[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008188303A - Electronic sphygmometer - Google Patents

Electronic sphygmometer Download PDF

Info

Publication number
JP2008188303A
JP2008188303A JP2007027255A JP2007027255A JP2008188303A JP 2008188303 A JP2008188303 A JP 2008188303A JP 2007027255 A JP2007027255 A JP 2007027255A JP 2007027255 A JP2007027255 A JP 2007027255A JP 2008188303 A JP2008188303 A JP 2008188303A
Authority
JP
Japan
Prior art keywords
pulse wave
cuff
pressure
pressurization
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007027255A
Other languages
Japanese (ja)
Other versions
JP4213188B2 (en
Inventor
Kiyoshi Ito
清 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Holdings Co Ltd
Original Assignee
Citizen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Holdings Co Ltd filed Critical Citizen Holdings Co Ltd
Priority to JP2007027255A priority Critical patent/JP4213188B2/en
Priority to PCT/JP2008/051859 priority patent/WO2008096750A1/en
Priority to CN2008800011865A priority patent/CN101568299B/en
Publication of JP2008188303A publication Critical patent/JP2008188303A/en
Application granted granted Critical
Publication of JP4213188B2 publication Critical patent/JP4213188B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • A61B5/0225Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers the pressure being controlled by electric signals, e.g. derived from Korotkoff sounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To judge insufficient pressurization as needed and to judge the insufficient pressurization corresponding to the probability of pulse wave information extracted in the pressurizing process of a cuff. <P>SOLUTION: The electronic sphygmometer comprises: a cuff 1; a pressurizing means 2 for pressurizing the cuff 1; a depressurizing means 4 for depressurizing the cuff 1; a pressure detection means 5 for detecting the pressure of the cuff 1; a pulse wave component detection means 11 for detecting pulse wave components superimposed on cuff pressure signals detected by the pressure detection means 5; a pulse wave amplitude value calculation means 12 for calculating a pulse wave amplitude value from the pulse wave components detected by the pulse wave component detection means 11; and an insufficient pressurization judgement means 20 for judging that the cuff pressure is sufficient when the pulse wave amplitude value captured in the initial period of a depressurizing process is equal to or smaller than a threshold and judging that the cuff pressure is insufficient when it is not so. When the probability of the pulse wave information extracted in the pressurizing process is extremely high, the insufficient pressurization judgement means 20 does not judge the insufficient pressurization. Also, the threshold is changed corresponding to the probability of the pulse wave information extracted in the pressurizing process of the cuff 1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、オシロメトリック式の電子血圧計に関し、特に、カフの減圧中に血圧の測定を行う電子血圧計に関する。   The present invention relates to an oscillometric electronic sphygmomanometer, and more particularly to an electronic sphygmomanometer that measures blood pressure during cuff decompression.

従来、カフの減圧中に血圧の測定を行うタイプのオシロメトリック式電子血圧計は、最高血圧値よりも高いと推定される所定の圧力値までカフを加圧した後、徐々に減圧していく過程でカフの圧力(以下、カフ圧とする)を検出し、そのカフ圧信号に含まれる脈波成分に基づいて、血圧を決定する構成となっている。従って、カフの加圧が不十分な状態で減圧過程に移行しても、正確な血圧を決定することはできない。そこで、カフの加圧停止後、減圧過程の初期において、カフの加圧状態が十分であるか否かを判断する機能を備えた電子血圧計が提案されている。   Conventionally, an oscillometric electronic sphygmomanometer that measures blood pressure during decompression of the cuff pressurizes the cuff to a predetermined pressure value that is estimated to be higher than the maximum blood pressure value, and then gradually reduces the pressure. The cuff pressure (hereinafter referred to as cuff pressure) is detected in the process, and the blood pressure is determined based on the pulse wave component included in the cuff pressure signal. Therefore, accurate blood pressure cannot be determined even when the process proceeds to the pressure reduction process with insufficient cuff pressurization. In view of this, an electronic sphygmomanometer having a function of determining whether or not the pressure state of the cuff is sufficient at the initial stage of the pressure reduction process after the pressurization of the cuff has been proposed.

例えば、測定開始直後の脈波成分の振幅(以下、脈波振幅とする)と基準値を比較し、脈波振幅が基準値を超えていれば、加圧不足であると判定する機能を備えた第1の電子血圧計が公知である(例えば、特許文献1参照。)。特許文献1では、基準値は、一般的に考え得る最高血圧における脈波振幅の最大値であるとされている。また、カフの減圧過程における脈波振幅の最大値と測定開始直後の脈波振幅の比を求め、この比の値が判定値に及ばない場合に加圧不足であると判定する機能を備えた第2の電子血圧計が公知である(例えば、特許文献1参照。)。   For example, it has a function of comparing the amplitude of the pulse wave component immediately after the start of measurement (hereinafter referred to as pulse wave amplitude) with a reference value, and determining that pressurization is insufficient if the pulse wave amplitude exceeds the reference value. The first electronic sphygmomanometer is known (for example, see Patent Document 1). In Patent Document 1, the reference value is assumed to be the maximum value of the pulse wave amplitude at the highest possible blood pressure. In addition, the function of determining the ratio between the maximum value of the pulse wave amplitude during the decompression process of the cuff and the pulse wave amplitude immediately after the start of measurement and determining that the pressure is insufficient when the ratio value does not reach the determination value. A second electronic sphygmomanometer is known (for example, see Patent Document 1).

さらに、カフ加圧中に抽出する脈波振幅の最大値を検出し、その最大値を基にしきい値を計算し、このしきい値とカフの減圧過程の初期に捉えた脈波振幅とを比較し、この減圧過程に移行した直後に検出した脈波振幅がしきい値より小さい場合にはカフ加圧十分と判定し、大きい場合にはカフ加圧不足と判定する機能を備えた第3の電子血圧計が公知である(例えば、特許文献2参照。)。   Furthermore, the maximum value of the pulse wave amplitude extracted during cuff pressurization is detected, a threshold value is calculated based on the maximum value, and this threshold value and the pulse wave amplitude captured at the beginning of the cuff decompression process are calculated. In comparison, if the pulse wave amplitude detected immediately after the transition to the decompression process is smaller than the threshold value, it is determined that the cuff pressurization is sufficient. Is known (for example, see Patent Document 2).

特開昭61−128939号公報(2.特許請求の範囲(1)および(4))JP-A-61-128939 (2. Claims (1) and (4)) 特開平5−111468号公報([特許請求の範囲]の[請求項1])JP-A-5-111468 ([Claim 1] of [Claims])

しかしながら、前記第1の血圧計では、被験者の個人差により、基準値が妥当である者もいれば、そうでない者もいるため、加圧不足の判定精度が低いという問題がある。また、前記第2の血圧計では、カフの減圧過程に移行した後、脈波振幅の最大値を検出するまで減圧を続ける必要があるため、加圧不足の判定に要する時間が長くなり、被験者に苦痛を強いる原因となるという問題がある。   However, the first sphygmomanometer has a problem that the accuracy of determination of insufficient pressurization is low because there are some people whose reference values are appropriate and others who are not, depending on individual differences among subjects. In the second sphygmomanometer, since it is necessary to continue the decompression until the maximum value of the pulse wave amplitude is detected after the transition to the decompression process of the cuff, the time required for the determination of insufficient pressurization becomes longer. There is a problem that it causes pain.

さらに、前記第3の血圧計では、一般的に加圧速度が減圧速度に対して高速であるため、加圧中に脈波を正確に抽出できるとは限らない。抽出された脈波が正確でない場合には、正確なしきい値が得られないため、加圧不足の判定精度が低いという問題がある。   Further, in the third sphygmomanometer, since the pressurization rate is generally higher than the depressurization rate, it is not always possible to accurately extract the pulse wave during pressurization. If the extracted pulse wave is not accurate, an accurate threshold value cannot be obtained, and there is a problem that the determination accuracy of insufficient pressurization is low.

この発明は、上述した従来技術による問題点を解消するため、必要に応じて加圧不足の判定を行う電子血圧計を提供することを目的とする。また、この発明は、カフの加圧過程で抽出された脈波情報の確からしさに応じて加圧不足の判定を行う電子血圧計を提供することを目的とする。   An object of the present invention is to provide an electronic sphygmomanometer that determines the lack of pressurization as necessary in order to eliminate the above-described problems caused by the conventional technology. It is another object of the present invention to provide an electronic sphygmomanometer that determines the lack of pressurization according to the likelihood of pulse wave information extracted during the cuff pressurization process.

上述した課題を解決し、目的を達成するため、請求項1の発明にかかる電子血圧計は、カフと、前記カフを加圧する加圧手段と、加圧終了後に前記カフを減圧する減圧手段と、前記カフの減圧過程においてカフ圧不足かどうかを判定する加圧不足判定手段と、を備える電子血圧計において、前記カフの加圧過程で抽出された脈派情報に応じて前記加圧不足判定手段による判定を行わないことを特徴とする。   In order to solve the above-described problems and achieve the object, an electronic sphygmomanometer according to the invention of claim 1 includes a cuff, a pressurizing unit that pressurizes the cuff, and a depressurizing unit that depressurizes the cuff after pressurization is completed. An underpressure determining means for determining whether cuff pressure is insufficient in the cuff depressurization process, wherein the underpressure determination is performed according to pulse information extracted in the cuff pressurization process The determination by means is not performed.

また、請求項2の発明にかかる電子血圧計は、請求項1に記載の発明において、前記カフの圧力を検出する圧力検出手段と、前記圧力検出手段により検出されたカフ圧信号から脈波情報を検出する脈波情報検出手段と、前記脈波情報から加圧停止圧を算出する加圧停止圧算出手段と、前記脈波情報から前記加圧停止圧の確度を算出する加圧停止圧推定確度算出手段と、をさらに備え、前記加圧停止圧の確度に応じて前記加圧不足判定手段による判定を行わないことを特徴とする。   An electronic sphygmomanometer according to a second aspect of the present invention is the electronic blood pressure monitor according to the first aspect, wherein the pulse wave information is detected from a pressure detection means for detecting the pressure of the cuff and a cuff pressure signal detected by the pressure detection means. A pulse wave information detecting means for detecting pressure, a pressurization stop pressure calculating means for calculating a pressurization stop pressure from the pulse wave information, and a pressurization stop pressure estimation for calculating the accuracy of the pressurization stop pressure from the pulse wave information. An accuracy calculation unit, and the determination by the underpressure determination unit is not performed according to the accuracy of the pressurization stop pressure.

また、請求項3の発明にかかる電子血圧計は、請求項2に記載の発明において、前記圧力検出手段により検出されたカフ圧信号に重畳された脈波成分を検出し、検出された脈波成分から脈波振幅情報を算出する脈波振幅情報算出手段と、をさらに備え、前記加圧不足判定手段は、前記カフの減圧過程で捉えた脈波振幅情報としきい値とを比較し、前記脈波振幅情報が前記しきい値以下である場合にカフ圧が十分であると判定し、前記脈波振幅情報が前記しきい値より大きい場合にカフ圧不足であると判定することを特徴とする。   An electronic sphygmomanometer according to a third aspect of the invention is the electronic blood pressure monitor according to the second aspect, wherein the pulse wave component superimposed on the cuff pressure signal detected by the pressure detecting means is detected and the detected pulse wave is detected. Pulse wave amplitude information calculating means for calculating pulse wave amplitude information from a component, wherein the under-pressurization determining means compares the pulse wave amplitude information captured in the cuff decompression process with a threshold value, and It is determined that the cuff pressure is sufficient when the pulse wave amplitude information is equal to or less than the threshold value, and it is determined that the cuff pressure is insufficient when the pulse wave amplitude information is greater than the threshold value. To do.

また、請求項4の発明にかかる電子血圧計は、カフと、前記カフを加圧する加圧手段と、加圧終了後に前記カフを減圧する減圧手段と、前記カフの圧力を検出する圧力検出手段と、前記圧力検出手段により検出されたカフ圧信号に重畳された脈波成分を検出し、検出された脈波成分から脈波振幅情報を算出する脈波振幅情報算出手段と、前記カフの減圧過程で捉えた脈波振幅情報としきい値とを比較することでカフ圧不足かどうかを判定する加圧不足判定手段と、を備える電子血圧計において、前記圧力検出手段により検出されたカフ圧信号から脈波情報の確度を算出し、前記脈波情報の確度に応じて前記しきい値を変更することを特徴とする。   According to a fourth aspect of the present invention, there is provided an electronic sphygmomanometer comprising a cuff, a pressurizing unit that pressurizes the cuff, a depressurizing unit that depressurizes the cuff after completion of pressurization, and a pressure detecting unit that detects the pressure of the cuff. A pulse wave amplitude information calculating unit that detects a pulse wave component superimposed on the cuff pressure signal detected by the pressure detecting unit and calculates pulse wave amplitude information from the detected pulse wave component; and a pressure reduction of the cuff A cuff pressure signal detected by the pressure detecting means in an electronic sphygmomanometer comprising: an underpressure determining unit that determines whether the cuff pressure is insufficient by comparing the pulse wave amplitude information captured in the process with a threshold value The accuracy of the pulse wave information is calculated from the pulse wave information, and the threshold value is changed according to the accuracy of the pulse wave information.

また、請求項5の発明にかかる電子血圧計は、請求項4に記載の発明において、前記圧力検出手段により検出されたカフ圧信号から脈波情報を検出する脈波情報検出手段と、前記脈波情報から加圧停止圧を算出する加圧停止圧算出手段と、前記脈波情報から前記加圧停止圧の確度を算出する加圧停止圧推定確度算出手段と、をさらに備え、前記前記加圧停止圧の確度に応じて前記しきい値を変更することを特徴とする。   An electronic sphygmomanometer according to a fifth aspect of the present invention is the electronic sphygmomanometer according to the fourth aspect, wherein the pulse wave information detecting means detects pulse wave information from the cuff pressure signal detected by the pressure detecting means; Pressurization stop pressure calculating means for calculating the pressurization stop pressure from the wave information; and pressurization stop pressure estimation accuracy calculating means for calculating the accuracy of the pressurization stop pressure from the pulse wave information. The threshold value is changed according to the accuracy of the pressure stop pressure.

また、請求項6の発明にかかる電子血圧計は、請求項4又は5に記載の発明において、前記加圧不足判定手段は、前記脈波振幅情報が前記しきい値以下である場合にカフ圧が十分であると判定し、前記脈波振幅情報が前記しきい値より大きい場合にカフ圧不足であると判定することを特徴とする。   An electronic blood pressure monitor according to a sixth aspect of the present invention is the electronic blood pressure monitor according to the fourth or fifth aspect, wherein the insufficient pressurization determining means is configured to detect cuff pressure when the pulse wave amplitude information is equal to or less than the threshold value. Is determined to be sufficient, and when the pulse wave amplitude information is larger than the threshold value, it is determined that the cuff pressure is insufficient.

また、請求項7の発明にかかる電子血圧計は、請求項1乃至6何れか一項に記載の発明において、前記脈波情報は、前記カフの加圧過程で抽出された脈波数、脈波の間隔、および算出された脈波振幅値のうちの1種以上の情報であることを特徴とする。   An electronic blood pressure monitor according to a seventh aspect of the present invention is the electronic blood pressure monitor according to any one of the first to sixth aspects, wherein the pulse wave information includes a pulse wave number and a pulse wave extracted during the pressurizing process of the cuff. And one or more types of information among the calculated pulse wave amplitude values.

また、請求項8の発明にかかる電子血圧計は、請求項1乃至7何れか一項に記載の発明において、前記脈波振幅情報は、脈波振幅値、脈波面積、または脈波振幅微分値のうちの1種以上の情報であることを特徴とする。   According to an eighth aspect of the present invention, in the electronic blood pressure monitor according to any one of the first to seventh aspects, the pulse wave amplitude information includes a pulse wave amplitude value, a pulse wave area, or a pulse wave amplitude derivative. It is one or more types of information among values.

請求項1の発明によれば、カフの加圧過程で抽出された脈派情報に応じて加圧不足の判定を行わないようにしたので、必要に応じて加圧不足の判定が行われる。例えば、カフの加圧過程で抽出された脈派情報の確からしさが非常に高い場合、加圧不足の判定が行われない。従って、無駄な処理が行われることがない。また、従来、減圧過程の初期に体動などの影響によってしきい値よりも大きいノイズが発生すると、加圧不足であると判定されてしまうため、実際にはカフの再加圧が必要ないにもかかわらず、再加圧が行われるという不具合があった。これに対して、請求項1の発明によれば、カフの加圧過程で抽出された脈派情報に応じて加圧不足の判定を行わないようにしたので、このようなノイズの影響による誤判断がなくなる。従って、不必要な再加圧が行われなくなる。   According to the first aspect of the present invention, since the determination of insufficient pressurization is not performed according to the pulse information extracted during the pressurization process of the cuff, the determination of insufficient pressurization is performed as necessary. For example, when the probability of the pulse information extracted during the cuff pressurization process is very high, the determination of insufficient pressurization is not performed. Therefore, useless processing is not performed. Conventionally, if noise larger than the threshold value occurs due to the influence of body movement or the like in the early stage of the decompression process, it is determined that the pressurization is insufficient, so that it is not actually necessary to repressurize the cuff. Nevertheless, there was a problem that re-pressurization was performed. On the other hand, according to the invention of claim 1, since the determination of insufficient pressurization is not performed according to the pulse information extracted in the cuff pressurization process, the error due to the influence of such noise is not performed. Judgment is lost. Therefore, unnecessary repressurization is not performed.

