[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008189972A - Method for operating moving type hearth furnace - Google Patents

Method for operating moving type hearth furnace Download PDF

Info

Publication number
JP2008189972A
JP2008189972A JP2007024215A JP2007024215A JP2008189972A JP 2008189972 A JP2008189972 A JP 2008189972A JP 2007024215 A JP2007024215 A JP 2007024215A JP 2007024215 A JP2007024215 A JP 2007024215A JP 2008189972 A JP2008189972 A JP 2008189972A
Authority
JP
Japan
Prior art keywords
hearth
carbon material
furnace
carbonaceous
mobile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007024215A
Other languages
Japanese (ja)
Other versions
JP4893347B2 (en
Inventor
Hiroyuki Hirohane
弘行 広羽
Natsuo Ishiwatari
夏生 石渡
Yoshiaki Hara
義明 原
Kanji Takeda
幹治 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007024215A priority Critical patent/JP4893347B2/en
Publication of JP2008189972A publication Critical patent/JP2008189972A/en
Application granted granted Critical
Publication of JP4893347B2 publication Critical patent/JP4893347B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Tunnel Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for economically operating a moving type hearth furnace with which reduced iron having the suitable size for industrial use can be collected in high yield and also, a facility is minimized and the frequency of repairing is little. <P>SOLUTION: This method for operating the moving type hearth furnace is performed as the followings. A part or the whole of reduction products and hearth carbonaceous materials generated in the moving type hearth furnace are exhausted and then classified. As to the carbonaceous material undersize, a magnetic-separation is applied only to a part or the whole of these materials under size, and the magnetically separated undersize carbonaceous materials are reused as the hearth carbonaceous material. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炉内を水平方向に移動する炉床上に原料等を積みつけ、この移動炉床が炉内を移動する間に、前記原料を加熱、還元して還元鉄を生成させる移動型炉床炉の操業方法に関する。   The present invention relates to a mobile furnace in which raw materials and the like are stacked on a hearth that moves in the furnace in the horizontal direction, and the raw materials are heated and reduced to produce reduced iron while the mobile hearth moves in the furnace. The present invention relates to a method for operating a floor furnace.

鋼は、一般に、転炉や電気炉で精錬して製造するのが普通である。このうち、電気炉法は、スクラップや還元鉄を、電気エネルギーを使って加熱溶融し、場合によっては、さらに精錬することにより鋼にしている。ただし、近年、スクラップの需給が逼迫していること、およびより高品質な鋼への要求が高くなってきたことから、スクラップに代えて還元鉄を使用する傾向が見られる。こうした要請に応えるべく最近、還元鉄を製造する新しい技術が開発されている。この技術は、水平方向に移動する炉床上に、鉄鉱石などの酸化物鉄含有原料と固体還元材等との混合物を装入堆積させ、上方から輻射伝熱によって前記酸化物を加熱還元する方法、またはさらに、その還元生成物を同じ炉床上で溶融してスラグとメタルとに分離させることにより、還元鉄を回収する方法である(特許文献1、2)。   Steel is generally manufactured by refining in a converter or electric furnace. Among these, in the electric furnace method, scrap and reduced iron are heated and melted using electric energy and, depending on the case, further refined into steel. However, in recent years, there has been a tendency to use reduced iron instead of scrap due to the tight supply and demand of scrap and the demand for higher quality steel. Recently, new technology for producing reduced iron has been developed to meet these demands. In this technique, a mixture of an iron oxide-containing raw material such as iron ore and a solid reducing material is charged and deposited on a horizontal moving hearth, and the oxide is heated and reduced by radiant heat transfer from above. Alternatively, the reduced product is recovered by melting the reduced product on the same hearth and separating it into slag and metal (Patent Documents 1 and 2).

これらの従来技術では、移動型炉床炉を用いているが、この炉は、炉床が炉内を水平に移動するものであって、その移動の過程で原料を加熱する方法のであり、水平に移動する炉床とは、図1に示すような回転移動する形式のものが普通である。この形式の故に該移動型炉床炉は、回転炉床炉とも呼ばれている。   In these prior arts, a mobile hearth furnace is used, which is a method in which the hearth moves horizontally in the furnace, and the raw material is heated in the course of the movement. In general, the hearth moving to the position of FIG. 1 rotates and moves as shown in FIG. Because of this type, the mobile hearth furnace is also called a rotary hearth furnace.

この回転炉床炉は、従来、図1に示すように、原料の供給側から排出側に向かって、予熱帯10a、還元帯10b、溶融帯10cおよび冷却帯10dに区画された環状の炉体10を有し、その炉体内には、環状の炉床11が回転移動するように配設してある。その回転移動する炉床11上には、例えば、鉄鉱石と固体還元材との混合物からなる混合原料2が装入される。その混合原料としては、炭材内装ペレットや粉状の鉄鉱石と固体還元材を混ぜ合わせた混合物が好適に用いられる。なお、この炉床11は、表面に耐火物が施工してあるが、たとえば粒状耐火物を堆積させたものであってもよい。そして、この炉体10の上部には、バーナー13を配設し、このバーナー13を熱源として、炉床11上に堆積させた鉄鉱石等の金属含有酸化物を還元材介在の下に加熱還元して、還元生成物を得る。なお、図1において、符号14は原料を炉床上へ装入する装入装置、符号15は還元物を排出する排出装置である。   Conventionally, as shown in FIG. 1, this rotary hearth furnace is an annular furnace body divided into a pre-tropical zone 10a, a reduction zone 10b, a melting zone 10c, and a cooling zone 10d from the raw material supply side to the discharge side. 10 and an annular hearth 11 is disposed in the furnace body so as to rotate. For example, a mixed raw material 2 made of a mixture of iron ore and a solid reducing material is charged on the rotating and moving hearth 11. As the mixed raw material, a carbonaceous material-containing pellet or a mixture of powdered iron ore and a solid reducing material is preferably used. The hearth 11 has a refractory applied on its surface, but may be formed by depositing a granular refractory, for example. A burner 13 is disposed on the upper portion of the furnace body 10, and a metal-containing oxide such as iron ore deposited on the furnace floor 11 is heated and reduced under the reducing material using the burner 13 as a heat source. Thus, a reduction product is obtained. In FIG. 1, reference numeral 14 denotes a charging device for charging the raw material onto the hearth, and reference numeral 15 denotes a discharging device for discharging the reduced product.

そして、この移動型炉床炉において、還元生成物を溶融してスラグとメタルとに分離させる方法では、炉床を溶融スラグから保護するため、および原料近傍の還元ポテンシャルを高めて還元・浸炭を進める目的で、その炉床上に炉床炭材を敷く方法が採用されている。この方法において、溶融して分離したメタルは、スラグや炉床に敷いた炉床炭材と一緒に排出されるが、メタルとスラグおよび炭材とは、磁選あるいは篩分けにより、主としてメタルのみを分離回収することとしている(特許文献2、3)。   In this mobile hearth furnace, the reduction product is melted and separated into slag and metal in order to protect the hearth from the molten slag and to reduce and carburize by increasing the reduction potential in the vicinity of the raw material. For the purpose of proceeding, a method of laying hearth charcoal on the hearth has been adopted. In this method, the melted and separated metal is discharged together with the slag and hearth charcoal laid on the hearth, but the metal, slag and charcoal are mainly made of only metal by magnetic separation or sieving. It is supposed to be separated and recovered (Patent Documents 2 and 3).

特許文献4には、メタルとスラグから分離した炭材を酸化鉄に混合する還元材や炉床炭材としてリサイクルする方法が示されている。   Patent Document 4 discloses a method of recycling a carbonaceous material separated from metal and slag as a reducing material or hearth carbonaceous material mixed with iron oxide.

