[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008187785A - Charge controller - Google Patents

Charge controller Download PDF

Info

Publication number
JP2008187785A
JP2008187785A JP2007017354A JP2007017354A JP2008187785A JP 2008187785 A JP2008187785 A JP 2008187785A JP 2007017354 A JP2007017354 A JP 2007017354A JP 2007017354 A JP2007017354 A JP 2007017354A JP 2008187785 A JP2008187785 A JP 2008187785A
Authority
JP
Japan
Prior art keywords
voltage
charging
error amplification
power supply
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007017354A
Other languages
Japanese (ja)
Other versions
JP4049333B1 (en
Inventor
Kazuma Ogura
一馬 小倉
Katsushi Mitsui
克司 三井
Atsushi Shimizu
敦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power System Co Ltd
Original Assignee
Power System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power System Co Ltd filed Critical Power System Co Ltd
Priority to JP2007017354A priority Critical patent/JP4049333B1/en
Application granted granted Critical
Publication of JP4049333B1 publication Critical patent/JP4049333B1/en
Publication of JP2008187785A publication Critical patent/JP2008187785A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To adjust timing of voltage step-up/down switching according to fluctuation in the voltage of a charging power supply and to smoothly switch voltage step-up/down to reliably and efficiently carry out charging to a desired full charge voltage. <P>SOLUTION: A charge controller includes: an error amplification signal generating means 120 that detects the charging current I of a capacitor storage power supply 300 and generates an error amplification signal through comparison with a reference value; a PWM controlling means 140 for generating a PWM signal by the error amplification signal; a voltage step-up/down switching means 180 that switches the switch element between a voltage step-down switch element SW1 and a voltage step-up switch element SW2 and supplies the PWM signal to the switch element; and a voltage step-up/down switching controlling means 160 for controlling the voltage step-up/down switching means 180 so that the following is implemented the PWM signal is supplied to the voltage step-down switch element SW1 on condition that the voltage of the capacitor storage power supply 300 is lower than the voltage of a charging power supply 200 and the PWM signal is supplied to the voltage step-up switch element SW2 on condition that the voltage of the capacitor storage power supply has approached the voltage of the charging power supply 200 by a certain value or more. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、降圧スイッチ素子とチョークコイルと昇圧スイッチと整流素子からなる昇降圧回路を接続し前記降圧スイッチ素子又は昇圧スイッチにPWM信号を切り換えて供給してPWM制御により充電電流を制御し充電電源からキャパシタ蓄電電源を充電するように構成した充電制御装置に関する。   The present invention connects a step-down / step-down circuit composed of a step-down switch element, a choke coil, a step-up switch, and a rectifier element, switches a PWM signal to the step-down switch element or the step-up switch, supplies the PWM signal, and controls a charging current by PWM control. To a charge control device configured to charge a capacitor storage power source from

二次電池からなる蓄電電源は、充放電による電圧の変動が少なくほぼ定電圧の電源であるが、大電流、高速充放電には不向きである。他方、キャパシタからなる蓄電電源は、充放電により電圧が大幅に変動するが、大電流でかつ高速に充放電でき、二次電池にない特有の用途がある。このようなキャパシタ蓄電電源に対して充電電源から充電を行う場合に、充電電源とキャパシタ蓄電電源との間に電圧変換する電源調整回路を接続すると、キャパシタ蓄電電源の満充電電圧より低い定格電圧の充電電源を使用することができる。また、キャパシタ蓄電電源から放電して負荷に給電する回路に、キャパシタ蓄電電源と負荷との間に電圧変換する電源調整回路を接続すると、キャパシタ蓄電電源の電圧が低くなるまで放電できるので、蓄積エネルギーの利用効率を高めることができる。   A power storage power source composed of a secondary battery is a substantially constant voltage power source with little voltage fluctuation due to charging / discharging, but is not suitable for large current and high speed charging / discharging. On the other hand, although the voltage of a power storage power source composed of a capacitor greatly varies due to charging / discharging, it can be charged / discharged at a high current and at a high speed, and has a specific use not found in secondary batteries. When charging such a capacitor storage power supply from a charging power supply, if a power supply adjustment circuit for voltage conversion is connected between the charging power supply and the capacitor storage power supply, the rated voltage lower than the full charge voltage of the capacitor storage power supply A charging power source can be used. In addition, if a power supply adjustment circuit that converts voltage between the capacitor storage power supply and the load is connected to a circuit that discharges from the capacitor storage power supply and supplies power to the load, it can be discharged until the voltage of the capacitor storage power supply becomes low. Can improve the efficiency of use.

図4は電源調整回路の従来例を説明する図であり、100は電源調整回路、120は誤差増幅信号発生回路、140はPWM制御回路、180は昇降圧切換回路、200は充電電源、300はキャパシタ蓄電電源、C1、C2は平滑コンデンサ、D1、D2は整流素子、L1はチョークコイル、Rは電流検出抵抗、SW1は降圧スイッチ素子、SW2は昇圧スイッチ素子を示す。   FIG. 4 is a diagram for explaining a conventional example of a power supply adjustment circuit, where 100 is a power supply adjustment circuit, 120 is an error amplification signal generation circuit, 140 is a PWM control circuit, 180 is a step-up / down switching circuit, 200 is a charging power supply, and 300 is Capacitor storage power source, C1 and C2 are smoothing capacitors, D1 and D2 are rectifier elements, L1 is a choke coil, R is a current detection resistor, SW1 is a step-down switch element, and SW2 is a step-up switch element.

従来の電源調整回路は、例えば図4に示すように電源調整回路100として、充電電源200とキャパシタ蓄電電源300との間に降圧スイッチ素子SW1とチョークコイルL1と整流素子D2とを直列に接続して、降圧スイッチ素子SW1とチョークコイルL1との直列接続点と共通ライン(接地ライン)との間に逆方向の極性で整流素子D1を接続し、チョークコイルL1と整流素子D2との直列接続点と共通ラインとの間に昇圧スイッチ素子SW2を接続している。降圧スイッチ素子SW1は、チョークコイルL1と整流素子D1と平滑コンデンサC2とを組み合わせて降圧チョッパを構成し、オン/オフのデューティ比を制御することにより平滑コンデンサC2の両端から所望の降圧出力が取り出され、昇圧スイッチ素子SW2は、チョークコイルL1と整流素子D2と平滑コンデンサC2とを組み合わせて昇圧チョッパを構成し、降圧スイッチ素子SW1をオン状態にしてオン/オフのデューティ比を制御することにより平滑コンデンサC2の両端から所望の昇圧出力が取り出される。   For example, as shown in FIG. 4, the conventional power supply adjustment circuit is a power supply adjustment circuit 100 in which a step-down switch element SW1, a choke coil L1, and a rectifier element D2 are connected in series between a charging power supply 200 and a capacitor storage power supply 300. Thus, the rectifier element D1 is connected with a reverse polarity between the series connection point of the step-down switch element SW1 and the choke coil L1 and the common line (ground line), and the series connection point of the choke coil L1 and the rectifier element D2 Is connected to the common line. The step-down switching element SW1 constitutes a step-down chopper by combining the choke coil L1, the rectifying element D1, and the smoothing capacitor C2, and a desired step-down output is taken out from both ends of the smoothing capacitor C2 by controlling the on / off duty ratio. The step-up switch element SW2 is formed by combining the choke coil L1, the rectifying element D2, and the smoothing capacitor C2 to form a step-up chopper, and the step-down switch element SW1 is turned on to control the on / off duty ratio. A desired boosted output is taken out from both ends of the capacitor C2.

誤差増幅信号発生回路120は、共通ラインに挿入されている電流検出抵抗Rの両端の電圧により充電電流Iを検出して電流設定値と比較し、同時に出力端よりキャパシタ蓄電電源の電圧(充電電圧)を検出して電圧設定値と比較して、誤差増幅信号を生成する。PWM制御回路140は、誤差増幅信号発生回路120から誤差増幅信号を入力してPWM信号を生成して降圧スイッチ素子SW1又は昇圧スイッチ素子SW2をPWM制御する。昇降圧切換回路180は、充電開始時でキャパシタ蓄電電源の電圧が低い間のPWM信号を降圧スイッチ素子SW1に入力し、キャパシタ蓄電電源の電圧が充電電源の電圧付近のある一定の電圧に達すると、降圧スイッチ素子SW1をオンに保持してPWM信号を昇圧スイッチ素子SW2に入力するように接続を切り換えるものである(例えば、特許文献1、2、非特許文献1参照)。   The error amplification signal generation circuit 120 detects the charging current I by the voltage across the current detection resistor R inserted in the common line and compares it with the current set value, and at the same time, the voltage of the capacitor storage power supply (charging voltage) from the output terminal. ) Is detected and compared with the voltage setting value to generate an error amplification signal. The PWM control circuit 140 receives the error amplification signal from the error amplification signal generation circuit 120, generates a PWM signal, and performs PWM control of the step-down switch element SW1 or the step-up switch element SW2. The step-up / step-down switching circuit 180 inputs a PWM signal to the step-down switch element SW1 when the voltage of the capacitor storage power supply is low at the start of charging, and when the voltage of the capacitor storage power supply reaches a certain voltage near the voltage of the charging power supply. The connection is switched so that the step-down switch element SW1 is kept on and the PWM signal is input to the step-up switch element SW2 (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1).