請求項4の発明によれば、カフの加圧過程で抽出された脈派情報の確からしさに基づいて、加圧不足の判定に用いられるしきい値が算出される。このしきい値を用いて加圧不足の判定が行われるので、カフの加圧過程で抽出された脈派情報の確からしさに応じて加圧不足の判定が行われる。例えば、カフの加圧過程で抽出された脈派情報の確からしさが高い場合には、しきい値を高くするので、加圧不足と判定されにくくなり、確からしさが低い場合には、しきい値を低くするので、加圧不足と判定されやすくなる。つまり、加圧不足の判定が必要以上に厳しく行われないようになる。   According to the fourth aspect of the present invention, the threshold value used for the determination of insufficient pressurization is calculated based on the probability of the pulse information extracted in the cuff pressurization process. Since the determination of insufficient pressurization is performed using this threshold value, the determination of insufficient pressurization is performed according to the probability of the pulse information extracted during the cuff pressurization process. For example, when the probability of the pulse information extracted during the cuff pressurization process is high, the threshold value is increased, so that it is difficult to determine that pressurization is insufficient, and when the probability is low, the threshold is set. Since the value is lowered, it is easily determined that the pressure is insufficient. That is, the determination of insufficient pressurization is not performed more strictly than necessary.

本発明にかかる電子血圧計によれば、必要に応じて加圧不足の判定を行うことができるという効果を奏する。また、カフの加圧過程で抽出された脈波情報の確からしさに応じて加圧不足判定の条件を変更できるという効果を奏する。   According to the electronic sphygmomanometer according to the present invention, there is an effect that it is possible to determine the lack of pressurization as necessary. In addition, there is an effect that it is possible to change the condition for determining the lack of pressurization according to the probability of the pulse wave information extracted during the cuff pressurization process.

以下に添付図面を参照して、この発明にかかる電子血圧計の好適な実施の形態を詳細に説明する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。   Exemplary embodiments of an electronic blood pressure monitor according to the present invention will be described below in detail with reference to the accompanying drawings. Note that, in the following description of the embodiments and the accompanying drawings, the same reference numerals are given to the same components, and duplicate descriptions are omitted.

図1は、この発明の実施の形態にかかる電子血圧計の構成を示すブロック図である。図1に示すように、電子血圧計は、カフ1、加圧手段2、急速排気手段3、減圧手段4、圧力検出手段5、マイクロコンピュータ(以下、マイコンとする)6および表示部7を備えている。カフ1と、加圧手段2、急速排気手段3、減圧手段4および圧力検出手段5とは、チューブ8により接続されている。   FIG. 1 is a block diagram showing a configuration of an electronic sphygmomanometer according to an embodiment of the present invention. As shown in FIG. 1, the electronic sphygmomanometer includes a cuff 1, a pressurizing unit 2, a quick exhaust unit 3, a decompression unit 4, a pressure detection unit 5, a microcomputer (hereinafter referred to as a microcomputer) 6, and a display unit 7. ing. The cuff 1, the pressurizing means 2, the quick exhaust means 3, the decompression means 4 and the pressure detection means 5 are connected by a tube 8.

マイコン6は、加圧制御手段21、急速排気制御手段22、減圧制御手段23、脈波成分検出手段11、脈波振幅値算出手段12、血圧値決定手段13、加圧時脈波情報検出手段15、加圧停止圧算出手段17、加圧停止圧推定確度算出手段18、しきい値算出手段19および加圧不足判定手段20を備えている。マイコン6を構成するこれらの手段は、マイコン6が圧力測定プログラムを実行することにより実現される。   The microcomputer 6 includes a pressurization control means 21, a quick exhaust control means 22, a decompression control means 23, a pulse wave component detection means 11, a pulse wave amplitude value calculation means 12, a blood pressure value determination means 13, and a pressurization pulse wave information detection means. 15, a pressurization stop pressure calculating unit 17, a pressurization stop pressure estimation accuracy calculating unit 18, a threshold value calculating unit 19, and a pressurization insufficient determining unit 20. These means constituting the microcomputer 6 are realized by the microcomputer 6 executing a pressure measurement program.

加圧制御手段21は、圧力検出手段5の出力信号に基づいて、カフ1を加圧する加圧手段2(空気等の流体をカフ1へ送り出すポンプ等)を制御しカフ1の加圧速度を制御する。また、加圧制御手段21は、加圧停止圧算出手段17の出力信号に基づいて、加圧を停止するように制御する。さらに、加圧制御手段21は、加圧不足判定手段20の出力信号に基づいて、カフ1を再び加圧するように制御する。   The pressurization control means 21 controls the pressurization means 2 (a pump for sending a fluid such as air to the cuff 1) that pressurizes the cuff 1 based on the output signal of the pressure detection means 5 to control the pressurization speed of the cuff 1. Control. Further, the pressurization control unit 21 controls to stop pressurization based on the output signal of the pressurization stop pressure calculating unit 17. Further, the pressurization control means 21 controls to pressurize the cuff 1 again based on the output signal of the pressurization insufficient determination means 20.

急速排気制御手段22は、血圧値決定手段13の通知に基づいて、急速排気手段3(カフ1内の空気等を急速に排気する急速排気弁等)を制御し、カフ1を急速に減圧する。減圧制御手段23は、加圧停止圧算出手段17の出力信号に基づいて、減圧手段4(カフ1内の空気等を微速で排気する微速排気弁等)を制御し、カフ1の圧力の微速減圧を開始し、さらに、圧力検出手段5の出力信号に基づいて、減圧速度を制御する。   The rapid exhaust control unit 22 controls the rapid exhaust unit 3 (a rapid exhaust valve or the like that rapidly exhausts air or the like in the cuff 1) based on the notification from the blood pressure value determination unit 13, and rapidly decompresses the cuff 1. . The decompression control means 23 controls the decompression means 4 (such as a slow exhaust valve that exhausts the air in the cuff 1 at a very low speed) based on the output signal of the pressurization stop pressure calculating means 17, and the slow speed of the pressure of the cuff 1. The decompression is started, and the decompression speed is controlled based on the output signal of the pressure detecting means 5.

圧力検出手段5は、カフ1の圧力を検出する。圧力検出手段5は、例えば、圧力センサにより構成されている。表示部7は、マイコン6により決定された最高血圧値および最低血圧値を表示する。表示部7は、例えば、液晶表示パネルと、その液晶表示パネルの表示制御を行う制御手段により構成されている。   The pressure detection means 5 detects the pressure of the cuff 1. The pressure detection means 5 is comprised by the pressure sensor, for example. The display unit 7 displays the maximum blood pressure value and the minimum blood pressure value determined by the microcomputer 6. The display unit 7 includes, for example, a liquid crystal display panel and a control unit that performs display control of the liquid crystal display panel.

加圧時脈波情報検出手段15は、加圧手段2によりカフ1を加圧しているときに、圧力検出手段5の出力信号中に含まれる脈波情報を検出する。このとき、加圧時脈波情報検出手段15により検出される脈波情報は、カフ1の圧力の微分値(加圧速度)である。これは、カフ1の加圧時に検出される脈に起因する圧力変動が、観測するのが困難であるくらいに小さいからである。   The pressurizing pulse wave information detecting unit 15 detects pulse wave information included in the output signal of the pressure detecting unit 5 when the cuff 1 is pressurized by the pressurizing unit 2. At this time, the pulse wave information detected by the pressurizing pulse wave information detecting means 15 is a differential value (pressurization speed) of the pressure of the cuff 1. This is because the pressure fluctuation caused by the pulse detected when the cuff 1 is pressurized is so small that it is difficult to observe.

図2は、加圧過程におけるカフ圧の微分値を、横軸をカフ圧として示す特性図である。なお、図2に示す例では、特に限定しないが、加圧速度が15mmHg/secになるように制御されている。図2に示すように、カフ圧の微分値をとることによって、微小な圧力変動を観測できるようになるので、脈波を顕在化させることができる。   FIG. 2 is a characteristic diagram showing the differential value of the cuff pressure in the pressurizing process, with the horizontal axis as the cuff pressure. In the example shown in FIG. 2, although not particularly limited, the pressurization speed is controlled to be 15 mmHg / sec. As shown in FIG. 2, by taking a differential value of the cuff pressure, minute pressure fluctuations can be observed, so that a pulse wave can be made obvious.

加圧停止圧算出手段17は、加圧時脈波情報検出手段15により検出されたカフ圧の微分値に基づいて、加圧手段2によるカフ1の加圧を停止する加圧停止圧を算出する。加圧停止圧算出手段17は、例えば、微分脈波振幅値が最大となるときのカフ圧に60mmHgを加算した圧力を加圧停止圧とする。カフ1の加圧時にカフ圧が加圧停止圧に達すると、加圧停止圧算出手段17の出力信号がアサートされる。それによって、加圧手段2の駆動が停止され、その代わりに、減圧手段4を構成する微速排気弁が開き、カフ1の微速減圧が開始される。   The pressurization stop pressure calculating means 17 calculates the pressurization stop pressure for stopping the pressurization of the cuff 1 by the pressurizing means 2 based on the differential value of the cuff pressure detected by the pressurization pulse wave information detecting means 15. To do. For example, the pressurization stop pressure calculating means 17 sets the pressure obtained by adding 60 mmHg to the cuff pressure when the differential pulse wave amplitude value is maximized as the pressurization stop pressure. When the cuff pressure reaches the pressurization stop pressure when the cuff 1 is pressurized, the output signal of the pressurization stop pressure calculating means 17 is asserted. Thereby, the drive of the pressurizing means 2 is stopped, and instead, the slow exhaust valve constituting the decompression means 4 is opened, and the slow decompression of the cuff 1 is started.

脈波成分検出手段11は、減圧手段4によりカフ1の圧力を徐々に減圧しているときに、圧力検出手段5の出力信号中に重畳されている脈波成分を検出する。脈波振幅値算出手段12は、脈波成分検出手段11により検出された脈波成分に基づいて、減圧過程における脈波振幅値を算出する。血圧値決定手段13は、脈波振幅値算出手段12の出力信号および圧力検出手段5の出力信号に基づいて、周知のオシロメトリック法による血圧決定アルゴリズムにより、最高血圧値および最低血圧値を決定する。   The pulse wave component detection means 11 detects the pulse wave component superimposed in the output signal of the pressure detection means 5 when the pressure of the cuff 1 is gradually reduced by the pressure reduction means 4. The pulse wave amplitude value calculating unit 12 calculates a pulse wave amplitude value in the decompression process based on the pulse wave component detected by the pulse wave component detecting unit 11. Based on the output signal of the pulse wave amplitude value calculation means 12 and the output signal of the pressure detection means 5, the blood pressure value determination means 13 determines the maximum blood pressure value and the minimum blood pressure value by a blood pressure determination algorithm based on a known oscillometric method. .

血圧値が決定したら、急速排気手段3を構成する急速排気弁が開き、カフ1の急速排気が開始される。また、表示部7に最低血圧値と最高血圧値が表示される。   When the blood pressure value is determined, the quick exhaust valve constituting the quick exhaust means 3 is opened, and the quick exhaust of the cuff 1 is started. In addition, the minimum blood pressure value and the maximum blood pressure value are displayed on the display unit 7.

加圧停止圧推定確度算出手段18は、加圧時脈波情報検出手段15により検出された脈波情報に基づいて、加圧停止圧算出手段17により算出される加圧停止圧がどの程度確からしいか、すなわち、加圧停止圧の推定確度(以下、加圧停止圧推定確度とする)を算出する。このときに用いられる脈波情報は、カフ1の圧力の微分値に基づいて、カフ1の加圧過程で抽出された脈波数や、脈波の間隔や、算出された脈波振幅値のうちの1種以上の情報である。   The pressurization stop pressure estimation accuracy calculation means 18 is based on the pulse wave information detected by the pressurization pulse wave information detection means 15 to determine how much the pressurization stop pressure is calculated by the pressurization stop pressure calculation means 17. That is, that is, the estimated accuracy of pressurization stop pressure (hereinafter referred to as pressurization stop pressure estimation accuracy) is calculated. The pulse wave information used at this time is based on the differential value of the pressure of the cuff 1, the pulse wave number extracted during the pressurizing process of the cuff 1, the pulse wave interval, and the calculated pulse wave amplitude value One or more types of information.

一例として、加圧停止圧推定確度算出手段18は、次の(1)〜(5)の判断基準により、(1)〜(5)のレベルで加圧停止圧推定確度を定める。(1)加圧時脈波情報検出手段15により検出された脈波情報のうち設定されたしきい値(例えば10mmHg/sec)以上の微分脈波振幅値の数をカウントし、そのカウントした値が1拍またはゼロである場合。(2)加圧時脈波情報検出手段15により検出された脈波情報のうち設定されたしきい値以上の微分脈波振幅値を持つ脈波の数が2拍以上であるが、そのうちの最後に検出された脈波の微分脈波振幅値が最大である場合。(3)加圧時脈波情報検出手段15により検出された脈波情報のうち設定されたしきい値以上の微分脈波振幅値を持つ脈波の数が2拍以上であり、かつ、そのうちの最後に検出された脈波の微分脈波振幅値が最大でない場合。(ただし、下記(5)の判断基準を満足するケースは除く。)(4)再加圧中の場合。(5)加圧時脈波情報検出手段15により検出された脈波情報のうち設定されたしきい値以上の微分脈波振幅値を持つ脈波の数が3拍以上であり、かつ、そのうちの最後に検出された脈波の微分脈波振幅値が、それよりも前に検出された脈波の微分脈波振幅値の最大値の50%以下である場合。   As an example, the pressurization stop pressure estimation accuracy calculation means 18 determines the pressurization stop pressure estimation accuracy at the levels (1) to (5) according to the following criteria (1) to (5). (1) The number of differential pulse wave amplitude values equal to or greater than a set threshold value (for example, 10 mmHg / sec) among the pulse wave information detected by the pressurizing pulse wave information detection means 15 is counted, and the counted value Is 1 beat or zero. (2) The number of pulse waves having a differential pulse wave amplitude value greater than or equal to a set threshold value among the pulse wave information detected by the pressurizing pulse wave information detection means 15 is 2 or more, of which The differential pulse wave amplitude value of the last detected pulse wave is maximum. (3) The number of pulse waves having a differential pulse wave amplitude value greater than or equal to a set threshold value among the pulse wave information detected by the pressurizing pulse wave information detection means 15 is 2 beats or more, The differential pulse wave amplitude value of the pulse wave detected at the end of is not maximum. (However, the case that satisfies the criteria of (5) below is excluded.) (4) During re-pressurization. (5) The number of pulse waves having a differential pulse wave amplitude value greater than or equal to a set threshold value among the pulse wave information detected by the pressurizing pulse wave information detection means 15 is 3 beats or more, When the differential pulse wave amplitude value of the pulse wave detected at the end of the pulse wave is 50% or less of the maximum value of the differential pulse wave amplitude value of the pulse wave detected before that.

図2の例では、10mmHg/sec以上の微分脈波振幅値を持つ脈波が6個あり、かつ、最後に検出された10mmHg/sec以上の微分脈波振幅値を持つ脈波Uが15mmHg/secであって、最大振幅値を持つ脈波S(41mmHg/sec)の微分脈波振幅値の50%以下であるので、加圧停止圧推定確度は、上記(5)のケースに当てはまる。   In the example of FIG. 2, there are six pulse waves having a differential pulse wave amplitude value of 10 mmHg / sec or more, and a pulse wave U having a differential pulse wave amplitude value of 10 mmHg / sec or more detected last is 15 mmHg / sec. Since it is sec and is 50% or less of the differential pulse wave amplitude value of the pulse wave S (41 mmHg / sec) having the maximum amplitude value, the pressurization stop pressure estimation accuracy is applicable to the case of the above (5).

しきい値算出手段19は、加圧停止圧推定確度算出手段18が算出した加圧停止圧推定確度に基づいて、しきい値を算出する。例えば、加圧停止圧推定確度が前記(1)または(2)である場合、しきい値はHth150mmHgとする。加圧停止圧推定確度が前記(5)である場合、しきい値算出手段19は、しきい値の算出を行わない。 The threshold calculation unit 19 calculates a threshold based on the pressurization stop pressure estimation accuracy calculated by the pressurization stop pressure estimation accuracy calculation unit 18. For example, when the pressurization stop pressure estimation accuracy is (1) or (2), the threshold value is H th150 mmHg. When the pressurization stop pressure estimation accuracy is (5), the threshold value calculation means 19 does not calculate the threshold value.

加圧停止圧推定確度が前記(3)または(4)である場合、しきい値算出手段19は、例えば、以下に説明するように、しきい値設定テーブルに基づいてしきい値を決める。このしきい値設定テーブルは、マイコン6に内蔵された不揮発性のメモリに記憶されていてもよいし、マイコン6が実行する血圧測定プログラムに記述されていてもよい。   When the pressurization stop pressure estimation accuracy is (3) or (4), the threshold value calculation means 19 determines a threshold value based on a threshold value setting table, for example, as described below. This threshold value setting table may be stored in a non-volatile memory built in the microcomputer 6, or may be described in a blood pressure measurement program executed by the microcomputer 6.

図3は、しきい値設定テーブルの一例を示す図表であり、図4は、加圧停止圧としきい値との関係の一例を示す特性図である。これらの図に示すように、特に限定しないが、例えば、加圧停止圧が1500mmHg未満のときのしきい値はHth150mmHgであり、180.0mmHg以上のときのしきい値はHth180mmHg(>Hth150mmHg)である。 FIG. 3 is a chart showing an example of the threshold setting table, and FIG. 4 is a characteristic chart showing an example of the relationship between the pressurization stop pressure and the threshold. As shown in these figures, although not particularly limited, for example, the threshold when the pressurization stop pressure is less than 1500 mmHg is H th150 mmHg, and the threshold when it is 180.0 mmHg or more is H th180 mmHg ( > H th150 mmHg).

加圧停止圧が150.0mmHg以上180.0mmHg未満のときのしきい値は、加圧停止圧をPSTOPmmHgとすると、次式により求められる。
しきい値=(PSTOP−150)×(Hth180−Hth150)/30+Hth150
The threshold value when the pressurization stop pressure is 150.0 mmHg or more and less than 180.0 mmHg is obtained by the following equation, where the pressurization stop pressure is P STOP mmHg.
Threshold = (P STOP −150) × (H th180 −H th150 ) / 30 + H th150

加圧停止圧が150.0mmHg以上180.0mmHg未満のときの加圧停止圧としきい値との関係は、上記式に限らず、種々変更可能である。例えば、この加圧停止圧範囲において、しきい値がHth150mmHgからHth180mmHgまで段階的に変化したり、曲線状に変化してもよい。また、加圧停止圧の臨界値は、150mmHgや180mmHgでなくてもよい。 The relationship between the pressurization stop pressure and the threshold value when the pressurization stop pressure is 150.0 mmHg or more and less than 180.0 mmHg is not limited to the above formula and can be variously changed. For example, in the pressure stop pressure range, or changed stepwise thresholds to H th180 mmHg from H th150 mmHg, may vary in a curve. Further, the critical value of the pressurization stop pressure may not be 150 mmHg or 180 mmHg.

加圧不足判定手段20は、加圧停止圧推定確度が(5)以外の場合には、しきい値算出手段19により算出されたしきい値と、減圧過程の初期段階で脈波振幅値算出手段12により算出された脈波振幅値とを比較する。そして、加圧不足判定手段20は、脈波振幅値がしきい値以下である場合には、カフ圧が十分であると判定し、脈波振幅値がしきい値より大きい場合には、カフ圧不足であると判定する。   When the pressurization stop pressure estimation accuracy is other than (5), the under-pressurization determining unit 20 calculates the pulse wave amplitude value at the initial stage of the depressurization process and the threshold value calculated by the threshold value calculating unit 19. The pulse wave amplitude value calculated by the means 12 is compared. The under-pressurization determining means 20 determines that the cuff pressure is sufficient when the pulse wave amplitude value is less than or equal to the threshold value, and determines that the cuff pressure value is greater than the threshold value. It is determined that the pressure is insufficient.

カフ圧不足である場合には、加圧不足判定手段20の出力信号がアサートされる。それによって、減圧手段4を構成する微速排気弁が閉じ、その代わりに、加圧手段2の駆動が再開され、カフ1の再加圧が始まる。再加圧後のカフ圧が十分である場合には、そのまま、カフ1の微速減圧が続けられる。一方、加圧不足判定手段20は、加圧停止圧推定確度が(5)の場合には、加圧停止圧の推定確度が非常に高いと判断し、加圧不足の判定を行わない。   When the cuff pressure is insufficient, the output signal of the insufficient pressure determination means 20 is asserted. As a result, the slow exhaust valve constituting the pressure reducing means 4 is closed, and instead, the driving of the pressurizing means 2 is resumed, and repressurization of the cuff 1 is started. When the cuff pressure after the re-pressurization is sufficient, the cuff 1 is depressurized as it is. On the other hand, when the pressurization stop pressure estimation accuracy is (5), the underpressure determination unit 20 determines that the estimation accuracy of the pressurization stop pressure is very high, and does not determine the lack of pressurization.

図5および図6は、この発明の実施の形態にかかる電子血圧計の血圧測定手順を示すフローチャートであり、図6は図5の続きである。測定者の上腕にカフ1を巻き付けた後、図5に示すように、血圧測定処理が開始されると、まず、加圧停止圧が初期値Aに設定される(ステップS1)。この初期値Aは、マイコン6に内蔵された不揮発性のメモリに記憶されていてもよいし、マイコン6が実行する血圧測定プログラムに記述されていてもよい。次いで、加圧手段2によりカフ1の加圧を開始され、測定者の上腕が圧迫される(ステップS2)。そして、圧力検出手段5および加圧時脈波情報検出手段15により、加圧時の脈波を検出できたか否かを判断する(ステップS3)。   5 and 6 are flowcharts showing the blood pressure measurement procedure of the electronic sphygmomanometer according to the embodiment of the present invention, and FIG. 6 is a continuation of FIG. After the cuff 1 is wound around the upper arm of the measurer, as shown in FIG. 5, when the blood pressure measurement process is started, first, the pressurization stop pressure is set to the initial value A (step S1). This initial value A may be stored in a non-volatile memory built in the microcomputer 6, or may be described in a blood pressure measurement program executed by the microcomputer 6. Next, pressurization of the cuff 1 is started by the pressurizing means 2, and the upper arm of the measurer is pressed (step S2). And it is judged by the pressure detection means 5 and the pressurization pulse wave information detection means 15 whether the pulse wave at the time of pressurization was able to be detected (step S3).

脈波を検出できない場合には(ステップS3:No)、ステップS9へ進む。脈波を検出できる場合には(ステップS3:Yes)、加圧時脈波情報検出手段15により、微分脈波振幅値を算出する(ステップS4)。そして、算出された微分脈波振幅値とそれに対応する脈波の開始圧(その脈波の開始点のカフ圧)をマイコン6内のメモリに記憶する(ステップS5)。このメモリは、図1では省略されている。   If the pulse wave cannot be detected (step S3: No), the process proceeds to step S9. When the pulse wave can be detected (step S3: Yes), the pulse wave information detecting means 15 at the time of pressurization calculates a differential pulse wave amplitude value (step S4). Then, the calculated differential pulse wave amplitude value and the corresponding pulse wave start pressure (the cuff pressure at the start point of the pulse wave) are stored in the memory in the microcomputer 6 (step S5). This memory is omitted in FIG.

次いで、加圧時脈波情報検出手段15により、ステップS4で算出された微分脈波振幅値が最大であるか否かを判定する(ステップS6)。マイコン6内のメモリに微分脈波振幅値の最大値を記憶する領域を設け、その領域に記憶されている微分脈波振幅値の最大値とステップS4で新たに算出された微分脈波振幅値とを比較することで当該判定を行う。ただし、微分脈波振幅値が初めて算出されたときには、微分脈波振幅値の最大値を記憶するマイコン6内のメモリ上の領域には何も記憶されていないので、初めて算出された微分脈波振幅値が最大であると判定される。ステップS6において、ステップS4で算出された微分脈波振幅値が最大であると判定された場合には(ステップS6:Yes)、微分脈波振幅値の最大値を更新する(ステップS7)。そして、加圧停止圧算出手段17により、加圧停止圧を算出し(ステップS8)、ステップS9へ進む。   Subsequently, it is determined by the pressurization pulse wave information detection means 15 whether or not the differential pulse wave amplitude value calculated in step S4 is maximum (step S6). An area for storing the maximum value of the differential pulse wave amplitude value is provided in the memory in the microcomputer 6, and the maximum value of the differential pulse wave amplitude value stored in the area and the differential pulse wave amplitude value newly calculated in step S4 This determination is made by comparing However, when the differential pulse wave amplitude value is calculated for the first time, nothing is stored in the area on the memory in the microcomputer 6 that stores the maximum value of the differential pulse wave amplitude value. It is determined that the amplitude value is the maximum. If it is determined in step S6 that the differential pulse wave amplitude value calculated in step S4 is the maximum (step S6: Yes), the maximum value of the differential pulse wave amplitude value is updated (step S7). Then, the pressurization stop pressure calculating means 17 calculates the pressurization stop pressure (step S8), and the process proceeds to step S9.