特許文献5には、メタルを磁選や静電分離によりメタルからスラグならびに炭材を分離し、炭材のみをリサイクルする方法が開示されている。この方法は、工業的な利用に適さない3mm未満のメタル、スラグが発生することに対し、粒径3mm以上の粒状メタルと粒径3mm未満のメタルおよびスラグが混入した炭材とに分離し、3mm未満のメタルとスラグが混入した炭材をリサイクルして使用する方法である。即ち、この方法では、リサイクルされた炭材が再度、炉内に供給されて加熱処理を受ける際に、この炭材中の小粒径メタルおよびスラグを、酸化鉄原料の還元によって生成するメタルおよびスラグを吸収させることができ、回収率を上げることができる。   Patent Document 5 discloses a method of separating slag and carbonaceous material from metal by magnetic separation or electrostatic separation, and recycling only the carbonaceous material. In this method, metal and slag less than 3 mm, which are not suitable for industrial use, are generated, and separated into granular metal having a particle size of 3 mm or more and carbon material mixed with metal and slag having a particle size of less than 3 mm, This is a method of recycling and using carbonaceous materials mixed with metal and slag of less than 3 mm. That is, in this method, when the recycled carbon material is supplied again into the furnace and subjected to heat treatment, the small particle size metal and slag in the carbon material are produced by reduction of the iron oxide raw material and Slag can be absorbed and the recovery rate can be increased.

しかしながら、この方法において、溶融分離したメタルを、スラグや炉床に積載した炉床炭材と分離するために、その全量を磁選するには、これら排出物を冷却する必要がある。この場合、炭材が湿るのを避けるには空冷方式のクーラーを用いることが好ましいが、設備が大型化して経済的でないだけでなく、磁着側に、工業的な利用が難しい3mm未満のメタルが10mass%程度以上発生するだけでなく、メタル以外の細かなスラグや炭材も混入してしまうという問題がある。また、始めに、3mmで篩って3mm未満のメタルとスラグが混入した炭材をリサイクルする方法では、篩目が細かいため、現実的な篩効率で処理するには篩が大きくなってしまうという問題がある。   However, in this method, in order to separate the melted and separated metal from the hearth carbon material loaded on the slag or the hearth, it is necessary to cool these emissions in order to magnetically select the total amount. In this case, it is preferable to use an air-cooled cooler in order to prevent the carbonaceous material from getting wet. However, not only is the equipment large in size and not economical, but it is less than 3 mm, which is difficult to industrially use on the magnetized side. There is a problem that not only metal is generated in an amount of about 10 mass% or more, but also fine slag and carbon materials other than metal are mixed. In addition, in the method of recycling the carbonaceous material mixed with metal and slag less than 3 mm after sieving at 3 mm, the sieve size is fine, so that the size of the sieve becomes large for processing with realistic sieving efficiency. There's a problem.

なお、前記炉床炭材は、移動型炉床炉内で消費されたり、還元および/または溶融生成物と分離する際に、一部が系外に排出されたりする。この点について、特許文献6は、その減少分を補償するために、新しい炭材を装入する際に、新規の炭材を高温のリサイクル炭材に合流させることにより、新しい炭材が低温のまま炭材積みつけ部に入るのを防止し、かつ炉床炭材に大きな温度ムラができることを防止する方法を開示している。   The hearth carbon material is consumed in a mobile hearth furnace, or part of it is discharged out of the system when it is reduced and / or separated from the molten product. In this regard, Patent Document 6 discloses that when a new carbon material is introduced, the new carbon material is merged with a high-temperature recycled carbon material to compensate for the decrease. It discloses a method for preventing the carbonaceous material stacking portion from entering and preventing the occurrence of large temperature unevenness in the hearth carbonaceous material.

しかしながら、この方法では原料の性状によっては、高温のリサイクル炭材中に20mass%以上ものメタルが濃縮することがあり、このような炭材を200℃以上の高温で搬送すると、搬送部材の磨耗が激しくなり、部材の交換頻度が高くなるという問題が発生する。   However, in this method, depending on the properties of the raw material, 20 mass% or more of the metal may be concentrated in the high-temperature recycled charcoal. If such charcoal is conveyed at a high temperature of 200 ° C. or higher, the conveying member may be worn. There is a problem that the frequency of replacement becomes high due to intensification.

また、還元金属を溶融せずに回収する方法についても、酸化鉄原料が炉床に融着、固化するのを防止する目的で炉床には炉床炭材を装入堆積させている(特許文献7)。
特開平11−310832号公報 特開平11−172312号公報 特開2001−279315号公報 特開平11−106814号公報 特開2003−213312号公報 特開2005−283011号公報 特開2002−302710号公報
As for the method of recovering the reduced metal without melting, the hearth carbon is charged and deposited on the hearth in order to prevent the iron oxide raw material from fusing and solidifying to the hearth (patent) Reference 7).
Japanese Patent Laid-Open No. 11-310832 Japanese Patent Application Laid-Open No. 11-172312 JP 2001-279315 A JP-A-11-106814 Japanese Patent Laid-Open No. 2003-213312 JP 2005-283011 A JP 2002-302710 A

本発明は、特許文献1〜7に記載の従来技術が抱えている上述した問題点を解決することを課題とする。
即ち、本発明の目的は、工業的利用に適したサイズの還元鉄を高収率で回収することができるとともに、設備の小型化と設備の補修頻度が少ない移動型炉床炉の操業方法を提案することにある。
This invention makes it a subject to solve the problem mentioned above which the prior art of patent documents 1-7 has.
That is, an object of the present invention is to provide a method for operating a mobile hearth furnace that can recover reduced iron having a size suitable for industrial use in a high yield, and reduce the size of the equipment and the frequency of repairing the equipment. It is to propose.

発明者らは、上記課題が解決でき、上記目的を実現できる方法について鋭意検討を重ねた結果、以下に述べる要旨構成にかかる操業方法が有効であるとの知見を得て、本発明を開発した。
即ち、本発明は、移動型炉床炉の移動する炉床上に、まず、粉状の炉床炭材を積載して炉床炭材層を形成し、その炉床炭材層の上に酸化鉄含有原料および炭素質還元材を含む混合原料を粉状のままおよび/または塊成化してから装入し、炉床が炉内を移動する間に加熱し、還元して還元生成物を生成させる方法において、前記還元生成物および前記炉床炭材の一部または全部を排出装置で排出した後にこれらを分級し、篩下の炭材についてその一部または全部を磁力選別し、その磁力選別後の篩下炭材を前記炉床炭材として再利用することを特徴とする移動型炉床炉の操業方法が有効である。
The inventors have developed the present invention by obtaining the knowledge that the operation method according to the gist configuration described below is effective as a result of intensive studies on a method that can solve the above problems and achieve the above object. .
That is, the present invention first forms a hearth carbon material layer by loading powder hearth carbon material on the moving hearth of the mobile hearth furnace, and oxidizes the hearth carbon material layer. The mixed raw material containing the iron-containing raw material and the carbonaceous reducing material is charged and / or agglomerated and then charged, heated while the hearth moves through the furnace, and reduced to produce a reduced product. In this method, after the reduction product and part or all of the hearth carbon material are discharged by the discharge device, they are classified, and part or all of the carbon material under the sieve is magnetically selected, and the magnetic force selection is performed. A method for operating a mobile hearth furnace, in which the later sieved carbon material is reused as the hearth carbon material, is effective.

また、本発明は、移動型炉床炉の移動する炉床上に、まず、粉状の炉床炭材を積載して炉床炭材層を形成し、その炉床炭材層の上に酸化鉄含有原料および炭素質還元材を含む混合原料を粉状のままおよび/または塊成化してから装入し、炉床が炉内を移動する間に加熱し、還元して還元生成物を生成させ、その還元生成物を少なくとも一度は溶融し、冷却して固化させる方法において、冷却固化後の前記還元生成物および前記炉床炭材の一部または全部を排出装置で排出した後にこれを分級し、篩下の炭材についての一部または全部を磁力選別し、その磁力選別後の篩下炭材を前記炉床炭材として再利用することを特徴とする移動型炉床炉の操業方法もまた、有効な課題解決手段となることがわかった。   In the present invention, a powder hearth carbon material is first loaded on a moving hearth of a mobile hearth furnace to form a hearth carbon material layer, and an oxidation is performed on the hearth carbon material layer. The mixed raw material containing the iron-containing raw material and the carbonaceous reducing material is charged and / or agglomerated and then charged, heated while the hearth moves through the furnace, and reduced to produce a reduced product. In the method in which the reduced product is melted at least once and cooled and solidified, the reduced product after cooling and solidification and part or all of the hearth carbon material are discharged by a discharge device and then classified. A method for operating a mobile hearth furnace, wherein a part or all of the sieving carbon material is magnetically selected, and the sieving carbon material after the magnetic separation is reused as the hearth carbon material. Was also found to be an effective means for solving problems.

なお、本発明において、篩下炭材のうちの磁力選別を経ない炭材を、磁力選別後の炭材と混合して用いること、再利用のために回収した前記炉床炭材は、全Fe分が20mass%以下となるようにすること、前記炉床炭材の全Fe分は、該炭材の嵩密度を管理することによって調整すること、前記炉床炭材の全Fe分は、篩下炭材のうちの磁力選別を経ない炭材と磁力選別後の炭材との配合調整によって調整すること、移動型炉床炉が回転炉床炉であること、が好ましい解決手段を提供できる。   In the present invention, the carbonaceous material that has not been subjected to magnetic separation among the sieving carbonaceous materials is used by mixing with the magnetic material after magnetic separation, and the hearth carbonaceous material recovered for reuse is all The Fe content is 20 mass% or less, the total Fe content of the hearth carbon material is adjusted by managing the bulk density of the carbon material, and the total Fe content of the hearth carbon material is: Providing a preferable solution by adjusting the blending of the carbonaceous material that does not undergo magnetic sorting and the carbonized material after magnetic sorting, and that the mobile hearth furnace is a rotary hearth furnace it can.

上述したような構成を有する本発明によれば、工業的な利用に適したサイズの還元鉄を高い収率で製造することができるようになる。また、本発明によれば、磁力選別によって、全Fe分の少ない排出物を処理することになるから、設備の補修頻度を少なくできる上、その設備の小型化を図ることができる。従って、本発明によれば、経済性に優れる移動型炉床炉の操業方法を提案することができる。   According to the present invention having the above-described configuration, reduced iron having a size suitable for industrial use can be produced with high yield. In addition, according to the present invention, since the waste with a small amount of Fe is processed by magnetic separation, the frequency of repairing the equipment can be reduced and the equipment can be downsized. Therefore, according to this invention, the operating method of the mobile hearth furnace excellent in economical efficiency can be proposed.

本発明に係る移動型炉床炉の操業方法は、特開平11−172312号公報に見られるように、移動型炉床上に炉床炭材を積み付けて炉床炭材層を形成し、この炉床炭材層上に酸化鉄含有原料と炭素質還元材等とを、必要に応じて塊成化してから装入堆積させ、炉床の移動中に加熱還元して還元生成物を生成させるか、さらには、その還元生成物を溶融し、凝集させた後に、冷却固化して還元鉄を製造するようにした技術に適用される。   The operation method of the mobile hearth furnace according to the present invention forms a hearth carbon material layer by stacking a hearth carbon material on the mobile hearth, as seen in Japanese Patent Application Laid-Open No. 11-172131. The iron oxide-containing raw material and carbonaceous reducing material are agglomerated as needed on the hearth carbonaceous material layer, and then charged and deposited, and heat reduction is performed during the movement of the hearth to produce a reduced product. Further, the present invention is applied to a technique in which the reduced product is melted and agglomerated and then cooled and solidified to produce reduced iron.

本発明方法においては、移動型炉床炉で還元鉄(金属鉄)を製造する際、炉内を移動する炉床を溶融物から保護するため、あるいは酸化鉄原料を含む粉体が融着、固化して炉床上に堆積層を形成するのを防ぐために、原料近傍の還元ポテンシャルを高め、還元、浸炭を促す目的で、炉床上には炉床炭材を積載して炉床炭材層を形成し、その上に混合原料を装入して操業を開始する。   In the method of the present invention, when producing reduced iron (metallic iron) in a mobile hearth furnace, the hearth moving in the furnace is protected from the melt, or the powder containing the iron oxide raw material is fused. In order to prevent the formation of a sedimentary layer on the hearth by solidification, in order to increase the reduction potential in the vicinity of the raw material and promote reduction and carburization, the hearth carbon material layer is placed on the hearth by loading the hearth carbonaceous material. Then, the mixed raw material is charged on top of it and the operation is started.

即ち、本発明は、前記還元生成物および前記炉床炭材の一部または全部を排出装置で排出した後にこれらを分級し、篩下の炭材について、その一部または全部を磁力選別し、その磁力選別によってメタル(Fe)を除去した篩下炭材を前記炉床炭材として回収し、これを再利用する方法である。この方法において、篩下炭材のうちの一部を磁力選別する場合、残りの磁力選別をしない炭材については、全Fe分20mass%以下にするためには、少なくとも磁力選別した炉床炭材と混合して用いることが必要となる。移動型炉床炉のこのような操業を行うと、設備の小型化と、設備の補修頻度を少なくすることができると共に、工業的利用に適したサイズの還元鉄を高い収率で回収することができるようになる他、炉床炭材中の全Fe分を減少させることができる。   That is, the present invention classifies the reduction product and a part or all of the hearth charcoal with a discharge device after classifying them, and a part or all of the charcoal under the sieve is magnetically selected, The sieving carbon material from which metal (Fe) has been removed by the magnetic separation is recovered as the hearth carbon material and reused. In this method, when a part of the sieving carbon material is magnetically sorted, the remaining carbon material that is not magnetically sorted is at least magnetically sorted hearth carbonaceous material so that the total Fe content is 20 mass% or less. It is necessary to mix and use. Such operation of the mobile hearth furnace can reduce the size of the equipment, reduce the frequency of equipment repair, and recover high-yield reduced iron that is suitable for industrial use. In addition, the total Fe content in the hearth carbon material can be reduced.

本発明の上記操業方法において重要なことは、リサイクルさせる回収炭材中に含まれる全Fe分を20mass%以下となるようにすることである。このように、移動炉床炉内で処理されたリサイクル用炉床炭材中の全Fe分を20mass%以下に調整すると、搬送機器の摩耗が大幅に低減できる。ここで、図2は、細かなメタルを含む炭材について、そのメタルの一部を磁選により除去して、メタル量(全Fe量)を変えた炭材を用い、この炭材の全Fe分と、磨耗速度との関係を温度を変えて測定した結果を示している。この図に示すように、炭材中の全Fe分が20mass%を超えると、全温度域で磨耗速度が急に上昇することがわかる。一方で、全Fe分が20mass%以下では、磨耗速度は全Fe分が1mass%の場合と大差がないこともわかった。したがって、回収する炉床炭材の全Fe分は20mass%以下となるように管理することがわかった。   What is important in the above operation method of the present invention is to make the total Fe content contained in the recovered carbon material to be recycled 20 mass% or less. As described above, when the total Fe content in the recycling hearth carbon material treated in the moving hearth furnace is adjusted to 20 mass% or less, the wear of the conveying device can be greatly reduced. Here, FIG. 2 shows a carbon material containing fine metal, using a carbon material in which a part of the metal is removed by magnetic separation and the amount of metal (total Fe amount) is changed. And the relationship between the wear rate and the measurement result at different temperatures. As shown in this figure, it can be seen that when the total Fe content in the carbon material exceeds 20 mass%, the wear rate suddenly increases in the entire temperature range. On the other hand, it was also found that when the total Fe content was 20 mass% or less, the wear rate was not significantly different from that when the total Fe content was 1 mass%. Therefore, it turned out that it manages so that the total Fe content of the hearth charcoal collect | recovered may be 20 mass% or less.