このような電源調整回路により、充電モードにおいては、キャパシタ蓄電電源の電圧が低い充電初期に降圧して充電し、電圧が高くなると昇圧して充電するので、電源調整回路における降圧/昇圧比を小さくすることができると共に、キャパシタ蓄電電源の満充電電圧に依存することなく充電電源の定格電圧を決めることができる。同様に、放電モードにおいては、キャパシタ蓄電電源の電圧が高い放電時に降圧して放電し、電圧が低下すると昇圧して放電するので、電源調整回路における降圧/昇圧比を小さくすることができると共に、所望の負荷電圧を確保しキャパシタ蓄電電源から低い電圧まで蓄積エネルギを供給でき効率を上げることができる。
特許第3306326号公報 特許第3418951号公報 岡村廸夫著「電気二重層キャパシタと蓄電システム」日刊工業新聞社、2005年9月30日第3版1刷発行、第135〜第138頁、第142〜第144頁
With such a power supply adjustment circuit, in the charging mode, the capacitor storage power supply voltage is stepped down and charged in the initial stage of charging when the voltage is low, and when the voltage increases, the voltage is boosted and charged. And the rated voltage of the charging power source can be determined without depending on the full charging voltage of the capacitor storage power source. Similarly, in the discharge mode, when the voltage of the capacitor storage power supply is high, the voltage is stepped down and discharged. When the voltage drops, the voltage is boosted and discharged, so that the step-down / boost ratio in the power supply adjustment circuit can be reduced. It is possible to secure a desired load voltage and supply stored energy from the capacitor storage power source to a low voltage, thereby increasing efficiency.
Japanese Patent No. 3306326 Japanese Patent No. 3418951 Okamura Ikuo, “Electric Double Layer Capacitor and Power Storage System”, Nikkan Kogyo Shimbun, September 30, 2005, 3rd edition, 1st edition, pages 135-138, pages 142-144

しかし、通常充電電源において、±10%程度の電圧の許容変動幅を見込んだ場合、上記従来の電源調整回路100のように一定の電圧で昇降圧の切り換えると充電制御装置においては問題が生じる。図5は充電制御装置として構成した従来の電源調整回路の昇降圧切り換え時の問題を説明する図である。例えば図5に示すようにキャパシタ蓄電電源300の満充電電圧を20Vとして、10Vを充電電源200の定格電圧、及び昇降圧切り換えポイントの電圧とし、キャパシタ蓄電電源300の電圧Vc が10Vになるまで降圧チョッパを動作させ、その後に昇圧チョッパを動作させるように切り換えを設定したとする。このような動作条件において、充電電源200の電圧Vi が定格電圧10Vより10%低い9Vを出力している場合には、キャパシタ蓄電電源300は9Vまでしか充電されず、昇降圧切換回路180により昇降圧切り換えを行う10Vにならない。したがって、昇圧チョッパを動作させることができず、キャパシタ蓄電電源300を満充電電圧の20Vまで充電できないことになる。   However, in the normal charging power supply, when an allowable fluctuation range of about ± 10% is expected, there is a problem in the charge control device if the step-up / step-down switching is performed at a constant voltage as in the conventional power supply adjustment circuit 100. FIG. 5 is a diagram for explaining a problem at the time of step-up / step-down switching of a conventional power supply adjustment circuit configured as a charge control device. For example, as shown in FIG. 5, the full charge voltage of the capacitor storage power supply 300 is 20V, 10V is the rated voltage of the charge power supply 200, and the voltage at the step-up / down switching point, and the voltage Vc of the capacitor storage power supply 300 is stepped down until the voltage Vc becomes 10V. Assume that switching is set to operate the chopper and then operate the boost chopper. Under such operating conditions, when the voltage Vi of the charging power source 200 outputs 9V, which is 10% lower than the rated voltage 10V, the capacitor storage power source 300 is charged only up to 9V, and is increased or decreased by the step-up / down switching circuit 180. The voltage does not change to 10V. Therefore, the step-up chopper cannot be operated, and the capacitor storage power supply 300 cannot be charged to the full charge voltage of 20V.

逆に、充電電源200の電圧Vi が定格電圧10Vより10%高い11Vを出力している場合には、キャパシタ蓄電電源300が10Vまで充電されて昇降圧切換回路180により昇降圧切り換えが行われると、充電電源200の電圧Vi がキャパシタ蓄電電源300の電圧Vc より高いため、降圧スイッチ素子SW1がオン、昇圧スイッチ素子SW2がオフの状態のまま、キャパシタ蓄電電源300の電圧Vc が充電電源200の電圧Vi に近づき充電電流が小さくなるまで充電電流の制御機能が働かなくなり、この間、大きな充電電流が流れてしまう。つまり、電源調整回路100の動作が一時的に暴走状態に陥ってしまう。切り換え電圧を低めに設定している場合にも同様の問題が生じる。   On the contrary, when the voltage Vi of the charging power source 200 outputs 11V, which is 10% higher than the rated voltage 10V, the capacitor storage power source 300 is charged to 10V and the step-up / step-down switching is performed by the step-up / step-down switching circuit 180. Since voltage Vi of charging power supply 200 is higher than voltage Vc of capacitor storage power supply 300, voltage Vc of capacitor storage power supply 300 is the voltage of charging power supply 200 while step-down switch element SW1 is on and step-up switch element SW2 is off. The charge current control function does not work until the charge current approaches V i and the charge current decreases, and a large charge current flows during this time. That is, the operation of the power supply adjustment circuit 100 temporarily falls into a runaway state. A similar problem occurs when the switching voltage is set low.

本発明は、上記の課題を解決するものであって、充電制御装置において降圧回路の動作から昇圧回路の動作への昇降圧切り換えタイミングを充電電源の電圧の変動に応じて調整でき、昇降圧切り換えを円滑に行いキャパシタ蓄電電源を充電電源の定格電圧に依存することなく確実に所望の満充電電圧まで効率よく充電できるようにするものである。   The present invention solves the above-described problem, and in the charge control device, the step-up / step-down switching timing from the step-down circuit operation to the step-up circuit operation can be adjusted according to the fluctuation of the voltage of the charging power source, The capacitor storage power supply can be reliably and efficiently charged to a desired full charge voltage without depending on the rated voltage of the charge power supply.

そのために本発明は、降圧スイッチ素子とチョークコイルと昇圧スイッチと整流素子からなる昇降圧回路を接続し前記降圧スイッチ素子又は昇圧スイッチにPWM信号を切り換えて供給してPWM制御により充電電流を制御し充電電源からキャパシタ蓄電電源を充電するように構成した充電制御装置において、前記キャパシタ蓄電電源の充電電流を検出して基準値との比較により誤差増幅信号を発生する誤差増幅信号発生手段と、前記誤差増幅信号発生手段により発生した誤差増幅信号によりPWM信号を発生するPWM制御手段と、前記PWM制御手段により発生したPWM信号を前記降圧スイッチ素子又は昇圧スイッチに切り換えて供給する昇降圧切換手段と、前記充電電源の電圧と前記キャパシタ蓄電電源の電圧とを比較して、前記キャパシタ蓄電電源の電圧が前記充電電源の電圧より低いことを条件に前記PWM信号を前記降圧スイッチ素子に供給し、前記キャパシタ蓄電電源の電圧が前記充電電源の電圧に一定値以上近づいたことを条件に前記PWM信号を前記昇圧スイッチ素子に切り換えて供給するように前記昇降圧切換手段を制御する昇降圧切換制御手段とを備えたことを特徴とする。   For this purpose, the present invention connects a step-up / step-down circuit comprising a step-down switch element, a choke coil, a step-up switch, and a rectifier element, and supplies the step-down switch element or step-up switch by switching a PWM signal to control the charging current by PWM control. In a charge control device configured to charge a capacitor storage power source from a charging power source, an error amplification signal generating unit that detects a charging current of the capacitor storage power source and generates an error amplification signal by comparison with a reference value; and the error PWM control means for generating a PWM signal based on an error amplification signal generated by the amplification signal generating means, step-up / step-down switching means for switching and supplying the PWM signal generated by the PWM control means to the step-down switch element or the step-up switch, Comparing the voltage of the charging power supply with the voltage of the capacitor storage power supply, the key Provided that the PWM signal is supplied to the step-down switch element on the condition that the voltage of the capacitor storage power supply is lower than the voltage of the charging power supply, and that the voltage of the capacitor storage power supply has approached the voltage of the charging power supply more than a certain value And a step-up / step-down switching control means for controlling the step-up / step-down switching means so as to switch and supply the PWM signal to the step-up switch element.

前記誤差増幅信号発生手段は、前記充電電流が電流基準値を越えたか否かを比較して誤差増幅信号を発生する定電流信号発生回路と、前記充電電圧が電圧基準値を越えたか否かを比較して誤差増幅信号を発生する定電圧信号発生回路と、前記それぞれの信号発生回路により発生した誤差増幅信号を逆極性に接続されるダイオードを通して前記PWM制御手段に出力するオア論理回路とを有し、前記誤差増幅信号のいずれかを前記PWM制御手段に出力するように構成し、あるいは前記充電電流が電流基準値を越えたか否かを比較して誤差増幅信号を発生する定電流信号発生回路と、オフセット値から前記充電電圧を減算して電流逓減基準値を発生し、前記充電電流が前記電流逓減基準値を越えたか否かを比較して誤差増幅信号を出力する電流逓減信号発生回路と、前記それぞれの信号発生回路により発生した誤差増幅信号を逆極性に接続されるダイオードを通して前記PWM制御手段に出力するオア論理回路とを有し、前記誤差増幅信号のいずれかを前記PWM制御手段に出力するように構成したことを特徴とする。   The error amplification signal generation means compares a constant current signal generation circuit for generating an error amplification signal by comparing whether or not the charging current exceeds a current reference value, and whether or not the charging voltage exceeds a voltage reference value. A constant voltage signal generation circuit that generates an error amplification signal by comparison; and an OR logic circuit that outputs the error amplification signal generated by each of the signal generation circuits to the PWM control means through a diode connected in reverse polarity. A constant current signal generation circuit configured to output any one of the error amplification signals to the PWM control means or to generate an error amplification signal by comparing whether or not the charging current exceeds a current reference value And subtracting the charging voltage from the offset value to generate a current diminishing reference value, comparing whether the charging current exceeds the current diminishing reference value, and outputting an error amplification signal A reduced signal generation circuit; and an OR logic circuit that outputs an error amplification signal generated by each of the signal generation circuits to the PWM control means through a diode connected in reverse polarity, and outputs one of the error amplification signals. It is configured to output to the PWM control means.

本発明によれば、基準値との誤差増幅信号によりPWM信号を発生させて降圧回路をPWM制御し充電電源からキャパシタ蓄電電源を充電して、充電電源の電圧までキャパシタ蓄電電源を充電したことを判断して降圧回路から昇圧回路に切り換えてPWM制御し所望の電圧までキャパシタ蓄電電源を充電するように構成したので、充電電源の電圧が変動しても、降圧回路から昇圧回路への切り換えができなかったり、切り換え後に異常な充電電流が流れるのを防ぐことができ、降圧回路から昇圧回路への切り換えを円滑に行うことができる。したがって、電圧変動幅の大きい充電電源を使っても、その変動幅に制限されることなく降圧回路の動作から昇圧回路の動作への昇降圧切り換えタイミングを充電電源の電圧の変動に応じて調整でき、昇降圧切り換えを円滑に行いキャパシタ蓄電電源を充電電源の定格電圧に依存することなく確実に所望の満充電電圧まで効率よく充電することができる。   According to the present invention, the PWM signal is generated by the error amplification signal with respect to the reference value, the step-down circuit is PWM-controlled, the capacitor storage power source is charged from the charging power source, and the capacitor storage power source is charged to the voltage of the charging power source. Judgment is made to switch from the step-down circuit to the step-up circuit, and the PWM control is performed to charge the capacitor storage power supply to the desired voltage. Therefore, even if the voltage of the charging power supply fluctuates, the step-down circuit can be switched to the step-up circuit. Or an abnormal charging current after switching can be prevented, and switching from the step-down circuit to the step-up circuit can be performed smoothly. Therefore, even if a charging power supply with a large voltage fluctuation range is used, the timing for switching the step-up / step-down from the step-down circuit operation to the step-up circuit operation can be adjusted according to the fluctuation of the voltage of the charging power supply without being limited by the fluctuation range. Therefore, the capacitor storage power supply can be charged efficiently and efficiently to a desired full charge voltage without depending on the rated voltage of the charge power supply by smoothly switching the step-up / step-down.

以下、本発明の実施の形態を説明する。図1は本発明に係る充電制御装置の実施の形態を示す図であり、100は充電制御装置、120は誤差増幅信号発生部、140はPWM制御部、160は昇降圧切換制御部、161、162は演算増幅器、180は昇降圧切換部、200は充電電源、300はキャパシタ蓄電電源、C1、C2は平滑コンデンサ、D1、D2は整流素子、L1はチョークコイル、Rは電流検出抵抗、R161〜R167は固定抵抗、VR16は可変抵抗、SW1は降圧スイッチ素子、SW2は昇圧スイッチ素子を示し、図4と同じ符号は図4と同等のものを示している。   Embodiments of the present invention will be described below. FIG. 1 is a diagram showing an embodiment of a charge control device according to the present invention, where 100 is a charge control device, 120 is an error amplification signal generating unit, 140 is a PWM control unit, 160 is a step-up / down switching control unit, 162 is an operational amplifier, 180 is a step-up / down switching unit, 200 is a charging power source, 300 is a capacitor storage power source, C1 and C2 are smoothing capacitors, D1 and D2 are rectifiers, L1 is a choke coil, R is a current detection resistor, R161 R167 is a fixed resistor, VR16 is a variable resistor, SW1 is a step-down switch element, SW2 is a step-up switch element, and the same reference numerals as those in FIG. 4 denote the same elements as in FIG.

図1に示す本実施形態において、充電制御装置100は、充電電源200とキャパシタ蓄電電源300との間の給電ラインに降圧スイッチ素子SW1とチョークコイルL1と整流素子D2とを直列に挿入接続し、チョークコイルL1と整流素子D2との直列接続点と共通ライン(接地ライン)との間にキャパシタ蓄電電源300と並列に昇圧スイッチ素子SW2を接続している。さらに、降圧スイッチ素子SW1とチョークコイルL1との接続点と共通ラインとの間に逆極性に整流素子D1を接続して降圧スイッチ素子SW1による降圧チョッパと昇圧スイッチ素子SW2による昇圧チョッパから構成している。降圧スイッチ素子SW1、昇圧スイッチ素子SW2には、ゲート付素子例えばサイリスタ、FET、パワートランジスタ、IGBTその他のスイッチング制御素子が用いられる。電流検出抵抗Rは、キャパシタ蓄電電源300の充放電電流を検出するものであり、共通ラインに挿入接続している。充電電源200からキャパシタ蓄電電源300を充電する場合、充電制御装置100は、キャパシタ蓄電電源300が充電電源200の電圧に充電されるまで降圧スイッチ素子SW1を所望のデューティ比でオン/オフ制御して所望の電圧に降圧し、キャパシタ蓄電電源300の充電電圧が充電電源200の電圧を越えると降圧スイッチ素子SW1をオンにして昇圧スイッチ素子SW2を所望のデューティ比でオン/オフ制御して所望の電圧に昇圧し所望の充電電流を供給する。   In the present embodiment shown in FIG. 1, the charging control apparatus 100 inserts and connects a step-down switch element SW1, a choke coil L1, and a rectifying element D2 in series to a power supply line between the charging power source 200 and the capacitor storage power source 300. A boost switch element SW2 is connected in parallel with the capacitor storage power source 300 between a series connection point of the choke coil L1 and the rectifier element D2 and a common line (ground line). Further, a rectifying element D1 is connected between the connection point of the step-down switch element SW1 and the choke coil L1 and a common line, and a step-down chopper by the step-down switch element SW1 and a step-up chopper by the step-up switch element SW2 are configured. Yes. As the step-down switch element SW1 and the step-up switch element SW2, gated elements such as thyristors, FETs, power transistors, IGBTs, and other switching control elements are used. The current detection resistor R detects charge / discharge current of the capacitor storage power source 300 and is inserted and connected to a common line. When charging capacitor storage power supply 300 from charging power supply 200, charge control device 100 performs on / off control of step-down switch element SW1 at a desired duty ratio until capacitor storage power supply 300 is charged to the voltage of charging power supply 200. When the voltage of capacitor storage power supply 300 exceeds the voltage of charging power supply 200 by stepping down to a desired voltage, step-down switch element SW1 is turned on and step-up switch element SW2 is controlled to be turned on / off at a desired duty ratio. And a desired charging current is supplied.

昇降圧切換制御部160は、充電電源200の電圧Vi とキャパシタ蓄電電源300の電圧Vc を入力してそれらを比較し、キャパシタ蓄電電源300の電圧Vc が充電電源200の電圧Vi より低いことを条件に降圧モードの信号を出力し、キャパシタ蓄電電源300の電圧Vc が充電電源200の電圧Vi にほぼ達したことを条件に降圧モードから昇圧モードに切り換える信号を出力するものである。つまり、昇降圧切換制御部160において、線路インピーダンスによる電圧降下を考慮すると、キャパシタ蓄電電源300の電圧Vc は、少なくとも充電電源200の電圧Vi とほぼ一致するかそれ以下であることが昇降圧の切り換え条件となる。昇降圧切換部180は、昇降圧切換制御部160から出力する降圧モードの信号によりPWM制御部140のPWM信号を降圧スイッチ素子SW1に供給し、昇圧モードに切り換える信号により降圧スイッチ素子SW1をオンに保持してPWM制御部140のPWM信号を昇圧スイッチ素子SW2に供給する。   The step-up / step-down switching control unit 160 inputs the voltage Vi of the charging power supply 200 and the voltage Vc of the capacitor storage power supply 300 and compares them, and the condition is that the voltage Vc of the capacitor storage power supply 300 is lower than the voltage Vi of the charging power supply 200. A signal for switching from the step-down mode to the step-up mode is output on condition that the voltage Vc of the capacitor storage power supply 300 has almost reached the voltage Vi of the charging power supply 200. That is, in the step-up / step-down switching control unit 160, considering the voltage drop due to the line impedance, the voltage Vc of the capacitor storage power source 300 is at least substantially equal to or less than the voltage Vi of the charging power source 200. It becomes a condition. The step-up / step-down switching unit 180 supplies the PWM signal of the PWM control unit 140 to the step-down switch element SW1 by the step-down mode signal output from the step-up / step-down switching control unit 160, and turns on the step-down switch element SW1 by the signal to switch to the step-up mode. The PWM signal of the PWM controller 140 is supplied to the boost switch element SW2.

誤差増幅信号発生部120は、電流検出抵抗Rの両端の電圧により検出されるキャパシタ蓄電電源300の充電電流Iとキャパシタ蓄電電源300の電圧Vc 、さらには充電電源200の電圧Vi を入力してそれらを基準値と比較し、定電流充電のモードにより充電電流Iが一定になり、基準値に対して電圧Vc が大きくなった場合や電圧Vi が小さくなった場合には充電電流Iを制限するような誤差増幅信号を発生する。PWM制御部140は、誤差増幅信号発生部120により発生した誤差増幅信号を入力しPWM信号を生成する。この誤差増幅信号に応じて生成した所望のデューティ比のPWM信号をPWM制御部140から昇降圧切換部180を介して降圧スイッチ素子SW1又は昇圧スイッチ素子SW2に選択的に供給することにより、降圧スイッチ素子SW1又は昇圧スイッチ素子SW2をPWM制御する。   The error amplification signal generator 120 inputs the charging current I of the capacitor storage power supply 300 detected by the voltage across the current detection resistor R, the voltage Vc of the capacitor storage power supply 300, and further the voltage Vi of the charging power supply 200. The charging current I is constant in the constant current charging mode, and the charging current I is limited when the voltage Vc becomes larger or the voltage Vi becomes smaller than the reference value. Error amplification signal is generated. The PWM control unit 140 receives the error amplification signal generated by the error amplification signal generation unit 120 and generates a PWM signal. A PWM signal having a desired duty ratio generated in accordance with the error amplification signal is selectively supplied from the PWM control unit 140 to the step-down switch element SW1 or the step-up switch element SW2 via the step-up / step-down switching unit 180. The element SW1 or the boost switch element SW2 is PWM-controlled.

昇降圧切換制御部160の具体的な構成は、例えば図1(b)に示すように演算増幅器161により充電電源200の電圧Vi とキャパシタ蓄電電源300の電圧Vc との差を検出し、キャパシタ蓄電電源300の電圧Vc が大きくなってほぼ充電電源200の電圧Vi に達すると(一定値以上近づくと)、演算増幅器162の出力レベルが反転して降圧モードの信号からから昇圧モードの信号に切り換わる。このハイレベルの信号により昇降圧切換部180は、降圧モードから昇圧モードに切り換わる。演算増幅器161には、その反転入力端子−に抵抗R161を介してキャパシタ蓄電電源300の電圧Vc を入力して反転入力端子−と出力端子との間に抵抗R164を接続し、非反転入力端子+に充電電源200の電圧Vi の抵抗R162とR163による分圧点を入力する。これに対し、演算増幅器162には、その反転入力端子−に抵抗R165を介して演算増幅器161の出力を入力し、非反転入力端子+に定電圧のバイアスV+の抵抗R166と可変抵抗VR16による分圧点を入力して非反転入力端子+と出力端子との間に抵抗R167を接続する。   The specific configuration of the step-up / step-down switching control unit 160 is, for example, as shown in FIG. 1B, by detecting the difference between the voltage Vi of the charging power supply 200 and the voltage Vc of the capacitor storage power supply 300 by an operational amplifier 161. When the voltage Vc of the power supply 300 increases and reaches almost the voltage Vi of the charging power supply 200 (approaches a certain value or more), the output level of the operational amplifier 162 is inverted to switch from the step-down mode signal to the boost mode signal. . By this high level signal, the step-up / step-down switching unit 180 switches from the step-down mode to the step-up mode. The operational amplifier 161 receives the voltage Vc of the capacitor storage power source 300 via the resistor R161 and connects the resistor R164 between the inverting input terminal − and the output terminal to the inverting input terminal −, and the non-inverting input terminal + The voltage dividing point by the resistors R162 and R163 of the voltage Vi of the charging power source 200 is input to the input. On the other hand, the operational amplifier 162 receives the output of the operational amplifier 161 via the resistor R165 at its inverting input terminal −, and the non-inverting input terminal + is divided by the resistor R166 and the variable resistor VR16 with a constant voltage bias V +. A pressure point is input and a resistor R167 is connected between the non-inverting input terminal + and the output terminal.

図1(b)に示す昇降圧切換制御部160において、演算増幅器161は、抵抗R161とR164、抵抗R162とR163にそれぞれ等しい抵抗値のものを接続した場合、図1(c)に示すように電圧Vc が電圧Vi と等しくなると0Vの出力になり、電圧Vc が電圧Vi より例えば1V低いと、その差の正電圧「+1V」を出力し、電圧Vc が電圧Vi より高くなると、その差の負電圧、例えば電圧Vc が電圧Vi の10Vより高い11Vになると、「−1V」を出力する。抵抗R161とR164、あるいは抵抗R162とR163に異なる抵抗値のものを接続すると、その抵抗値の比に応じて電圧Vi に対して演算増幅器161の出力の電圧も変わる。   In the step-up / step-down switching control unit 160 shown in FIG. 1B, when the operational amplifier 161 is connected to resistors R161 and R164 and resistors R162 and R163 having the same resistance value, as shown in FIG. When the voltage Vc becomes equal to the voltage Vi, the output is 0V. When the voltage Vc is 1V lower than the voltage Vi, for example, a positive voltage “+ 1V” is output. When the voltage Vc is higher than the voltage Vi, the difference is negative. When the voltage, for example, the voltage Vc becomes 11V higher than 10V of the voltage Vi, “−1V” is output. When resistors having different resistance values are connected to the resistors R161 and R164 or the resistors R162 and R163, the output voltage of the operational amplifier 161 also changes with respect to the voltage Vi in accordance with the ratio of the resistance values.

また、演算増幅器162は、抵抗R166と可変抵抗VR16からなる分圧回路により定電圧のバイアスV+を分圧して非反転入力端子+の電位ΔVを設定し、反転入力端子−に演算増幅器161の出力を入力して、図1(c)に示すように非反転入力端子+の電位ΔVを閾値として反転入力端子−の電位がその閾値を越えるとハイレベルからローレベルへ出力を反転させる。閾値であるΔVの電圧は、可変抵抗VR16によって調整される。可変抵抗VR16の抵抗値を調整して例えば演算増幅器162の非反転入力端子+の電位を「ΔV=+0.5V」に設定すると、その「+0.5V」より高い演算増幅器161の出力が反転入力端子−に入力されることにより、演算増幅器162はローレベルの信号を出力する。つまり図1(c)に示すようにキャパシタ蓄電電源300の電圧Vc が充電電源200の電圧Vi より0.5V低い電圧を越える電圧に充電されてくるまで演算増幅器162はローレベルの信号を出力している。そして、反転入力端子−の入力が「+0.5V」より低くなると、つまりキャパシタ蓄電電源300の電圧Vc が充電されてさらに高くなり、充電電源200の電圧Vi との差が0.5Vより小さくなると、演算増幅器162の出力は反転してハイレベルの信号になる。   The operational amplifier 162 divides the constant voltage bias V + by a voltage dividing circuit composed of the resistor R166 and the variable resistor VR16 to set the potential ΔV of the non-inverting input terminal +, and outputs the operational amplifier 161 to the inverting input terminal −. As shown in FIG. 1C, when the potential ΔV of the non-inverting input terminal + is set as a threshold value and the potential of the inverting input terminal − exceeds the threshold value, the output is inverted from the high level to the low level. The voltage of ΔV which is a threshold value is adjusted by the variable resistor VR16. For example, when the resistance value of the variable resistor VR16 is adjusted to set the potential of the non-inverting input terminal + of the operational amplifier 162 to “ΔV = + 0.5 V”, the output of the operational amplifier 161 higher than “+0.5 V” is inverted input. When input to the terminal −, the operational amplifier 162 outputs a low level signal. That is, as shown in FIG. 1C, the operational amplifier 162 outputs a low level signal until the voltage Vc of the capacitor storage power supply 300 is charged to a voltage exceeding 0.5V lower than the voltage Vi of the charging power supply 200. ing. When the input of the inverting input terminal − becomes lower than “+0.5 V”, that is, when the voltage Vc of the capacitor storage power supply 300 is charged and becomes higher, and the difference from the voltage Vi of the charging power supply 200 becomes smaller than 0.5 V. The output of the operational amplifier 162 is inverted to become a high level signal.

このように昇降圧切換制御部160においては、キャパシタ蓄電電源300の電圧Vc が充電電源200の電圧Vi より低いと、演算増幅器161が正電圧を出力し、演算増幅器161の出力はローレベル(降圧モードの信号)になっているが、キャパシタ蓄電電源300の電圧Vc が高くなり充電電源200の電圧Vi に近づき、演算増幅器161の出力が演算増幅器162の非反転入力端子+の電位より低くなると、演算増幅器162がハイレベル(昇圧モードの信号)に反転する。   Thus, in the step-up / step-down switching control unit 160, when the voltage Vc of the capacitor storage power supply 300 is lower than the voltage Vi of the charging power supply 200, the operational amplifier 161 outputs a positive voltage, and the output of the operational amplifier 161 is low level (step-down). Mode signal), but when the voltage Vc of the capacitor storage power supply 300 increases and approaches the voltage Vi of the charging power supply 200, the output of the operational amplifier 161 becomes lower than the potential of the non-inverting input terminal + of the operational amplifier 162. The operational amplifier 162 is inverted to high level (boost mode signal).

次に、具体的な誤差増幅信号発生部の構成について説明する。図2は誤差増幅信号発生部の実施の形態を示す図であり、121、123、124は信号発生回路、AMP1〜AMP4は演算増幅器、C11、C31、C41はコンデンサ、D11、D31、D41はダイオード、R11、R31、R41は抵抗、Vrefi、Vref(v-i)、Vrefvc は基準値を示す。   Next, a specific configuration of the error amplification signal generator will be described. FIG. 2 is a diagram showing an embodiment of an error amplification signal generator, wherein 121, 123, and 124 are signal generation circuits, AMP1 to AMP4 are operational amplifiers, C11, C31, and C41 are capacitors, and D11, D31, and D41 are diodes. , R11, R31, R41 are resistors, and Vrefi, Vref (vi), Vrefvc are reference values.

図1に示す誤差増幅信号発生部120は、例えば図2に示すような各基準値Vrefi、Vref(v-i)、Vrefvc と比較して誤差増幅信号を出力する定電流信号発生回路121、電流逓減信号発生回路123、定電圧信号発生回路124、そして、これらの誤差増幅信号のうち最も小さい誤差増幅信号をPWM制御部140の入力とするダイオードD11、D31、D41からなるアナログ信号のオア論理回路により構成される。ダイオードD11、D31、D41は、誤差増幅信号を出力する定電流信号発生回路121、電流逓減信号発生回路123、定電圧信号発生回路124のそれぞれから逆方向の極性でPWM制御部140の入力に接続される。これらの回路の出力信号により、充電電流Iを一定にし(定電流充電)、所定電圧までキャパシタ蓄電電源300が充電されると、充電電圧Vcの増加に逆比例して充電電流を逓減させる(電流逓減制御:V−I制御)ように、また、充電電圧Vcが満充電に相当する電圧に達するとその電圧を越えないように(定電圧充電)各制御モード間の切り換えを行ってPWM(Pulse Width Modulation :パルス幅変調)制御する。   An error amplification signal generator 120 shown in FIG. 1 includes a constant current signal generation circuit 121 that outputs an error amplification signal in comparison with reference values Vrefi, Vref (vi), and Vrefvc as shown in FIG. The generation circuit 123, the constant voltage signal generation circuit 124, and an OR logic circuit of analog signals including diodes D11, D31, and D41, which input the smallest error amplification signal among these error amplification signals to the PWM controller 140. Is done. The diodes D11, D31, and D41 are connected to the input of the PWM controller 140 with opposite polarities from the constant current signal generation circuit 121, the current diminishing signal generation circuit 123, and the constant voltage signal generation circuit 124 that output error amplification signals, respectively. Is done. When the charging current I is made constant (constant current charging) by the output signals of these circuits and the capacitor storage power supply 300 is charged up to a predetermined voltage, the charging current is gradually decreased in proportion to the increase of the charging voltage Vc (current). Switching between the control modes so as not to exceed the charging voltage Vc when the charging voltage Vc reaches a voltage corresponding to full charging (constant voltage charging). Width Modulation (pulse width modulation) control.

定電流信号発生回路121は、充電装置200の出力に直列に挿入接続した電流検出用抵抗Rの端子間の電圧降下を充電電流Iの検出信号として取り出してこれを制御対象として入力し、コンパレータの基準値として電流基準値設定回路で設定されている電流基準値Vrefiを越えたか否かを比較して、その誤差増幅信号を出力する誤差増幅回路で構成される。したがって、定電流信号発生回路121から出力される誤差増幅信号は、入力される制御対象の充電電流Iが電流基準値Vrefiより小さければ出力値は大きくなり、充電電流Iが電流基準値Vrefiより大きければ出力値は小さくなる。PWM制御部140では、この誤差増幅信号を入力すると、充電電流Iが電流基準値Vrefiより小さいときは充電電流Iを大きくし、逆に充電電流Iが電流基準値Vrefiより大きいときは充電電流Iが小さくするように入力する誤差増幅信号の大きさに応じてパルス幅(デューティ比)を制御するので、結果として、電流基準値Vrefiに基づき充電電流Iが一定になるように充電電流を制御する、定電流充電の制御モードCCが実行される。   The constant current signal generation circuit 121 takes out the voltage drop between the terminals of the current detection resistor R inserted and connected in series with the output of the charging device 200 as a detection signal of the charging current I, and inputs this as a control object, It is configured by an error amplification circuit that compares the current reference value Vrefi set by the current reference value setting circuit as a reference value and outputs an error amplification signal. Therefore, the error amplification signal output from the constant current signal generation circuit 121 has a larger output value if the input charging current I to be controlled is smaller than the current reference value Vrefi, and the charging current I is larger than the current reference value Vrefi. The output value becomes smaller. When this error amplification signal is input, the PWM controller 140 increases the charging current I when the charging current I is smaller than the current reference value Vrefi, and conversely when the charging current I is larger than the current reference value Vrefi. Since the pulse width (duty ratio) is controlled according to the magnitude of the input error amplification signal so as to decrease the charging current, the charging current is controlled so that the charging current I becomes constant based on the current reference value Vrefi as a result. The constant current charging control mode CC is executed.

電流逓減信号発生回路123は、キャパシタ蓄電電源300の充電電圧Vcの増加に逆比例して充電電流Iを小さくする電流基準値Vref(v-i)を発生させ、この電流基準値Vref(v-i)を制御対象の充電電流Iが越えたか否かを比較して、その誤差増幅信号を出力するものである。この回路では、キャパシタ蓄電電源300の充電電圧Vcの増加に逆比例して充電電流Iを小さくする電流基準値Vref(v-i)を発生させ、この電流基準値Vref(v-i)を制御対象の充電電流Iが越えたか否かを比較して、その誤差増幅信号を出力するものであり、例えば電流基準値Vref(v-i)は、キャパシタ蓄電電源300の充電電圧Vcを反転させ(Vout =−Vin)、オフセット値Voff-set で正値化(=Voff-set −Vin)することにより発生させる。したがって、PWM制御部140では、この誤差増幅信号を入力すると、キャパシタ蓄電電源300の充電電圧Vcが小さいときには充電電流Iを大きくし、キャパシタ蓄電電源300の充電電圧Vcが増加するとともにその増加に逆比例して充電電流Iを小さくするように充電電流を制御する、電流逓減の制御モードV−Iが実行される。   The current diminishing signal generating circuit 123 generates a current reference value Vref (vi) that decreases the charging current I in inverse proportion to the increase in the charging voltage Vc of the capacitor storage power supply 300, and controls the current reference value Vref (vi). A comparison is made as to whether or not the target charging current I has been exceeded, and the error amplification signal is output. In this circuit, a current reference value Vref (vi) that reduces the charging current I in inverse proportion to the increase in the charging voltage Vc of the capacitor storage power supply 300 is generated, and this current reference value Vref (vi) is used as the charging current to be controlled. A comparison is made as to whether or not I has been exceeded, and an error amplification signal is output. For example, the current reference value Vref (vi) inverts the charging voltage Vc of the capacitor storage power supply 300 (Vout = −Vin), It is generated by making the offset value Voff-set positive (= Voff-set−Vin). Therefore, when this error amplification signal is input, PWM controller 140 increases charging current I when charging voltage Vc of capacitor storage power supply 300 is small, and reverses the increase in charging voltage Vc of capacitor storage power supply 300. A current diminishing control mode V-I is executed in which the charging current is controlled to decrease the charging current I in proportion.

定電圧信号発生回路124は、キャパシタ蓄電電源300の充電電圧Vcを検出し、これを制御対象として入力し電圧基準値設定回路で予め設定される電圧基準値Vrefvc を越えたか否かを比較して、その誤差増幅信号を出力する誤差増幅回路で構成される。したがって、定電圧信号発生回路124から出力される誤差増幅信号は、入力される制御対象の充電電圧Vcが電圧基準値Vrefvc より小さければ出力値は大きくなり、充電電圧Vcが電圧基準値Vrefvc より大きければ出力値は小さくなる。PWM制御部140は、この誤差増幅信号を入力すると、充電電圧Vcが電圧基準値Vrefvc より小さいときは充電電流Iを大きくし、逆に充電電圧Vcが電圧基準値Vrefvc より大きいときは充電電流Iを小さくするように充電電流を制御する、定電圧充電の制御モードCVが実行される。   The constant voltage signal generation circuit 124 detects the charging voltage Vc of the capacitor storage power source 300, inputs this as a control target, and compares whether or not the voltage reference value Vrefvc preset by the voltage reference value setting circuit is exceeded. And an error amplification circuit that outputs the error amplification signal. Therefore, the error amplification signal output from the constant voltage signal generation circuit 124 has a larger output value if the input charging voltage Vc to be controlled is smaller than the voltage reference value Vrefvc, and the charging voltage Vc is larger than the voltage reference value Vrefvc. The output value becomes smaller. When this error amplification signal is input, the PWM control unit 140 increases the charging current I when the charging voltage Vc is smaller than the voltage reference value Vrefvc, and conversely, when the charging voltage Vc is larger than the voltage reference value Vrefvc. The constant voltage charging control mode CV is executed to control the charging current so as to reduce the current.

さらに、図2に示した各信号発生回路の構成を具体的に説明する。定電流信号発生回路121は、演算増幅器AMP1の反転入力端子−に充電電流Iの検出信号を入力し、非反転入力端子+に電流基準値Vrefiを入力して、反転入力端子−と出力端子との間にコンデンサC11と抵抗R11との直列回路を接続することにより誤差増幅回路を構成している。同様に、電流逓減信号発生回路123は、演算増幅器AMP3の反転入力端子−に充電電流Iの検出信号を入力し、非反転入力端子+に電流基準値Vref(v-i)を入力して、反転入力端子−と出力端子との間にコンデンサC31と抵抗R31との直列回路を接続することにより誤差増幅回路を構成している。また、定電圧信号発生回路124は、演算増幅器AMP4の反転入力端子−に充電電圧Vcの検出信号を入力し、非反転入力端子+に電圧基準値Vrefvc を入力して、反転入力端子−と出力端子との間にコンデンサC41と抵抗R41との直列回路を接続することにより誤差増幅回路を構成している。   Further, the configuration of each signal generation circuit shown in FIG. 2 will be specifically described. The constant current signal generation circuit 121 inputs the detection signal of the charging current I to the inverting input terminal − of the operational amplifier AMP1, inputs the current reference value Vrefi to the non-inverting input terminal +, and inputs the inverting input terminal − and the output terminal. An error amplification circuit is configured by connecting a series circuit of a capacitor C11 and a resistor R11 between the two. Similarly, the current diminishing signal generating circuit 123 inputs the detection signal of the charging current I to the inverting input terminal − of the operational amplifier AMP3, inputs the current reference value Vref (vi) to the non-inverting input terminal +, and inputs the inverting input. An error amplifier circuit is configured by connecting a series circuit of a capacitor C31 and a resistor R31 between the terminal-and the output terminal. Further, the constant voltage signal generation circuit 124 inputs the detection signal of the charging voltage Vc to the inverting input terminal − of the operational amplifier AMP4, inputs the voltage reference value Vrefvc to the non-inverting input terminal +, and outputs it to the inverting input terminal −. An error amplifying circuit is configured by connecting a series circuit of a capacitor C41 and a resistor R41 between the terminals.

ダイオードD11、D31、D41は、誤差増幅信号を出力する定電流信号発生回路121、電流逓減信号発生回路123、定電圧信号発生回路124のそれぞれから逆方向の極性でPWM制御部140の入力に接続されているので、定電流信号発生回路121、電流逓減信号発生回路123、定電圧信号発生回路124の出力するそれぞれの誤差増幅信号のうち最も小さい誤差増幅信号をPWM制御部140の入力とするアナログ信号のオア論理回路を構成している。   The diodes D11, D31, and D41 are connected to the input of the PWM controller 140 with opposite polarities from the constant current signal generation circuit 121, the current diminishing signal generation circuit 123, and the constant voltage signal generation circuit 124 that output error amplification signals, respectively. Therefore, the analog signal having the smallest error amplification signal among the error amplification signals output from the constant current signal generation circuit 121, the current diminishing signal generation circuit 123, and the constant voltage signal generation circuit 124 as an input to the PWM controller 140. It constitutes a signal OR logic circuit.

オア論理回路により行われる充電モードの切り換え制御をさらに説明すると、まず、充電を開始する初期の段階では、ダイオードD11がオン、ダイオードD31、D41がオフの状態で定電流充電の制御モードCCが実行される。すなわち、初期の段階でキャパシタ蓄電電源300の充電電圧Vcが小さく、定電流信号発生回路121の出力する誤差増幅信号に基づきPWM制御部140が定電流充電の制御モードCCを実行しているときには、電流逓減信号発生回路123、定電圧信号発生回路124においてはいずれも制御対象が比較する基準値より小さいため、大きい値の誤差増幅信号を出力しても、充電電流Iもキャパシタ蓄電電源300の充電電圧Vcも大きくならず、また、入力電圧Viも小さくならず誤差増幅信号が上限値にはりついた状態になるから、ダイオードD31、D41が逆方向にバイアスされオフとなる。   The charging mode switching control performed by the OR logic circuit will be further described. First, in the initial stage of starting charging, the constant current charging control mode CC is executed with the diode D11 on and the diodes D31 and D41 off. Is done. That is, when the charging voltage Vc of the capacitor storage power supply 300 is small in the initial stage and the PWM control unit 140 is executing the constant current charging control mode CC based on the error amplification signal output from the constant current signal generation circuit 121, Since both the current diminishing signal generation circuit 123 and the constant voltage signal generation circuit 124 are smaller than the reference value to be compared, even if a large error amplification signal is output, the charging current I is charged by the capacitor storage power supply 300. Since the voltage Vc is not increased and the input voltage Vi is not decreased and the error amplification signal is stuck to the upper limit value, the diodes D31 and D41 are biased in the reverse direction and turned off.

次に、定電流充電を続けることによりキャパシタ蓄電電源300の充電電圧Vcが増加してゆき、電流逓減信号発生回路123における電流基準値Vref(v-i)が徐々に小さくなって、電流基準値Vref(v-i)が定電流信号発生回路121の電流基準値Vrefiより小さくなると、電流逓減信号発生回路123から出力される誤差増幅信号が定電流信号発生回路121から出力される誤差増幅信号より小さくなる。ここから、定電流信号発生回路121の出力に接続されたダイオードD11がオフになって、電流逓減信号発生回路123の出力に接続されたダイオードD31がオンに切り換わり、キャパシタ蓄電電源300の充電電圧Vcが増加するとともにその増加に逆比例して充電電流Iを小さくするように充電電流を制御する、電流逓減の制御モードV−Iが実行される。   Next, by continuing constant current charging, the charging voltage Vc of the capacitor storage power supply 300 increases, the current reference value Vref (vi) in the current diminishing signal generating circuit 123 gradually decreases, and the current reference value Vref ( When vi) becomes smaller than the current reference value Vrefi of the constant current signal generation circuit 121, the error amplification signal output from the current diminishing signal generation circuit 123 becomes smaller than the error amplification signal output from the constant current signal generation circuit 121. From this, the diode D11 connected to the output of the constant current signal generation circuit 121 is turned off, the diode D31 connected to the output of the current diminishing signal generation circuit 123 is turned on, and the charging voltage of the capacitor storage power supply 300 is turned on. A current diminishing control mode V-I is executed in which the charging current is controlled to decrease the charging current I in inverse proportion to the increase in Vc.

さらに、キャパシタ蓄電電源300の充電電圧Vcが増加してゆき、定電圧信号発生回路124における電圧基準値Vrefvc より大きくなると、定電圧信号発生回路124から出力される誤差増幅信号が電流逓減信号発生回路123から出力される誤差増幅信号より小さくなり、電流逓減信号発生回路123の出力に接続されたダイオードD31がオフになって、定電圧信号発生回路124の出力に接続されたダイオードD41がオンに切り換わり、充電電圧Vcを電圧基準値Vrefvc より小さくするように充電電流を制御する、定電圧充電の制御モードCVが実行される。   Further, when the charging voltage Vc of the capacitor storage power supply 300 increases and becomes larger than the voltage reference value Vrefvc in the constant voltage signal generation circuit 124, the error amplification signal output from the constant voltage signal generation circuit 124 becomes the current diminishing signal generation circuit. 123, the diode D31 connected to the output of the current diminishing signal generating circuit 123 is turned off, and the diode D41 connected to the output of the constant voltage signal generating circuit 124 is turned on. Instead, a constant voltage charging control mode CV is executed in which the charging current is controlled to make the charging voltage Vc smaller than the voltage reference value Vrefvc.

図3は基準値発生回路の実施の形態を示す図であり、AMP5は演算増幅器、ASr1、ASr1′はアナログスイッチ、Cr1はコンデンサ、R21、R33、Rr1は抵抗、Rrv、Rrv′は可変抵抗、+Vはバイアス電源を示す。   FIG. 3 is a diagram showing an embodiment of a reference value generating circuit. AMP5 is an operational amplifier, ASr1 and ASr1 ′ are analog switches, Cr1 is a capacitor, R21, R33 and Rr1 are resistors, Rrv and Rrv ′ are variable resistors, + V indicates a bias power supply.

上記の各基準値設定回路は、周知の様々な回路で構成することができるが、例えば図3に示すように構成することができる。電流基準値Vref(v-i)は、図2に示す先に述べたようにキャパシタ蓄電電源300の充電電圧Vcの増加に逆比例する値であり、例えば図3(a)に示すように演算増幅器AMP5において、その反転入力端子−に抵抗R32を介してキャパシタ蓄電電源300の充電電圧Vcの検出信号を入力し、非反転入力端子+にオフセット値Voff-set を入力して、反転入力端子−と出力端子との間に抵抗R33を接続することにより減算回路を構成し発生することができる。この減算回路によればVoff-set +(Voff-set −Vc)R33/R32(ここで、R33=R32とすると、2Voff-set −Vc)の電流基準値Vref(v-i)が取り出される。   Each of the reference value setting circuits described above can be configured by various known circuits, for example, as illustrated in FIG. The current reference value Vref (vi) is a value that is inversely proportional to the increase in the charging voltage Vc of the capacitor storage power supply 300 as described above shown in FIG. 2, and is, for example, an operational amplifier AMP5 as shown in FIG. , The detection signal of the charging voltage Vc of the capacitor storage power source 300 is input to the inverting input terminal − via the resistor R32, the offset value Voff-set is input to the non-inverting input terminal +, and the inverting input terminal − and output A subtractor circuit can be constructed and generated by connecting a resistor R33 to the terminal. According to this subtracting circuit, a current reference value Vref (v−i) of Voff−set + (Voff−set−Vc) R33 / R32 (where R33 = R32 is 2Voff−set−Vc) is extracted.

このオフセット値Voff-set を含む各信号発生回路の基準値は、図3(b)に示すように安定化されたバイアス電源+Vを固定抵抗Rr1と可変抵抗Rrvとの分圧回路で分圧し、その分圧接続点から基準値Vrefを取り出し、可変抵抗Rrvにより所定の電圧に調整する。なお、コンデンサCr1はノイズ対策用として可変抵抗Rrvに並列接続しているものである。また、図3(c)に示すようにアナログスイッチASr1を介して同様の回路を並列に接続してアナログスイッチASr1のオン/オフにより基準値を切り換えられるようにしてもよいし、このような基準値の切り換えは、アナログスイッチASr1′を介して可変抵抗Rrvと並列に可変抵抗Rrv′を接続できるようにしてもよい。このように基準値の切り換えをアナログスイッチASr1、或いはASr1′により行うように構成した場合には、例えばこれを電流基準値設定回路Vrefiに採用すると、所定の条件により定電流充電の値を段階的に切り換えることができる。例えば各キャパシタに満充電電圧で充電電流をバイパスする並列モニタを並列接続しているキャパシタ蓄電電源では、その並列モニタのバイパス動作信号を論理処理回路で処理し、その出力信号を切り換え信号とすると、並列モニタの動作に応じて定電流充電の充電電流を切り換えることができる。   The reference value of each signal generation circuit including this offset value Voff-set is obtained by dividing the stabilized bias power supply + V by a voltage dividing circuit of a fixed resistor Rr1 and a variable resistor Rrv as shown in FIG. The reference value Vref is taken out from the voltage dividing connection point and adjusted to a predetermined voltage by the variable resistor Rrv. The capacitor Cr1 is connected in parallel to the variable resistor Rrv as a noise countermeasure. Further, as shown in FIG. 3C, a similar circuit may be connected in parallel via the analog switch ASr1 so that the reference value can be switched by turning on / off the analog switch ASr1. The value may be switched by connecting the variable resistor Rrv ′ in parallel with the variable resistor Rrv via the analog switch ASr1 ′. In this way, when the reference value is switched by the analog switch ASr1 or ASr1 ′, for example, when this is adopted in the current reference value setting circuit Vrefi, the constant current charging value is stepwise according to a predetermined condition. Can be switched to. For example, in a capacitor storage power source in which a parallel monitor that bypasses a charging current with a full charge voltage is connected in parallel to each capacitor, the bypass operation signal of the parallel monitor is processed by a logic processing circuit, and the output signal is used as a switching signal. The charging current for constant current charging can be switched according to the operation of the parallel monitor.

なお、本発明は、上記実施の形態に限定されるものではなく、種々の変形が可能である。例えば上記実施の形態では、誤差増幅信号発生部120として、定電流信号発生回路121、電流逓減信号発生回路123、定電圧信号発生回路124及びダイオードからなるオア論理回路を有する構成を示したが、例えば充電電源側において、定電流充電を行ってキャパシタ蓄電電源が所定の電圧に充電されたことを判断して充電を停止させる機能を有するものと組み合わせる場合などに対応して、定電流信号発生回路121のみを有するものであってもよい。勿論、定電流信号発生回路121と他のそれぞれの信号発生回路との組み合わせであってもよい。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above-described embodiment, the error amplification signal generation unit 120 has a configuration including the constant current signal generation circuit 121, the current diminishing signal generation circuit 123, the constant voltage signal generation circuit 124, and an OR logic circuit including a diode. For example, a constant current signal generation circuit corresponding to a case where, for example, the charging power source side is combined with one having a function of stopping constant charging by performing constant current charging to determine that the capacitor storage power source has been charged to a predetermined voltage. It may have only 121. Of course, a combination of the constant current signal generation circuit 121 and each of the other signal generation circuits may be used.

本発明に係る充電制御装置の実施の形態を示す図。The figure which shows embodiment of the charge control apparatus which concerns on this invention. 誤差増幅信号発生部の実施の形態を示す図。The figure which shows embodiment of an error amplification signal generation part. 基準値発生回路の実施の形態を示す図。The figure which shows embodiment of a reference value generation circuit. 電源調整回路の従来例を説明する図。The figure explaining the prior art example of a power supply adjustment circuit. 充電制御装置として構成した従来の電源調整回路の昇降圧切り換え時の問題を説明する図。The figure explaining the problem at the time of the buck-boost switching of the conventional power supply adjustment circuit comprised as a charge control apparatus.

符号の説明Explanation of symbols

100…充電制御装置、120…誤差増幅信号発生部、140…PWM制御部、160…昇降圧切換制御部、161、162…演算増幅器、180…昇降圧切換部、200…充電電源、300…キャパシタ蓄電電源、C1、C2…平滑コンデンサ、D1、D2…整流素子、L1…チョークコイル、R…電流検出抵抗、R161〜R167…固定抵抗、VR16…可変抵抗、SW1…降圧スイッチ素子、SW2…昇圧スイッチ素子   DESCRIPTION OF SYMBOLS 100 ... Charge control apparatus, 120 ... Error amplification signal generation part, 140 ... PWM control part, 160 ... Buck-boost switching control part, 161, 162 ... Operational amplifier, 180 ... Buck-boost switching part, 200 ... Charging power supply, 300 ... Capacitor Storage power supply, C1, C2 ... smoothing capacitor, D1, D2 ... rectifier element, L1 ... choke coil, R ... current detection resistor, R161-R167 ... fixed resistor, VR16 ... variable resistor, SW1 ... step-down switch element, SW2 ... step-up switch element

Claims (3)

降圧スイッチ素子とチョークコイルと昇圧スイッチと整流素子からなる昇降圧回路を接続し前記降圧スイッチ素子又は昇圧スイッチにPWM信号を切り換えて供給してPWM制御により充電電流を制御し充電電源からキャパシタ蓄電電源を充電するように構成した充電制御装置において、
前記キャパシタ蓄電電源の充電電流を検出して基準値との比較により誤差増幅信号を発生する誤差増幅信号発生手段と、
前記誤差増幅信号発生手段により発生した誤差増幅信号によりPWM信号を発生するPWM制御手段と、
前記PWM制御手段により発生したPWM信号を前記降圧スイッチ素子又は昇圧スイッチに切り換えて供給する昇降圧切換手段と、
前記充電電源の電圧と前記キャパシタ蓄電電源の電圧とを比較して、前記キャパシタ蓄電電源の電圧が前記充電電源の電圧より低いことを条件に前記PWM信号を前記降圧スイッチ素子に供給し、前記キャパシタ蓄電電源の電圧が前記充電電源の電圧に一定値以上近づいたことを条件に前記PWM信号を前記昇圧スイッチ素子に切り換えて供給するように前記昇降圧切換手段を制御する昇降圧切換制御手段と
を備えたことを特徴とする充電制御装置。
A step-up / step-down circuit comprising a step-down switch element, a choke coil, a step-up switch, and a rectifier element is connected, a PWM signal is switched and supplied to the step-down switch element or step-up switch, a charging current is controlled by PWM control, and a capacitor storage power source is supplied from the charge power source. In the charging control device configured to charge
An error amplification signal generating means for detecting a charging current of the capacitor storage power source and generating an error amplification signal by comparison with a reference value;
PWM control means for generating a PWM signal by the error amplification signal generated by the error amplification signal generation means;
Step-up / step-down switching means for switching and supplying the PWM signal generated by the PWM control means to the step-down switch element or the step-up switch;
Comparing the voltage of the charging power supply and the voltage of the capacitor storage power supply, and supplying the PWM signal to the step-down switch element on condition that the voltage of the capacitor storage power supply is lower than the voltage of the charging power supply, A step-up / step-down switching control means for controlling the step-up / step-down switching means so as to switch and supply the PWM signal to the step-up switch element on the condition that the voltage of the power storage power source approaches the voltage of the charging power source or more. A charge control device comprising:
前記誤差増幅信号発生手段は、前記充電電流が電流基準値を越えたか否かを比較して誤差増幅信号を発生する定電流信号発生回路と、前記充電電圧が電圧基準値を越えたか否かを比較して誤差増幅信号を発生する定電圧信号発生回路と、前記それぞれの信号発生回路により発生した誤差増幅信号を逆極性に接続されるダイオードを通して前記PWM制御手段に出力するオア論理回路とを有し、前記誤差増幅信号のいずれかを前記PWM制御手段に出力するように構成したことを特徴とする請求項1記載の充電制御装置。 The error amplification signal generation means compares a constant current signal generation circuit for generating an error amplification signal by comparing whether or not the charging current exceeds a current reference value, and whether or not the charging voltage exceeds a voltage reference value. A constant voltage signal generation circuit that generates an error amplification signal by comparison; and an OR logic circuit that outputs the error amplification signal generated by each of the signal generation circuits to the PWM control means through a diode connected in reverse polarity. The charge control device according to claim 1, wherein any one of the error amplification signals is output to the PWM control means. 前記誤差増幅信号発生手段は、前記充電電流が電流基準値を越えたか否かを比較して誤差増幅信号を発生する定電流信号発生回路と、オフセット値から前記充電電圧を減算して電流逓減基準値を発生し、前記充電電流が前記電流逓減基準値を越えたか否かを比較して誤差増幅信号を出力する電流逓減信号発生回路と、前記それぞれの信号発生回路により発生した誤差増幅信号を逆極性に接続されるダイオードを通して前記PWM制御手段に出力するオア論理回路とを有し、前記誤差増幅信号のいずれかを前記PWM制御手段に出力するように構成したことを特徴とする請求項1記載の充電制御装置。 The error amplification signal generation means includes a constant current signal generation circuit that generates an error amplification signal by comparing whether or not the charging current exceeds a current reference value, and a current reduction reference by subtracting the charging voltage from an offset value A current diminishing signal generation circuit that outputs an error amplification signal by comparing whether or not the charging current exceeds the current diminishing reference value, and the error amplification signal generated by each of the signal generation circuits is inverted. 2. An OR logic circuit for outputting to the PWM control means through a diode connected to the polarity, and configured to output any one of the error amplification signals to the PWM control means. Charge control device.
JP2007017354A 2007-01-29 2007-01-29 Charge control device Active JP4049333B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007017354A JP4049333B1 (en) 2007-01-29 2007-01-29 Charge control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007017354A JP4049333B1 (en) 2007-01-29 2007-01-29 Charge control device

Publications (2)

Publication Number Publication Date
JP4049333B1 JP4049333B1 (en) 2008-02-20
JP2008187785A true JP2008187785A (en) 2008-08-14

Family

ID=39181782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007017354A Active JP4049333B1 (en) 2007-01-29 2007-01-29 Charge control device

Country Status (1)

Country Link
JP (1) JP4049333B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013027300A (en) * 2011-07-14 2013-02-04 O2 Micro Inc Battery charging device having common control loop for low dropout voltage regulator and boost regulator
US8633674B2 (en) * 2010-01-07 2014-01-21 Ada (Hong Kong) Limited Universal charger
WO2014043642A1 (en) * 2012-09-17 2014-03-20 Intel Corporation Voltage regulator
JP2014158344A (en) * 2013-02-15 2014-08-28 Hitachi Automotive Systems Ltd Charger
CN105656149A (en) * 2016-03-24 2016-06-08 江苏峰谷源储能技术研究院有限公司 Photovoltaic charging battery for portable power source
US9477278B2 (en) 2011-10-01 2016-10-25 Intel Corporation Voltage regulator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4512145B2 (en) * 2008-03-21 2010-07-28 ファナック株式会社 Motor control device
CN108390426B (en) * 2018-02-07 2020-11-20 深圳市创新微源半导体有限公司 Novel lithium battery charging control circuit
CN109004825A (en) * 2018-08-08 2018-12-14 福建飞毛腿动力科技有限公司 It is a kind of to be depressured the direct-current switch power supply conversion circuit that boosted

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8633674B2 (en) * 2010-01-07 2014-01-21 Ada (Hong Kong) Limited Universal charger
JP2013027300A (en) * 2011-07-14 2013-02-04 O2 Micro Inc Battery charging device having common control loop for low dropout voltage regulator and boost regulator
US8629649B2 (en) 2011-07-14 2014-01-14 O2Micro International, Ltd. Battery charging apparatus with a common control loop for a low drop-out voltage regulator and a boost regulator
US9477278B2 (en) 2011-10-01 2016-10-25 Intel Corporation Voltage regulator
US10228756B2 (en) 2011-10-01 2019-03-12 Intel Corporation Voltage regulator having circuit to control super capacitor
WO2014043642A1 (en) * 2012-09-17 2014-03-20 Intel Corporation Voltage regulator
CN104797998A (en) * 2012-09-17 2015-07-22 英特尔公司 Voltage regulator
JP2014158344A (en) * 2013-02-15 2014-08-28 Hitachi Automotive Systems Ltd Charger
CN105656149A (en) * 2016-03-24 2016-06-08 江苏峰谷源储能技术研究院有限公司 Photovoltaic charging battery for portable power source

Also Published As

Publication number Publication date
JP4049333B1 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
JP4049333B1 (en) Charge control device
JP3907123B1 (en) Charging device for capacitor storage power supply
JP3697696B2 (en) DC-DC converter
KR100801498B1 (en) Switching control circuit and self-excited dc-dc converter
US7928715B2 (en) Switching regulator
JP4984777B2 (en) Power supply system and output voltage control method
JP4440869B2 (en) DC-DC converter, control circuit for DC-DC converter, and control method for DC-DC converter
JP5779043B2 (en) DC-DC converter and information processing apparatus
JP3922650B1 (en) Charging device for capacitor storage power supply
JP3922649B1 (en) Charging device for capacitor storage power supply
JP4867500B2 (en) Switching power supply
JP3945658B1 (en) Charging device for capacitor storage power supply
JP2005102469A (en) Power supply unit and power supply system having same
US20100046124A1 (en) Boost DC-DC converter control circuit and boost DC-DC converter having protection circuit interrupting overcurrent
JP2008243728A (en) Power supply circuit device
JP2007189771A (en) Power unit
JP4321467B2 (en) Power switching device
JP4049332B1 (en) Charge control device
JP4832240B2 (en) Multi-output power supply
US20120032659A1 (en) Power supply device
JP6902719B2 (en) Converter system
JP2009100532A (en) Charger for capacitor storage power supplies
JP3871220B1 (en) Charging device for capacitor storage power supply
JP3886142B1 (en) Charging or discharging device for capacitor storage power supply
US20230411984A1 (en) Power supply system

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071122

R150 Certificate of patent or registration of utility model

Ref document number: 4049333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250