[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008189032A - Flying boat and elevator - Google Patents

Flying boat and elevator Download PDF

Info

Publication number
JP2008189032A
JP2008189032A JP2007022919A JP2007022919A JP2008189032A JP 2008189032 A JP2008189032 A JP 2008189032A JP 2007022919 A JP2007022919 A JP 2007022919A JP 2007022919 A JP2007022919 A JP 2007022919A JP 2008189032 A JP2008189032 A JP 2008189032A
Authority
JP
Japan
Prior art keywords
fuselage
wing
horizontal
horizontal tail
tail
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007022919A
Other languages
Japanese (ja)
Other versions
JP5160098B2 (en
Inventor
Masahiko Suzuki
政彦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FJC KK
Original Assignee
FJC KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FJC KK filed Critical FJC KK
Priority to JP2007022919A priority Critical patent/JP5160098B2/en
Publication of JP2008189032A publication Critical patent/JP2008189032A/en
Application granted granted Critical
Publication of JP5160098B2 publication Critical patent/JP5160098B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Toys (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flying boat which can fly by running a short-distance from the water and land, glide and hover through the air at low speed, and gradually descend even if an engine stops. <P>SOLUTION: The flying boat 1 is composed of a main body 2 having a propeller 8, side wings 3, a side body 4, and a horizontal tail 5. In the flying boat 1, the horizontal tail 5 disposed at the rear part is formed in a reverse wing cross sectional shape where the tip end edge part on the lower surface is largely swollen than the upper surface of the horizontal center line L and composed so that the normal pressure is generated on the upper surface of the horizontal tail 5 and a negative air flow is generated on the lower surface during advancing. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、飛行艇に係り、特に水陸上から短距離走行で飛翔し、ホバリングもすることのできる飛行艇並びに昇降舵に関する。   The present invention relates to a flying boat, and more particularly to a flying boat and an elevator that can fly over a short distance from water and can hover.

従来、飛行機はベルヌイの定理に叶った形態に構成され、主翼部に重心が設定されている。飛行機の主翼の縦断側面は、下面は平坦で前上がりの取付角度に設定され、翼上面は前縁部が膨出した、いわゆる翼形に設定されている。当然なことに、水平尾翼の下面を膨出させることはない。
この形状に、ベルヌイの定理をあてはめて、飛行中に翼の下面を通過する風速よりも上面を通過する風速が早くなり、その結果、翼上面空気密度が薄くなり、負圧が生じて、機体が気圧の差により持ち上げられるため、飛行できると説かれている。
しかし前記の説明では、飛行機の宙返りにおいては、機体は下方へ沈降することになり、理論に矛盾が生じることになる。また旋回時において機体が横に傾斜すると、本来なら斜め上に上昇する筈なのに、実際は機体全体が斜下に横滑り降下している。
その結果、最近はこの飛行理論は疑問視されて、飛行理論の見直しが迫られている。
一方、翼は、前後長さよりも横長が長いアスペクト比の大きな主翼が使用され、アスペクト比の小さなものは飛行困難とされている。
また機体側部や前部が大きく太いものは、飛行時の空気抵抗が大きく、飛行困難とされている。更に飛行機は高速で飛行していなければ、翼に揚力が生じないため、ホバリングすることは出来ない。
Conventionally, an airplane is configured in accordance with Bernoulli's theorem, and the center of gravity is set on the main wing. The longitudinal side surface of the main wing of the airplane has a so-called airfoil shape in which the lower surface is flat and set to a front-upward mounting angle, and the upper surface of the wing is bulged at the front edge. Naturally, the lower surface of the horizontal tail is not bulged.
By applying Bernoulli's theorem to this shape, the wind speed passing through the upper surface is faster than the wind speed passing through the lower surface of the wing during flight, resulting in a lower air density on the wing upper surface and negative pressure, Is said to be able to fly because it is lifted by the pressure difference.
However, in the above explanation, when the airplane is flipped over, the aircraft will sink downward, resulting in a contradiction in theory. In addition, if the aircraft tilts sideways during turning, the entire aircraft actually skids down diagonally, although it would normally rise upward.
As a result, the flight theory has recently been questioned and the flight theory has to be reviewed.
On the other hand, the main wing with a large aspect ratio whose width is longer than the longitudinal length is used for the wing, and those with a small aspect ratio are considered to be difficult to fly.
In addition, large and thick aircraft side parts and front parts have high air resistance during flight, making it difficult to fly. In addition, if the airplane is not flying at high speed, there is no lift on the wings, so it cannot hover.

従来の飛行機は、アスベクト比の大きな主翼のために、離着陸する時に、速度をあげるための滑走路を長く必要とする。
本発明は、水陸上から短距離走行で飛行し、空中で低速滑空並びにホバリングもでき、エンジンが停止しても、緩やかに降下することのできる飛行艇を、提供することを目的としている。
Conventional airplanes require a long runway to increase speed when taking off and landing because of the main wing having a high aspect ratio.
An object of the present invention is to provide a flying boat that flies over a short distance from water and land, can perform low-speed glide and hover in the air, and can descend slowly even when the engine is stopped.

この発明は、アスベクト比の大きな主翼をもたず、機体の下面全体で翼の作用をさせ、水平尾翼の下面を逆翼形に膨出させて、側翼の上面を通過する高速気流を水平尾翼の上面で常圧化させ、側翼の下面に沿って通過する気流を、水平尾翼の下面で負圧高速化させて通過させ、前後における作用反作用で、水平安定を維持した飛行をさせることに特長がある。発明の具体的な内容は次の通りである。   The present invention does not have a main wing having a large aspect ratio, causes the wing to act on the entire lower surface of the fuselage, bulges the lower surface of the horizontal tail into an inverted wing shape, and allows high-speed airflow passing through the upper surface of the side wing to It is characterized by normal pressure on the upper surface of the wing and passing the airflow passing along the lower surface of the side wing at a negative pressure speed on the lower surface of the horizontal wing, allowing the flight to maintain horizontal stability by action before and after There is. The specific contents of the invention are as follows.

(1) 推進器を具備した主胴体、側翼、側胴体、水平尾翼とで構成された飛行艇において、後部に配設された水平尾翼が、縦断側面において、水平心線Lの上部よりも下面は先端縁部が大きく膨出された逆翼断面形に形成され、進行中に水平尾翼の上面に常圧、下面に負圧気流を生起させるように構成された、飛行艇。     (1) In a flying boat composed of a main fuselage, a side wing, a side fuselage, and a horizontal tail equipped with a propulsion device, the horizontal tail arranged at the rear is lower than the upper part of the horizontal core L on the longitudinal side surface. Is a flying craft that is formed in a reverse wing cross-sectional shape with a large bulging tip, and generates a normal pressure air flow on the upper surface of the horizontal tail and a negative pressure air flow on the lower surface during travel.

(2) 前記側翼は、側面で上面が翼断面形に膨出形成され、飛行時において、側翼の上面を通過する負圧高速気流が、直後の風抜孔を超えて水平尾翼の上面で常圧気流となり、側翼下面に沿って通過する気流は、風抜孔を超えて水平尾翼の下面で負圧となって高速で後方へ通過するように構成された、前記(1)1に記載された飛行艇。
(2) The side wing is formed with a flared cross-sectional shape on the side surface, and the negative high-speed airflow passing through the top surface of the side wing is normal pressure on the top surface of the horizontal tail after passing the draft hole immediately after flight. The flight described in (1) 1 is configured such that the airflow passing along the lower surface of the side wing passes through the air vent hole and becomes negative pressure on the lower surface of the horizontal tail and passes backward at high speed. Boat.
Ru

(3) 前記主胴体、側翼、側胴体、水平尾翼の、側面におけるそれぞれの水平心線Lが、同一の水準位置に設定されている、前記(1)(2)のいずれかに記載された飛行艇。   (3) The horizontal fuselage L on each side of the main fuselage, side wing, side fuselage, and horizontal tail is set at the same level position, and is described in any one of (1) and (2) Flying boat.

(4) 前記主胴体、側翼、側胴体の、側面における、それぞれの水平心線Lが、同一の水準位置に設定され、前記水平尾翼の水平心線Lは、側胴体のそれよりも少し上位に設定されている、前記(1)(2)のいずれかに記載された飛行艇。   (4) The horizontal cores L on the side surfaces of the main fuselage, side wings, and side fuselage are set at the same level position, and the horizontal core L of the horizontal tail is slightly higher than that of the side fuselage. The flying boat described in any one of (1) and (2) above.

(5) 前記水平尾翼の上方位置に、垂直尾翼を介して副水平尾翼が配設され、該副水平尾翼の上面は平坦で、下面は逆翼断面形に膨出されている、前記(1)〜(4)のいずれかに記載された飛行艇。   (5) A secondary horizontal tail is disposed above the horizontal tail via a vertical tail, the top surface of the secondary horizontal tail is flat, and the bottom surface is swollen in a reverse blade cross section. The flying boat described in any one of) to (4).