なお、炉床炭材としてリサイクルされる回収炭材の全Fe分を20mass%以下に調整する方法の一つとして、リサイクル炭材の嵩密度を指標として管理する方法を用いることができる。一般に、炭材の嵩密度は、ベース炭材の嵩密度、炭材の粒度分布に影響を受けるので、実際のリサイクル炭材の嵩密度を測定し、相関をとった上で、この嵩密度を管理値として全Fe分を決定する方法が好ましい。   In addition, as one method for adjusting the total Fe content of the recovered carbon material recycled as the hearth carbon material to 20 mass% or less, a method of managing the bulk density of the recycled carbon material as an index can be used. In general, the bulk density of the carbonaceous material is affected by the bulk density of the base carbonaceous material and the particle size distribution of the carbonaceous material. A method of determining the total Fe content as the control value is preferable.

リサイクルすべき炉床炭材の全Fe量を直接分析して管理することは工業的な方法とは言えないし、一方で、リサイクルする炭材の嵩密度と全Fe分とは強い相関関係を示すからである。従って、炭材の嵩密度を測定すれば、該炭材の全Fe量を簡便に推定し、管理することができると考えられる。   It is not an industrial method to directly analyze and manage the total Fe content of hearth carbon material to be recycled. On the other hand, the bulk density of the carbon material to be recycled and the total Fe content show a strong correlation. Because. Therefore, if the bulk density of the carbonaceous material is measured, it is considered that the total Fe amount of the carbonaceous material can be easily estimated and managed.

即ち、図3は、前記磨耗測定時の炭材の嵩密度との関係を示すものである。この図に示すように、炭材中の全Feとこの炭材の嵩密度とは強い相関関係があり、全Fe分=20mass%では、炭材の嵩密度は1.2g/cm相当である。なお、本発明において、炭材の嵩密度は、1リットルの容器上にじょうごをセットしその上でリサイクル炭材を6mmのふるいを通して供給し、容器に山盛りにした後、定規で容器表面をすりきり、1リットルにした上で中身の質量を測定して求めた値である。 That is, FIG. 3 shows the relationship with the bulk density of the carbonaceous material during the wear measurement. As shown in this figure, there is a strong correlation between the total Fe in the carbonaceous material and the bulk density of this carbonaceous material, and when the total Fe content = 20 mass%, the bulk density of the carbonaceous material is equivalent to 1.2 g / cm 3 . is there. In the present invention, the bulk density of the charcoal material is set with a funnel on a 1 liter container, and then the recycled charcoal material is fed through a 6 mm sieve and piled up on the container, and then the container surface is ground with a ruler. It is a value obtained by measuring the mass of the contents after making 1 liter.

ただし、炭材の嵩密度は、ベース炭材の嵩密度、炭材の粒度分布にも影響を受けるので、“嵩密度:1.2”は、絶対的な指標ではなく、実際のリサイクル炭材の嵩密度を測定し相関をとった上で管理値を決めることが好ましい。   However, since the bulk density of the carbon material is also affected by the bulk density of the base carbon material and the particle size distribution of the carbon material, “bulk density: 1.2” is not an absolute index, and is an actual recycled carbon material. It is preferable to determine the control value after measuring the bulk density and taking the correlation.

次に、炉床炭材として再利用するために移動型炉床炉の排出装置から回収されるリサイクル用の炉床炭材用炭材(以下、単に「リサイクル炭材」という)は、これを磁選するには、該リサイクル炭材の温度を500℃以下に下げることが必要となる。このリサイクル炭材の温度を下げる方法としては、例えば、湿った新炭材と細粒側に分離した篩下の高温の回収炭材とを混合して、水分を蒸発させると共に該回収炭材の温度を低下させる方などがある。   Next, the recycled hearth carbon material (hereinafter simply referred to as “recycled carbon material”) recovered from the discharge device of the mobile hearth furnace for reuse as the hearth carbon material is In order to perform magnetic separation, it is necessary to lower the temperature of the recycled carbon material to 500 ° C. or lower. As a method for lowering the temperature of this recycled carbon material, for example, a wet new carbon material and a high temperature recovered carbon material under a sieve separated on the fine grain side are mixed to evaporate water and There are people who lower the temperature.

リサイクル炭材は、その温度を磁選に適した状態にした上で磁選し、メタルの一部もしくは全部を分離除去する。このようにして得られたメタル含有量が少ないリサイクル炭材は、前記炉床上に再装入されて炉床炭材層を形成する。また、このような処理の仕方は、回収した炭材の顕熱を無駄にすることなく、リサイクルすることが可能になることを意味している。なお、分級操作により製品メタル、還元鉄等と炭材とを分別した後、その篩下のリサイクル炭材は湿った新炭材を使って該リサイクル炭材の温度を下げるようにしてもよい。   The recycled carbon material is magnetically separated after its temperature is suitable for magnetic separation, and part or all of the metal is separated and removed. The recycled carbon material having a low metal content thus obtained is recharged onto the hearth to form a hearth carbon material layer. In addition, such a processing method means that the recovered carbon material can be recycled without wasting sensible heat of the recovered carbon material. In addition, after classifying a product metal, reduced iron, etc. and a carbon material by classification operation, the recycled carbon material under the sieve may be made to lower the temperature of the recycled carbon material using a wet new carbon material.

図4は、回収した炭材をリサイクルする場合、そのリサイクル炭材を磁選しない例のフローを示す。即ち、この方法は、移動型炉床炉(以下、単に「還元炉」という)2から排出された、高温の還元生成物および炉排出炭材をスクリーン3で分級し、製品(篩上)4とリサイクルされる炭材、即ち、炉床炭材用炭材とに分離する。ただし、この例の場合、その炭材中には、スクリーン3を通過したメタルやスラグ等をも含有しており、そのまま炭材リサイクルライン5を経て還元炉2に供給される。従って、この方法では、炭材中にメタルを含むため、とくにそのメタルの量が全Fe分で20mass%を超えるようになると、各種設備の磨耗速度が増加し、設備更新周期が短くなってしまう。   FIG. 4 shows a flow of an example in which the recycled carbon material is not magnetically selected when the collected carbon material is recycled. That is, this method classifies the high-temperature reduction product and the furnace discharge carbonaceous material discharged from the mobile hearth furnace (hereinafter, simply referred to as “reduction furnace”) 2 with the screen 3 to obtain a product (on a sieve) 4. And recycled carbon material, that is, hearth carbon material. However, in the case of this example, the carbon material also contains metal, slag, and the like that have passed through the screen 3, and is supplied to the reduction furnace 2 through the carbon material recycling line 5 as it is. Therefore, in this method, since carbon is included in the carbonaceous material, particularly when the amount of the metal exceeds 20 mass% in the total Fe content, the wear rate of various facilities increases and the facility renewal cycle becomes short. .

図5(a)〜(d)は、本発明方法に適合する炭材リサイクルフローを示す。図5(a)の例は、スクリーン3の出口に、リサイクル炭材貯槽6を設置し、回収した炭材が、このリサイクル炭材貯槽6から炭材リサイクルライン5を経て、還元炉2にリサイクルされる場合である。この方法では、リサイクル炭材貯槽6中の炭材の一部が磁選機7に送られ、磁着粉8が除去された残りの炭材は再びリサイクル炭材貯槽6に返される。また、この方法では、リサイクル炭材の温度を磁選するのに適した500℃以下に下げるために、高温の回収炭材を冷却する手段が必要となる。そのため、リサイクル炭材貯槽6には、冷却手段およびリサイクル炭材温度を均一にする機能が付いていることが望ましい。例えば、好ましい冷却手段としては、水スプレーや水冷管、不活性ガス送風等でよく、特別な制限はない。炭材温度の均一化は、撹拌機を使ってもよいが、リサイクル炭材貯槽6からのリサイクル炭材を、磁選機7側あるいは炭材リサイクルライン5側へ搬送するコンベアの動きにより炭材が撹拌されるような構造であってもよい。   Fig.5 (a)-(d) shows the carbonaceous material recycling flow adapted to the method of the present invention. In the example of FIG. 5A, a recycled charcoal storage tank 6 is installed at the exit of the screen 3, and the recovered charcoal is recycled from the recycled charcoal storage tank 6 to the reduction furnace 2 through the charcoal recycling line 5. This is the case. In this method, a part of the carbon material in the recycled carbon material storage tank 6 is sent to the magnetic separator 7, and the remaining carbon material from which the magnetic powder 8 has been removed is returned to the recycled carbon material storage tank 6 again. Further, in this method, a means for cooling the high-temperature recovered carbon is required in order to lower the temperature of the recycled carbon to 500 ° C. or lower suitable for magnetic separation. Therefore, it is desirable that the recycled charcoal storage tank 6 has a function of making the cooling means and the recycled charcoal temperature uniform. For example, as a preferable cooling means, water spray, a water cooling pipe, an inert gas blower, etc. may be sufficient, and there is no special restriction. The carbon material temperature may be equalized by using a stirrer, but the carbon material is moved by the movement of the conveyor that conveys the recycled carbon material from the recycled carbon material storage tank 6 to the magnetic separator 7 side or the carbon material recycling line 5 side. The structure may be agitated.

磁選機7に送られる炭材量は、炭材リサイクルライン5上を搬送されるリサイクル炭材中の全Fe分が20mass%以下になるようにするために、炭材嵩密度の調整に必要な量以上とする。もちろん、リサイクル炭材の全量を磁選しても、炭材中のFeによる搬送部材の磨耗を低減可能であるが、全量を磁選するにはその分大きな磁選機が必要となり設備が大きくなる。炭材リサイクルライン5のリサイクル炭材中の全Fe分が20mass%以下となるように、定期的あるいは不定期的に炭材リサイクルライン5からリサイクル炭材をサンプリングし、嵩密度がFe分20mass%相当値よりも高い時には、磁選量をふやすように管理し、磁選量を必要最小限とすることで、設備を小型化できる。なお、スクリーン3からリサイクル炭材貯槽6へ、リサイクル炭材貯槽6から磁選機7へのリサイクル回収炭材の搬送は、リサイクル回収炭材の自重による落下を利用し設備の磨耗を極力低減することが好ましい。磁選により分離された磁着粉8は、還元鉄、金属鉄の原料として同一プロセス内でリサイクルすれば無駄にならないし、焼結等他のプロセスの原料に再利用してもよい。   The amount of the carbon material sent to the magnetic separator 7 is necessary for adjusting the bulk density of the carbon material so that the total Fe content in the recycled carbon material conveyed on the carbon material recycling line 5 is 20 mass% or less. Over the amount. Of course, even if the total amount of the recycled carbon material is magnetically selected, it is possible to reduce the wear of the conveying member due to Fe in the carbonaceous material. However, in order to magnetically select the total amount, a larger magnetic separator is required and the equipment becomes large. The recycled carbon material is sampled from the carbon material recycling line 5 periodically or irregularly so that the total Fe content in the recycled carbon material of the carbon material recycling line 5 is 20 mass% or less, and the bulk density is 20 mass% of the Fe content. When the value is higher than the equivalent value, it is possible to reduce the size of the facility by managing the magnetic selection amount so that it is easy and minimizing the magnetic selection amount. In addition, transportation of the recycled recovered coal from the screen 3 to the recycled coal storage tank 6 and from the recycled coal storage tank 6 to the magnetic separator 7 uses the fall of the recycled recovered coal to reduce the equipment wear as much as possible. Is preferred. The magnetic powder 8 separated by magnetic separation is not wasted if it is recycled in the same process as a raw material for reduced iron and metallic iron, and may be reused as a raw material for other processes such as sintering.

図1(b)は、本発明の別の実施形態を示すものであり、図1(a)に対して磁選機7からの戻りがリサイクル炭材貯槽6でなく還元炉2になるフローの例である。この例も、磁選機7に送られる炭材量は、炭材リサイクルライン5を搬送されるリサイクル炭材中の全Fe分が20mass%以下になるように、定期的あるいは不定期的に炭材リサイクルライン5からリサイクル炭材をサンプリングし、嵩密度が全Fe分20mass%相当値よりも高い時には、磁選量をふやすように管理する。   FIG.1 (b) shows another embodiment of this invention, and the example of the flow from which the return from the magnetic separator 7 turns into the reduction furnace 2 instead of the recycle carbon | charcoal material storage tank 6 with respect to Fig.1 (a). It is. Also in this example, the amount of carbon material sent to the magnetic separator 7 is regular or irregular so that the total Fe content in the recycled carbon material conveyed through the carbon material recycling line 5 is 20 mass% or less. Recycled carbon material is sampled from the recycle line 5, and when the bulk density is higher than the value equivalent to 20 mass% of the total Fe content, the amount of magnetic separation is managed to be easy.

図1(c)は、本発明のさらに別の実施形態を示すものであり、図1(a)に対して、湿炭材ホッパー1からの新炭材の供給が炭材リサイクルライン5ではなく、リサイクル炭材貯槽6となっている例である。この例では、リサイクル炭材の温度を磁選するに適した500℃以下に下げるために、湿った新炭材からの蒸発潜熱を利用できるので好ましい形態である。リサイクル炭材貯槽6には、リサイクル炭材温度を均一にするための炭材を撹拌する機能が付いていることが望ましいが、リサイクル炭材貯槽6からリサイクル炭材を磁選機7側あるいは炭材リサイクルライン5側へ搬送するコンベアの動きにより炭材が撹拌される構造であってもよい。この場合も、磁選機7に送られる炭材量は、炭材リサイクルライン5を搬送されるリサイクル炭材中の全Fe分が20mass%以下になるように、定期的あるいは不定期的に炭材リサイクルライン5からリサイクル炭材をサンプリングし、嵩密度が全Fe分20mass%相当値よりも高い時には、磁選量をふやすように管理する。   FIG. 1 (c) shows still another embodiment of the present invention. In contrast to FIG. 1 (a), the supply of new carbon material from the wet carbon material hopper 1 is not the carbon material recycling line 5. This is an example of a recycled charcoal storage tank 6. In this example, in order to lower the temperature of the recycled carbon material to 500 ° C. or less suitable for magnetic separation, this is a preferable mode because latent heat of vaporization from the new wet carbon material can be used. It is desirable that the recycled carbon material storage tank 6 has a function of stirring the carbon material for making the temperature of the recycled carbon material uniform, but the recycled carbon material from the recycled carbon material storage tank 6 is supplied to the magnetic separator 7 side or the carbon material. A structure in which the carbonaceous material is agitated by the movement of the conveyor that conveys to the recycle line 5 side may be employed. Also in this case, the amount of carbon material sent to the magnetic separator 7 is regular or irregular so that the total Fe content in the recycled carbon material conveyed through the carbon material recycling line 5 is 20 mass% or less. Recycled carbon material is sampled from the recycle line 5, and when the bulk density is higher than the value equivalent to 20 mass% of the total Fe content, the amount of magnetic separation is managed to be easy.

図(d)は、本発明のさらに別の実施形態を示すものであり、図1(b)に対して、湿炭材ホッパー1からの新炭材の供給が、炭材リサイクルライン5ではなく、リサイクル炭材貯槽6となっている。この場合も、磁選機7に送られる炭材量は、炭材リサイクルライン5を搬送されるリサイクル炭材中の全Fe分が20mass%以下になるように、定期的あるいは不定期的に炭材リサイクルライン5からリサイクル炭材をサンプリングし、嵩密度がFe分20mass%相当値よりも高い時には、磁選量をふやすように管理する。   FIG. (D) shows still another embodiment of the present invention. In contrast to FIG. 1 (b), the supply of new carbon material from the wet carbon material hopper 1 is not the carbon material recycling line 5. Recycled charcoal storage tank 6 is provided. Also in this case, the amount of carbon material sent to the magnetic separator 7 is regular or irregular so that the total Fe content in the recycled carbon material conveyed through the carbon material recycling line 5 is 20 mass% or less. Recycled carbon material is sampled from the recycle line 5, and when the bulk density is higher than the value corresponding to Fe content of 20 mass%, the amount of magnetic separation is managed to be easy.

なお、還元生成物および炉排出炭材の分級に用いる篩(スクリーン)の篩目は、3〜15mm程度が好ましい。その篩目が小さいとリサイクル回収炭材中に混入する製品メタル、還元鉄等の比率は少なくなるが工業的に利用しにくい細かな製品の比率が増加し、製品価値が相対的に低くなる。また、同じ処理量では、篩目が小さい程、必要な篩面積が大きくなる。逆に篩目が大きいと、製品粒度が工業的利用に適したサイズとなり、篩のサイズも小さくてよいが、リサイクル炭材中に混入する製品メタル、還元鉄等の比率が増加し、リサイクル炭材を搬送する設備が磨耗しやすくなる。なお、炉床炭材の粒度は、スクリーンの篩目以下が好ましい。スクリーンの篩目以上の粗い炭材は、製品に混ざって排出されてしまうからである。   In addition, the sieve mesh used for classification of the reduction product and the furnace discharge carbon is preferably about 3 to 15 mm. If the mesh size is small, the ratio of product metal, reduced iron, etc. mixed in the recycled recovered carbon will decrease, but the ratio of fine products that are difficult to use industrially will increase, and the product value will be relatively low. Also, at the same throughput, the smaller the sieve mesh, the larger the required sieve area. Conversely, if the sieve mesh is large, the product particle size becomes a size suitable for industrial use and the sieve size may be small. However, the ratio of product metal, reduced iron, etc. mixed in the recycled coal increases, and the recycled coal Equipment for transporting materials is subject to wear. The particle size of the hearth carbon material is preferably equal to or less than the screen mesh. This is because the coarse carbon material exceeding the screen mesh is mixed with the product and discharged.

以上説明したように、本発明では、必要最小限の設備でよく、また設備の補修頻度を少なくすることができ、そして工業的利用に適したサイズの還元鉄を高い収率で回収することが可能でなる。なお、移動型炉床炉は、リサイクル炭材中にFeが蓄積するタイプであれば、本発明の適用が可能であり、原料を還元して溶融せずに回収する還元炉であっても、また、原料を還元後、溶融しメタル、スラグを回収する還元・溶融炉であっても適用は可能である。しかし、特に好ましい設備は、リサイクル炭材の搬送経路を最も短くできる回転炉床炉の使用が推奨される。   As described above, in the present invention, the minimum necessary equipment can be used, the frequency of repairing the equipment can be reduced, and reduced iron having a size suitable for industrial use can be recovered in a high yield. It becomes possible. Note that the mobile hearth furnace is applicable to the present invention as long as Fe accumulates in the recycled carbon material, and even if it is a reduction furnace that recovers the raw material without melting it, Further, the present invention can be applied to a reduction / melting furnace in which a raw material is reduced and then melted to recover metal and slag. However, it is recommended to use a rotary hearth furnace that can shorten the conveyance path for recycled carbon materials as a particularly preferable facility.

図1に示すような直径が7mの回転炉床炉を用いて還元鉄、金属鉄を生産する操業を行い、回収物を図1(c)の処理フローで処理し、磁選の有無によるリサイクル炭材性状、リサイクル炭材搬送コンベアの磨耗速度について調査した。その結果を表1に示す。なお、スクリーン3の篩目は、6mmで補給用湿新炭材は5mm以下に粒度調整したものを使用した。   The operation of producing reduced iron and metallic iron using a rotary hearth furnace with a diameter of 7m as shown in Fig. 1 is carried out, and the recovered material is treated with the treatment flow of Fig. 1 (c), and recycled charcoal with or without magnetic separation. The material properties and the wear rate of the recycled charcoal conveyor were investigated. The results are shown in Table 1. In addition, the sieve mesh of the screen 3 was 6 mm, and the replenishment wet fresh carbon material having a particle size adjusted to 5 mm or less was used.

実施例1
炉内を移動する炉床上に形成した炉床炭材層上に、粉鉱石と粉石炭と石灰石を74:22:4の比率で混合した混合粉原料を装入し、表面に凹凸をつけた後、最高1500℃の炉内温度で、加熱、還元、溶融処理を行った。回収炭材(篩下)4bとして、0.71t/hの炭材と、0.25t/hの混入Feが発生したが、合計0.96t/hの内0.25t/hを磁選処理したところ0.07t/hの磁着物を除去できた。除去した磁着物は焼結原料として利用した。リサイクル炭材の嵩密度は1.18g/cmで全Feは19mass%であった。炭材リサイクルライン5の温度は450℃で、搬送機器の磨耗速度は低かった(相対値で1:1)。
Example 1
On the hearth carbon material layer formed on the hearth moving inside the furnace, a mixed powder material in which fine ore, fine coal and limestone were mixed in a ratio of 74: 22: 4 was charged, and the surface was made uneven. Thereafter, heating, reduction, and melting treatment were performed at a maximum furnace temperature of 1500 ° C. As the recovered carbon material (under sieve) 4b, 0.71 t / h carbon material and 0.25 t / h mixed Fe were generated, but 0.25 t / h out of the total 0.96 t / h was magnetically selected. However, 0.07 t / h magnetic deposits could be removed. The removed magnetic deposit was used as a sintering raw material. The bulk density of the recycled carbon material was 1.18 g / cm 3 and the total Fe was 19 mass%. The temperature of the carbonaceous material recycling line 5 was 450 ° C., and the wear rate of the conveying equipment was low (1: 1 relative value).

比較例1
実施例1と同条件で、加熱、還元、溶融処理を行った。回収炭材(篩下)4bとして0.73t/hの炭材と0.26t/hの混入Feが発生したが、磁選処理は実施しなかった。その結果、リサイクル炭材の嵩密度は1.30g/cmで全Feは25mass%であった。炭材リサイクルライン5の温度は480℃で、搬送機器の磨耗速度は相対値で3.5と大きかった。
Comparative Example 1
Under the same conditions as in Example 1, heating, reduction, and melting treatment were performed. As the recovered carbon material (under sieve) 4b, 0.73 t / h carbon material and 0.26 t / h mixed Fe were generated, but magnetic separation was not performed. As a result, the recycled carbon material had a bulk density of 1.30 g / cm 3 and a total Fe of 25 mass%. The temperature of the carbonaceous material recycling line 5 was 480 ° C., and the wear rate of the conveying device was a large relative value of 3.5.

実施例2
高炉ダストと焼結返鉱を67:33の比率で混合し、約7ccのブリケットに成型後、炉床上に形成した炉床炭材層上に装入し、最高1500℃の炉内温度で、還元、溶融処理を行った。回収炭材(篩下)4bとして0.38t/hの炭材と0.19t/hの混入Feが発生したが合計0.57t/hの内0.25t/hを磁選処理したところ、0.08t/hの磁着物を除去できた。除去した磁着物は焼結原料として利用した。リサイクル炭材の嵩密度は1.18g/cmで、全Feは19mass%であった。炭材リサイクルライン5の温度は440℃で、搬送機器の磨耗速度は低かった(相対値で1.0)。
Example 2
Blast furnace dust and sintered ore are mixed at a ratio of 67:33, molded into a briquette of about 7 cc, charged on a hearth carbon material layer formed on the hearth, and at a maximum furnace temperature of 1500 ° C, Reduction and melting were performed. As the recovered carbon material (under sieve) 4b, 0.38 t / h carbon material and 0.19 t / h mixed Fe were generated, but when 0.25 t / h of the total 0.57 t / h was subjected to magnetic separation, 0 A magnetic deposit of 0.08 t / h could be removed. The removed magnetic deposit was used as a sintering raw material. The bulk density of the recycled carbonaceous material in 1.18 g / cm 3, the total Fe was 19mass%. The temperature of the carbonaceous material recycling line 5 was 440 ° C., and the wear rate of the conveying equipment was low (relative value 1.0).

実施例3
磁選して除去した磁着物をブリケットに混ぜて装入したこと以外は、実施例2と同条件で、加熱、還元、溶融処理を行った。回収炭材(篩下)4bとして、0.38t/hの炭材と0.19t/hの混入Feが発生したが、合計0.57t/hの内0.25t/hを磁選処理したところ、0.08t/hの磁着物を除去できた。リサイクル炭材の嵩密度は1.19g/cmで、全Feは19mass%であった。炭材リサイクルライン5の温度は440℃で、搬送機器の磨耗速度は低かった(相対値で1:1)。回収したメタルは実施例2に比べて0.08t/h増加した。磁選で除去後にブリケットに混ぜて再装入した磁着物が、篩上サイズのメタルとして回収できた。
Example 3
Heating, reduction, and melting were performed under the same conditions as in Example 2 except that the magnetic deposits removed by magnetic separation were mixed and charged in the briquette. As the recovered carbon material (under sieve) 4b, 0.38 t / h carbon material and 0.19 t / h mixed Fe were generated, but 0.25 t / h of the total 0.57 t / h was magnetically selected. , 0.08 t / h magnetic deposits could be removed. The bulk density of the recycled carbon material was 1.19 g / cm 3 and the total Fe was 19 mass%. The temperature of the carbonaceous material recycling line 5 was 440 ° C., and the wear rate of the conveying equipment was low (1: 1 relative value). The recovered metal increased by 0.08 t / h compared to Example 2. After removal by magnetic separation, the magnetic deposits mixed with briquettes and re-inserted were recovered as metal on the sieve size.

実施例4
高炉ダストと転炉ダストを40:60の比率で混合し、約7cmのブリケットに成型後、炉床上に形成した炉床炭材層上に装入し、最高1350℃の炉内温度で、還元処理を行った。回収炭材(篩下)4bとして、0.30t/hの炭材と0.12t/hの混入Feが発生したが合計0.42t/hの内0.15t/hを磁選処理したところ、0.04t/hの磁着物を除去できた。除去した磁着物は焼結原料として利用した。リサイクル炭材の嵩密度は1.14g/cmで全Feは17mass%であった。炭材リサイクルライン5の温度は460℃で、搬送機器の磨耗速度は低かった(相対値で1:0)。
Example 4
Blast furnace dust and converter dust are mixed at a ratio of 40:60, molded into a briquette of about 7 cm 3 , charged on the hearth carbon material layer formed on the hearth, and at a maximum furnace temperature of 1350 ° C, Reduction treatment was performed. As the recovered carbon material (under sieve) 4b, 0.30 t / h carbon material and 0.12 t / h mixed Fe were generated, but 0.15 t / h out of the total 0.42 t / h was magnetically separated. A magnetic deposit of 0.04 t / h could be removed. The removed magnetic deposit was used as a sintering raw material. The bulk density of the recycled carbon material was 1.14 g / cm 3 and the total Fe was 17 mass%. The temperature of the carbonaceous material recycling line 5 was 460 ° C., and the wear rate of the conveying equipment was low (1: 0 relative value).

実施例5
磁選して除去した磁着物を混合粉に混ぜてブリケット成型したこと以外は、実施例4と同条件で、加熱、還元処理を行った。回収炭材(篩下)4bとして、0.31t/hの炭材と0.12t/hの混入Feが発生したが、合計0.43t/hの内0.15t/hを磁選処理したところ、0.04t/hの磁着物を除去できた。リサイクル炭材の嵩密度は1.15g/cmで全Feは17mass%であった。炭材リサイクルライン5の温度は460℃で、搬送機器の磨耗速度は低かった(相対値で1:1)。回収した還元鉄は、実施例4に比べて0.04t/h増加した。磁選で除去後にブリケット原料粉に混ぜて再装入した磁着物が篩上サイズの還元鉄として回収できた。
Example 5
Heating and reduction treatment were performed under the same conditions as in Example 4 except that the magnetic deposits removed by magnetic separation were mixed with the mixed powder and subjected to briquette molding. As the recovered carbon material (under sieve) 4b, 0.31 t / h carbon material and 0.12 t / h mixed Fe were generated, but 0.15 t / h of the total 0.43 t / h was magnetically selected. , 0.04 t / h magnetic deposits could be removed. The bulk density of the recycled carbon material was 1.15 g / cm 3 and the total Fe was 17 mass%. The temperature of the carbonaceous material recycling line 5 was 460 ° C., and the wear rate of the conveying equipment was low (1: 1 relative value). The recovered reduced iron increased by 0.04 t / h compared to Example 4. After the removal by magnetic separation, the magnetic deposit mixed with the briquette powder and recharged was recovered as reduced-size iron on the sieve.

Figure 2008189972
Figure 2008189972

本発明の技術は、回転炉床炉のような移動型の炉床炉の操業技術として有効である。   The technique of the present invention is effective as an operation technique for a mobile hearth furnace such as a rotary hearth furnace.

移動型炉床炉を示す略線図である。It is a basic diagram which shows a mobile hearth furnace. 炭材中の全Fe量と磨耗速度の関係を示すグラフである。It is a graph which shows the relationship between the total Fe amount in a carbonaceous material, and a wear rate. 炭材中の全Fe量とリサイクル炭材の嵩密度の関係を示すグラフである。It is a graph which shows the relationship between the total Fe amount in a carbon material, and the bulk density of a recycled carbon material. 回収炭材を磁選しない従来方法の例を示す略線図である。It is a basic diagram which shows the example of the conventional method which does not carry out magnetic selection of the collection | recovery carbonaceous materials. 回収炭材を磁選する本発明方法の例を示す略線図である。It is a basic diagram which shows the example of the method of this invention which carries out magnetic selection of the collection | recovery carbonaceous materials.

符号の説明Explanation of symbols

1 浸炭材ホッパー
2 還元炉
3 スクリーン
4a 製品(篩上)
4b 回収炭材(篩下)
5 炭材リサイクルライン
6 リサイクル炭材貯槽
7 磁選機
8 磁着粉
9 非磁着炭材リサイクルライン
10 炉体
10a 予熱帯
10b 還元帯
10c 溶融帯
10d 冷却帯
11 炉床
13 バーナー
14 装入装置
15 排出装置
1 Carburized material hopper 2 Reduction furnace 3 Screen 4a Product (on sieve)
4b Collected charcoal (under sieve)
5 Carbon material recycling line 6 Recycled carbon material storage tank 7 Magnetic separator 8 Magnetic powder 9 Non-magnetic carbon material recycling line 10 Furnace 10a Pre-tropical 10b Reduction zone 10c Melting zone 10d Cooling zone 11 Hearth 13 Burner 14 Charging device 15 Discharge device

Claims (7)

移動型炉床炉の移動する炉床上に、まず、粉状の炉床炭材を積載して炉床炭材層を形成し、その炉床炭材層の上に酸化鉄含有原料および炭素質還元材を含む混合原料を粉状のままおよび/または塊成化してから装入し、炉床が炉内を移動する間に加熱し、還元して還元生成物を生成させる方法において、
前記還元生成物および前記炉床炭材の一部または全部を排出装置で排出した後にこれらを分級し、篩下の炭材についてその一部または全部を磁力選別し、その磁力選別後の篩下炭材を前記炉床炭材として再利用することを特徴とする移動型炉床炉の操業方法。
First, powder hearth carbon material is loaded on the moving hearth of the mobile hearth furnace to form a hearth carbon material layer, and iron oxide-containing raw material and carbonaceous matter are formed on the hearth carbon material layer. In a method in which a mixed raw material containing a reducing material is charged and / or agglomerated and then charged, heated while the hearth moves in the furnace, and reduced to produce a reduced product.
After the reduction product and part or all of the hearth carbon material are discharged by a discharge device, they are classified, and part or all of the carbon material under the sieve is magnetically sorted, and the sieved after the magnetic separation A method for operating a mobile hearth furnace, wherein carbonaceous material is reused as the hearth carbonaceous material.
移動型炉床炉の移動する炉床上に、まず、粉状の炉床炭材を積載して炉床炭材層を形成し、その炉床炭材層の上に酸化鉄含有原料および炭素質還元材を含む混合原料を粉状のままおよび/または塊成化してから装入し、炉床が炉内を移動する間に加熱し、還元して還元生成物を生成させ、その還元生成物を少なくとも一度は溶融させてから、冷却して固化させる方法において、
冷却固化後の前記還元生成物および前記炉床炭材の一部または全部を排出装置で排出した後にこれを分級し、篩下の炭材についての一部または全部を磁力選別し、その磁力選別後の篩下炭材を前記炉床炭材として再利用することを特徴とする移動型炉床炉の操業方法。
First, powder hearth carbon material is loaded on the moving hearth of the mobile hearth furnace to form a hearth carbon material layer, and iron oxide-containing raw material and carbonaceous matter are formed on the hearth carbon material layer. The mixed raw material containing the reducing material is charged and / or agglomerated and then charged, heated while the hearth moves in the furnace, reduced to produce a reduced product, and the reduced product In a method of melting at least once and then cooling and solidifying,
The reduced product after cooling and solidification and part or all of the hearth carbon material are discharged by a discharge device, and then classified, and part or all of the carbon material under the sieve is magnetically selected, and the magnetic force is selected. A method for operating a movable hearth furnace, wherein a later sieved carbon material is reused as the hearth carbon material.
篩下炭材のうちの磁力選別を経ない炭材を、磁力選別後の炭材と混合して用いることを特徴とする請求項1または2に記載の移動型炉床炉の操業方法。 The operation method of the mobile hearth furnace according to claim 1 or 2, wherein a carbon material not subjected to magnetic sorting among the sieved carbon materials is used by mixing with a carbon material after magnetic separation. 再利用のために回収した前記炉床炭材は、全Fe分が20mass%以下となるようにすることを特徴とする請求項1〜3のいずれか1項に記載の移動型炉床炉の操業方法。 4. The mobile hearth furnace according to claim 1, wherein the hearth carbon material collected for reuse has a total Fe content of 20 mass% or less. 5. Operation method. 前記炉床炭材の全Fe分は、該炭材の嵩密度を管理することによって調整することを特徴とする請求項4に記載の移動型炉床炉の操業方法。 The operation method of the mobile hearth furnace according to claim 4, wherein the total Fe content of the hearth carbonaceous material is adjusted by managing the bulk density of the carbonaceous material. 前記炉床炭材の全Fe分は、篩下炭材のうちの磁力選別を経ない炭材と磁力選別後の炭材との配合調整によって調整することを特徴とする請求項4または5に記載の移動型炉床炉の操業方法。 The total Fe content of the hearth carbonaceous material is adjusted by blending adjustment of a carbonaceous material that has not undergone magnetic sorting and a carbonaceous material that has been subjected to magnetic sorting among the sieving carbonaceous materials. The operation method of the mobile hearth furnace described. 移動型炉床炉が回転炉床炉であることを特徴とする請求項1〜6のいずれか1項に記載の移動型炉床炉の操業方法。 The method for operating a mobile hearth furnace according to any one of claims 1 to 6, wherein the mobile hearth furnace is a rotary hearth furnace.
JP2007024215A 2007-02-02 2007-02-02 Operation method of mobile hearth furnace Expired - Fee Related JP4893347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007024215A JP4893347B2 (en) 2007-02-02 2007-02-02 Operation method of mobile hearth furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007024215A JP4893347B2 (en) 2007-02-02 2007-02-02 Operation method of mobile hearth furnace

Publications (2)

Publication Number Publication Date
JP2008189972A true JP2008189972A (en) 2008-08-21
JP4893347B2 JP4893347B2 (en) 2012-03-07

Family

ID=39750341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007024215A Expired - Fee Related JP4893347B2 (en) 2007-02-02 2007-02-02 Operation method of mobile hearth furnace

Country Status (1)

Country Link
JP (1) JP4893347B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020656A1 (en) * 2010-08-09 2012-02-16 株式会社神戸製鋼所 Device for production of granular metal iron, and process for production of granular metal iron
KR101439243B1 (en) * 2013-07-25 2014-09-11 주식회사 포스코 Apparatus for sintering iron-ore

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129807A (en) * 1997-07-10 1999-02-02 Sumitomo Metal Ind Ltd Production of molten iron
JPH1161216A (en) * 1997-08-28 1999-03-05 Kobe Steel Ltd Production of reduced iron
JP2002047507A (en) * 2000-07-31 2002-02-15 Kobe Steel Ltd Method for producing molten iron and apparatus for producing molten iron
JP2002363624A (en) * 2001-06-13 2002-12-18 Mitsubishi Heavy Ind Ltd Reduced iron manufacturing method and manufacturing facility
JP2003213312A (en) * 2001-11-12 2003-07-30 Kobe Steel Ltd Method for manufacturing metallic iron
JP2004204293A (en) * 2002-12-25 2004-07-22 Jfe Steel Kk Method for manufacturing reduced metal from metal-containing substance
JP2005283011A (en) * 2004-03-30 2005-10-13 Jfe Steel Kk Rotary hearth furnace, and operation method for rotary hearth furnace

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1129807A (en) * 1997-07-10 1999-02-02 Sumitomo Metal Ind Ltd Production of molten iron
JPH1161216A (en) * 1997-08-28 1999-03-05 Kobe Steel Ltd Production of reduced iron
JP2002047507A (en) * 2000-07-31 2002-02-15 Kobe Steel Ltd Method for producing molten iron and apparatus for producing molten iron
JP2002363624A (en) * 2001-06-13 2002-12-18 Mitsubishi Heavy Ind Ltd Reduced iron manufacturing method and manufacturing facility
JP2003213312A (en) * 2001-11-12 2003-07-30 Kobe Steel Ltd Method for manufacturing metallic iron
JP2004204293A (en) * 2002-12-25 2004-07-22 Jfe Steel Kk Method for manufacturing reduced metal from metal-containing substance
JP2005283011A (en) * 2004-03-30 2005-10-13 Jfe Steel Kk Rotary hearth furnace, and operation method for rotary hearth furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020656A1 (en) * 2010-08-09 2012-02-16 株式会社神戸製鋼所 Device for production of granular metal iron, and process for production of granular metal iron
JP2012036466A (en) * 2010-08-09 2012-02-23 Kobe Steel Ltd Device for producing granular metal iron, and process for producing granular metal iron
CN103025895A (en) * 2010-08-09 2013-04-03 株式会社神户制钢所 Device for production of granular metal iron, and process for production of granular metal iron
KR101439243B1 (en) * 2013-07-25 2014-09-11 주식회사 포스코 Apparatus for sintering iron-ore

Also Published As

Publication number Publication date
JP4893347B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
WO2020059630A1 (en) Method for smelting oxide ore
WO2012002338A1 (en) Process for producing molten steel using particulate metallic iron
KR101410064B1 (en) Process and plant for producing hot metal
JP2010007182A (en) Method for producing reduced iron
JP2009507134A (en) Ore reduction method and titanium oxide and iron metallization products
KR101493965B1 (en) Process for recovering iron and zinc from iron and zinc-bearing waste
JP5334240B2 (en) Method for producing reduced iron agglomerates for steelmaking
KR101234388B1 (en) Process for production of direct-reduced iron
JP6236163B2 (en) Production method of manganese-containing alloy iron
JP2007291452A (en) Method for producing molten iron, and apparatus for producing molten iron
JP4256645B2 (en) Metal iron manufacturing method
JP4893347B2 (en) Operation method of mobile hearth furnace
US9534275B2 (en) Methods and systems for reducing chromium containing raw material
JP4572435B2 (en) Method for producing reduced iron from iron-containing material
US6629839B2 (en) Method and apparatus for charging raw and carbonaceous materials into a moving hearth furnace
JP5532823B2 (en) Method for recovering valuable metals from waste batteries
JP4341138B2 (en) Method for producing reduced metal from metal-containing material
JP3835160B2 (en) Method for producing sintered ore
JP4779675B2 (en) Method for producing reduced metal
JPH09310128A (en) Treatment of sludge containing oil
JP2002277168A (en) Method and apparatus for discharging reaction product from moving hearth furnace
JP2010007181A (en) Method for producing reduced iron
Basson et al. Handbook of Ferroalloys: Chapter 9. High Carbon Ferrochrome Technology
JP2003239007A (en) Method for manufacturing reduced metal from metal- containing substance
JP2007231419A (en) Method for producing reduced metal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees