is the electrical conductivity, and κ is the thermal conductivity)
従って、熱電変換材料の熱電変換性能を高めるためには、ゼーベック係数を高くし、電気伝導率を高くし、熱伝導率を低くすればよいことがわかる。しかしながら、ゼーベック係数と電気伝導率の間には背反関係があり、電気伝導率と熱伝導率の間にも背反関係があり、これらを同時に向上させることはできない。すなわち、上記式において分子を大きくすると分母も大きくなり、分母を小さくすると分子も小さくなり、性能指数Zを向上することができない。 Therefore, it can be seen that in order to improve the thermoelectric conversion performance of the thermoelectric conversion material, the Seebeck coefficient should be increased, the electrical conductivity increased, and the thermal conductivity decreased. However, there is a tradeoff between Seebeck coefficient and electrical conductivity, and there is also a tradeoff between electrical conductivity and thermal conductivity, which cannot be improved simultaneously. That is, when the numerator is increased in the above formula, the denominator is increased, and when the denominator is decreased, the numerator is also decreased, and the figure of merit Z cannot be improved.
このような熱電変換材料からなる熱電変換素子において特性を向上させるため、素子内に平均径1〜5μmの気孔を分布させて熱伝導率を低減させることが提案されている(例えば、特許文献1参照)。 In order to improve characteristics in a thermoelectric conversion element made of such a thermoelectric conversion material, it has been proposed to reduce the thermal conductivity by distributing pores having an average diameter of 1 to 5 μm in the element (for example, Patent Document 1). reference).
しかしながら、特許文献1に記載のように、平均径1〜5μmの気孔を分布させたのみでは熱伝導率の低減効果が十分ではなく、熱電変換材料として十分な特性向上が得られない。 However, as described in Patent Document 1, merely distributing pores having an average diameter of 1 to 5 μm does not provide a sufficient effect of reducing thermal conductivity, and a sufficient improvement in properties as a thermoelectric conversion material cannot be obtained.
本発明は、このような問題を解消し、熱伝導率を十分に低減させ、特性を大きく向上させた熱電変換素子を提供することを目的とする。 An object of the present invention is to provide a thermoelectric conversion element that solves such problems, sufficiently reduces thermal conductivity, and has greatly improved characteristics.
上記問題点を解決するために本発明によれば、熱電変換材料の焼結体からなり、平均径1〜100nmの細孔を有し、この細孔の体積分率が5〜30%である熱電変換素子が提供される。 In order to solve the above problems, according to the present invention, the thermoelectric conversion material is made of a sintered body, has pores having an average diameter of 1 to 100 nm, and the volume fraction of the pores is 5 to 30%. A thermoelectric conversion element is provided.
上記問題点を解決するために2番目の発明によれば、熱電変換材料を構成する元素の塩の溶液を混合し、還元剤を添加して前記熱電変換材料を構成する元素の粒子を析出させ、水熱合成によって熱電変換材料粒子を形成し、次いでこの熱電変換材料粒子を焼結する工程を含む、上記熱電変換素子の製造方法が提供される。 In order to solve the above problems, according to the second invention, a solution of the salt of the element constituting the thermoelectric conversion material is mixed, and a reducing agent is added to precipitate the particles of the element constituting the thermoelectric conversion material. There is provided a method for producing the thermoelectric conversion element, comprising the steps of forming thermoelectric conversion material particles by hydrothermal synthesis and then sintering the thermoelectric conversion material particles.
本発明によれば、平均径1〜100nmの細孔を分布させ、さらにこの細孔の体積分率を5〜30%とすることにより、熱伝導率が大きく低減し、熱電変換素子としての特性が向上する。 According to the present invention, pores having an average diameter of 1 to 100 nm are distributed, and the volume fraction of the pores is set to 5 to 30%, so that the thermal conductivity is greatly reduced, and the characteristics as a thermoelectric conversion element are obtained. Will improve.
上記のように、本発明の熱電変換素子は、熱電変換材料の焼結体からなり、平均径1〜100nmの細孔を有し、この細孔の体積分率が5〜30%であることを特徴とする。熱電変換材料としては従来より用いられている各種の材料、例えばCoSb3系、BaGaGe系、Bi2Te3系、PbTe系、SiGe系、ZnSb系、FeSi系、MgSi系、MnSi系等を用いることができ、ビスマス(Bi)、テルル(Te)、アンチモン(Sb)、コバルト(Co)等のうち少なくとも2種からなるものが好ましい。これらのうち、特にCoSb3系又はBi2Te3系熱電変換材料が好ましい。これらの材料は室温付近でのゼーベック係数が高いため、性能指数Zを向上させることができる。 As described above, the thermoelectric conversion element of the present invention is made of a sintered body of a thermoelectric conversion material, has pores having an average diameter of 1 to 100 nm, and the volume fraction of these pores is 5 to 30%. It is characterized by. As the thermoelectric conversion material, various conventionally used materials such as CoSb 3 , BaGaGe, Bi 2 Te 3 , PbTe, SiGe, ZnSb, FeSi, MgSi, MnSi, etc. should be used. It is preferable to use at least two of bismuth (Bi), tellurium (Te), antimony (Sb), cobalt (Co), and the like. Of these, CoSb 3 -based or Bi 2 Te 3 -based thermoelectric conversion materials are particularly preferable. Since these materials have a high Seebeck coefficient near room temperature, the figure of merit Z can be improved.
本発明の熱電変換素子においては、平均径1〜100nmの細孔を有することが必要であり、特にこの細孔の平均径は10〜20nmであることが好ましい。細孔の平均径が100nmより大きいと熱伝導率の低減効果が十分ではなく、1nmより小さいと電気伝導率まで急激に低下してしまう。この細孔は素子内に均一に分布していることが好ましい。 In the thermoelectric conversion element of this invention, it is necessary to have a pore with an average diameter of 1-100 nm, and it is preferable that the average diameter of this pore is 10-20 nm especially. When the average diameter of the pores is larger than 100 nm, the effect of reducing the thermal conductivity is not sufficient, and when the average diameter is smaller than 1 nm, the electric conductivity is rapidly lowered. The pores are preferably distributed uniformly in the element.
また本発明の熱電変換素子においては、上記細孔の素子に占める体積分率が5〜30%であることが必要である。30%を超えると機械強度が著しく低下し、5%より少ないと十分な熱伝導率低減効果が得られない。 Moreover, in the thermoelectric conversion element of this invention, it is required that the volume fraction which occupies for the element of the said pore is 5 to 30%. If it exceeds 30%, the mechanical strength is remarkably lowered, and if it is less than 5%, a sufficient effect of reducing thermal conductivity cannot be obtained.
本発明の熱電変換素子の製造方法においては、まず材料として熱電変換材料を構成する元素(例えばBi、Te、Co、Sb)の塩(例えばCoCl2、SbCl3)を溶媒に溶解し、得られた溶液を混合する。溶媒としては、材料の塩を溶解できるものであればよく、例えばアルコール、アセトン等を用いることができる。 In the method for producing a thermoelectric conversion element of the present invention, a salt of an element (for example, Bi, Te, Co, Sb) constituting a thermoelectric conversion material (for example, CoCl 2 , SbCl 3 ) is first dissolved in a solvent as a material. Mix the solution. Any solvent can be used as long as it can dissolve the salt of the material. For example, alcohol, acetone or the like can be used.
次いでこの混合溶液に還元剤を添加し、例えばCoやSbのイオンを還元してCoやSbの粒子を析出させる。 Next, a reducing agent is added to the mixed solution, and, for example, Co and Sb ions are reduced to precipitate Co and Sb particles.
還元剤としてはイオンを還元できるものであればよく、例えば水素化硼素ナトリウム、ヒドラジン等を用いることができる。 Any reducing agent may be used as long as it can reduce ions. For example, sodium borohydride, hydrazine, or the like can be used.
こうして熱電変換材料を構成する元素の塩の均一混合溶液中において、還元剤を添加して前記熱電変換材料を構成する元素のイオンを還元することにより、これらの元素のナノ粒子を得ることができる。このナノ粒子の粒径は1〜20nmであることが好ましい。この還元析出によって、例えばCoとSbの混合粒子が得られるが、この際、この混合粒子はナノスケール(φ=5〜20nm)のポアを形成した状態で凝集する。 In this way, nanoparticles of these elements can be obtained by adding a reducing agent and reducing the ions of the elements constituting the thermoelectric conversion material in a homogeneous mixed solution of the salts of the elements constituting the thermoelectric conversion material. . The nanoparticles preferably have a particle size of 1 to 20 nm. By this reduction precipitation, for example, mixed particles of Co and Sb are obtained. At this time, the mixed particles are aggregated in a state where pores of nanoscale (φ = 5 to 20 nm) are formed.
次いで水熱合成を実施することにより、例えばCo粒子とSb粒子からCoSb3の熱電変換材料の粒子を形成する。水熱合成の条件は、200℃、24時間が好ましく、このような水熱合成によって、混合粒子間のナノスケールのポアを有したまま熱電変換材料の粒子が形成されることになる。こうして得られた材料を、例えば580℃においてSPS焼結することにより、本発明の熱電変換素子が得られる。 Next, by performing hydrothermal synthesis, for example, CoSb 3 thermoelectric conversion material particles are formed from Co particles and Sb particles. The hydrothermal synthesis is preferably performed at 200 ° C. for 24 hours. By such hydrothermal synthesis, particles of the thermoelectric conversion material are formed with nanoscale pores between the mixed particles. The material thus obtained is subjected to SPS sintering at, for example, 580 ° C. to obtain the thermoelectric conversion element of the present invention.