(6) 前記主胴体は、平面で略魚形に形成され、側翼よりも前方へ前部が突出され、側において、水平心線Lよりも上部が大きく膨出され、下面は側翼の下面と略同じに設定されている、前記(1)〜(5)のいずれかに記載された飛行体。   (6) The main body is formed in a substantially fish shape on a plane, the front part projects forward from the side wings, the upper part bulges larger than the horizontal core L on the side, and the lower surface is the lower surface of the side wings. The flying object according to any one of (1) to (5), which is set to be substantially the same.

(7) 前記側胴体は、水平心線Lより下部が大きく下方へ膨出され、後下部が水平心線L方へ尻上りに形成され、該後部が側翼の後端部より後方へ長く突出され、該各側胴体の後部外側部に、水平尾翼と並ぶ側尾翼が、水平心線Lを側胴体と同一水準位置にして配設されている、前記(1)〜(6)のいずれかに記載された飛行艇。   (7) The lower side of the side fuselage is greatly bulged downward from the horizontal core L, the rear lower part is formed to rise upward toward the horizontal core L, and the rear part protrudes longer rearward than the rear end of the side wing. Any one of the above (1) to (6), wherein a side tail that is aligned with the horizontal tail is disposed on the rear outer portion of each side fuselage with the horizontal core line L at the same level as the side fuselage. The flying boat described in.

(8) 前記水平尾翼と側尾翼は、それぞれ上面を平坦とし、下面は、前縁部が膨出した逆翼断面形に形成されている、前記(1)〜(7)のいずれかに記載された飛行艇。   (8) The horizontal tail and the side tail, respectively, the upper surface is flat, and the lower surface is formed in a reverse blade cross-sectional shape with a leading edge bulging, according to any one of (1) to (7) Flying boat.

(9) 前記副水平尾翼は、左右両側端部が、上方または下方に傾斜された傾斜部が形成されている、前記(8)に記載された飛行艇。   (9) The flying boat according to (8), wherein the left and right side end portions of the sub horizontal tail are inclined upward or downward.

(10) 前記推進器は、プロペラ式とし、主胴体の後上部に、プロペラが側翼後部の風抜孔に臨むように配設された、前記(1)〜(9)のいずれかに記載された飛行艇。   (10) The propeller is a propeller type, and the propeller is disposed at the rear upper part of the main fuselage so that the propeller faces the air vent hole at the rear part of the side wing, as described in any one of (1) to (9). Flying boat.

(11) 前記機体には、上部に開閉蓋を有するパラシュート格納部が形成され、内部にパラシュートが、空中で前記開閉蓋を開蓋して投出されたときに気流で開くように、格納されている、前記(1)〜(10)のいずれかに記載された飛行艇。   (11) The airframe is formed with a parachute storage portion having an opening / closing lid on the upper part, and the parachute is stored so that the parachute opens with airflow when the opening / closing lid is opened and thrown out in the air. The flying boat described in any one of (1) to (10).

(12) 航空機に用いる昇降舵であって、縦断側面が上面は平坦で、下面は前縁部を下に膨出させた、逆翼形に形成されている昇降舵。   (12) An elevator used in an aircraft, wherein the vertical side surface is flat on the upper surface and the lower surface is formed in an inverted wing shape with the front edge bulging downward.

本発明によると、次のような効果がある。   The present invention has the following effects.

(1) 請求項1に記載された発明の飛行艇は、主胴体、側翼、側胴体、水平尾翼で構成されて、水平尾翼が、従来の飛行機の水平尾翼と異なって、水平心線より上面は平坦であるが、下面は翼を逆転したように縦断側面が、逆翼断面形に膨出形成されているので、飛行中に機体前部にある側翼の上面に沿って、後方へ高速で負圧となって通過する気流が、水平尾翼の上面に沿って常圧となって抜け、側翼の下面に沿って通過する気流が、水平尾翼の膨出面において高速となり、下面域に強い負圧が生じ、機体後部を引き下げることによって、前下がりになりがちな、この機体の水平安定を維持する。
すなわちこの飛行艇は、推進器で押されて進行中には、機首が下がり気味に構成されて、その作用に対する反作用が機体の浮力を生むように構成されている。従って水平尾翼は、機首の下がるのを調節するために、水平尾翼の下面に負圧を生じさせる機構として、水平尾翼の下面が上面よりも大きく膨出されている。機体下面に沿って流動する気流は、末尾で上向きに通過するため、乱流が生じない。
(1) The flying boat of the invention described in claim 1 is composed of a main fuselage, a side wing, a side fuselage, and a horizontal tail, and the horizontal tail is different from the horizontal tail of a conventional airplane and is above the horizontal core. Is flat, but the bottom side is swelled in a reverse wing cross-section so that the wing is reversed, so that it can be moved backward along the upper surface of the side wing at the front of the aircraft during flight. The airflow that passes under negative pressure escapes as normal pressure along the upper surface of the horizontal tail, the airflow that passes along the lower surface of the side wing becomes high speed on the bulging surface of the horizontal tail, and strong negative pressure is generated in the lower surface area. When the rear part of the fuselage is pulled down, the horizontal stability of the fuselage, which tends to fall forward, is maintained.
In other words, this flying boat is configured so that the nose is lowered and the reaction to the action produces the buoyancy of the fuselage while being pushed by the propulsion device. Therefore, in order to adjust the lowering of the nose of the horizontal tail, the lower surface of the horizontal tail is swollen larger than the upper surface as a mechanism for generating a negative pressure on the lower surface of the horizontal tail. Since the airflow flowing along the lower surface of the airframe passes upward at the end, turbulence does not occur.

(2) 請求項2に記載された発明の飛行艇は、側翼の上面を高速で通過する気流は、側翼の後端部で風抜孔を跨いで、水平尾翼の上面で常圧になって後方へ抜ける。側翼の下面に沿って通過する気流は、風抜孔を超えて水平尾翼の下面域に負圧の高速気流を生じさせて、後方へ抜けるため、飛行艇の後部がさがり、機首を上向きに維持させ、結果として機体を水平に安定させるので、ピッチングが生じにくく安定した飛行をすることができる。
推進速度が遅く、機体に沿って流れる気流の速度が遅い時は、側翼の上面に沿って通過する気流の速度が遅いため、下方の常圧気流が風抜孔から負圧の上方へ移動する。その上昇気流に支持されて、機体はホバリングすることができる。
ホバリングする時は、機首を持上げてプロペラの回転をあげると、プロペラの前の側翼の上部を通過する気流が、高速となり負圧になり、プロペラ後部では、水平尾翼の上部が正圧、下部が負圧となり、その力関係は上部は後方へ、下部は前方へ働くため、機体は静止状態を保持することができる。
また、空中でエンジンが停止した場合、左右の側胴体で囲まれた側翼の下面と、水平尾翼の下にある空気が、風抜孔から上方へ抜けるので、機体は僅かにローリングしながら緩やかに降下することができる。
この場合、機体が軽い時は、風抜孔の大きさは大きくてもよいが、機体が重い時は、風抜孔から上方へ抜ける空気量を少なくするために小さい方がよい。
(2) In the flying boat of the invention described in claim 2, the airflow passing at high speed on the upper surface of the side wing crosses the air vent at the rear end of the side wing, becomes normal pressure on the upper surface of the horizontal tail, and Break through. The airflow that passes along the lower surface of the side wing causes a high-speed airflow of negative pressure in the lower surface area of the horizontal tail wing beyond the air vents and exits backward, so the rear part of the flying boat is lowered and the nose is kept upward As a result, the airframe is stabilized horizontally, so that it is difficult for pitching to occur and a stable flight can be performed.
When the propulsion speed is slow and the velocity of the airflow flowing along the fuselage is slow, the velocity of the airflow passing along the upper surface of the side wing is slow, so that the lower atmospheric pressure airflow moves upward from the draft hole to a negative pressure. Supported by the updraft, the aircraft can hover.
When hovering, lift the nose and rotate the propeller, the airflow passing through the upper part of the side wing in front of the propeller becomes high speed and negative pressure, and at the rear of the propeller, the upper part of the horizontal tail is positive and the lower part Becomes negative pressure, and the force relationship works backward in the upper part and forward in the lower part, so that the aircraft can maintain a stationary state.
Also, when the engine stops in the air, the lower surface of the side wing surrounded by the left and right side fuselage and the air under the horizontal tail wings escape upward from the draft hole, so the aircraft descends slowly while rolling slightly can do.
In this case, when the airframe is light, the size of the air vent hole may be large, but when the airframe is heavy, it is preferable that the air vent hole is small in order to reduce the amount of air passing upward from the air vent hole.

(3) 請求項3に記載された発明の飛行艇は、側面における主胴体、側翼、側胴体、水平尾翼のそれぞれの水平心線Lが、同一水準位置に設定されているので、側翼は下面が取付角をもたず、飛行時に高速を出すことができる。
また水平尾翼が側翼の後端部と同一水準にあるため、側翼の上面に沿って高速で後方へ通過する風流が、水平尾翼の下面に沿って通過し易く、水平尾翼の下面域に負圧を生じさせて尾翼を下方へ押して機体を水平に安定維持させる。
(3) In the flying boat of the invention described in claim 3, since the horizontal core lines L of the main fuselage, side wing, side fuselage, and horizontal tail on the side are set at the same level position, the side wing However, it does not have a mounting angle and can be used at high speed during flight.
In addition, since the horizontal tail is at the same level as the rear end of the side wing, wind flow that passes backward at high speed along the upper surface of the side wing easily passes along the lower surface of the horizontal tail, and negative pressure is applied to the lower surface area of the horizontal tail. And push the tail down to keep the aircraft stable and level.

(4) 請求項4に記載された発明の飛行艇は、水平尾翼が側翼より上位水準に配設されているので、側翼の上面に沿って、高速で通過する負圧気流が、水平尾翼の下面域で更に高速気流となり、操縦性に優れている。     (4) In the flying boat according to the invention described in claim 4, since the horizontal tail is arranged at a higher level than the side wing, the negative pressure airflow passing at high speed along the upper surface of the side wing is Higher speed airflow in the lower surface area and excellent maneuverability.

(5) 請求項5に記載された発明の飛行艇は、水平尾翼の上方に副水平尾翼が配設されているので、ローリング、ピッチングが生じにくく操縦性に優れている。    (5) The flying boat according to the invention described in claim 5 is excellent in maneuverability because the auxiliary horizontal tail is disposed above the horizontal tail, so that rolling and pitching hardly occur.

(6) 請求項6に記載された発明の飛行艇は、主胴体にコアンダ効果が出て、気流に乱れが生じず、浮上と前進性に優れている。   (6) The flying boat of the invention described in claim 6 has a Coanda effect on the main fuselage, does not cause turbulence in the air current, and has excellent levitation and advanceability.

(7) 請求項7に記載された発明の飛行艇は、側胴体が、水平心線Lより下部が大きく下方へ膨出されているので、側胴体で水面に浮くことができる。
側胴体は前部が大きく太いので、コアンダ効果を発揮して前進性能を高める。機体の前進中は、側翼の下面に沿って後方へ通過する風流を側胴体が側外方へ拡散させないので、側翼下の両側胴体間に帯条状の気流を、他域と区画的に形成して、機体のローリングやピッチングを生じさせず、操縦安定性をたかめる。
(7) In the flying boat of the invention described in claim 7, since the side fuselage has a lower portion than the horizontal core L and bulges downward, the side fuselage can float on the water surface.
Since the front side of the side fuselage is large and thick, the Coanda effect is exhibited and the forward performance is enhanced. While the fuselage is moving forward, the side fuselage does not diffuse outwardly along the lower surface of the side wing, so the strip-shaped airflow is formed in a compartmented manner between the two sides of the fuselage below the side wing. As a result, the steering stability is increased without causing rolling or pitching of the aircraft.

(8) 請求項7に記載された発明の飛行艇は、側翼の下面が、相対流に対して迎角をもっていないので、機首が下がり気味になるが、水平尾翼と側尾翼は、それぞれ上面より下面は、前縁部が大きく膨出した翼断面形に形成されているので、飛行中に尾翼の下面域に負圧が生じ、前進に伴って下がろうとする機首をあげて進行方向へ安定させる。   (8) In the flying boat of the invention described in claim 7, the nose is lowered because the lower surface of the side wing does not have an angle of attack with respect to the relative flow. The lower surface is formed into a wing cross-section with a large leading edge, so negative pressure is generated in the lower surface area of the tail during flight, and the direction of travel is raised with the nose going down as the aircraft moves forward To stabilize.

(9) 請求項9に記載された発明の飛行艇は、副水平尾翼の左右両側端部が、上方または下方に傾斜されて傾斜部が形成されているので、直進性に優れて操縦性に優れている。   (9) In the flying boat of the invention described in claim 9, since the left and right side end portions of the auxiliary horizontal tail are inclined upward or downward to form inclined portions, the straight boat is excellent in straightness and maneuverability. Are better.

(10) 請求項11に記載された発明の飛行艇は、プロペラ式推進器が、主胴体の後上部に、プロペラが側翼後部の風抜孔に臨むように配設されているため、側翼の上下面に沿って通過する気流圧を、変化させて後方に流動させるので、水平尾翼が側翼と同じ水準にあっても、安定した操縦性に優れている。   (10) In the flying boat of the invention described in claim 11, since the propeller type propulsion device is disposed at the rear upper part of the main fuselage so that the propeller faces the air vent hole at the rear part of the side wing, Since the airflow pressure passing along the lower surface is changed to flow rearward, even if the horizontal tail is at the same level as the side wing, it is excellent in stable maneuverability.

(11) 請求項12に記載された発明の飛行艇は、機体にパラシユートを搭載しているので、空中でエンジンが停止した場合、ゆっくり降下し、途中でパラシュート格納部の開蓋をすると、パラシュートが開いて、機体は緩やかに着陸水することができる。   (11) Since the flying boat of the invention described in claim 12 has a parasite mounted on the fuselage, when the engine stops in the air, it slowly descends, and when the parachute storage part is opened halfway, the parachute Will open and the aircraft will be able to land gently.

(12) 請求項12に記載された発明の昇降舵は、水平時の側面において、上面は平坦で、下面は逆翼形に膨出しているので、後端部を上にあげると、下面に沿って通過する風流は負圧となり高速で通過することから、昇降舵は下方へ引かれるので機首を上向きにする操縦性に優れている。昇降舵を下向きにした場合、下面が膨出しているので、向きを多く下げた効果が生じる。   (12) Since the elevator of the invention described in claim 12 has a flat upper surface and a lower surface that swells in an inverted wing shape on a horizontal side surface, when the rear end portion is raised upward, The wind flow that passes along it is negative pressure and passes at a high speed, so the elevator is pulled downward, so it has excellent maneuverability with the nose pointing up. When the elevator is turned downward, the lower surface bulges, so that the effect of lowering the direction is produced.

本願発明の実施例1を説明する。   A first embodiment of the present invention will be described.

図1は飛行艇の平面図、図2は側面図、図3は底面図、図4は図1におけるA−A断面図、図5は正面図である。
図において飛行艇1は、主胴体2は平面並びに側面ともに、略マグロのような魚形に設定されている。
1 is a plan view of the flying boat, FIG. 2 is a side view, FIG. 3 is a bottom view, FIG. 4 is a cross-sectional view taken along the line AA in FIG.
In the figure, in the flying boat 1, the main body 2 is set to have a fish shape like a tuna on both the plane and the side.

主胴体2の左右両側部の後半部には、前後に長く横幅の狭い側翼3が配設されている。主胴体2の下面は、側翼3の下面と同等か上位に設定される。符号1aは操縦席である。
主胴体2の後端部は図1においては、側翼3の後端部と同じ位置に示されているが、主胴体2は短かくして、その後端部は前部に移動することができる。
Side wings 3 that are long in the front and rear and have a narrow width are disposed in the rear half of the left and right sides of the main body 2. The lower surface of the main body 2 is set equal to or higher than the lower surface of the side wing 3. Reference numeral 1a denotes a cockpit.
Although the rear end portion of the main body 2 is shown at the same position as the rear end portion of the side wing 3 in FIG. 1, the main body 2 is short and the rear end portion can move to the front portion.

前記側翼3は、図4に示すように、縦断側面は、水平心線Lを主胴体2と合致され、縦断面形は、水平心線Lより上部は翼断面形に設定され、水平心線Lより下部は前部がやや下方へ膨出されている。
これによって、側翼3の下面は、従来の飛行機のような前上がりの取付角度を有していない。該側翼3には小荷物、燃料などが搭載される。
As shown in FIG. 4, the side wing 3 has a horizontal core L aligned with the main body 2 on the longitudinal side surface, and the vertical cross-sectional shape is set to a blade cross-sectional shape above the horizontal core L. The front part of the lower part of L bulges slightly downward.
As a result, the lower surface of the side wing 3 does not have a front-upward mounting angle unlike a conventional airplane. The side wing 3 is loaded with small luggage, fuel and the like.

前記各側翼3の外側端部には、それぞれ側胴体4が配設されている。側胴体4は、平面並びに側面ともに、略マグロ形に形成されている。
平面において、側胴体4の先端部は、主胴体2の先端部より後方で、側翼3より前方へ突出され、側胴体4の後部は側翼3の後端部よりも後方へ長く突出されている。
側面において、側胴体4の水平心線Lは、前記主胴体2の水平心線Lと同一水準位置に設定されている。
A side fuselage 4 is disposed at the outer end of each side wing 3. The side body 4 is formed in a substantially tuna shape both on the plane and on the side surface.
In the plane, the front end portion of the side body 4 is rearward of the front end portion of the main body 2 and protrudes forward from the side wing 3, and the rear portion of the side body 4 protrudes longer rearward than the rear end portion of the side wing 3. .
On the side surface, the horizontal core L of the side body 4 is set at the same level as the horizontal core L of the main body 2.

側胴体4はその側面において、水平心線Lより上部は、上端が前記側翼3の上端と同じ水準に設定され、水平心線Lより下部は、前部寄りの膨出部が、前記主胴体2の下面よりも大きく下方へ下がって、後部は尻上がりに設定されている。   On the side of the side fuselage 4, the upper end of the upper side of the horizontal core L is set at the same level as the upper end of the side wing 3, and the lower side of the horizontal core L is a bulging portion closer to the front than the main fuselage. 2 is lower than the lower surface of 2, and the rear portion is set to rise.

側胴体4の内底部は、フロートに設定され、その上部は客室或いは荷物室に設定される。これによって、図5に示すように、正面視では、側胴体4は、双胴型船のように、側胴体4で浮力を持つ船艇となる。
この側胴体4は、船艇の要部のフロートとして、水の中においても安定性と、コアンダ効果で走行性に優れている。
An inner bottom portion of the side body 4 is set to a float, and an upper portion thereof is set to a guest room or a luggage room. As a result, as shown in FIG. 5, in the front view, the side fuselage 4 becomes a ship having buoyancy at the side fuselage 4 like a catamaran type ship.
This side fuselage 4 is excellent in running performance due to the stability and the Coanda effect even in water as a float of the main part of a boat.

前記主胴体2と側胴体4共に前部が大きく太いので、一般には空気抵抗が大きくて速度がでず、飛行出来ないと考える人もいる。
しかし、これら主胴体2と側胴体4が、略マグロ形に設定されているため、コアンダ効果が大きく作用する。
Since both the main body 2 and the side body 4 have large front portions and are generally thick, some people think that the air resistance is large, the speed is not high, and they cannot fly.
However, since the main body 2 and the side body 4 are set in a substantially tuna shape, the Coanda effect acts greatly.

すなわち、後方から前方へ向けた推進器8による力がかかると、前部における相対流は、主胴体2、側胴体4前部において圧縮され、粘液がたれるように、表面に沿って後方へ高速で流動して、乱流が全く生じない。主胴体2,側胴体4は前部を押される反動として、高速化した相対流の通過と共に前方へ反発して前進する。   That is, when a force is applied by the propulsion unit 8 from the rear to the front, the relative flow in the front part is compressed in the front part of the main body 2 and the side body 4 and the mucus is dripped back along the surface. It flows at high speed and no turbulence occurs. The main body 2 and the side body 4 are repelled forward with the passage of the relative flow at a high speed as a reaction of pushing the front part.

これは、水に浮く木片の上から力を加えて離すと飛び上がるように、前部にかかる加圧風流が高速で通過して、加圧が無くなるために、反動として、主胴体2、側胴体4は前に飛び出し連続して前進する。マグロが水中で高速遊泳できるのはコアンダ効果による。   This is because the pressurized air flow applied to the front part passes at a high speed so as to jump up when it is released from the top of the wooden piece floating in the water, and the pressure disappears. 4 jumps forward and moves forward continuously. Tuna can swim at high speed in the water due to the Coanda effect.

前記側翼3の後端部から後方へ、風抜孔1bをおいた離れた位置で、左右の側胴体4の後部間に水平尾翼5が横架配設されている。水平尾翼5の縦断側面は、図4に示すように、その水平心線Lは、前記主胴体2の水平心線Lと同一水準位置に設定されている。これは従来の飛行機が、主翼と尾翼の位相を上下に違差させているのとは異なる特徴である。   A horizontal tail 5 is installed horizontally between the rear portions of the left and right side fuselages 4 at a position away from the rear end portion of the side wing 3 with the air vent hole 1b. As shown in FIG. 4, the horizontal core L of the vertical side surface of the horizontal tail 5 is set at the same level position as the horizontal core L of the main body 2. This is a feature that is different from the conventional airplane in which the phases of the main wing and the tail wing are made different vertically.

また水平尾翼5の縦断面は、図4に示すように、水平心線Lより上部は板厚が薄く、かつ上面は平坦で、水平心線Lより下部は、翼上面のように膨出した曲面に形成されている。 すなわち、この水平尾翼5に沿って前から後方へ通過する気流は、上面域よりも下面域の通過速度が速くなり、下面域に負圧を生じさせる。このことも従来の飛行機の設定とは、大きく異なる特徴である。   As shown in FIG. 4, the vertical cross section of the horizontal tail 5 has a thin plate thickness above the horizontal core L and a flat upper surface, and the lower portion of the horizontal core L bulges like the wing upper surface. It is formed on a curved surface. That is, the airflow passing from the front to the rear along the horizontal tail 5 has a lower passage speed than the upper surface area, and generates a negative pressure in the lower surface area. This is also a feature that is greatly different from the setting of a conventional airplane.

水平尾翼5の後部には、昇降舵6が配設されている。平面において、水平尾翼5と並んで、側胴体4の外側部に側尾翼7が配設されている。
側尾翼7は前尖りの平面略5角形で、内側が長く前方に突出されて、水平尾翼5の前端部の位置よりも前方に位置して、設定されている。
An elevator 6 is disposed at the rear of the horizontal tail 5. In the plane, side tails 7 are arranged on the outer side of the side fuselage 4 along with the horizontal tails 5.
The side tail 7 is a substantially pentagonal plane with a front point, and is set so that the inside is long and protrudes forward, and is located forward of the position of the front end of the horizontal tail 5.

側尾翼7の後部外端部は、前記側胴体4の外端部よりも大きく側外方へ突出されている。側尾翼7の水平心線Lも、前記主胴体2の水平心線Lと同一水準位置に設定されている。側尾翼7の上面は平坦で、前記水平尾翼5の上面と合わされ、下面は、前部並びに内側部は板厚が厚く設定されて、後側方に次第に薄く設定されている。   The rear outer end portion of the side tail wing 7 is protruded to the outer side larger than the outer end portion of the side body 4. The horizontal core L of the side tail 7 is also set at the same level position as the horizontal core L of the main fuselage 2. The upper surface of the side tail 7 is flat and is combined with the upper surface of the horizontal tail 5, and the lower surface is set to have a thicker thickness at the front and inner portions, and is gradually set thinner toward the rear side.

前記主胴体2の上後部には、推進器8が配設されている。推進器8はプロペラ式がプロペラを後方に向けて、前記風抜孔1bに臨んで配設されている。このプロペラは、翼端部が傾斜したベルシオン(商標)型(特願2005-268928号、特願2005−318126号)を使用すると風切音が低く推進性に優れている。
また推進器8は、当然にジェツト式を採用することができる。
A propulsion unit 8 is disposed at the upper rear portion of the main body 2. The propeller 8 is a propeller type with the propeller facing rearward and facing the air vent hole 1b. When this propeller uses a Version (trademark) type (Japanese Patent Application Nos. 2005-268828 and 2005-318126) with inclined wing tips, the wind noise is low and the propulsion is excellent.
Of course, the propulsion unit 8 may employ a jet type.

前記水平尾翼5の上面中央部には、垂直尾翼10が配設されている。該垂直尾翼10の後部には、方向舵11が配設されている。
なお垂直尾翼11は、左右1対、或いは3基並設にすることができる。
A vertical tail 10 is disposed at the center of the upper surface of the horizontal tail 5. A rudder 11 is disposed at the rear of the vertical tail 10.
In addition, the vertical tail 11 can be provided in a pair of left and right or three in parallel.

上記のように構成された、この発明の飛行艇1は、水上において側胴体4を浮かせて、推進器8の駆動によって船艇として前進することができる。
この場合、昇降舵6を上向きにすることによって、機首が上向きとなり、両側胴体4の間の側翼3下面に気流が後方へ通過することによって、飛行艇1全体が浮上して、接水面積が減少し、高速推進することができる。
The flying boat 1 of the present invention configured as described above can advance as a boat by driving the propulsion unit 8 with the side body 4 floating on the water.
In this case, when the elevator 6 is turned upward, the nose is turned upward, and when the airflow passes rearward to the lower surface of the side wing 3 between the fuselage 4, the flying boat 1 as a whole rises, and the water contact area Can be reduced and propelled at high speed.

更に推進器8の回転数をあげて機首を上向きにすると、機体下面での表面効果が高まり、機体は水面から上に浮上し、滑空することができる。滑空すると方向舵11、昇降舵6の操作は飛行機と同様で、自由に操縦することができる。   Further, when the number of revolutions of the propulsion unit 8 is increased and the nose is directed upward, the surface effect on the lower surface of the aircraft is increased, and the aircraft can float above the water surface and glide. When gliding, the operation of the rudder 11 and the elevator 6 is the same as that of an airplane and can be freely controlled.

この飛行艇1の滑空時の気流の流れを図について説明する。水平心線Lより上部においては、図1に示すように、主胴体2の前部に当たる相対流は、主胴体2の左右に分かれて、主胴体2表面に粘着するように沿って後方へ高速で流れる。これによって主胴体2の前部では相対流が圧縮され、分岐された気流が後方へ高速で通過する反動として、機体は前進する。   The flow of the airflow when the flying boat 1 glides will be described with reference to the drawings. Above the horizontal core L, as shown in FIG. 1, the relative flow hitting the front of the main fuselage 2 is divided into the left and right of the main fuselage 2 so as to adhere to the surface of the main fuselage 2 at a high speed backward. It flows in. As a result, the relative flow is compressed at the front portion of the main body 2, and the airframe advances as a reaction in which the branched airflow passes backward at high speed.

すなわち、コアンダ効果が生じ、主胴体2前縁部表面域で圧縮された気流は、その反動として高速で後方へ流動するので、負圧となって通過する。その結果、主胴体2の後部が細くなっているので、前部で高圧になり、後方へ高速で通過する負圧気流に対して、外部からの常圧の空気が、主胴体2後部を周囲から押すことになり、主胴体2は反動として前進する。
主胴体2の下面はほぼ平坦なので、後方へ通過する気流は常圧であり、このことから、機体は上方へ押しあげられる。
That is, the Coanda effect is generated, and the airflow compressed in the surface area of the front end portion of the main body 2 flows backward at a high speed as the reaction, and thus passes as a negative pressure. As a result, since the rear part of the main body 2 is narrowed, normal pressure air from the outside surrounds the rear part of the main body 2 against a negative pressure air flow that is high in the front part and passes at a high speed backward. The main body 2 moves forward as a reaction.
Since the lower surface of the main fuselage 2 is substantially flat, the airflow passing backward is normal pressure, which pushes the fuselage upward.

側翼3については、普通の翼における作用が生じる。側翼3の上面を通過する高速気流は、風抜孔1bを超えて後方の水平尾翼5にあたり、その上面に沿って常圧に変って通過する。側翼3の下面に沿って流れる気流は、水平尾翼5の下でその膨出面に沿って高速で流れて負圧になる。   As for the side wing 3, an action in a normal wing occurs. The high-speed airflow passing through the upper surface of the side wing 3 passes through the air vent hole 1b, hits the rear horizontal tail 5 and changes to normal pressure along the upper surface. The airflow flowing along the lower surface of the side wing 3 flows at a high speed along the bulging surface under the horizontal tail 5 and becomes negative pressure.

すなわち、図6に示すように、側翼3の前部に当る相対流は、側翼3の先端部に空気密度の高い高圧を生む。その気流は側翼3の上下に分岐して、上面に沿って流れる気流は、負圧の高速気流となり、風抜孔1b部分で、常圧となって水平尾翼5の上面に沿って後方へ通過する。この段階で側翼3は、前部の高圧による圧迫が解放される反動として、前進すると同時に上方へ進む。   That is, as shown in FIG. 6, the relative flow hitting the front part of the side wing 3 generates a high pressure with a high air density at the tip of the side wing 3. The air flow branches up and down the side wings 3, and the air flow flowing along the upper surface becomes a high-speed air flow of negative pressure, passes through the upper surface of the horizontal tail 5 at the normal pressure at the air vent 1 b portion. . At this stage, the side wing 3 moves upward as it moves forward as a reaction that releases the pressure due to the high pressure at the front.

前記側翼3の下面に沿って後方へ通過する気流は、左右両側部の側胴体4によって、横側外へ拡散することが抑止されて、後方へ正確に案内され、水平尾翼5の前部に当ると高圧となり、膨出した下面に沿って高速で後方へ通過し負圧を生む。この段階で、水平尾翼5は、前進すると同時に降下する。これによって、機体の重心より後部が下がることによって、機体全体は相対流に対して僅かな迎角を持つことになり、安定した揚力を得る。   The airflow passing rearward along the lower surface of the side wing 3 is prevented from diffusing laterally outward by the side fuselage 4 on the left and right sides, and is accurately guided rearward to the front of the horizontal tail 5. When it hits, it becomes high pressure and passes backward at high speed along the bulging lower surface, producing negative pressure. At this stage, the horizontal tail 5 descends as it advances. As a result, when the rear part is lowered from the center of gravity of the aircraft, the entire aircraft has a slight angle of attack with respect to the relative flow, and a stable lift is obtained.

一方、側胴体4の下面は、前記主胴体2と同様に、コアンダ効果が生じ、それぞれの両側面に沿って高速気流が後方へ通過する。
すなわち、飛行艇が時速100kmで滑空しているとき、側胴体4下側面に沿って高速で通過する負圧気流は、時速100kmよりも早い。
On the other hand, the lower surface of the side body 4 has a Coanda effect similar to the main body 2, and the high-speed airflow passes rearward along each side surface.
That is, when the flying boat is gliding at 100 km / h, the negative pressure airflow passing at high speed along the lower side surface of the side fuselage 4 is faster than 100 km / h.

このことから、この側胴体4の前部域において圧縮された気流は、側胴体4の前部を加圧し、周面に沿って分岐して高速で後部へ通過して負圧となり、その反動として、側胴体4の後部に、常圧の空気を呼び込み、側胴体4後部を前へ押すことになり、側胴体2は前方へ押出されて前進する。   Therefore, the airflow compressed in the front region of the side body 4 pressurizes the front part of the side body 4, branches along the peripheral surface, passes at high speed to the rear part, and becomes negative pressure. As described above, normal pressure air is drawn into the rear part of the side body 4 and the rear part of the side body 4 is pushed forward, and the side body 2 is pushed forward and advanced.

このように、この飛行艇1は、全体の三次元形状による、それぞれの部位において、気圧の変化を生じさせて、その気圧の変化が、機体全体を前に押し出し、上に持ち上げて、飛行機のような翼がないのに、飛行滑空を安全にすることができる。   Thus, this flying boat 1 causes a change in atmospheric pressure in each part due to the overall three-dimensional shape, and the change in atmospheric pressure pushes the entire body forward and lifts it up, Even if there is no such wing, the flying glide can be made safe.

側翼3の下面部で両側胴体4の間には、前記のように側胴体4表面に沿った高速気流が通過する。そのことは周囲と異なった気圧の気流帯条が空間に形成されることになる。すると飛行艇1は、滑空している限り、この気流帯条をレールのようにして滑空することになり、直進性に優れており、この気流帯条に乗った状態で、左右両側の側胴体4が、ヤジロベエのバランス重錘の作用をして、ローリングや、ピッチングが生じにくく、操縦安定性が優れている。   As described above, the high-speed airflow along the surface of the side body 4 passes between the side bodies 4 on the lower surface portion of the side wing 3. This means that an air current strip having a different atmospheric pressure from the surroundings is formed in the space. Then, as long as the flying boat 1 glides, the air current strip will glide like a rail, and is excellent in straightness. No. 4 acts as a balance weight of the heroine, and is less likely to cause rolling and pitching and has excellent steering stability.

主胴体2並びに側胴体4の前部が、マグロの胴体のように、太く大きいという特性から、飛行艇1の重心は主胴体2の前後中程にあるが、側翼3の下面が相対流に対して取付角を持たないため、滑空時には、推進器8の推進力に押されて前進すると、前下がりの姿勢になりがちである。その押しつけ作用に対して、反作用の表面効果が機体を浮上させる。   Due to the characteristic that the front of the main fuselage 2 and the side fuselage 4 are thick and large like a tuna fuselage, the center of gravity of the flying boat 1 is in the middle of the front and rear of the main fuselage 2, but the lower surface of the side wing 3 is in relative flow. On the other hand, since it does not have an attachment angle, when it glides, it tends to be in a forward-downward posture when pushed forward by the propulsive force of the propulsion device 8. The surface effect of the reaction raises the aircraft against the pressing action.

陸地において、この飛行艇1は、従来の飛行機の3分の1以下の短かい滑走距離で、離陸することができる。これは、推進器8により、気流が後方へ高速で移動すると、前記のようなコアンダ効果で機体が前方へ押出され、また上向きの揚力が側翼3に生じるため、昇降舵6の操作により、一気に機首をあげて上昇することができる。   On land, this flying boat 1 can take off with a short running distance of one third or less of a conventional airplane. This is because when the airflow is moved backward at a high speed by the propulsion device 8, the airframe is pushed forward by the Coanda effect as described above, and an upward lift is generated in the side wing 3. Raise the nose.

滑空時において、推進器8が稼働していて前進飛行が停止していても、気流が飛行艇1の上下面に沿って前から後方へ流動している限り、飛行艇1は、昇降舵6の操作で機首を上向きにして、その位置においてホバリングすることができる。   Even when the propulsion unit 8 is operating and the forward flight is stopped at the time of gliding, as long as the airflow flows from the front to the rear along the upper and lower surfaces of the flying boat 1, the flying boat 1 has the elevator 6. With the above operation, the nose can be turned up and hovered at that position.

前進飛行が停止していても、推進器8は側翼3の上位置にあるため、推進器8によって生じる気流は、機体の下面よりも上面において速度が速い。そのことは機体の下面域よりも上面域における気圧が低く、揚力を生じる。
同時に昇降舵6をあげて機首を上向きにすることによって、側翼3の下面は相対流に対して迎角をもつことになり、後方へ通過する気流が、機体の下面に対して向かい風となり表面効果が生じて、機体の降下が抑止される。
Even if the forward flight is stopped, the propulsion unit 8 is located above the side wing 3, so that the airflow generated by the propulsion unit 8 is faster on the upper surface than the lower surface of the fuselage. This means that the air pressure in the upper surface area is lower than the lower surface area of the fuselage, resulting in lift.
At the same time, the elevator 6 is raised and the nose is turned upward so that the lower surface of the side wing 3 has an angle of attack with respect to the relative flow, and the airflow passing backward becomes a wind against the lower surface of the fuselage. An effect is produced, and the descent of the aircraft is suppressed.

昇降舵6を緩めて機体の姿勢を平らにすると共に、推進器8の速度を緩めると、機体は重量により次第に降下して着地することができる。この場合、側翼3と水平尾翼5との間に風抜孔1bがあるために、この風抜孔1bから空気が上方へ抜けるために、機体は揺動することなく、静かにその場で降下することができる。   When the elevator 6 is loosened to flatten the attitude of the airframe and the speed of the propulsion device 8 is reduced, the airframe can be lowered and landed gradually by weight. In this case, since there is an air vent hole 1b between the side wing 3 and the horizontal tail 5, the air can escape from the air vent hole 1b upward, so that the airframe is gently lowered on the spot without swinging. Can do.

推進器8が停止した時も、ほぼ同様に降下することができる。図7に示すように、機体に風抜孔1bがない場合には、機体下面全域の重力が空気にかかるので、機体が一方に傾くと、下の反発空気は斜め上方に逃げるために、機体は傾斜下方へ急加速して墜落する。   When the propulsion device 8 stops, it can descend almost in the same manner. As shown in FIG. 7, when the airframe does not have the air vent hole 1b, the gravity of the entire lower surface of the airframe is applied to the air, so when the airframe is tilted to one side, the lower repelling air escapes diagonally upward. Accelerate rapidly down the slope and crash.

しかし機体に風抜孔1bが有ると、風抜孔1bの部分には、下の空気に対する機体の重量圧が生じないため、機体による加圧を受けて空気密度の高い空気は、重量圧のない風抜孔1bの部分から上方へ流動する。この風抜孔1bの部分から、上方へ流動する気流は空気密度が高い一つの上昇気流であり、直線的であり、機体の横移動が抑制され、また風抜孔1bが小さいと、機体の降下速度が抑制されるので、ゆっくりと降下することができる。   However, if the airframe has the air vent hole 1b, the air pressure in the air vent hole 1b does not generate the weight pressure of the airframe against the lower air. It flows upward from the portion of the hole 1b. The airflow that flows upward from the portion of the air vent hole 1b is one ascending airflow having a high air density, is linear, is restrained from lateral movement of the airframe, and if the air vent hole 1b is small, the airspeed of the airframe is lowered. Can be lowered slowly.

例えば紙を水平に手で持って離すと、紙はゆらゆら揺れて降下し、1方へ傾くと急降下するが、紙の中央に孔を開けておくと、ゆらゆら揺れながらも水平を保って緩やかに降下する。これは、水平安定が保持されていて、孔の部分だけ重力に対する反発がなく、反発のある部分の空気までもが孔から上方へ拡散されるので、周囲から気流が孔を通って上昇するため、柱のような上昇気流に支持されて、横へ移動することなくゆっくりと降下できるもの。   For example, if you hold the paper horizontally with your hand and release it, the paper will sway and fall, and if you tilt it in one direction, it will drop suddenly, but if you make a hole in the center of the paper, it will keep the level while gently shaking. Descent. This is because the horizontal stability is maintained, only the hole part is not repelled by gravity, and even the air in the repelled part is diffused upward from the hole, so that the airflow rises through the hole from the surroundings. It is supported by an updraft like a pillar and can descend slowly without moving sideways.

なお、飛行艇1の機体には、上部に開閉蓋を有するパラシュート格納部(図示せず)を形成して、パラシュートを格納しておくことができる。この場合、開閉蓋を開いて投出されると、パラシュートが開くように構成することができる。これによって、降下途中にパラシュートを開くと、衝撃を緩やかに着地水することができる。   Note that the parachute can be stored in the airframe of the flying boat 1 by forming a parachute storage part (not shown) having an open / close lid on the upper part. In this case, the parachute can be configured to open when the opening / closing lid is opened and thrown out. Thus, if the parachute is opened during the descent, the impact can be landed gently.

滑空旋回時には、従来の飛行機は外側に大きくふくらんで、旋回半径を大きく要することになり、機体は傾斜したまま横滑りして下がる。
この飛行艇1は、機体が横に傾斜しても、左右の側胴体4が上下斜めに位置するために、それぞれの側胴体4の下に位置する側面が、表面効果を得るため、横滑りが生じない。 また、コアンダ効果により、前方と機体上方へ移動する力が働き、操縦性が優れているために、旋回時に外方への膨らみが生じにくく、短い半径で旋回することができる。
At the time of gliding, the conventional airplane bulges outward and requires a large turning radius, and the aircraft slides sideways while tilting.
In this flying boat 1, even if the fuselage is tilted sideways, the left and right side fuselages 4 are positioned obliquely up and down. Does not occur. Further, due to the Coanda effect, a force that moves forward and upward of the fuselage works, and the maneuverability is excellent. Therefore, it is difficult to bulge outward during turning, and it is possible to turn with a short radius.

図8は実施例2を示す正面図である。前例と同じ部位には同じ符号を付して説明を省略する。この実施例2は、左右の側胴体4の後上部にそれぞれ垂直尾翼10を立設し、その上端部に副水平尾翼12が配設されたものである。
副水平尾翼12の縦断面形状は、前記水平尾翼5と同様に形成されている。該副水平尾翼12は水平尾翼5の直上か、後方へ違差させることができる。各垂直尾翼10の後部には、図示しないが、それぞれ方向舵が配設される。
FIG. 8 is a front view showing the second embodiment. The same parts as those in the previous example are denoted by the same reference numerals and description thereof is omitted. In the second embodiment, vertical tails 10 are erected on the rear upper parts of the left and right side bodies 4, and a sub horizontal tail 12 is disposed at the upper end thereof.
The vertical cross-sectional shape of the sub horizontal tail 12 is the same as that of the horizontal tail 5. The sub horizontal tail 12 can be shifted to the position immediately above or behind the horizontal tail 5. Although not shown, a rudder is disposed at the rear of each vertical tail 10.

この実施例2は、垂直尾翼10が左右一対なので、ローリングしにくく、方向舵も左右一対なので操縦性能が向上する。また側翼3よりも高い位置に副水平尾翼12が配設されているので、ビッチングが生じにくく操縦安定性能が向上する。   In the second embodiment, since the vertical tail 10 is a pair of left and right, it is difficult to roll, and since the rudder is also a pair of left and right, the steering performance is improved. In addition, since the auxiliary horizontal tail 12 is disposed at a position higher than the side wing 3, biting is less likely to occur and the steering stability performance is improved.

副水平尾翼12の左右端部に、上向きに傾斜された傾斜部12aが形成されているが、これは旋回時において表面効果を高めて操縦性を向上させるので、短距離滑走での急上昇に優れている。なお傾斜部12aは下向きにすることもできる。垂直尾翼10は3基配設することができる。   Inclined portions 12a that are inclined upward are formed on the left and right ends of the auxiliary horizontal tail 12, but this enhances the surface effect during turning and improves maneuverability, so it is excellent for rapid rise during short-distance running ing. The inclined portion 12a can be directed downward. Three vertical tails 10 can be arranged.

図9は昇降舵の縦断側面図である。この昇降舵6は、水平尾翼5と同様に、上面は平坦であるが、下面は、前縁部が下方へ膨出された、逆翼形に形成されている。これによって、水平滑空時には、下面に水平尾翼5と同様な高速風が通過する。昇降舵6をあげた時は、上面が前から加圧され、下面では高速気流が上向きに抜けて負圧が生じるため、下がり、舵取り性が優れている。昇降舵6を下げた場合は、下面が膨出しているので、急激な降下が生じないので操縦が容易になる。   FIG. 9 is a longitudinal side view of the elevator. As with the horizontal tail 5, the elevator 6 has a flat upper surface, but the lower surface is formed in an inverted airfoil shape with its front edge bulging downward. As a result, at the time of water smooth sky, high-speed wind similar to that of the horizontal tail 5 passes through the lower surface. When the elevator 6 is lifted, the upper surface is pressurized from the front, and the lower surface has a high speed air flow upward and negative pressure is generated. When the elevator 6 is lowered, the lower surface bulges, so that a rapid descent does not occur, so that the maneuvering becomes easy.

なおこの発明は、前記実施例に限定されるものではなく、目的に沿って適宜設計変更をすることができる。実用機のほかに無人の無線操縦機とすることができる。その場合、機体上面に、図示しない太陽発電パネルを貼着して、電源とすることができる。   The present invention is not limited to the above-described embodiment, and can be appropriately changed in design according to the purpose. In addition to the practical aircraft, it can be an unmanned radio controller. In that case, a solar power generation panel (not shown) can be attached to the upper surface of the machine body to provide a power source.

本発明飛行艇1は、水上を自由に疾走することが出来、陸上において短距離の滑走で飛翔もできる。空中でホバリングができて、陸地にも着陸することができ、庭先や艦船の甲板からの離着が可能である。
そのように高性能なため、災害救助、急救活動、離島間の交通、山岳地での往来、平原や砂漠地帯での交通、広大な牧場や敷地内の移動、農薬・消火剤散布、入り組んだ土地の撮影、魚群探知器を搭載しての魚群探知、ソナーによる水面下地形探査、無線操縦による危険地域の撮影並びに警察・防衛活動、魚釣りその他レジヤー用、その他多方面分野に利用が可能である。
The flying boat 1 of the present invention can sprint freely on the water, and can also fly by short-distance sliding on land. It can hover in the air, land on land, and can be detached from the garden and ship deck.
Because of such high performance, disaster rescue, emergency rescue activities, traffic between remote islands, traffic on mountainous areas, traffic on plains and deserts, movement in vast ranches and premises, spraying of agricultural chemicals and fire extinguishing agents, complicated It can be used for land photography, fish detection with a fish detector, underwater terrain exploration with sonar, radio hazardous area photography, police and defense activities, fishing and other registrars, and other fields. .

本発明に係る飛行艇の平面図である。1 is a plan view of a flying boat according to the present invention. 図1における飛行艇の側面図である。It is a side view of the flying boat in FIG. 本発明における飛行艇の底面図である。It is a bottom view of the flying boat in the present invention. 図1におけるA−A断面図である。It is AA sectional drawing in FIG. 図1における飛行艇の正面図である。It is a front view of the flying boat in FIG. 側翼と水平尾翼の縦断側面図であるIt is a longitudinal side view of a side wing and a horizontal tail 降下時の側翼と水平尾翼の縦断側面図である。It is a vertical side view of a side wing and a horizontal tail during descending. 実施例2を示す飛行艇の正面図である。6 is a front view of a flying boat showing Example 2. FIG. 昇降舵の縦断側面図である。It is a vertical side view of an elevator.

符号の説明Explanation of symbols

1.飛行艇
1a.操縦席
1b.風抜孔
2.主胴体
3.側翼
4.側胴体
5.水平尾翼
6.昇降舵
7.側尾翼
7a.エルロン
8.推進器
9.プロペラ
10.垂直尾翼
11.方向舵
12.副水平尾翼
12a.傾斜部
1. Flying boat 1a. Pilot seat 1b. Ventilation hole Main fuselage Side wing 4. 4. Side fuselage Horizontal tail 6. Elevator 7 Lateral wing 7a. Aileron 8. Propeller 9. Propeller 10. Vertical tail 11. Rudder 12. Secondary horizontal tail 12a. Slope

Claims (12)

推進器を具備した主胴体、側翼、側胴体、水平尾翼とで構成された飛行艇において、後部に配設された水平尾翼が、縦断側面において、水平心線Lの上部よりも下面は先端縁部が大きく膨出された逆翼断面形に形成され、進行中に水平尾翼の上面に常圧、下面に負圧気流を生起させるように構成されたこと、を特徴とする飛行艇。 In a flying boat composed of a main fuselage, a side wing, a side fuselage, and a horizontal tail provided with a propulsion device, the horizontal tail disposed at the rear is a front edge on the vertical side surface, with the lower surface being higher than the upper portion of the horizontal core L A flying boat characterized in that it is formed in a cross section of an inverted wing with a large bulge, and is configured to generate a normal pressure on the upper surface of the horizontal tail and a negative pressure air flow on the lower surface during travel. 前記側翼は、側面で上面が翼断面形に膨出形成され、飛行時において、側翼の上面を通過する負圧高速気流が、直後の風抜孔を超えて水平尾翼の上面で常圧気流となり、側翼下面に沿って通過する気流は、風抜孔を超えて水平尾翼の下面で負圧となって高速で後方へ通過するように構成されたこと、を特徴とする請求項1に記載された飛行艇。 The side wing is formed with a wing cross-sectional shape on the side surface, and during flight, the negative high-speed airflow passing through the top surface of the side wing becomes a normal pressure airflow on the top surface of the horizontal tail beyond the right draft hole, 2. The flight according to claim 1, wherein the airflow passing along the lower surface of the side wing is configured so as to pass backward at a high speed after passing through the draft hole, becoming negative pressure on the lower surface of the horizontal tail. Boat. 前記主胴体、側翼、側胴体、水平尾翼の、側面におけるそれぞれの水平心線Lが、同一の水準位置に設定されていること、を特徴とす請求項1.2のいずれかに記載された飛行艇。 The horizontal fuselage L on the side surfaces of the main fuselage, side wings, side fuselage, and horizontal tail is set at the same level position, according to any one of claims 1.2. Flying boat. 前記主胴体、側翼、側胴体の、側面における、それぞれの水平心線Lが、同一の水準位置に設定され、前記水平尾翼の水平心線Lは、側胴体のそれよりも少し上位に設定されていること、を特徴とする請求項1.2のいずれかに記載された飛行艇。 The horizontal cores L on the side surfaces of the main fuselage, side wings, and side fuselage are set at the same level position, and the horizontal core L of the horizontal tail is set slightly higher than that of the side fuselage. The flying boat according to claim 1.2, wherein 前記水平尾翼の上方位置に、垂直尾翼を介して副水平尾翼が配設され、該副水平尾翼の上面は平坦で下面は逆翼断面形に膨出されていること、を特徴とする請求項1〜4のいずれかに記載された飛行艇。 The sub horizontal tail is disposed above the horizontal tail via a vertical tail, the upper surface of the sub horizontal tail is flat, and the lower surface bulges in a reverse blade cross section. The flying boat described in any one of 1-4. 前記主胴体は、平面で略魚形に形成され、側翼よりも前方へ前部が突出され、側面において、水平心線Lよりも上部が大きく膨出され、下面は側翼の下面と略同じに設定されていること、を特徴とする請求項1〜5のいずれかに記載された飛行体。 The main body is formed in a substantially fish shape on a plane, the front part projects forward from the side wing, the upper part bulges larger than the horizontal core L on the side surface, and the lower surface is substantially the same as the lower surface of the side wing. It is set, The flying body according to any one of claims 1 to 5 characterized by things. 前記側胴体は、水平心線Lより下部が大きく下方へ膨出され、後下部が水平心線L方へ尻上りに形成され、該後部が側翼の後端部より後方へ長く突出され、該各側胴体の後部外側部に、水平尾翼と並ぶ側尾翼が、水平心線Lを側胴体と同一水準位置にして配設されていること、を特徴とする請求項1〜6のいずれかに記載された飛行艇。 The lower side of the side fuselage is greatly bulged downward from the horizontal core L, the rear lower part is formed ascending toward the horizontal core L, and the rear is projected rearward from the rear end of the side wing, The side tail that is aligned with the horizontal tail is disposed on the rear outer portion of each side fuselage, with the horizontal core L positioned at the same level as the side fuselage. The listed flying boat. 前記側尾翼は、上面を平坦とし、下面は、前縁部が膨出した逆翼断面形に形成されていること、を特徴とする請求項7に記載された飛行艇。 The flying boat according to claim 7, wherein the side wing has a flat upper surface and a lower surface formed in a reverse wing cross-sectional shape with a leading edge bulging. 前記副水平尾翼は、左右両側端部が、上方または下方に傾斜された傾斜部が形成されていること、を特徴とする請求項8に記載された飛行艇。 9. The flying boat according to claim 8, wherein the sub horizontal tail has an inclined portion in which left and right side end portions are inclined upward or downward. 前記推進器は、プロペラ式とし、主胴体の後上部に、プロペラが側翼後部の風抜孔に臨むように配設されたこと、を特徴とする請求項1〜9のいずれかに記載された飛行艇。 10. The flight according to claim 1, wherein the propulsion device is a propeller type, and the propeller is disposed at an upper rear portion of the main fuselage so as to face an air vent hole at a rear portion of the side wing. Boat. 前記機体には、上部に開閉蓋を有するパラシュート格納部が形成され、内部にパラシュートが、空中で前記開閉蓋を開蓋して投出されたときに開くように、格納されていること、を特徴とする前記1〜10のいずれかに記載された飛行艇。 The airframe has a parachute storage portion having an open / close lid on the top, and the parachute is stored therein so as to open when the open / close lid is opened and thrown out in the air. The flying boat described in any one of 1 to 10 above. 飛行機に用いる昇降舵であって、縦断側面が上面は平坦で、下面は前縁部を下に膨出させた、逆翼形に形成されていること、を特徴とする昇降舵。 An elevator for use in an airplane, characterized in that the longitudinal side surface has a flat upper surface and the lower surface is formed in an inverted wing shape with the front edge portion bulging downward.
JP2007022919A 2007-02-01 2007-02-01 Flying boat Active JP5160098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022919A JP5160098B2 (en) 2007-02-01 2007-02-01 Flying boat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022919A JP5160098B2 (en) 2007-02-01 2007-02-01 Flying boat

Publications (2)

Publication Number Publication Date
JP2008189032A true JP2008189032A (en) 2008-08-21
JP5160098B2 JP5160098B2 (en) 2013-03-13

Family

ID=39749564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022919A Active JP5160098B2 (en) 2007-02-01 2007-02-01 Flying boat

Country Status (1)

Country Link
JP (1) JP5160098B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215035A (en) * 2009-03-13 2010-09-30 Global Energy Co Ltd Three-fuselage aircraft
JP2010247627A (en) * 2009-04-14 2010-11-04 Global Energy Co Ltd Airplane
KR101145960B1 (en) 2011-12-16 2012-05-15 장성호 Vertical take off and landing system of flight object
WO2017006656A1 (en) * 2015-07-08 2017-01-12 株式会社ベルシオン Rapid boat
JP6063595B1 (en) * 2016-06-10 2017-01-18 株式会社緑星社 Fish school search system
JP2017019322A (en) * 2015-07-08 2017-01-26 株式会社ベルシオン Tail-less aircraft
JP2018154332A (en) * 2013-01-23 2018-10-04 国立大学法人 名古屋工業大学 Flight body that can run on land (and water if possible) with protect frame and automatic charging device
CN113602478A (en) * 2021-02-02 2021-11-05 中国空气动力研究与发展中心高速空气动力研究所 Fluid control surface based on circulation control and vertical micro-jet flow

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020097419A (en) * 2020-02-27 2020-06-25 中松 義郎 Wing rotatable vertical takeoff and landing long-range aircraft

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB209538A (en) * 1922-11-08 1924-01-17 English Electric Co Ltd Improvements in seaplanes
GB296570A (en) * 1927-09-29 1928-09-06 Samuel Edgar Saunders Improvements in flying boats
GB556506A (en) * 1942-06-24 1943-10-07 James Cosgrove Carmichael Improvements in or relating to floats for aircraft
US3190582A (en) * 1964-01-02 1965-06-22 Collins Radio Co Ground effects utilizing and transition aircraft
GB1209290A (en) * 1970-06-01 1970-10-21 Arthur Paul Pedrick Improvements in the design, structure, and safety of large aircraft
JPS6448398U (en) * 1987-09-21 1989-03-24
JPH01197199A (en) * 1988-02-01 1989-08-08 Kayseven Co Ltd Radio control type small airplane
JPH02262461A (en) * 1989-03-31 1990-10-25 Meitec Corp Water surface air plane
JPH05294277A (en) * 1992-04-21 1993-11-09 Shinrei Zosen Kk Ground effect blade vessel
US20020092949A1 (en) * 2001-01-17 2002-07-18 Lockheed Martin Corporation Anti-submarine warfare uav and method of use thereof
JP2005335425A (en) * 2004-05-24 2005-12-08 Kawaju Gifu Engineering Kk Unmanned aircraft
JP2007076562A (en) * 2005-09-15 2007-03-29 Fjc:Kk Propeller
JP2007125914A (en) * 2005-11-01 2007-05-24 Fjc:Kk Fluid focusing propeller
JP2008137506A (en) * 2006-12-01 2008-06-19 Fjc:Kk Vessel

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB209538A (en) * 1922-11-08 1924-01-17 English Electric Co Ltd Improvements in seaplanes
GB296570A (en) * 1927-09-29 1928-09-06 Samuel Edgar Saunders Improvements in flying boats
GB556506A (en) * 1942-06-24 1943-10-07 James Cosgrove Carmichael Improvements in or relating to floats for aircraft
US3190582A (en) * 1964-01-02 1965-06-22 Collins Radio Co Ground effects utilizing and transition aircraft
GB1209290A (en) * 1970-06-01 1970-10-21 Arthur Paul Pedrick Improvements in the design, structure, and safety of large aircraft
JPS6448398U (en) * 1987-09-21 1989-03-24
JPH01197199A (en) * 1988-02-01 1989-08-08 Kayseven Co Ltd Radio control type small airplane
JPH02262461A (en) * 1989-03-31 1990-10-25 Meitec Corp Water surface air plane
JPH05294277A (en) * 1992-04-21 1993-11-09 Shinrei Zosen Kk Ground effect blade vessel
US20020092949A1 (en) * 2001-01-17 2002-07-18 Lockheed Martin Corporation Anti-submarine warfare uav and method of use thereof
JP2005335425A (en) * 2004-05-24 2005-12-08 Kawaju Gifu Engineering Kk Unmanned aircraft
JP2007076562A (en) * 2005-09-15 2007-03-29 Fjc:Kk Propeller
JP2007125914A (en) * 2005-11-01 2007-05-24 Fjc:Kk Fluid focusing propeller
JP2008137506A (en) * 2006-12-01 2008-06-19 Fjc:Kk Vessel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215035A (en) * 2009-03-13 2010-09-30 Global Energy Co Ltd Three-fuselage aircraft
JP2010247627A (en) * 2009-04-14 2010-11-04 Global Energy Co Ltd Airplane
KR101145960B1 (en) 2011-12-16 2012-05-15 장성호 Vertical take off and landing system of flight object
JP2018154332A (en) * 2013-01-23 2018-10-04 国立大学法人 名古屋工業大学 Flight body that can run on land (and water if possible) with protect frame and automatic charging device
JP2020073370A (en) * 2013-01-23 2020-05-14 国立大学法人 名古屋工業大学 Flying object with protection frame movable on land (and on water, if possible), and automatic charging device
WO2017006656A1 (en) * 2015-07-08 2017-01-12 株式会社ベルシオン Rapid boat
JP2017019323A (en) * 2015-07-08 2017-01-26 株式会社ベルシオン High-speed boat
JP2017019322A (en) * 2015-07-08 2017-01-26 株式会社ベルシオン Tail-less aircraft
JP6063595B1 (en) * 2016-06-10 2017-01-18 株式会社緑星社 Fish school search system
CN113602478A (en) * 2021-02-02 2021-11-05 中国空气动力研究与发展中心高速空气动力研究所 Fluid control surface based on circulation control and vertical micro-jet flow

Also Published As

Publication number Publication date
JP5160098B2 (en) 2013-03-13

Similar Documents

Publication Publication Date Title
JP5160098B2 (en) Flying boat
US7322872B2 (en) Model toy aircraft
JP6547117B2 (en) Vertical take-off and landing aircraft
EP2202148B1 (en) Ground effect aircaft
JP2007203008A (en) Vertical taking off and landing airplane
US4261533A (en) All-axis control of aircraft in ultra deep stall
JPH0781694A (en) Flying object
US7188580B1 (en) Variable-geometry graduated surface-foil for wing-in-ground effect vehicles
US6164591A (en) Ground-effect flying boats also applicable to aircraft, drones, and spacecraft
CN112428760B (en) Cross-medium aircraft and navigation method for navigating in complicated water area environment with bottom-close height-fixing function
JP5000995B2 (en) Ship
US6435932B1 (en) Model space craft glider
JP4768467B2 (en) Surface effect projectile
JPH04228353A (en) Ship with wing
JP3191468U (en) Reaction flight propulsion control machine
US2676771A (en) Hydroflap
JP2022028578A (en) Flight vehicle
JP5745213B2 (en) Three-body airplane
WO2017006655A1 (en) Tailless airplane
JP2021049960A (en) Flight body
JPH07291194A (en) Water gliding plane
JP3166070B2 (en) Biplane airship
JP4888951B2 (en) Surface effect aircraft
JP7418175B2 (en) flying object
JPS62173399A (en) Emergency safety landing channel aircraft

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080626

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090804

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110107

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121212

R150 Certificate of patent or registration of utility model

Ref document number: 5160098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S804 Written request for registration of cancellation of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314803

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250