一方、ステップS4で算出された微分脈波振幅値が最大でない場合には(ステップS6:No)、ステップS7を省略して、ステップS8へ進む。   On the other hand, when the differential pulse wave amplitude value calculated in step S4 is not the maximum (step S6: No), step S7 is omitted and the process proceeds to step S8.

ステップS9では、カフ1の現在の圧力が、ステップS8で算出された加圧停止圧よりも高いか否かを判断する(ステップS9)。高い場合には(ステップS9:Yes)、加圧停止圧推定確度算出手段18により、加圧停止圧の推定確度を算出する(ステップS10)。そして、加圧手段2によるカフ1の加圧を終了する(ステップS11)。現在圧力が加圧停止圧よりも高くない場合には(ステップS9:No)、ステップS2に戻り、現在のカフ圧が加圧停止圧よりも高くなるまで、ステップS2〜S9を繰り返し行う。加圧開始直後や、加圧が進んだにもかかわらず、ステップS3で脈波を検出できない場合(ステップS3:No)、ステップS9の加圧停止圧は、ステップS1で設定された初期値Aとなる。   In step S9, it is determined whether or not the current pressure of the cuff 1 is higher than the pressurization stop pressure calculated in step S8 (step S9). If it is higher (step S9: Yes), the pressurization stop pressure estimation accuracy calculation means 18 calculates the pressurization stop pressure estimation accuracy (step S10). Then, the pressurization of the cuff 1 by the pressurizing means 2 is finished (step S11). If the current pressure is not higher than the pressurization stop pressure (step S9: No), the process returns to step S2, and steps S2 to S9 are repeated until the current cuff pressure becomes higher than the pressurization stop pressure. Immediately after the start of pressurization or when the pressurization has progressed but no pulse wave can be detected in step S3 (step S3: No), the pressurization stop pressure in step S9 is the initial value A set in step S1. It becomes.

カフ1の加圧が終了したら、減圧手段4により、カフ1の微速減圧を開始する(ステップS12)。そして、脈波成分検出手段11および脈波振幅値算出手段12により、減圧時の脈波を抽出する(ステップS13)。すなわち、脈波成分検出手段11により、圧力検出手段5の出力信号中に含まれる脈波成分を検出し、その脈波成分に基づいて、脈波振幅値算出手段12により、脈波振幅値を算出する。   When the pressurization of the cuff 1 is completed, the decompression means 4 starts the slow depressurization of the cuff 1 (step S12). And the pulse wave at the time of pressure reduction is extracted by the pulse wave component detection means 11 and the pulse wave amplitude value calculation means 12 (step S13). That is, the pulse wave component detection means 11 detects the pulse wave component included in the output signal of the pressure detection means 5, and based on the pulse wave component, the pulse wave amplitude value calculation means 12 calculates the pulse wave amplitude value. calculate.

次いで、加圧不足判定手段20により、加圧停止圧推定確度算出手段18から与えられる加圧停止圧の推定確度情報に基づいて、加圧不足の判定を行う必要があるか否かを判断する(ステップS14)。加圧不足の判定を行う必要がある場合には(ステップS14:Yes)、加圧不足の判定を行う(ステップS15)。この加圧不足の判定手順については、後述する。   Next, based on the estimated accuracy information of the pressurization stop pressure given from the pressurization stop pressure estimation accuracy calculation unit 18, the underpressurization determination unit 20 determines whether or not it is necessary to determine the lack of pressurization. (Step S14). If it is necessary to determine the lack of pressurization (step S14: Yes), the lack of pressurization is determined (step S15). This determination procedure for insufficient pressurization will be described later.

その判定の結果、加圧不足であると判定された場合(ステップS15:Yes)、現在の加圧停止圧に所定値αを加算して新たな加圧停止圧とする(ステップS16)。ここで、所定値αは、例えば、30〜40mmHg程度の値である。そして、ステップS2に戻り、ステップS16で設定された新たな加圧停止圧までカフ1の再加圧を行う。ただし、再加圧の場合には、ステップS3〜S8を行う必要がないので、ステップS3〜S8を省略し、ステップS2に続いてステップS9へ進む。   As a result of the determination, when it is determined that the pressurization is insufficient (step S15: Yes), a predetermined value α is added to the current pressurization stop pressure to obtain a new pressurization stop pressure (step S16). Here, the predetermined value α is, for example, a value of about 30 to 40 mmHg. Then, returning to step S2, the cuff 1 is re-pressurized to the new pressurization stop pressure set in step S16. However, in the case of repressurization, since it is not necessary to perform steps S3 to S8, steps S3 to S8 are omitted, and the process proceeds to step S9 following step S2.

ステップS15で加圧が十分であると判定された場合(ステップS15:No)、またはステップS14で加圧不足の判定を行わない場合(ステップS14:No)、そのままカフ1の微速減圧を続け、血圧値決定手段13により、最高血圧値と最低血圧値を算出する(ステップS17)。   If it is determined in step S15 that the pressurization is sufficient (step S15: No), or if it is not determined in step S14 that the pressurization is insufficient (step S14: No), the cuff 1 continues to be depressurized at a low speed. The blood pressure value determining means 13 calculates the maximum blood pressure value and the minimum blood pressure value (step S17).

最高血圧値と最低血圧値が決定すると、血圧測定の終了となる。測定終了である場合(ステップS18:Yes)、急速排気手段3により、カフ1の急速排気を行う(ステップS19)。また、最高血圧値と最低血圧値を表示部7に表示する。そして、上述した一連の血圧測定処理を終了する。測定終了でない場合(ステップS18:No)、ステップS12に戻り、ステップS12〜S18を繰り返し行う。   When the maximum blood pressure value and the minimum blood pressure value are determined, the blood pressure measurement is terminated. When the measurement is finished (step S18: Yes), the quick exhaust means 3 performs quick exhaust of the cuff 1 (step S19). The maximum blood pressure value and the minimum blood pressure value are displayed on the display unit 7. Then, the series of blood pressure measurement processes described above is terminated. When the measurement is not finished (step S18: No), the process returns to step S12, and steps S12 to S18 are repeated.

図7は、図6のステップS15における加圧不足判定手順を示すフローチャートである。図7に示すように、加圧不足判定処理が開始されると、まず、加圧不足判定を行う区間であるか否かを判断する(ステップS21)。   FIG. 7 is a flowchart showing the under-pressurization determination procedure in step S15 of FIG. As shown in FIG. 7, when the under-pressurization determination process is started, it is first determined whether or not it is a section for performing under-pressurization determination (step S21).

このステップ21は、カフ1の微速減圧を開始した後、一定の期間においてのみ、加圧不足の判定を行うようにするために設けられている。この一定の期間は、例えば、微速減圧開始時点でのカフ1の圧力から30mmHg程度減圧が進むまでの減圧過程の初期の期間である。この一定の期間を過ぎた後では、加圧不足の判定を行う必要がない。   This step 21 is provided in order to determine whether or not the pressurization is insufficient only during a certain period after the cuff 1 is started to depressurize at a low speed. This fixed period is, for example, an initial period of the depressurization process until the depressurization progresses by about 30 mmHg from the pressure of the cuff 1 at the start of the slow depressurization. After this fixed period, it is not necessary to determine whether the pressurization is insufficient.

加圧不足判定を行う区間でない場合(ステップS21:No、図6のステップS15でNoの場合)、図6のステップS17へ進み、血圧測定処理を行う。現在が、加圧不足の判定を行う区間である場合(ステップS21:Yes)、さらに、カフ1の微速減圧を開始してから、例えば2拍以内であるか否かを判断する(ステップS22)。2拍以内でない場合(ステップS22:No、図6のステップS15でNoの場合)、図6のステップS17へ進み、血圧測定処理を行う。   If it is not a section in which underpressurization determination is performed (step S21: No, if No in step S15 in FIG. 6), the process proceeds to step S17 in FIG. 6 to perform blood pressure measurement processing. If the current time is an interval for determining whether or not pressurization is insufficient (step S21: Yes), it is further determined whether or not, for example, it is within 2 beats after starting the slow depressurization of the cuff 1 (step S22). . If it is not within 2 beats (step S22: No, if No in step S15 in FIG. 6), the process proceeds to step S17 in FIG. 6 to perform blood pressure measurement processing.

2拍以内である場合(ステップS22:Yes)、加圧不足判定手段20により、脈の特性値がしきい値以下であるか否かを判断する(ステップS23)。ここで、脈の特性値とは、波高値、すなわち脈波振幅値である。脈波振幅値がしきい値より大きい場合(ステップS23:No)、加圧不足であると判定する。そして、図6のステップS16へ進み、加圧停止圧の再設定を行い、カフ1の再加圧を行う。脈波振幅値がしきい値以下である場合(ステップS23:Yes)、カフ圧が十分であると判定し、図6のステップS17へ進み、血圧測定処理を行う。   If it is within 2 beats (step S22: Yes), the underpressurization determining means 20 determines whether or not the pulse characteristic value is below a threshold value (step S23). Here, the characteristic value of the pulse is a peak value, that is, a pulse wave amplitude value. When the pulse wave amplitude value is larger than the threshold value (step S23: No), it is determined that the pressurization is insufficient. Then, the process proceeds to step S <b> 16 in FIG. 6, the pressurization stop pressure is reset, and the cuff 1 is repressurized. When the pulse wave amplitude value is equal to or less than the threshold value (step S23: Yes), it is determined that the cuff pressure is sufficient, and the process proceeds to step S17 in FIG. 6 to perform blood pressure measurement processing.

従来、減圧過程の初期に体動などの影響によってしきい値よりも大きいノイズが発生すると、加圧不足であると判定されてしまうため、実際にはカフ1の再加圧が必要ないにもかかわらず、再加圧が行われるという不具合があった。これに対して、実施の形態によれば、加圧停止圧の確からしさが非常に高い場合には加圧不足の判定を行わないようにしたので、このようなノイズの影響による誤判断がなくなり、不必要な再加圧を行わないようにすることができる。さらに、加圧停止圧の確からしさが高い場合には、しきい値を高くして、加圧不足と判定されにくくしているので、ノイズによる誤判断の危険が低減される。以上において本発明は、上述した実施の形態に限らず、種々変更可能である。   Conventionally, if noise larger than the threshold value occurs due to the influence of body movement or the like in the early stage of the decompression process, it is determined that the pressurization is insufficient. Regardless, there was a problem that re-pressurization was performed. On the other hand, according to the embodiment, since the determination of insufficient pressurization is not performed when the certainty of the pressurization stop pressure is very high, such erroneous determination due to the influence of noise is eliminated. Unnecessary repressurization can be avoided. Further, when the certainty of the pressurization stop pressure is high, the threshold value is increased to make it difficult to determine that the pressurization is insufficient, so that the risk of erroneous determination due to noise is reduced. As described above, the present invention is not limited to the above-described embodiment, and various modifications can be made.

なお、本実施形態では、加圧不足判定に用いる脈の特性値として脈波振幅値を用いたが、これに限らず、脈波面積や脈波微分値を用いても良い。もちろん脈波振幅値、脈波面積、脈波微分値を組み合わせて複合的に用いて判定を行っても良い。脈波面積を用いる際は、脈波の開始点−頂点−終了点を直線で結んだ三角形の面積を近似的に用いても良い。   In this embodiment, the pulse wave amplitude value is used as the characteristic value of the pulse used for the determination of insufficient pressurization. However, the present invention is not limited to this, and a pulse wave area or a pulse wave differential value may be used. Of course, the determination may be made by combining and combining the pulse wave amplitude value, the pulse wave area, and the pulse wave differential value. When the pulse wave area is used, a triangular area obtained by connecting the start point, the apex, and the end point of the pulse wave with a straight line may be approximately used.

以上のように、本発明にかかる電子血圧計は、カフの減圧中に血圧の測定を行う電子血圧計に有用であり、特に、カフの減圧開始の初期段階においてカフの加圧状態を判断する機能を備えた電子血圧計に適している。   As described above, the electronic sphygmomanometer according to the present invention is useful for an electronic sphygmomanometer that measures blood pressure during decompression of the cuff, and in particular, determines the pressurization state of the cuff at the initial stage of the start of decompression of the cuff. Suitable for electronic blood pressure monitors with functions.

この発明の実施の形態にかかる電子血圧計の構成を示すブロック図である。It is a block diagram which shows the structure of the electronic blood pressure meter concerning embodiment of this invention. 加圧過程におけるカフ圧とその微分値の関係を示す特性図である。It is a characteristic view which shows the relationship between the cuff pressure in a pressurization process, and its differential value. この発明の実施の形態にかかる電子血圧計のしきい値設定テーブルの一例を示す図表である。It is a table | surface which shows an example of the threshold value setting table of the electronic blood pressure monitor concerning embodiment of this invention. この発明の実施の形態にかかる電子血圧計の加圧停止圧としきい値との関係の一例を示す特性図である。It is a characteristic view which shows an example of the relationship between the pressurization stop pressure and threshold value of the electronic blood pressure monitor concerning embodiment of this invention. この発明の実施の形態にかかる電子血圧計の血圧測定手順を示すフローチャートである。It is a flowchart which shows the blood-pressure measurement procedure of the electronic sphygmomanometer concerning embodiment of this invention. 図5の続きを示すフローチャートである。6 is a flowchart showing a continuation of FIG. この発明の実施の形態にかかる電子血圧計の加圧不足判定手順を示すフローチャートである。It is a flowchart which shows the insufficient pressurization determination procedure of the electronic blood pressure monitor concerning embodiment of this invention.

符号の説明Explanation of symbols

1 カフ
2 加圧手段
4 減圧手段
5 圧力検出手段
11 脈波成分検出手段
12 脈波振幅値算出手段
20 加圧不足判定手段
DESCRIPTION OF SYMBOLS 1 Cuff 2 Pressurizing means 4 Depressurizing means 5 Pressure detecting means 11 Pulse wave component detecting means 12 Pulse wave amplitude value calculating means 20 Pressurizing insufficient determining means

Claims (8)

カフと、前記カフを加圧する加圧手段と、加圧終了後に前記カフを減圧する減圧手段と、前記カフの減圧過程においてカフ圧不足かどうかを判定する加圧不足判定手段と、を備える電子血圧計において、
前記カフの加圧過程で抽出された脈波情報に応じて前記加圧不足判定手段による判定を行わないことを特徴とする電子血圧計。
An electronic device comprising: a cuff; a pressurizing unit that pressurizes the cuff; a depressurizing unit that depressurizes the cuff after the pressurization is completed; and an underpressurization determining unit that determines whether or not the cuff pressure is insufficient during the depressurization process of the cuff. In the sphygmomanometer,
An electronic sphygmomanometer, characterized in that the determination by the insufficient pressurization determining means is not performed in accordance with pulse wave information extracted in the pressurizing process of the cuff.
前記カフの圧力を検出する圧力検出手段と、前記圧力検出手段により検出されたカフ圧信号から脈波情報を検出する脈波情報検出手段と、前記脈波情報から加圧停止圧を算出する加圧停止圧算出手段と、前記脈波情報から前記加圧停止圧の確度を算出する加圧停止圧推定確度算出手段と、をさらに備え、前記加圧停止圧の確度に応じて前記加圧不足判定手段による判定を行わないことを特徴とする請求項1に記載の電子血圧計。   A pressure detecting means for detecting the pressure of the cuff; a pulse wave information detecting means for detecting pulse wave information from a cuff pressure signal detected by the pressure detecting means; and an application for calculating a pressurization stop pressure from the pulse wave information. Pressure stop pressure calculation means, and pressurization stop pressure estimation accuracy calculation means for calculating the accuracy of the pressurization stop pressure from the pulse wave information, and the insufficient pressurization according to the accuracy of the pressurization stop pressure The electronic sphygmomanometer according to claim 1, wherein the determination by the determination unit is not performed. 前記圧力検出手段により検出されたカフ圧信号に重畳された脈波成分を検出し、検出された脈波成分から脈波振幅情報を算出する脈波振幅情報算出手段と、をさらに備え、
前記加圧不足判定手段は、前記カフの減圧過程で捉えた脈波振幅情報としきい値とを比較し、前記脈波振幅情報が前記しきい値以下である場合にカフ圧が十分であると判定し、前記脈波振幅情報が前記しきい値より大きい場合にカフ圧不足であると判定することを特徴とする請求項2に記載の電子血圧計。
A pulse wave amplitude information calculating unit that detects a pulse wave component superimposed on the cuff pressure signal detected by the pressure detecting unit and calculates pulse wave amplitude information from the detected pulse wave component;
The underpressurization determining means compares the pulse wave amplitude information captured in the cuff depressurization process with a threshold value, and when the pulse wave amplitude information is equal to or less than the threshold value, the cuff pressure is sufficient. 3. The electronic sphygmomanometer according to claim 2, wherein a determination is made and it is determined that the cuff pressure is insufficient when the pulse wave amplitude information is greater than the threshold value.
カフと、前記カフを加圧する加圧手段と、加圧終了後に前記カフを減圧する減圧手段と、前記カフの圧力を検出する圧力検出手段と、前記圧力検出手段により検出されたカフ圧信号に重畳された脈波成分を検出し、検出された脈波成分から脈波振幅情報を算出する脈波振幅情報算出手段と、前記カフの減圧過程で捉えた脈波振幅情報としきい値とを比較することでカフ圧不足かどうかを判定する加圧不足判定手段と、を備える電子血圧計において、
前記圧力検出手段により検出されたカフ圧信号から脈波情報の確度を算出し、前記脈波情報の確度に応じて前記しきい値を変更することを特徴とする電子血圧計。
A cuff, a pressurizing unit that pressurizes the cuff, a depressurizing unit that depressurizes the cuff after pressurization, a pressure detecting unit that detects the pressure of the cuff, and a cuff pressure signal detected by the pressure detecting unit. The pulse wave amplitude information calculating means for detecting the superimposed pulse wave component and calculating the pulse wave amplitude information from the detected pulse wave component is compared with the pulse wave amplitude information captured during the cuff decompression process and a threshold value. In an electronic sphygmomanometer comprising an underpressure determination means for determining whether or not the cuff pressure is insufficient,
An electronic sphygmomanometer, wherein the accuracy of pulse wave information is calculated from the cuff pressure signal detected by the pressure detection means, and the threshold value is changed according to the accuracy of the pulse wave information.
前記圧力検出手段により検出されたカフ圧信号から脈波情報を検出する脈波情報検出手段と、前記脈波情報から加圧停止圧を算出する加圧停止圧算出手段と、前記脈波情報から前記加圧停止圧の確度を算出する加圧停止圧推定確度算出手段と、をさらに備え、前記前記加圧停止圧の確度に応じて前記しきい値を変更することを特徴とする請求項4に記載の電子血圧計。   From the pulse wave information detecting means for detecting pulse wave information from the cuff pressure signal detected by the pressure detecting means, the pressurization stop pressure calculating means for calculating the pressurization stop pressure from the pulse wave information, and the pulse wave information. 5. A pressurization stop pressure estimation accuracy calculation means for calculating the accuracy of the pressurization stop pressure, and the threshold value is changed according to the accuracy of the pressurization stop pressure. The electronic sphygmomanometer described in 1. 前記加圧不足判定手段は、前記脈波振幅情報が前記しきい値以下である場合にカフ圧が十分であると判定し、前記脈波振幅情報が前記しきい値より大きい場合にカフ圧不足であると判定することを特徴とする請求項4又は5に記載の電子血圧計。   The insufficient pressurization determining means determines that the cuff pressure is sufficient when the pulse wave amplitude information is equal to or less than the threshold value, and the cuff pressure is insufficient when the pulse wave amplitude information is greater than the threshold value. The electronic sphygmomanometer according to claim 4, wherein the electronic sphygmomanometer is determined as follows. 前記脈波情報は、前記カフの加圧過程で抽出された脈波数、脈波の間隔、および算出された脈波振幅値のうちの1種以上の情報であることを特徴とする請求項1乃至6何れか一項に記載の電子血圧計。   2. The pulse wave information is one or more kinds of information among a pulse wave number extracted during the pressurizing process of the cuff, a pulse wave interval, and a calculated pulse wave amplitude value. The electronic blood pressure monitor as described in any one of thru | or 6. 前記脈波振幅情報は、脈波振幅値、脈波面積、または脈波振幅微分値のうちの1種以上の情報であることを特徴とする請求項1乃至7何れか一項に記載の電子血圧計。   8. The electron according to claim 1, wherein the pulse wave amplitude information is one or more kinds of information of a pulse wave amplitude value, a pulse wave area, or a pulse wave amplitude differential value. 9. Sphygmomanometer.
JP2007027255A 2007-02-06 2007-02-06 Electronic blood pressure monitor Active JP4213188B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007027255A JP4213188B2 (en) 2007-02-06 2007-02-06 Electronic blood pressure monitor
PCT/JP2008/051859 WO2008096750A1 (en) 2007-02-06 2008-02-05 Blood pressure meter
CN2008800011865A CN101568299B (en) 2007-02-06 2008-02-05 Blood pressure meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007027255A JP4213188B2 (en) 2007-02-06 2007-02-06 Electronic blood pressure monitor

Publications (2)

Publication Number Publication Date
JP2008188303A true JP2008188303A (en) 2008-08-21
JP4213188B2 JP4213188B2 (en) 2009-01-21

Family

ID=39681659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007027255A Active JP4213188B2 (en) 2007-02-06 2007-02-06 Electronic blood pressure monitor

Country Status (3)

Country Link
JP (1) JP4213188B2 (en)
CN (1) CN101568299B (en)
WO (1) WO2008096750A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102949186A (en) * 2011-08-23 2013-03-06 西铁城控股株式会社 Electronic manometer
CN103930019A (en) * 2012-01-16 2014-07-16 欧姆龙健康医疗事业株式会社 Blood pressure measurement device and blood pressure measurement device control method
US9848782B2 (en) 2014-02-13 2017-12-26 Nec Corporation Blood pressure estimation device, blood pressure estimation method, blood pressure measurement device, and recording medium

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5208150B2 (en) * 2010-03-26 2013-06-12 シチズンホールディングス株式会社 Electronic blood pressure monitor
JP5026541B2 (en) * 2010-03-26 2012-09-12 シチズンホールディングス株式会社 Electronic blood pressure monitor
JP5026542B2 (en) * 2010-03-26 2012-09-12 シチズンホールディングス株式会社 Electronic blood pressure monitor
JP6191856B2 (en) * 2013-03-18 2017-09-06 パナソニックIpマネジメント株式会社 Cardiovascular function arithmetic unit
CN104068839B (en) * 2014-06-27 2016-09-14 广州视源电子科技股份有限公司 sphygmomanometer
CN107174230B (en) * 2017-06-22 2023-10-03 深圳市普瑞拓科技有限公司 Intelligent sphygmomanometer and blood pressure metering method thereof
CN108937897B (en) * 2018-07-20 2021-08-10 广东乐心医疗电子股份有限公司 Electronic sphygmomanometer method and device and electronic sphygmomanometer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS596654B2 (en) * 1980-08-25 1984-02-14 松下電工株式会社 electronic blood pressure monitor
US5522395A (en) * 1991-05-01 1996-06-04 Omron Corporation Electronic sphygmomanometer and method of controlling operation of same
JP3057892B2 (en) * 1991-05-01 2000-07-04 オムロン株式会社 Electronic sphygmomanometer
JP4745704B2 (en) * 2005-04-08 2011-08-10 テルモ株式会社 Blood pressure measurement device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102949186A (en) * 2011-08-23 2013-03-06 西铁城控股株式会社 Electronic manometer
CN103930019A (en) * 2012-01-16 2014-07-16 欧姆龙健康医疗事业株式会社 Blood pressure measurement device and blood pressure measurement device control method
US9848782B2 (en) 2014-02-13 2017-12-26 Nec Corporation Blood pressure estimation device, blood pressure estimation method, blood pressure measurement device, and recording medium

Also Published As

Publication number Publication date
WO2008096750A1 (en) 2008-08-14
CN101568299A (en) 2009-10-28
CN101568299B (en) 2011-11-09
JP4213188B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
JP4213188B2 (en) Electronic blood pressure monitor
US10130270B2 (en) Electronic blood pressure monitor
JP5026541B2 (en) Electronic blood pressure monitor
JP5363795B2 (en) Vascular endothelial function evaluation apparatus and vascular endothelial function evaluation method
JP6019592B2 (en) Blood pressure measurement device
JP3590613B2 (en) Amplitude increase index calculation device and arteriosclerosis test device
JP5399832B2 (en) Endothelial function evaluation device
US8747326B2 (en) Electronic sphygmomanometer
US5323782A (en) Electronic blood pressure meter
JPH01101967A (en) Electronic hemomanometer
JP5026542B2 (en) Electronic blood pressure monitor
JP4047898B1 (en) Electronic blood pressure monitor
JP2002272689A (en) Automatic blood pressure measuring apparatus
KR101504600B1 (en) Apparatus and method for measuring blood pressure
JP4153543B2 (en) Electronic blood pressure monitor
JP2007125247A (en) Cuff for sphygmomanometry, sphygmomanometer apparatus, and sphygmomanometry method
JP7043247B2 (en) Sphygmomanometer and its control method
JP6111741B2 (en) Electronic blood pressure monitor
JP5208150B2 (en) Electronic blood pressure monitor
JPWO2008102852A1 (en) Electronic blood pressure monitor
JP5228620B2 (en) Blood pressure measurement device
JP5070103B2 (en) Shunt stenosis detector
JPH10314128A (en) Sphygamomanometer
JP5189390B2 (en) Data processing apparatus, blood pressure monitor, and data processing program
JP2019024979A (en) Heart rate meter, heart rate acquisition method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4213188

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250