上記の方法において、1〜20nmのナノ粒子を凝集させることにより得られる熱電変換素子中の細孔の平均径を1〜100nmに制御することができ、またpH調整等の凝集のさせ方を変更することにより、細孔の体積分率を5〜30%に制御することができる。 In the above method, the average diameter of the pores in the thermoelectric conversion element obtained by aggregating nanoparticles of 1 to 20 nm can be controlled to 1 to 100 nm, and the method of aggregation such as pH adjustment is changed. By doing so, the volume fraction of the pores can be controlled to 5 to 30%.
実施例
0.1gのCoCl2・6H2Oと0.29gのSbCl3を100mLのエタノールに加え、攪拌して溶解させた。この溶液に0.36gのNaBH4を加え、常温において還元反応を行い、Coナノ粒子とSbナノ粒子を含むスラリーを形成した。このスラリーを200℃において24時間水熱合成を行い、CoSb3ナノ粒子を得た。粒子を回収後、650℃にてSPS焼結を行い、熱電変換素子を得た。得られた素子についてアルキメデス法により密度を測定したところ、空孔率は20%及び30%であった。また細孔の平均径は20nmであった。
Example 0.1 g CoCl 2 .6H 2 O and 0.29 g SbCl 3 were added to 100 mL ethanol and dissolved by stirring. 0.36 g of NaBH 4 was added to this solution, and a reduction reaction was performed at room temperature to form a slurry containing Co nanoparticles and Sb nanoparticles. This slurry was hydrothermally synthesized at 200 ° C. for 24 hours to obtain CoSb 3 nanoparticles. After collecting the particles, SPS sintering was performed at 650 ° C. to obtain a thermoelectric conversion element. When the density of the obtained device was measured by the Archimedes method, the porosity was 20% and 30%. The average diameter of the pores was 20 nm.
得られた熱電変換素子について電気伝導率及び熱伝導率を測定し、性能指数をもとめた。また細孔を有さないCoSb3についても文献値の電気伝導率及び熱伝導率から性能指数をもとめた。結果を以下の表1に示す。 About the obtained thermoelectric conversion element, electrical conductivity and thermal conductivity were measured and the figure of merit was calculated. For CoSb 3 having no pores, the figure of merit was obtained from the electrical and thermal conductivity values in the literature. The results are shown in Table 1 below.
また、空孔率を20%と一定にし、細孔径を変えた熱電変換素子の熱伝導率を計算し、その関係を図1に示す。さらに、細孔径を20nmと一定にし、空孔率を変えた熱電変換素子の性能指数を計算でもとめ、その関係を図2に示す。 Further, the thermal conductivity of the thermoelectric conversion element with the porosity kept constant at 20% and the pore diameter changed was calculated, and the relationship is shown in FIG. Further, the figure of merit of the thermoelectric conversion element in which the pore diameter is kept constant at 20 nm and the porosity is changed is also obtained by calculation, and the relationship is shown in FIG.
上記の結果から明らかなように、平均径1〜100nmの細孔を空孔率5〜30%で設けることにより熱電特性を向上させることができた。 As apparent from the above results, thermoelectric characteristics could be improved by providing pores having an average diameter of 1 to 100 nm with a porosity of 5 to 30%.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006289718A JP5011949B2 (en) | 2006-10-25 | 2006-10-25 | Thermoelectric conversion element and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006289718A JP5011949B2 (en) | 2006-10-25 | 2006-10-25 | Thermoelectric conversion element and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008108876A true JP2008108876A (en) | 2008-05-08 |
JP5011949B2 JP5011949B2 (en) | 2012-08-29 |
Family
ID=39441986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006289718A Expired - Fee Related JP5011949B2 (en) | 2006-10-25 | 2006-10-25 | Thermoelectric conversion element and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5011949B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011192914A (en) * | 2010-03-16 | 2011-09-29 | Japan Advanced Institute Of Science & Technology Hokuriku | Metal nanomaterial and method of producing the same |
JP2012023201A (en) * | 2010-07-14 | 2012-02-02 | Toyota Motor Corp | Manufacturing method of thermoelectric conversion material |
EP2447233A1 (en) | 2010-10-27 | 2012-05-02 | Corning Incorporated | Tin oxide-based thermoelectric materials |
WO2016147301A1 (en) * | 2015-03-16 | 2016-09-22 | 株式会社白山製作所 | Thermoelectric material, method for producing thermoelectric material and thermoelectric conversion device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101395690B1 (en) | 2013-08-14 | 2014-05-15 | 한국세라믹기술원 | Method for manufacturing the cosb3 nanoparticle by hot-injection thermolysis |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002223013A (en) * | 2001-01-29 | 2002-08-09 | Kyocera Corp | Thermoelectric conversion element and manufacturing method of it |
JP2003142742A (en) * | 2001-10-30 | 2003-05-16 | Toyota Central Res & Dev Lab Inc | Manganese oxide thermoelectric converting material |
JP2003229605A (en) * | 2001-11-29 | 2003-08-15 | Sk Kaken Co Ltd | Thermoelectric conversion material and its manufacturing method |
JP2005325419A (en) * | 2004-05-14 | 2005-11-24 | Dainippon Printing Co Ltd | Inorganic nanoparticle and manufacturing method |
-
2006
