JP2008105107A - Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting - Google Patents
Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting Download PDFInfo
- Publication number
- JP2008105107A JP2008105107A JP2006288018A JP2006288018A JP2008105107A JP 2008105107 A JP2008105107 A JP 2008105107A JP 2006288018 A JP2006288018 A JP 2006288018A JP 2006288018 A JP2006288018 A JP 2006288018A JP 2008105107 A JP2008105107 A JP 2008105107A
- Authority
- JP
- Japan
- Prior art keywords
- highest
- component
- content point
- tool
- cutting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Drilling Tools (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
この発明は、特にAl合金などの硬度が高くかつきわめて反応性の高い被削材の切削加工を、高い発熱を伴う高速切削条件で行った場合にも、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 This invention provides excellent wear resistance with a hard coating layer even when cutting a highly reactive material with high hardness, such as an Al alloy, under high-speed cutting conditions with high heat generation. The present invention relates to a surface-coated cutting tool to be exhibited (hereinafter referred to as a coated tool).
一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。 In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.
被覆工具の一つとして、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体の表面に、硬質被覆層として、AlとCrとSiとTiとBの窒化物[以下、(Al,Cr,Si,Ti,B)Nで示す]層を物理蒸着してなる被覆工具が知られており、そして、前記被覆工具の硬質被覆層は、すぐれた高温硬さ、耐熱性および高温強度を有し、通常の条件下で、各種の一般鋼や普通鋳鉄などの切削に用いた場合には、すぐれた切削性能を発揮することが知られている。 As one of the coated tools, the surface of a tool base composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet is coated with Al as a hard coating layer. A coated tool formed by physical vapor deposition of a nitride of Cr, Si, Ti, and B (hereinafter referred to as (Al, Cr, Si, Ti, B) N) is known, and the coated tool is hard. The coating layer has excellent high-temperature hardness, heat resistance, and high-temperature strength, and exhibits excellent cutting performance when used for cutting various general steels and ordinary cast iron under normal conditions. It has been known.
さらに、上記の被覆工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するAlとCrとSiとTiとBの合金(以下、Al−Cr−Si−Ti−B合金で示す)がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記工具基体には、例えば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、上記(Al,Cr,Si,Ti,B)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って切削加工は一段と高速化する傾向にあるが、上記の従来被覆工具においては、これを通常条件での切削加工に用いた場合には問題はないが、これをAl−Si合金等の高硬度かつきわめて反応性の高い被削材の、高熱発生を伴う高速切削条件に用いた場合には、硬質被覆層と前記高反応性被削材との反応摩耗が、高熱発生に伴って促進されることによって急速に進行し、また、被削材との潤滑性も不足することにより、この結果比較的短時間で寿命に至るのが現状である。 In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting processing, and along with this, cutting processing tends to be further accelerated. In the case of a coated tool, there is no problem when it is used for cutting under normal conditions, but this is a high-speed, high-altitude heat-generating material with high hardness and extremely high reactivity, such as an Al-Si alloy. When used for cutting conditions, the reaction wear between the hard coating layer and the highly reactive work material proceeds rapidly due to high heat generation, and lubricity with the work material. As a result, the service life is reached in a relatively short time.
そこで、本発明者等は、上述のような観点から、特に高速切削加工で、硬質被覆層がすぐれた耐摩耗性を発揮する被覆工具を開発すべく、上記の従来被覆工具に着目し、研究を行った結果、
(イ)例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造の(Al,Cr,Si)N蒸着用アークイオンプレーティング装置とほう化チタン(以下、TiB2で示す)蒸着用マグネトロンスパッタリング装置を併設した蒸着装置を用い、装置中央部に工具基体(例えば、超硬基体)装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に、所定組成のAl−Cr−Si合金からなるカソード電極(蒸発源)を備えた(Al,Cr,Si)N蒸着用アークイオンプレーティング装置、他方側に、TiB2焼結体からなるターゲット(蒸発源)を備えたTi−B蒸着用マグネトロンスパッタリング装置を対向配設し、また工具基体装着用回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の工具基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として、前記回転テーブルを回転させると共に、形成される硬質被覆層の層厚均一化を図る目的で工具基体自体も自転させながら、前記の(Al,Cr,Si)N蒸着用アークイオンプレーティング装置のAl−Cr−Si合金からなるカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させ、それと同時に、対向配設したTi−B蒸着用マグネトロンスパッタリング装置のTiB2焼結体からなるターゲット(蒸発源)にパルス電圧を印加しTiB2をスパッタすると、アークイオンプレーティングとスパッタリングによってAlとCrとSiとTiとBの窒化物層(以下、(Al,Cr,Si,Ti,B)N層で示す)が蒸着形成され、そして、上記窒化物層は、回転テーブル上に配置された工具基体が、上記一方側のAl−Cr−Si合金のカソード電極(蒸発源)に最も接近した位置で、相対的に、蒸着層中のAl、Cr、Siの含有割合が最大となって、Ti,Bの含有割合が最小となる領域(以下、Al−Cr−Si最高含有点という)が形成され、また、前記工具基体が、上記他方側のTiB2焼結体ターゲット(蒸発源)に最も接近した位置で、相対的に、蒸着層中のTi,Bの含有割合が最大となって、Al、Cr、Siの含有割合が最小となる領域(以下、Ti−B最高含有点という)が形成され、上記回転テーブルの回転によって層中には層厚方向に沿って、前記Al−Cr−Si最高含有点とTi−B最高含有点が回転テーブルの回転速度に応じた所定間隔をもって交互に繰り返し現れると共に、前記Al−Cr−Si最高含有点から前記Ti−B最高含有点、前記Ti−B最高含有点から前記Al−Cr−Si最高含有点へ、Al、Cr、Si、Ti、Bの含有量がそれぞれ連続的に変化する成分濃度分布構造の蒸着層(以下、組成変化(Al,Cr,Si,Ti,B)N層という)が形成されること。
In view of the above, the inventors of the present invention focused on the above-mentioned conventional coated tool in order to develop a coated tool that exhibits excellent wear resistance with a hard coating layer, particularly in high-speed cutting, and researched. As a result of
(A) For example, an arc ion plating apparatus and titanium boride (hereinafter referred to as “Al, Cr, Si) N” having a structure shown in a schematic plan view in FIG. 1A and a schematic front view in FIG. Using a vapor deposition apparatus provided with a magnetron sputtering apparatus for vapor deposition (denoted by TiB 2 ), a rotary table for mounting a tool substrate (for example, a carbide substrate) is provided in the center of the device, and a predetermined value is provided on one side of the rotary table. Arc ion plating apparatus for (Al, Cr, Si) N deposition having a cathode electrode (evaporation source) made of an Al—Cr—Si alloy having a composition, and a target made of a TiB 2 sintered body on the other side (evaporation source) The Ti-B vapor deposition magnetron sputtering apparatus equipped with a) is disposed oppositely, and is placed on the rotary table for mounting the tool base at a position spaced apart from the central axis in a radial direction. The tool base is mounted in a ring shape, and the atmosphere in the apparatus is changed to a nitrogen atmosphere in this state. The rotary table is rotated, and the tool base itself is rotated for the purpose of uniforming the thickness of the hard coating layer to be formed. However, an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode made of the Al—Cr—Si alloy of the above-described (Al, Cr, Si) N deposition arc ion plating apparatus, and at the same time, When TiB 2 is sputtered by applying a pulse voltage to a target (evaporation source) made of a TiB 2 sintered body of a Ti-B vapor deposition magnetron sputtering apparatus arranged oppositely, Al, Cr, and Si are formed by arc ion plating and sputtering. A nitride layer of Ti and B (hereinafter referred to as (Al, Cr, Si, Ti, B) N layer) is deposited and formed The nitride layer is relatively close to the position where the tool base disposed on the turntable is closest to the cathode electrode (evaporation source) of the Al—Cr—Si alloy on the one side, A region where the content ratio of Cr and Si is maximized and the content ratio of Ti and B is minimized (hereinafter referred to as the Al-Cr-Si highest content point) is formed, and the tool base is formed on the other side. In the position closest to the TiB 2 sintered body target (evaporation source), the content ratio of Ti and B in the vapor deposition layer is relatively maximum and the content ratio of Al, Cr, and Si is minimum. A region (hereinafter referred to as a Ti-B highest content point) is formed, and the Al-Cr-Si highest content point and the Ti-B highest content point are formed in the layer along the layer thickness direction by the rotation of the rotary table. With a predetermined interval according to the rotation speed of the rotary table It appears repeatedly, and from the Al-Cr-Si highest content point to the Ti-B highest content point, from the Ti-B highest content point to the Al-Cr-Si highest content point, Al, Cr, Si, Ti A vapor deposition layer having a component concentration distribution structure in which the B content changes continuously (hereinafter referred to as composition change (Al, Cr, Si, Ti, B) N layer) is formed.
(ロ)上記組成変化(Al,Cr,Si,Ti,B)N層からなる硬質被覆層において、そのAl成分は高温硬さおよび耐酸化性を向上させ、同Cr成分は高温強度を向上させ、同Si成分は耐熱性を向上させ、同Ti成分は一段と高温強度を向上させ、さらに、同B成分は潤滑性と非反応性を向上させる作用があり、したがって相対的にAl,Cr,Siの含有割合が高いAl−Cr−Si最高含有点では、上記組成変化(Al,Cr,Si,Ti,B)N層からなる硬質被覆層はすぐれた高温硬さ、耐酸化性、高温強度を有するが、その反面、潤滑性、非反応性が十分でないために、高速切削条件下では反応摩耗を生じやすいことから、上記組成変化(Al,Cr,Si,Ti,B)N層のAl−Cr−Si最高含有点における潤滑性、非反応性の不足を補う目的で、すぐれた潤滑性、非反応性を有するTi−B最高含有点を厚さ方向に交互に介在させることによって、上記組成変化(Al,Cr,Si,Ti,B)N層からなる硬質被覆層全体として、すぐれた高温硬さ、耐酸化性、高温強度、耐熱性、潤滑性および非反応性を具備するようになり、その結果として、高速切削条件下でも反応摩耗を生じることなくすぐれた耐摩耗性を発揮するようになること。
以上(イ)、(ロ)に示される研究結果を得たのである。
(B) In the hard coating layer composed of the above composition change (Al, Cr, Si, Ti, B) N layer, the Al component improves the high temperature hardness and oxidation resistance, and the Cr component improves the high temperature strength. The Si component improves the heat resistance, the Ti component further improves the high-temperature strength, and the B component has the effect of improving the lubricity and non-reactivity, and therefore relatively Al, Cr, Si. At the highest Al-Cr-Si content point, the hard coating layer composed of the above composition change (Al, Cr, Si, Ti, B) N layer has excellent high temperature hardness, oxidation resistance, and high temperature strength. However, on the other hand, since lubricity and non-reactivity are not sufficient, reactive wear is likely to occur under high-speed cutting conditions, so that the composition change (Al, Cr, Si, Ti, B) N layer Al- Lubricity at the highest content point of Cr-Si, In order to compensate for the lack of reactivity, the composition change (Al, Cr, Si, Ti, B) is performed by alternately interposing the highest content points of Ti-B having excellent lubricity and non-reactivity in the thickness direction. ) As a whole hard coating layer composed of N layer, it has excellent high temperature hardness, oxidation resistance, high temperature strength, heat resistance, lubricity and non-reactivity, and as a result, it reacts even under high speed cutting conditions To have excellent wear resistance without causing wear.
The research results shown in (a) and (b) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、
炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体を、一方にカソード電極としてAl−Cr−Si合金を、また、他方にターゲットとしてTiB2焼結材料を設けた蒸着装置の回転テーブル上に載置し、前記工具基体を回転テーブルで回転させながら、Al−Cr−Si合金カソード電極側でのアークイオンプレーティングと、TiB2焼結材料ターゲット側でのスパッタリングにより、工具基体表面にAlとCrとSiとTiとBの窒化物層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
(a)前記硬質被覆層は1〜8μmの平均層厚を有し、硬質被覆層の層厚方向に沿って、前記Al−Cr−Si合金カソード電極近傍で形成されるAl−Cr−Si最高含有点と前記TiB2焼結材料ターゲット近傍で形成されるTi−B最高含有点とが0.005〜0.1μmの間隔をおいて交互に繰り返し存在し、
(b)前記Al−Cr−Si最高含有点から前記Ti−B最高含有点、前記Ti−B最高含有点から前記Al−Cr−Si最高含有点へと、Al、Cr、Si、Ti、BCの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
(c)前記Al−Cr−Si合金カソード電極近傍で形成される前記Al−Cr−Si最高含有点におけるAl成分、Cr成分、Si成分、Ti成分およびB成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、Q、Rで表したときに、Xは0.40〜0.60、Yは0.30〜0.45、Zは0.005〜0.10、Qは0.02〜0.10、Rは0.01〜0.10で、かつ、X+Y+Z+Q+R=1を満足し、
(d)前記TiB2焼結材料ターゲット近傍で形成される前記Ti−B最高含有点におけるAl成分、Cr成分、Si成分、Ti成分およびB成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、Q、Rで表したときに、Xは0.05〜0.20、Yは0.05〜0.20、Zは0.001〜0.03、Qは0.25〜0.40、Rは0.40〜0.55で、かつ、X+Y+Z+Q+R=1を満足する組成変化(Al,Cr,Si,Ti,B)N層を蒸着形成してなる、
高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆工具(表面被覆切削工具)に特徴を有するものである。
This invention was made based on the above research results,
A vapor deposition apparatus provided with a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, an Al—Cr—Si alloy as a cathode electrode on one side, and a TiB 2 sintered material as a target on the other side. The tool substrate is placed on a rotary table, and the tool substrate is rotated on the rotary table while arc ion plating on the Al—Cr—Si alloy cathode electrode side and sputtering on the TiB 2 sintered material target side. In a surface-coated cutting tool in which a hard coating layer composed of a nitride layer of Al, Cr, Si, Ti, and B is formed on the surface by vapor deposition,
(A) The hard coating layer has an average layer thickness of 1 to 8 μm, and the highest Al—Cr—Si formed in the vicinity of the Al—Cr—Si alloy cathode electrode along the thickness direction of the hard coating layer. The content point and the Ti-B highest content point formed in the vicinity of the TiB 2 sintered material target are alternately present at intervals of 0.005 to 0.1 μm,
(B) From the highest Al-Cr-Si content point to the highest Ti-B content point, from the highest Ti-B content point to the highest Al-Cr-Si content point, Al, Cr, Si, Ti, BC Have a component concentration distribution structure in which the content ratio of each continuously changes,
(C) Al component, Cr component, Si component, Ti component and B component at the highest Al-Cr-Si content point formed in the vicinity of the Al-Cr-Si alloy cathode electrode are the content ratio (however, the atom Ratio) is represented by X, Y, Z, Q, and R, respectively, X is 0.40 to 0.60, Y is 0.30 to 0.45 , Z is 0.005 to 0.10, Q is 0.02 to 0.10, R is 0.01 to 0.10, and X + Y + Z + Q + R = 1 is satisfied,
(D) Al component, Cr component, Si component, Ti component, and B component at the highest Ti-B content point formed in the vicinity of the TiB 2 sintered material target, the content ratio (however, the atomic ratio), When represented by X, Y, Z, Q, and R, X is 0.05 to 0.20, Y is 0.05 to 0.20, Z is 0.001 to 0.03, and Q is 0.00. 25 to 0.40, R is 0.40 to 0.55, and a composition change (Al, Cr, Si, Ti, B) N layer satisfying X + Y + Z + Q + R = 1 is formed by vapor deposition.
It is characterized by a coated tool (surface coated cutting tool) that exhibits excellent wear resistance with a hard coating layer in high-speed cutting.
つぎに、この発明の被覆工具の硬質被覆層を構成する組成変化(Al,Cr,Si,Ti,B)N層に関し、上記の通りに数値限定した理由を説明する。 Next, the reason why the numerical values of the composition change (Al, Cr, Si, Ti, B) N layer constituting the hard coating layer of the coated tool of the present invention are limited as described above will be described.
(a)Al−Cr−Si最高含有点のAl、Cr、Si含有割合
組成変化(Al,Cr,Si,Ti,B)N層におけるAlは、高温硬さおよび耐酸化性を向上させ、同Crは高温強度を向上させ、同Si成分は耐熱性を向上させ、Ti成分は一段と高温強度を向上させ、さらに、B成分は高反応性被削材の高い熱発生を伴う高速切削加工でも、高反応性被削材と硬質被覆層との反応性を抑制するとともに、切粉との潤滑性を高める作用を有するので、チッピングの発生もなく、すぐれた耐摩耗性を長期に亘って発揮するようになる。したがって相対的にAl,Cr,Si成分の含有割合が高いAl−Cr−Si最高含有点ではすぐれた高温硬さ、耐酸化性、高温強度、耐熱性を備えるが、Alの含有割合(X値)が0.40未満の場合には、硬質被覆層として最小限要求される高温硬さ、耐酸化性を維持することはできず、Crの含有割合(Y値)が0.30未満の場合には、高温強度の不足によるチッピング発生の恐れがあり、Siの含有割合(Z値)が0.005未満では耐熱性の向上を期待することはできない。一方、Alの含有割合(X値)が0.60を超えたり、Crの含有割合(Y値)が0.45を超えたり、Siの含有割合(Z値)が0.10を超えたりしたような場合には、Tiの含有割合(Q値)およびBの含有割合(R値)が少なくなりすぎて、特に硬質被覆層の非反応性、潤滑性を確保することができなくなることから、Alの含有割合(X値)を0.40〜0.60、Crの含有割合(Y値)を0.30〜0.45、Siの含有割合(Z値)を0.005〜0.10とそれぞれ定めた。
なお、Al−Cr最高含有点におけるTi成分の含有割合(Q値)およびB成分の含有割合(R値)は、Al合金の高速切削で必要とされる高温強度、非反応性および潤滑性を確保するために、0.02≦Q≦0.10、0.01≦R≦0.10の範囲とする必要があり、しかも、X、Y、Z、Q、Rは、X+Y+Z+Q+R=1を満足する数値でなければならない。
(A) Al, Cr, Si content ratio of Al-Cr-Si highest content point Al in composition change (Al, Cr, Si, Ti, B) N layer improves high temperature hardness and oxidation resistance. Cr improves the high temperature strength, the Si component improves the heat resistance, the Ti component further improves the high temperature strength, and the B component even in high-speed cutting with high heat generation of the highly reactive work material, Suppresses the reactivity between the highly reactive work material and the hard coating layer and enhances the lubricity with the chips, so there is no chipping and long-term wear resistance is demonstrated. It becomes like this. Therefore, the Al-Cr-Si highest content point where the content ratio of Al, Cr, Si components is relatively high has excellent high temperature hardness, oxidation resistance, high temperature strength, and heat resistance, but the Al content ratio (X value) ) Is less than 0.40, the minimum required high temperature hardness and oxidation resistance for the hard coating layer cannot be maintained, and the Cr content (Y value) is less than 0.30. May cause chipping due to insufficient high-temperature strength. If the Si content (Z value) is less than 0.005, improvement in heat resistance cannot be expected. On the other hand, the Al content ratio (X value) exceeded 0.60, the Cr content ratio (Y value) exceeded 0.45 , or the Si content ratio (Z value) exceeded 0.10. In such a case, the Ti content ratio (Q value) and the B content ratio (R value) are too small, and in particular, the non-reactivity and lubricity of the hard coating layer cannot be secured. The Al content ratio (X value) is 0.40 to 0.60, the Cr content ratio (Y value) is 0.30 to 0.45 , and the Si content ratio (Z value) is 0.005 to 0.10. Respectively.
The content ratio (Q value) of the Ti component and the content ratio (R value) of the B component at the highest Al-Cr content point are the high temperature strength, non-reactivity and lubricity required for high-speed cutting of an Al alloy. In order to ensure, it is necessary to make the range 0.02 ≦ Q ≦ 0.10, 0.01 ≦ R ≦ 0.10, and X, Y, Z, Q, and R satisfy X + Y + Z + Q + R = 1. Must be a numeric value.
(b)Ti−B最高含有点のTi、B含有割合
硬質被覆層のTi−B最高含有点において、組成変化(Al,Cr,Si,Ti,B)N層は特にすぐれた非反応性および潤滑性を備えるが、硬質被覆層は、これらの特性ばかりでなく、硬質被覆層として最小限要求される高温硬さ、耐酸化性、高温強度、耐熱性を当然備える必要があることから、Ti−B最高含有点におけるTi含有割合(Q値)、B含有割合(R値)を、Al,Cr,Ti,Bの合量に占める割合(原子比)で、それぞれ、0.25〜0.40、0.40〜0.55と定めた。
つまり、Ti含有割合(Q値)が0.40を超えると、あるいは、B含有割合(R値)が0.55を超えると、(Al,Cr,Si,Ti,B)N層中のAl、Cr成分、Si成分の含有量が減少し、その結果、高温硬さ、耐酸化性、高温強度、耐熱性が不十分となり、切刃にチッピング(微小欠け)などが発生し易くなり、一方、Ti含有割合(Q値)が0.25未満になると、あるいは、B含有割合(R値)が0.40未満になると、(Al,Cr,Si,Ti,B)N層中のTiの含有割合が少なくなり過ぎて、高温強度のより一層の向上を期待できなくなり、また、非反応性および潤滑性作用も期待できなくなることから、Tiの含有割合(Q値)を0.25〜0.40と、また、Bの含有割合(R値)を、0.40〜0.55(いずれも、原子比)に定めた。
なお、Ti−B最高含有点におけるAl成分の含有割合(X値)、Cr成分の含有割合(Y値)、Si成分の含有割合(Z値)は、高速切削で最低限必要とされる高温硬さ、耐酸化性、高温強度、耐熱性を確保するために、0.05≦X≦0.20、0.05≦Y≦0.20、0.001≦Z≦0.03の範囲とする必要があり、しかも、X、Y、Z、Q、Rは、X+Y+Z+Q+R=1を満足する数値でなければならない。
(B) Ti, B content ratio at the highest Ti-B content point At the Ti-B highest content point of the hard coating layer, the composition change (Al, Cr, Si, Ti, B) N layer has particularly excellent non-reactivity and Although it has lubricity, the hard coating layer naturally has not only these characteristics but also the minimum required high temperature hardness, oxidation resistance, high temperature strength, and heat resistance as a hard coating layer. -The Ti content ratio (Q value) and B content ratio (R value) at the highest B content point are ratios (atomic ratios) to the total amount of Al, Cr, Ti, and B, and are 0.25-0. 40, 0.40 to 0.55.
That is, when the Ti content ratio (Q value) exceeds 0.40 or the B content ratio (R value) exceeds 0.55, the Al in the (Al, Cr, Si, Ti, B) N layer , Cr content, Si content decreases, resulting in insufficient high-temperature hardness, oxidation resistance, high-temperature strength, heat resistance, and chipping (minute chipping) is likely to occur on the cutting edge. When the Ti content (Q value) is less than 0.25, or when the B content (R value) is less than 0.40, (Al, Cr, Si, Ti, B) of Ti in the N layer Since the content ratio becomes too small, further improvement in high-temperature strength cannot be expected, and non-reactivity and lubricity cannot be expected. Therefore, the Ti content ratio (Q value) is set to 0.25 to 0. .40, and the B content (R value) is 0.40 to 0.55 Re was also defined atomic ratio).
In addition, the content ratio (X value) of the Al component, the content ratio (Y value) of the Cr component, and the content ratio (Z value) of the Si component at the highest Ti-B content point are the minimum temperatures required for high-speed cutting. In order to ensure hardness, oxidation resistance, high temperature strength, and heat resistance, 0.05 ≦ X ≦ 0.20, 0.05 ≦ Y ≦ 0.20, 0.001 ≦ Z ≦ 0.03 In addition, X, Y, Z, Q, and R must be numerical values satisfying X + Y + Z + Q + R = 1.
(c)Al−Cr−Si最高含有点とTi−B最高含有点間の間隔
この発明の硬質被覆層は、その層厚方向に亘って、窒化物を構成する成分の濃度が、Al−Cr−Si最高含有点からTi−B最高含有点へと、また、Ti−B最高含有点からAl−Cr−Si最高含有点へと連続的に変化するものであるため、例えば、成分濃度が不連続な変化をする複数層の積層構造からなる硬質被覆層に比べれば、複数層間での剥離等の恐れは無く硬質被覆層自体の密着強度・接合強度は非常にすぐれたものであるが、Al−Cr−Si最高含有点とTi−B最高含有点間の間隔が0.005μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果それぞれの層に所望の高温硬さ、耐酸化性、高温強度、非反応性および潤滑性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちTi−B最高含有点であれば高温硬さ、耐酸化性、高温強度および耐熱性の不足、また、Al−Cr−Si最高含有点であれば非反応性および潤滑性の不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、また、摩耗進行が促進されるようになることから、その間隔を0.005〜0.1μmと定めた。
なお、Al−Cr−Si最高含有点とTi−B最高含有点間の間隔は、(Al,Cr,Si)N蒸着用アークイオンプレーティング装置とTiB2蒸着用マグネトロンスパッタリング装置を併設した蒸着装置を用い、アークイオンプレーティンとスパッタリングを同時に行って蒸着膜を形成する際に、例えば、工具基体を装着した回転テーブルの回転速度を制御することによって調整することができるので、回転テーブルの回転速度を適宜に設定することにより、Al−Cr−Si最高含有点とTi−B最高含有点間の間隔が上記数値範囲内の所望の値となる組成変化(Al,Cr,Si,Ti,B)N層を容易に形成することができる。
(C) Spacing between Al-Cr-Si highest content point and Ti-B highest content point In the hard coating layer of the present invention, the concentration of the component constituting the nitride is Al-Cr over the layer thickness direction. -The highest Si content point is changed from the highest Ti-B content point, and the highest Ti-B content point to the highest Al-Cr-Si content point. Compared to a hard coating layer consisting of a multi-layered laminated structure that changes continuously, there is no risk of peeling between multiple layers, and the adhesion strength and bonding strength of the hard coating layer itself are very good. When the distance between the highest content point of Cr—Si and the highest content point of Ti—B is less than 0.005 μm, it is difficult to clearly form each point with the above composition. As a result, each layer has a desired high temperature. Hardness, oxidation resistance, high temperature strength, non-reactivity and lubrication If the distance exceeds 0.1 μm, the disadvantages of the respective points, that is, the highest content point of Ti-B, is high temperature hardness, oxidation resistance, high temperature strength and heat resistance. If the Al-Cr-Si maximum content point is insufficient, insufficient non-reactivity and lack of lubricity will appear locally in the layer, which may cause chipping on the cutting edge and progress of wear. Therefore, the interval was set to 0.005 to 0.1 μm.
The distance between the Al-Cr-Si highest content point and TiB highest containing point, (Al, Cr, Si) N deposition arc ion plating apparatus and TiB features the deposition apparatus 2 deposition magnetron sputtering apparatus When forming a vapor deposition film by simultaneously performing arc ion plating and sputtering, the rotational speed of the rotary table can be adjusted by controlling the rotational speed of the rotary table on which the tool base is mounted. Is set appropriately, the composition change (Al, Cr, Si, Ti, B) in which the interval between the Al-Cr-Si highest content point and the Ti-B highest content point becomes a desired value within the above numerical range. The N layer can be easily formed.
(d)平均層厚
その平均層厚が1μm未満では、硬質被覆層が所望の高温硬さ、耐酸化性、高温強度、耐熱性、非反応性および潤滑性を長期に亘って確保することができず、その結果、高速切削における耐摩耗性の向上を期待することができず、一方、その平均層厚が8μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜8μmと定めた。
(D) Average layer thickness When the average layer thickness is less than 1 μm, the hard coating layer can ensure the desired high temperature hardness, oxidation resistance, high temperature strength, heat resistance, non-reactivity and lubricity over a long period of time. As a result, improvement in wear resistance in high-speed cutting cannot be expected. On the other hand, if the average layer thickness exceeds 8 μm, chipping tends to occur on the cutting edge. Was set to 1 to 8 μm.
この発明の被覆工具は、硬質被覆層を構成する組成変化(Al,Cr,Si,Ti,B)N層が、全体として、すぐれた高温硬さ、耐酸化性、高温強度、耐熱性を有するとともに、さらに、すぐれた非反応性と潤滑性をも具備することから、Al−Si合金のような高硬度かつ高反応性のAl合金などを、特に大きな発熱を伴う高速切削条件で加工した場合であっても、長期に亘ってすぐれた耐摩耗性を発揮するものである。 In the coated tool of the present invention, the composition change (Al, Cr, Si, Ti, B) N layer constituting the hard coating layer as a whole has excellent high temperature hardness, oxidation resistance, high temperature strength, and heat resistance. In addition, because it also has excellent non-reactivity and lubricity, when processing hard and highly reactive Al alloy such as Al-Si alloy under high-speed cutting conditions with particularly large heat generation Even so, it exhibits excellent wear resistance over a long period of time.
つぎに、この発明の被覆工具を実施例により具体的に説明する。 Next, the coated tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−9を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-9 were formed.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−5を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B-1 to B-5 made of TiCN base cermet having a chip shape of CNMG120408 were formed.
ついで、上記の工具基体A−1〜A−9およびB−1〜B−5のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置内の回転テーブル上に外周部に沿って装着し、一方側の前記アークイオンプレーティング装置のカソード電極(蒸発源)として、種々の成分組成をもったAl−Cr−Si合金、他方側のマグネトロンスパッタリング装置のターゲット(蒸発源)としてTiB2焼結体を装着し、またボンバート洗浄用金属Tiも装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバート洗浄し、
(b)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加して、カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、
(c)また、それと同時に、TiB2焼結体のターゲットにパルス電源を用いて3.0kWのパルス電力を印加してTiB2をスパッタし、
(d)前記回転テーブル上で自転しながら回転する工具基体の表面に、表3,4に示される目標組成のAl−Cr−Si最高含有点とTi−B最高含有点とが交互に、同じく表3、表4に示される目標間隔で繰り返し存在し、また、前記Al−Cr−Si最高含有点から前記Ti−B最高含有点、前記Ti−B最高含有点から前記Al−Cr−Si最高含有点へと、Al、Cr、Si、Ti、Bの含有割合が連続的に変化する成分濃度分布構造を有し、さらに、同じく表3、表4に示される目標層厚の組成変化(Al,Cr,Si,Ti,B)N層からなる硬質被覆層を蒸着することにより、ISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具1〜14をそれぞれ製造した。
なお、上記実施例では、Al−Cr−Si最高含有点とTi−B最高含有点との目標間隔は、回転テーブルの回転速度を0.5〜10rpmの範囲内で変化させることにより、所定の目標間隔値となるように調整した。
Next, each of the tool bases A-1 to A-9 and B -1 to B-5 was ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus and magnetron shown in FIG. Al-Cr- having various component compositions as a cathode electrode (evaporation source) of the arc ion plating apparatus on one side mounted on a rotary table in a vapor deposition apparatus provided with a sputtering apparatus. A TiB 2 sintered body is mounted as a target (evaporation source) for the Si alloy and the other side of the magnetron sputtering apparatus, and a metal Ti for bombard cleaning is also mounted. However, after heating the inside of the apparatus to 500 ° C. with a heater, a DC bias of −1000 V is applied to the tool base that rotates while rotating on the rotary table. A voltage is applied to cause a 100 A current to flow between the metal Ti of the cathode electrode and the anode electrode to generate an arc discharge, thereby cleaning the surface of the tool base with Ti bombardment,
(B) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and the cathode An arc discharge is generated by passing a current of 90 A between the electrode and the anode electrode,
(C) At the same time, a pulse power of 3.0 kW is applied to the target of the TiB 2 sintered body using a pulse power source to sputter TiB 2 ,
(D) Al-Cr-Si highest content point and Ti-B highest content point of the target composition shown in Tables 3 and 4 alternately on the surface of the tool base rotating while rotating on the rotary table, It exists repeatedly at the target intervals shown in Tables 3 and 4, and from the Al-Cr-Si highest content point to the Ti-B highest content point, from the Ti-B highest content point to the Al-Cr-Si highest It has a component concentration distribution structure in which the content ratio of Al, Cr, Si, Ti, and B continuously changes to the content point, and further, the compositional change of the target layer thickness (Al , Cr, Si, Ti, B) The present invention coated tools 1 to 14 having a throwaway tip shape defined in ISO · CNMG120408 were produced by vapor-depositing a hard coating layer composed of an N layer.
In addition, in the said Example, the target space | interval of the Al-Cr-Si highest content point and the Ti-B highest content point is predetermined | prescribed by changing the rotational speed of a rotary table within the range of 0.5-10 rpm. The target interval value was adjusted.
また、比較の目的で、これら工具基体A−1〜A−9およびB−1〜B−5を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、種々の成分組成をもったAl−Cr−Si−Ti−B合金を装着し、さらにボンバード洗浄用金属Tiも装着し、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、もって前記工具基体A−1〜A−9およびB−1〜B−5のそれぞれの表面に、表5,6に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Si,Ti,B)N層からなる硬質被覆層を蒸着することにより、同じくスローアウエイチップ形状の従来被覆工具1〜14をそれぞれ製造した。 For comparison purposes, these tool bases A-1 to A-9 and B -1 to B-5 were ultrasonically cleaned in acetone and dried, and the normal arc ions shown in FIG. Inserted into the plating apparatus, as the cathode electrode (evaporation source), Al-Cr-Si-Ti-B alloys with various component compositions were mounted, and bombard cleaning metal Ti was also mounted. The inside of the apparatus was heated to 500 ° C. with a heater while evacuating and maintaining a vacuum of 0.5 Pa or less, and then a DC bias voltage of −1000 V was applied to the tool base, so that the metal Ti and anode electrode of the cathode electrode A current of 100 A is passed between them to generate an arc discharge, thereby cleaning the surface of the tool substrate with Ti bombardment, and then introducing nitrogen gas as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa. Both the lower the bias voltage applied to the tool substrate to -100 V, the cathode electrode and flowing a 90A current between the anode electrode to generate arc discharge, the have tool substrate A-1 to A-9 And B-1 to B-5 are composed of compositionally uniform (Al, Cr, Si, Ti, B) N layers having the target compositions and target layer thicknesses shown in Tables 5 and 6. Similarly, the conventional coated tools 1 to 14 having the throwaway tip shape were manufactured by depositing the hard coating layer.
つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜14および従来被覆チップ1〜14について、
被削材:JIS・A390の丸棒、
切削速度: 300 m/min.、
切り込み: 0.8 mm、
送り: 0.05 mm/rev.、
切削時間: 4 分、
の条件(切削条件A)でのアルミ合金の乾式高速連続切削加工試験(通常の切削速度は、180m/min.)、
被削材:JIS・AC9Bの丸棒、
切削速度: 260 m/min.、
切り込み: 1.2 mm、
送り: 0.1 mm/rev.、
切削時間: 5 分、
の条件(切削条件B)でのアルミ合金の乾式高速連続切削加工試験(通常の切削速度は、180m/min.)、
被削材:JIS・AC3Aの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 280 m/min.、
切り込み: 0.3 mm、
送り: 0.1 mm/rev.、
切削時間: 3 分、
の条件(切削条件C)でのアルミ合金の乾式高速断続切削加工試験(通常の切削速度は、150m/min.)、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 14 and the conventional coated chips 1 to 14 are as follows.
Work material: JIS A390 round bar,
Cutting speed: 300 m / min. ,
Cutting depth: 0.8 mm,
Feed: 0.05 mm / rev. ,
Cutting time: 4 minutes,
Dry high-speed continuous cutting test of aluminum alloy under the following conditions (cutting condition A) (normal cutting speed is 180 m / min.),
Work material: JIS / AC9B round bar,
Cutting speed: 260 m / min. ,
Cutting depth: 1.2 mm,
Feed: 0.1 mm / rev. ,
Cutting time: 5 minutes,
Dry high-speed continuous cutting test of aluminum alloy under the following conditions (cutting condition B) (normal cutting speed is 180 m / min.),
Work material: JIS / AC3A lengthwise equal 4 round grooves
Cutting speed: 280 m / min. ,
Cutting depth: 0.3 mm,
Feed: 0.1 mm / rev. ,
Cutting time: 3 minutes,
Were subjected to dry high-speed intermittent cutting test (normal cutting speed was 150 m / min.) Of aluminum alloy under the above conditions (cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. . The measurement results are shown in Table 7.
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr3C2粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の工具基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Then, three types of round rod sintered bodies for forming a tool base having diameters of 8 mm, 13 mm, and 26 mm are formed, and further, the three types of round bar sintered bodies are ground and are shown in Table 7. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 30 degrees Tool bases (end mills) C-1 to C-8 were produced.
ついで、これらの工具基体(エンドミル)C−1〜C−8のうち、工具基体(エンドミル)C−1〜C−5、C−7、C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成のAl−Cr−Si最高含有点とT−iB最高含有点とが交互に、同じく表9に示される目標間隔で繰り返し存在し、かつ前記Al−Cr−Si最高含有点から前記Ti−B最高含有点、前記Ti−B最高含有点から前記Al−Cr−Si最高含有点へと、Al、Cr、Si、Ti、Bの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表9に示される目標層厚の組成変化(Al,Cr,Si,Ti,B)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆エンドミル1〜7をそれぞれ製造した。 Next, of these tool bases (end mills) C-1 to C-8 , the surfaces of the tool bases (end mills) C-1 to C-5, C-7, and C-8 are ultrasonically cleaned in acetone. In a dried state, the sample was inserted into a vapor deposition apparatus provided with the arc ion plating apparatus and magnetron sputtering apparatus shown in FIG. 1 and shown in Table 9 along the layer thickness direction under the same conditions as in Example 1 above. Al-Cr-Si highest content point and T-iB highest content point of the target composition to be alternately present repeatedly at the target intervals shown in Table 9, and from the Al-Cr-Si highest content point to the Ti -A component concentration distribution structure in which the content ratio of Al, Cr, Si, Ti, and B continuously changes from the highest content point of B and the highest content point of Ti-B to the highest content point of Al-Cr-Si. And also shown in Table 9 That the composition changes in the target layer thickness (Al, Cr, Si, Ti , B) by depositing form a hard coating layer consisting of N layers, the present invention coated end mills 1-7 as the present invention coated tool was produced, respectively.
また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−5、C−7、C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(エンドミル)C−1〜C−5、C−7、C−8の表面に、表10に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Si,Ti,B)N層からなる硬質被覆層を蒸着することにより、従来被覆工具としての従来被覆エンドミル1〜7をそれぞれ製造した。 For comparison purposes, the surfaces of the tool bases (end mills) C-1 to C-5, C-7, and C-8 are ultrasonically cleaned in acetone and dried, and are also shown in FIG. Table 10 shows the surface of tool bases (end mills) C-1 to C-5, C-7, and C-8 under the same conditions as in Example 1 above. By depositing a hard coating layer composed of a compositionally uniform (Al, Cr, Si, Ti, B) N layer having the target composition and target layer thickness shown, 7 were produced respectively.
つぎに、上記本発明被覆エンドミル1〜7および従来被覆エンドミル1〜7のうち、
本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・AC9Bの板材、
切削速度: 260 m/min.、
溝深さ(切り込み): 5.0 mm、
テーブル送り: 280 mm/分、
の条件でのアルミ合金の乾式高速溝切削加工試験(通常の切削速度は、150m/min.)、
本発明被覆エンドミル4、5および従来被覆エンドミル4、5については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・A390の板材、
切削速度: 280 m/min.、
溝深さ(切り込み): 7.5 mm、
テーブル送り: 1000 mm/分、
の条件でのアルミ合金の乾式高速溝切削加工試験(通常の切削速度は、150m/min.)、
本発明被覆エンドミル6、7および従来被覆エンドミル6、7については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・AC3Aの板材、
切削速度: 300 m/min.、
溝深さ(切り込み): 12.0 mm、
テーブル送り: 950 mm/分、
の条件でのアルミ合金の乾式高速溝切削加工試験(通常の切削速度は、150m/min.)
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.2mmに至るまでの切削溝長を測定した。この測定結果を表9,10にそれぞれ示した。
Next, of the present invention coated end mills 1 to 7 and the conventional coated end mills 1 to 7 ,
About this invention coated end mills 1-3 and conventional coated end mills 1-3,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / AC9B plate,
Cutting speed: 260 m / min. ,
Groove depth (cut): 5.0 mm,
Table feed: 280 mm / min,
Dry high-speed grooving test of aluminum alloy under the conditions (normal cutting speed is 150 m / min.),
For the coated end mills 4 and 5 of the present invention and the conventional coated end mills 4 and 5 ,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / A390 plate,
Cutting speed: 280 m / min. ,
Groove depth (cut): 7.5 mm,
Table feed: 1000 mm / min,
Dry high-speed grooving test of aluminum alloy under the conditions (normal cutting speed is 150 m / min.),
For the coated end mills 6 and 7 of the present invention and the conventional coated end mills 6 and 7 ,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / AC3A plate material,
Cutting speed: 300 m / min. ,
Groove depth (cut): 12.0 mm,
Table feed: 950 mm / min,
Dry-type high-speed grooving test of aluminum alloy under normal conditions (normal cutting speed is 150 m / min.)
In each groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral blade of the cutting edge portion reached 0.2 mm, which is a guide for the service life. The measurement results are shown in Tables 9 and 10, respectively.
上記の実施例2で製造した直径が8mm(工具基体C−1〜C−3形成用)、13mm(工具基体D−5、C−6形成用)、および26mm(工具基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(工具基体D−1〜D−3)、8mm×22mm(工具基体D−5、D−6)、および16mm×45mm(工具基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−3、D−5〜D−8をそれぞれ製造した。 The diameters manufactured in Example 2 above were 8 mm (for forming the tool bases C-1 to C-3), 13 mm (for forming the tool bases D-5 and C-6), and 26 mm (for the tool bases C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming part is 4 mm x 13 mm (tool base D) by grinding. −1 to D-3), 8 mm × 22 mm (tool base D-5, D-6), and 16 mm × 45 mm (tool base D-7, D-8), and each of 2 with a twist angle of 30 degrees Tool bases (drills) D-1 to D-3 and D-5 to D-8 made of a WC-base cemented carbide having a single blade shape were produced.
ついで、これらの工具基体(ドリル)D−1〜D−3、D−5〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表11に示される目標組成のAl−Cr−Si最高含有点とTi−B最高含有点とが交互に、同じく表11に示される目標間隔で繰り返し存在し、かつ前記Al−Cr−Si最高含有点から前記Ti−B最高含有点、前記Ti−B最高含有点から前記Al−Cr−Si最高含有点へと、Al、Cr、Si、Ti、Bの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表11に示される目標層厚の組成変化(Al,Cr,Si,Ti,B)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆ドリル1〜7をそれぞれ製造した。 Next, honing is applied to the cutting edges of these tool bases (drills) D-1 to D-3, D-5 to D-8, and ultrasonic cleaning is performed in acetone. The Al-Cr-Si having the target composition shown in Table 11 along the layer thickness direction was placed under the same conditions as in Example 1 above, while being placed in a vapor deposition apparatus provided with both the arc ion plating apparatus and the magnetron sputtering apparatus shown. The highest content point and the Ti-B highest content point are alternately present repeatedly at the target intervals shown in Table 11, and from the Al-Cr-Si highest content point, the Ti-B highest content point, the Ti- It has a component concentration distribution structure in which the content ratio of Al, Cr, Si, Ti, B continuously changes from the highest B content point to the highest Al-Cr-Si content point, and is also shown in Table 11 Change in composition of target layer thickness (Al, Cr, Si, Ti , B) by depositing form a hard coating layer consisting of N layers, the present invention coated drill 1-7 as the present invention coated tool was produced, respectively.
また、比較の目的で、上記の工具基体(ドリル)D−1〜D−3、D−5〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示される通常のアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(ドリル)D−1〜D−3、D−5〜D−8の表面に、表12に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Si,Ti,B)N層からなる硬質被覆層を蒸着することにより、従来被覆工具としての従来被覆ドリル1〜7をそれぞれ製造した。 In addition, for the purpose of comparison, honing is performed on the surfaces of the tool bases (drills) D-1 to D-3, D-5 to D-8, and ultrasonic cleaning is performed in acetone. Similarly, the surface of tool bases (drills) D-1 to D-3, D-5 to D-8 is charged in the normal arc ion plating apparatus shown in FIG. 2 under the same conditions as in the first embodiment. Further, by depositing a hard coating layer composed of a compositionally uniform (Al, Cr, Si, Ti, B) N layer having the target composition and target layer thickness shown in Table 12, as a conventional coating tool, Conventionally, the coated drills 1 to 7 were manufactured.
つぎに、上記本発明被覆ドリル1〜7および従来被覆ドリル1〜7のうち、
本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・AC3Aの板材、
切削速度: 150 m/min.、
送り: 0.1 mm/rev、
穴深さ: 10 mm、
の条件でのアルミ合金の湿式高速穴あけ切削加工試験(通常の切削速度は、80m/min.)、
本発明被覆ドリル4、5および従来被覆ドリル4、5については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・A390の板材、
切削速度: 180 m/min.、
送り: 0.2 mm/rev、
穴深さ: 16 mm、
の条件でのアルミ合金の湿式高速穴あけ切削加工試験(通常の切削速度は、90m/min.)、
本発明被覆ドリル6、7および従来被覆ドリル6、7については、
被削材−平面寸法:100mm×250mm、厚さ:50mmのJIS・AC9Bの板材、
切削速度: 200 m/min.、
送り: 0.3 mm/rev、
穴深さ: 35 mm、
の条件でのアルミ合金の湿式高速穴あけ切削加工試験(通常の切削速度は、100m/min.)、
をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11,12にそれぞれ示した。
Then, among the present invention cover the drill 1-7 and the conventional coated drill 1-7,
About this invention coated drill 1-3 and conventional coated drill 1-3,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / AC3A plate material,
Cutting speed: 150 m / min. ,
Feed: 0.1 mm / rev,
Hole depth: 10 mm,
Wet high-speed drilling test of aluminum alloy under the conditions (normal cutting speed is 80 m / min.),
About this invention coated drills 4 and 5 and conventional coated drills 4 and 5 ,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / A390 plate,
Cutting speed: 180 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 16 mm,
Wet high-speed drilling test of aluminum alloy under the conditions (normal cutting speed is 90 m / min.),
About the present invention coated drills 6 and 7 and the conventional coated drills 6 and 7 ,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / AC9B plate,
Cutting speed: 200 m / min. ,
Feed: 0.3 mm / rev,
Hole depth: 35 mm,
Wet high-speed drilling machining test of aluminum alloy under the conditions (normal cutting speed is 100 m / min.),
In each wet high-speed drilling test (using water-soluble cutting oil), the number of drilling processes until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.
この結果得られた本発明被覆工具としての本発明被覆チップ1〜14、本発明被覆エンドミル1〜7、および本発明被覆ドリル1〜7の硬質被覆層を構成する組成変化(Al,Cr,Si,Ti,B)N層のAl−Cr−Si最高含有点およびTi−B最高含有点の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成のAl−Cr−Si最高含有点およびTi−B最高含有点と実質的に同じ組成を示した。また、従来被覆工具としての従来被覆チップ1〜14、従来被覆エンドミル1〜7、および従来被覆ドリル1〜7の硬質被覆層を構成する組成的に均一な(Al,Cr,Si,Ti,B)N層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。 Consequently the present invention the coating as the invention coated tool obtained chips 1-14, the present invention coated end mills 1-7, and the present invention cover the drill 1-7 compositional changes that constitute the hard coating layer of (Al, Cr, Si , Ti, B) The composition of the Al-Cr-Si highest content point and Ti-B highest content point of the N layer was measured by energy dispersive X-ray analysis using a transmission electron microscope. The composition was substantially the same as the Al-Cr-Si highest content point and Ti-B highest content point. Moreover, the compositionally uniform (Al, Cr, Si, Ti, B) constituting the hard coating layers of the conventional coated tips 1 to 14 , the conventional coated end mills 1 to 7 , and the conventional coated drills 1 to 7 as conventional coated tools ) When the composition of the N layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, it showed substantially the same composition as the target composition.
また、上記の硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。 Moreover, when the average layer thickness of said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.
表7、9〜12に示される結果から、本発明被覆工具は、Al−Si合金などのように硬度が高く、しかも、きわめて反応性の高いAl合金の被削材の、高い発熱を伴う高速切削加工に用いた場合にも、硬質被覆層を構成する組成変化(Al,Cr,Si,Ti,B)N層が、全体として、すぐれた高温硬さ、耐酸化性、高温強度、耐熱性、さらに、すぐれた非反応性と潤滑性を備えていることによって、切刃との潤滑性がすぐれた状態で、かつ、硬質被覆層と高反応性被削材との間で反応摩耗が著しく抑制された状態で切削が行われるので、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が組成的に均一な(Al,Cr,Si,Ti,B)N層で構成された従来被覆工具においては、高熱発生を伴う高速切削加工で、硬質被覆層との反応性が高く反応摩耗が促進され、また、潤滑性も不足するために、これが原因で比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 7 and 9 to 12, the coated tool of the present invention has high hardness such as an Al—Si alloy and a highly reactive Al alloy work material with high heat generation. Even when used for cutting, the composition change (Al, Cr, Si, Ti, B) N layer constituting the hard coating layer as a whole has excellent high temperature hardness, oxidation resistance, high temperature strength, and heat resistance. In addition, by having excellent non-reactivity and lubricity, the reactive wear between the hard coating layer and the high-reactive work material is remarkably excellent in the lubricity with the cutting edge. Since cutting is performed in a suppressed state, the hard coating layer has a compositionally uniform (Al, Cr, Si, Ti, B) N layer while exhibiting excellent wear resistance over a long period of time. In conventional coated tools constructed with a high-speed cutting process with high heat generation, Reactive high reactivity wear of the coating layer is accelerated, and also to shortage of lubrication, this is apparent that lead to a relatively short time service life due.
上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、硬度が高く、きわめて反応性の高いAl合金の高い発熱を伴う高速切削加工に用いた場合でも、長期に亘ってすぐれた耐摩耗性を発揮し、すぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated tool of the present invention can be used not only for cutting of general steel and ordinary cast iron, but also for high-speed cutting with high hardness and high heat generation of a highly reactive Al alloy. Because it exhibits excellent wear resistance over a long period of time and exhibits excellent cutting performance, it is sufficiently satisfied with the FA of cutting equipment, labor saving and energy saving of cutting work, and further cost reduction It can respond.
Claims (1)
(a)前記硬質被覆層は1〜8μmの平均層厚を有し、硬質被覆層の層厚方向に沿って、前記Al−Cr−Si合金カソード電極近傍で形成されるAl−Cr−Si最高含有点と前記TiB2焼結材料ターゲット近傍で形成されるTi−B最高含有点とが0.005〜0.1μmの間隔をおいて交互に繰り返し存在し、
(b)前記Al−Cr−Si最高含有点から前記Ti−B最高含有点、前記Ti−B最高含有点から前記Al−Cr−Si最高含有点へと、Al、Cr、Si、Ti、Bの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
(c)前記Al−Cr−Si合金カソード電極近傍で形成される前記Al−Cr−Si最高含有点におけるAl成分、Cr成分、Si成分、Ti成分およびB成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、Q、Rで表したときに、Xは0.40〜0.60、Yは0.30〜0.50、Zは0.005〜0.10、Qは0.01〜0.10、Rは0.01〜0.10で、かつ、X+Y+Z+Q+R=1を満足し、
(d)前記TiB2焼結材料ターゲット近傍で形成される前記Ti−B最高含有点におけるAl成分、Cr成分、Si成分、Ti成分およびB成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、Q、Rで表したときに、Xは0.05〜0.20、Yは0.05〜0.20、Zは0.001〜0.03、Qは0.25〜0.40、Rは0.40〜0.55で、かつ、X+Y+Z+Q+R=1を満足する組成変化(Al,Cr,Si,Ti,B)N層を蒸着形成してなる、
高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具。 A vapor deposition apparatus provided with a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, an Al—Cr—Si alloy as a cathode electrode on one side, and a TiB 2 sintered material as a target on the other side. The tool substrate is placed on a rotary table, and the tool substrate is rotated on the rotary table while arc ion plating on the Al—Cr—Si alloy cathode electrode side and sputtering on the TiB 2 sintered material target side. In a surface-coated cutting tool in which a hard coating layer composed of a nitride layer of Al, Cr, Si, Ti, and B is formed on the surface by vapor deposition,
(A) The hard coating layer has an average layer thickness of 1 to 8 μm, and the highest Al—Cr—Si formed in the vicinity of the Al—Cr—Si alloy cathode electrode along the thickness direction of the hard coating layer. The content point and the Ti-B highest content point formed in the vicinity of the TiB 2 sintered material target are alternately present at intervals of 0.005 to 0.1 μm,
(B) From the highest Al-Cr-Si content point to the highest Ti-B content point, from the highest Ti-B content point to the highest Al-Cr-Si content point, Al, Cr, Si, Ti, B Have a component concentration distribution structure in which the content ratio of each continuously changes,
(C) Al component, Cr component, Si component, Ti component and B component at the highest Al-Cr-Si content point formed in the vicinity of the Al-Cr-Si alloy cathode electrode are the content ratio (however, the atom Ratio) is represented by X, Y, Z, Q, and R, respectively, X is 0.40 to 0.60, Y is 0.30 to 0.50, Z is 0.005 to 0.10, Q is 0.01 to 0.10, R is 0.01 to 0.10, and X + Y + Z + Q + R = 1 is satisfied,
(D) Al component, Cr component, Si component, Ti component, and B component at the Ti-B highest content point formed in the vicinity of the TiB2 sintered material target have their content ratios (however, the atomic ratio), respectively. When represented by X, Y, Z, Q, and R, X is 0.05 to 0.20, Y is 0.05 to 0.20, Z is 0.001 to 0.03, and Q is 0.25. ~ 0.40, R is 0.40 to 0.55, and a composition change (Al, Cr, Si, Ti, B) N layer satisfying X + Y + Z + Q + R = 1 is formed by vapor deposition.
Surface coated cutting tool that exhibits high wear resistance with a hard coating layer in high speed cutting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006288018A JP2008105107A (en) | 2006-10-23 | 2006-10-23 | Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006288018A JP2008105107A (en) | 2006-10-23 | 2006-10-23 | Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008105107A true JP2008105107A (en) | 2008-05-08 |
Family
ID=39438900
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006288018A Withdrawn JP2008105107A (en) | 2006-10-23 | 2006-10-23 | Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008105107A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011080101A (en) * | 2009-10-02 | 2011-04-21 | Kobe Steel Ltd | Hard film, plastic working die, plastic working method, and target for the hard film |
CN112410727A (en) * | 2020-11-11 | 2021-02-26 | 中国科学院合肥物质科学研究院 | Novel WCrSiN gradient coating and preparation method thereof |
CN116288191A (en) * | 2023-03-14 | 2023-06-23 | 纳狮新材料有限公司杭州分公司 | High-temperature antioxidant AlTiN-based nano coating and preparation method thereof |
CN116590662A (en) * | 2023-05-09 | 2023-08-15 | 东莞市普拉提纳米科技有限公司 | Boron-containing high-entropy alloy cutter coating for cutting titanium alloy and preparation process thereof |
-
2006
- 2006-10-23 JP JP2006288018A patent/JP2008105107A/en not_active Withdrawn
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011080101A (en) * | 2009-10-02 | 2011-04-21 | Kobe Steel Ltd | Hard film, plastic working die, plastic working method, and target for the hard film |
US8475941B2 (en) | 2009-10-02 | 2013-07-02 | Kobe Steel, Ltd. | Hard film, plastic working die, plastic working method, and target for hard film |
US8741114B2 (en) | 2009-10-02 | 2014-06-03 | Kobe Steel, Ltd | Hard film, plastic working die, plastic working method, and target for hard film |
CN112410727A (en) * | 2020-11-11 | 2021-02-26 | 中国科学院合肥物质科学研究院 | Novel WCrSiN gradient coating and preparation method thereof |
CN112410727B (en) * | 2020-11-11 | 2023-04-21 | 中国科学院合肥物质科学研究院 | Novel WCrSiN gradient coating and preparation method thereof |
CN116288191A (en) * | 2023-03-14 | 2023-06-23 | 纳狮新材料有限公司杭州分公司 | High-temperature antioxidant AlTiN-based nano coating and preparation method thereof |
CN116590662A (en) * | 2023-05-09 | 2023-08-15 | 东莞市普拉提纳米科技有限公司 | Boron-containing high-entropy alloy cutter coating for cutting titanium alloy and preparation process thereof |
CN116590662B (en) * | 2023-05-09 | 2024-01-23 | 东莞市普拉提纳米科技有限公司 | Boron-containing high-entropy alloy cutter coating for cutting titanium alloy and preparation process thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4367032B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP2009012139A (en) | Surface coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high speed cutting | |
JP2008105107A (en) | Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting | |
JP2008087114A (en) | Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy | |
JP2009028800A (en) | Surface coated cutting tool | |
JP4844880B2 (en) | Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy | |
JP2008173751A (en) | Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting | |
JP5035527B2 (en) | Surface coated cutting tool | |
JP4844884B2 (en) | A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys | |
JP2008173756A (en) | Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy | |
JP2008105106A (en) | Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting | |
JP4844879B2 (en) | Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy | |
JP2008030159A (en) | Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy | |
JP2007307691A (en) | Surface coated cutting tool with hard coated layer exhibiting excellent abrasion resistance in high speed cutting work | |
JP2008173752A (en) | Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed cutting of heat resistant alloy | |
JP2008049454A (en) | Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance | |
JP4697389B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP2008173750A (en) | Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting | |
JP2008049455A (en) | Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance | |
JP2009095916A (en) | Surface-coated cutting tool | |
JP2007307690A (en) | Surface-coated cutting tool having hard coating layer exhibiting superior wear resistance during high speed cutting operation | |
JP2005034925A (en) | Surface coated cemented carbide cutting tool having surface coating layer which is excellent in wear resistance in high speed cutting | |
JP2008173701A (en) | Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting | |
JP2008173754A (en) | Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting | |
JP2008173703A (en) | Surface-coated cutting tool provided with hard coated layer achieving excellent wear resistance in high speed cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20071226 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20100105 |