- 2006-10-25 JP JP2006289718A patent/JP5011949B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002223013A (en) * | 2001-01-29 | 2002-08-09 | Kyocera Corp | Thermoelectric conversion element and manufacturing method of it |
JP2003142742A (en) * | 2001-10-30 | 2003-05-16 | Toyota Central Res & Dev Lab Inc | Manganese oxide thermoelectric converting material |
JP2003229605A (en) * | 2001-11-29 | 2003-08-15 | Sk Kaken Co Ltd | Thermoelectric conversion material and its manufacturing method |
JP2005325419A (en) * | 2004-05-14 | 2005-11-24 | Dainippon Printing Co Ltd | Inorganic nanoparticle and manufacturing method |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011192914A (en) * | 2010-03-16 | 2011-09-29 | Japan Advanced Institute Of Science & Technology Hokuriku | Metal nanomaterial and method of producing the same |
JP2012023201A (en) * | 2010-07-14 | 2012-02-02 | Toyota Motor Corp | Manufacturing method of thermoelectric conversion material |
EP2447233A1 (en) | 2010-10-27 | 2012-05-02 | Corning Incorporated | Tin oxide-based thermoelectric materials |
WO2012057968A1 (en) | 2010-10-27 | 2012-05-03 | Corning Incorporated | Tin oxide-based thermoelectric material |
WO2016147301A1 (en) * | 2015-03-16 | 2016-09-22 | 株式会社白山製作所 | Thermoelectric material, method for producing thermoelectric material and thermoelectric conversion device |
EP3273494A4 (en) * | 2015-03-16 | 2018-11-14 | Hakusan, Inc. | Thermoelectric material, method for producing thermoelectric material and thermoelectric conversion device |
Also Published As
Publication number | Publication date |
---|---|
JP5011949B2 (en) | 2012-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101720514B (en) | Thermoelectric conversion element, and method for production thereof | |
JP5173433B2 (en) | Thermoelectric conversion material and manufacturing method thereof | |
CA2738771C (en) | Nanocomposite thermoelectric conversion material, thermoelectric conversion element including the same, and method of producing nanocomposite thermoelectric conversion material | |
JP4900480B2 (en) | Thermoelectric conversion element and manufacturing method thereof | |
JP5024393B2 (en) | Nanocomposite thermoelectric conversion material and method for producing the same | |
JP5534069B2 (en) | Method for manufacturing thermoelectric conversion element | |
US8828277B2 (en) | Nanocomposite thermoelectric conversion material and method of producing the same | |
JP2008305907A (en) | Manufacturing method of thermoelectric conversion element | |
JP5011949B2 (en) | Thermoelectric conversion element and manufacturing method thereof | |
JP5149761B2 (en) | BiTe / Ceramics / Nanocomposite Thermoelectric Material Manufacturing Method | |
JP2009194085A (en) | Thermoelectric conversion element and its manufacturing method | |
JP5088116B2 (en) | Method for manufacturing thermoelectric conversion element | |
CN104953020B (en) | Phon scattering material, nano composite thermoelectric materials and its manufacture method | |
JP5853483B2 (en) | Nanocomposite thermoelectric conversion material | |
JP5098608B2 (en) | Method for manufacturing thermoelectric conversion element | |
JP4766004B2 (en) | Method for manufacturing thermoelectric conversion element | |
JP2011035259A (en) | Nano-composite thermoelectric conversion material and method of manufacturing the same | |
JP2008305918A (en) | Thermoelectric conversion element and manufacturing method therefor | |
JP2012023201A (en) | Manufacturing method of thermoelectric conversion material | |
JP2012059947A (en) | METHOD OF PRODUCING BiTe BASED THERMOELECTRIC MATERIAL | |
JP2011129635A (en) | Nano-composite thermoelectric conversion material and method of manufacturing the same | |
JP2012146928A (en) | Method for manufacturing nanocomposite thermoelectric conversion material | |
JP2017157786A (en) | Thermoelectric conversion material and method for manufacturing the same | |
JP5397500B2 (en) | Nanocomposite thermoelectric conversion material and method for producing the same | |
JP2015142031A (en) | Method of producing thermoelectric conversion material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110920 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111118 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120404 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20120411 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120508 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120521 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150615 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5011949 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150615 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |