JP2008185378A - Light source for optical interference tomographic device constituted of infrared glass phosphor and semiconductor light-emitting element - Google Patents
Light source for optical interference tomographic device constituted of infrared glass phosphor and semiconductor light-emitting element Download PDFInfo
- Publication number
- JP2008185378A JP2008185378A JP2007017260A JP2007017260A JP2008185378A JP 2008185378 A JP2008185378 A JP 2008185378A JP 2007017260 A JP2007017260 A JP 2007017260A JP 2007017260 A JP2007017260 A JP 2007017260A JP 2008185378 A JP2008185378 A JP 2008185378A
- Authority
- JP
- Japan
- Prior art keywords
- light source
- glass phosphor
- infrared glass
- emitting element
- mol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
本発明は、光干渉断層撮影(OCT: Optical Coherence Tomography)装置に用いる光源に関するものである。 The present invention relates to a light source used in an optical coherence tomography (OCT) apparatus.
OCT装置はマイケルソン干渉計を利用した断層撮影技術であり、例えば眼科用OCT装置が実用化されている。OCTは、従来のX線断層撮影技術や超音波断層撮影技術よりも遙かに高分解能であるという特徴を有している。一般的には、X線断層撮影では数mm程度、超音波断層撮影でも数百μm程度であるのに対し、OCTでは十μm〜数十μmという分解能である。また、近赤外光を用いるために、X線断層撮影よりも安全性が高いという特徴も有している。さらに、X線断層撮影のように大型の装置を要さないという利点も有している。 The OCT apparatus is a tomographic technique using a Michelson interferometer. For example, an OCT apparatus for ophthalmology has been put into practical use. OCT has a feature of much higher resolution than conventional X-ray tomography and ultrasonic tomography techniques. In general, the resolution is about several mm in X-ray tomography and about several hundred μm in ultrasonic tomography, whereas OCT has a resolution of 10 μm to several tens of μm. Moreover, since near-infrared light is used, it has the feature that it is safer than X-ray tomography. Furthermore, there is an advantage that a large apparatus is not required unlike X-ray tomography.
OCT装置は、マイケルソン干渉計を利用した断層撮影技術であるから、その分解能Δzは以下の式で表される。 Since the OCT apparatus is a tomographic technique using a Michelson interferometer, its resolution Δz is expressed by the following equation.
さて、OCT装置を我々人間のような生体材料に適用しようとすると、生体による光の吸収が重要な因子となる。光が生体材料に吸収されてしまっては、生体に光が侵入できないため、結果として、断層撮影ができなくなってしまう。そこで、できるだけ短波長で、生体材料による吸収が少ない波長領域を選択する必要がある。生体を構成する主要成分は水であるが、水の吸収は1μm付近で極小となる。したがって、中心発光波長が1μm付近、かつ、広帯域でガウシアン形状の光源が切望されている。 Now, when we try to apply the OCT device to biomaterials like humans, the absorption of light by the living body becomes an important factor. If the light is absorbed by the biological material, the light cannot enter the living body, and as a result, tomography cannot be performed. Therefore, it is necessary to select a wavelength region with as short a wavelength as possible and less absorption by the biomaterial. The main component constituting the living body is water, but the absorption of water becomes a minimum near 1 μm. Therefore, a Gaussian-shaped light source having a central emission wavelength near 1 μm and a wide band is desired.
現在、OCT装置の光源には、例えば、非特許文献1、2及び特許文献1、2に記載されているように、スーパールミネッセントダイオード(Super Luminescent Diode: SLD)が、非常に良く用いられている。また、通常の発光ダイオード(Light Emitting Diode: LED)も用いられている。さらに、スーパーコンテニューム光のように、ファイバーを利用した広帯域光源も知られている。また、タングステンライトのような熱光源や、複数の光源を合成する手法、フェムト秒レーザを用いる方法も知られている。 Currently, as described in Non-Patent Documents 1 and 2 and Patent Documents 1 and 2, for example, super luminescent diodes (Super Luminescent Diodes: SLD) are very often used as light sources for OCT devices. ing. Further, a normal light emitting diode (LED) is also used. Further, a broadband light source using a fiber, such as super-continuum light, is also known. In addition, a thermal light source such as tungsten light, a method of combining a plurality of light sources, and a method using a femtosecond laser are also known.
これらの種々の光源は、OCT用光源としては一長一短である。例えば、LEDやSLDのような半導体発光素子は、安価、小型、簡単な構成で取り扱いが容易であるが、一般に半値幅がそれほど大きくない。一方、ファイバーを利用した広帯域光源は、一般に、大型、高価、複雑な構成で取り扱いが難しいことが多い。また、ファイバーを利用した広帯域光源では、スペクトル形状がガウシアン形状ではないことが多く、ノイズ成分が問題になることも指摘されている。タングステンランプは、簡便で安価であるが、強度が足りず、空間的コヒーレンスに劣るという問題点が挙げられる。複数の光源を合成する方法は、安価なLEDやSLDを用いて、それほど複雑でない構成であるが、LEDの発光強度をうまく制御しなければ所望のスペクトルにならない。また、合成光源のコヒーレンス関数のサイドローブによりノイズ成分が発生することが知られている。このように、近赤外線領域で、光源の半値幅が広く、かつ、ガウシアン類似形状のスペクトル、また、産業的観点からは、安価・小型・簡単な構成、取り扱いが容易という特徴を有する光源は存在しない。 These various light sources have advantages and disadvantages as OCT light sources. For example, semiconductor light emitting devices such as LEDs and SLDs are inexpensive, small, and easy to handle with a simple configuration, but generally have a half width that is not so large. On the other hand, a broadband light source using a fiber is generally difficult to handle due to its large size, high cost, and complicated configuration. In addition, it has been pointed out that a broadband light source using fibers often has a spectrum shape that is not Gaussian, and noise components become a problem. Tungsten lamps are simple and inexpensive, but they are not strong enough and have poor spatial coherence. The method of synthesizing a plurality of light sources has a less complicated configuration using inexpensive LEDs and SLDs, but a desired spectrum cannot be obtained unless the light emission intensity of the LEDs is well controlled. Further, it is known that noise components are generated by the side lobes of the coherence function of the combined light source. In this way, there is a light source that has a wide half-value width of the light source in the near-infrared region, a spectrum with a Gaussian-like shape, and, from an industrial point of view, features that are inexpensive, small, simple, and easy to handle. do not do.
そこで、本発明では、(1)半値幅の広い赤外ガラス蛍光体と半導体発光素子とを組み合わせることにより、光干渉断層撮影装置用光源に関する上記課題を解決した。 Therefore, in the present invention, (1) the above-mentioned problem relating to the light source for an optical coherence tomography apparatus has been solved by combining an infrared glass phosphor having a wide half-value width and a semiconductor light emitting element.
具体的には、(2)赤外ガラス蛍光体中に、Ybイオンが含まれていることを特徴とする。また、(3)赤外ガラス蛍光体中に、YbイオンとNdイオンが含まれていることを特徴とする。さらに、(4)赤外ガラス蛍光体は、Yb2O3を含むことを特徴とする。そして、(5)赤外ガラス蛍光体は、Yb2O3及びNd2O3を含むことを特徴とする。また、(6)赤外ガラス蛍光体は、Bi2O3及びB2O3からなるガラスであることを特徴とする。一方、(7)半導体発光素子は、発光ダイオードであることを特徴とする。また、(8)半導体発光素子は、スーパールミネッセントダイオードであることを特徴とする。さらに、(9)半導体発光素子は、レーザダイオードであることを特徴とする。 Specifically, (2) the infrared glass phosphor contains Yb ions. (3) The infrared glass phosphor contains Yb ions and Nd ions. Further, (4) the infrared glass phosphor contains Yb 2 O 3 . (5) The infrared glass phosphor contains Yb 2 O 3 and Nd 2 O 3 . In addition, (6) the infrared glass phosphor is characterized in that it is a glass made of Bi 2 O 3 and B 2 O 3 . On the other hand, (7) the semiconductor light emitting device is a light emitting diode. (8) The semiconductor light emitting device is a super luminescent diode. Further, (9) the semiconductor light emitting element is a laser diode.
本発明により、安価、小型、取り扱いが容易な半導体発光素子の特徴を損なうことなく、かつ簡単な構成を維持しつつ、半値幅の広いスペクトルを実現できる。また、赤外ガラス蛍光体と半導体発光素子との組み合わせは、いわば白色LEDのようなものでもあり、単一デバイスとして光源として取り扱うことができ、非常に簡便である。その結果、既存のOCT装置の光源だけを取り代えることにより、高分解能のOCT装置を実現できる。さらに、白色LEDの生産技術を利用可能であり、工業プロセス上有利である。 According to the present invention, it is possible to realize a spectrum with a wide half-value width while maintaining a simple configuration without impairing the features of a semiconductor light-emitting element that is inexpensive, small, and easy to handle. In addition, the combination of the infrared glass phosphor and the semiconductor light emitting element is a so-called white LED, and can be handled as a light source as a single device, which is very simple. As a result, a high-resolution OCT device can be realized by replacing only the light source of the existing OCT device. Furthermore, white LED production technology can be used, which is advantageous in industrial processes.
次に実施例1を示す。 Next, Example 1 is shown.
Yb2O3粉末と、Bi2O3粉末と、H3BO3粉末を、Yb2O3と、Bi2O3と、B2O3とが5.1mol%、47.5mol%、47.4mol%となるように秤量したのち、十分混合した。その後、混合した粉末を坩堝に投入し、1000℃で10分間溶融した。坩堝内の材料が溶融していることを確認後、ステンレス上に流し出し、ステンレス板でプレスして急冷し、ガラス蛍光体を作製した。試料の外観はガラス状であり、Bi2O3とB2O3のモル比から、作製した蛍光体はガラスであると考えられる。 Yb 2 O 3 powder, Bi 2 O 3 powder, H 3 BO 3 powder, Yb 2 O 3 , Bi 2 O 3 and B 2 O 3 are 5.1 mol%, 47.5 mol%, 47 Then, the mixture was weighed to 4 mol% and mixed well. Thereafter, the mixed powder was put into a crucible and melted at 1000 ° C. for 10 minutes. After confirming that the material in the crucible was melted, it was poured onto stainless steel, pressed with a stainless steel plate, and quenched to produce a glass phosphor. The appearance of the sample is glassy, and from the molar ratio of Bi 2 O 3 and B 2 O 3 , the produced phosphor is considered to be glass.
作製したガラス蛍光体を、波長488nmの光で励起して得られた発光スペクトルを図1に示す。図1からわかるように、中心発光波長が1026nm、半値幅72nmのガウシアン類似形状の発光スペクトルが得られた。中心発光波長は目的の波長領域に存在し、半値幅72nmは既存の半導体発光素子の半値幅よりも大きい。また、この発光スペクトルから計算される分解能は6.5μmであり、十分分解能が高いものである。 An emission spectrum obtained by exciting the produced glass phosphor with light having a wavelength of 488 nm is shown in FIG. As can be seen from FIG. 1, an emission spectrum having a Gaussian-like shape with a central emission wavelength of 1026 nm and a half-value width of 72 nm was obtained. The central emission wavelength exists in the target wavelength region, and the half-value width of 72 nm is larger than the half-value width of the existing semiconductor light emitting device. Further, the resolution calculated from the emission spectrum is 6.5 μm, and the resolution is sufficiently high.
ここで、この発光スペクトルについて考察する。この発光スペクトルは、発光波長領域から、Ybイオン特有の、2F5/2→2F7/2の遷移による発光であると言える。また、Ybイオンのような希土類イオンは、一般に、結晶中で非常に鋭いスペクトルを示すことが知られているが、本発明では、ガラスを母体材料として用いることによって、72nmという広帯域発光を実現することができた。これは、希土類イオンの発光は、結晶中では均一なシュタルク分裂により鋭い発光を示すのに対し、ガラスのような非晶質中では、シュタルク分裂が不均一となり、その結果、種々のシュタルク分裂が合成され、広帯域発光になるからである。したがって、本発明は、Ybイオンとガラスを用いることによって、1μm付近で広帯域の発光を実現できたのである。また、Yb2O3粉末を6.1mol%、6.9mol%とした場合でも同様のスペクトルが得られている。 Here, the emission spectrum will be considered. This emission spectrum can be said to be emission by the transition of 2 F 5/2 → 2 F 7/2 peculiar to the Yb ion from the emission wavelength region. In addition, it is known that rare earth ions such as Yb ions generally exhibit a very sharp spectrum in crystals, but in the present invention, by using glass as a base material, broadband emission of 72 nm is realized. I was able to. This is because the emission of rare earth ions shows sharp emission due to uniform Stark splitting in crystals, whereas in amorphous materials such as glass, Stark splitting becomes non-uniform, resulting in various Stark splittings. This is because they are combined to produce broadband light emission. Therefore, in the present invention, by using Yb ions and glass, broadband light emission can be realized in the vicinity of 1 μm. The same spectrum is obtained even when the Yb 2 O 3 powder is 6.1 mol% and 6.9 mol%.
なお、Ybイオンを添加した赤外蛍光体は、特許文献3〜5に記載されているように、古くから知られている。しかしながら、無機物を母体とした蛍光体は、母体材料が結晶質であり、非常に鋭い発光線を用いることを前提としている、つまり、半値幅の広い発光を得るということには、まったく無関心である。また、有機物を母体にした蛍光体でも、50nm程度の半値幅しか得られていない。さらに、非特許文献3、4に記載されているように、Yb添加ガラスも知られているが、これは、蛍光体として用いることは想定されておらず、半値幅を広げるという技術的発想が存在しないため、本発明とは無関係である。 In addition, the infrared fluorescent substance which added Yb ion is known for a long time as described in patent documents 3-5. However, phosphors based on inorganic materials are based on the premise that the host material is crystalline and that very sharp emission lines are used, that is, it is completely indifferent to obtaining light emission with a wide half-value width. . Further, even a phosphor using an organic substance as a base material has only a half width of about 50 nm. Further, as described in Non-Patent Documents 3 and 4, Yb-doped glass is also known, but this is not assumed to be used as a phosphor, and has the technical idea of widening the half-value width. It does not exist and is not relevant to the present invention.
Yb2O3粉末と、Nd2O3粉末と、Bi2O3粉末と、H3BO3粉末を、Yb2O3と、Nd2O3と、Bi2O3と、B2O3とが5.0mol%、2.0mol%、44.4mol%、48.6mol%となるように秤量したのち、十分混合した。その後、実施例1と同様にガラス蛍光体を作製した。実施例1と同様に、試料外観はガラス状であった。また、Bi2O3と、B2O3とのモル比は、一般に、ガラスが作製される組成範囲である。 And Yb 2 O 3 powder, and Nd 2 O 3 powder, and Bi 2 O 3 powder, the H 3 BO 3 powder, and Yb 2 O 3, and Nd 2 O 3, and Bi 2 O 3, B 2 O 3 Were weighed so as to be 5.0 mol%, 2.0 mol%, 44.4 mol%, and 48.6 mol%, and then sufficiently mixed. Thereafter, a glass phosphor was produced in the same manner as in Example 1. Similar to Example 1, the sample appearance was glassy. Further, the molar ratio of Bi 2 O 3 and B 2 O 3 is generally a composition range in which glass is produced.
作製した試料を波長488nmの光で励起して得られた発光スペクトルを図2に示す。図2からわかるように、中心発光波長1026nm、半値幅84nmのガウシアン類似形状のスペクトルが得られた。この発光は、中心発光波長は実施例1と同様に目的の波長領域に存在し、実施例1よりも半値幅が拡大したガウシアン類似形状のスペクトルである。また、図2に示した発光スペクトルから計算される分解能は5.5μmとなり、非常に高分解能となる。 An emission spectrum obtained by exciting the produced sample with light having a wavelength of 488 nm is shown in FIG. As can be seen from FIG. 2, a spectrum having a Gaussian-like shape with a central emission wavelength of 1026 nm and a half-value width of 84 nm was obtained. This emission is a spectrum having a Gaussian-like shape in which the central emission wavelength exists in the target wavelength region in the same manner as in Example 1, and the half-value width is larger than that in Example 1. Also, the resolution calculated from the emission spectrum shown in FIG. 2 is 5.5 μm, which is very high resolution.
ここで、半値幅拡大の原因について考察する。Ndイオンは、900nm付近(4F3/2→4I9/2)、及び1064nm付近(4F3/2→4I11/2)に発光を示すため、Ybイオンの発光にNdイオンの発光が重なった結果、半値幅が拡大したと考えられる。実際に、図2を見ると、900nm付近に発光が見られ、1060nm付近にスペクトルの盛り上がりが見られることから、この考えは正しいと推論される。また、発光強度もNdイオンを添加した方が強い。したがって、Ybイオン単独でも広帯域光源として用いることができるが、Ybイオンに、さらにNdイオンを共添加することが非常に有効であることがわかる。 Here, the cause of the half-width expansion will be considered. Nd ions emit light around 900 nm ( 4 F 3/2 → 4 I 9/2 ) and around 1064 nm ( 4 F 3/2 → 4 I 11/2 ). As a result of the overlap of light emission, the full width at half maximum is considered to have increased. Actually, when FIG. 2 is seen, since light emission is seen at around 900 nm and a rise in spectrum is seen around 1060 nm, this idea is inferred to be correct. Also, the emission intensity is stronger when Nd ions are added. Therefore, Yb ions alone can be used as a broadband light source, but it can be seen that it is very effective to co-add Nd ions to Yb ions.
なお、Yb2O3と、Nd2O3と、Bi2O3と、B2O3とを5.0mol%、2.9mol%、43.9mol%、48.1mol%とした場合や、Yb2O3とNd2O3とを、ほぼ5.0mol%、3.0mol%に固定したまま、Bi2O3とB2O3との比率を、“91.9mol%と0mol%”、“82.4mol%と9.5mol%”、“73.2mol%と18.8mol%”、“64.5mol%と27.3mol%”、“55.2mol%と33.7mol%”、“36.6mol%と55.4mol%”と変化させた場合も同様のスペクトルが得られている。 In addition, when Yb 2 O 3 , Nd 2 O 3 , Bi 2 O 3 and B 2 O 3 are 5.0 mol%, 2.9 mol%, 43.9 mol%, 48.1 mol%, While Yb 2 O 3 and Nd 2 O 3 are fixed at approximately 5.0 mol% and 3.0 mol%, the ratio of Bi 2 O 3 and B 2 O 3 is set to “91.9 mol% and 0 mol%”. "82.4 mol% and 9.5 mol%", "73.2 mol% and 18.8 mol%", "64.5 mol% and 27.3 mol%", "55.2 mol% and 33.7 mol%", " The same spectrum is obtained when it is changed to 36.6 mol% and 55.4 mol% ".
なお、非特許文献5、6に記載されているように、NdイオンやYbイオンを共添加したガラスは報告されているが、これらの文献はレーザ応用や太陽電池、物理学的知見に興味を持っていると記載されているものの、蛍光体として用いることは記載されていない。さらに、半値幅を広げるという技術的思想は持っていないため、本発明と異なるものである。 As described in Non-Patent Documents 5 and 6, glasses with Nd ions and Yb ions co-added have been reported, but these documents are interested in laser applications, solar cells, and physical knowledge. Although it is described as having, it is not described that it is used as a phosphor. Furthermore, since it does not have the technical idea of widening the half width, it is different from the present invention.
実施例2で得られたガラス蛍光体を、中心発光波長490nmの青緑色のLED上に配置し、ガラス蛍光体からの発光を、石英系光ファイバーを通して測定した発光スペクトルを図3に示す。石英系光ファイバーとの結合が最適化されていないため、強度が多少減少しているものの、図2の発光スペクトルと同様であり、中心発光波長は1023nm、半値幅は88nmであった。また、この発光スペクトルから計算される分解能は5.2μmとなり、非常に高分解能である。 FIG. 3 shows an emission spectrum obtained by arranging the glass phosphor obtained in Example 2 on a blue-green LED having a central emission wavelength of 490 nm and measuring the emission from the glass phosphor through a silica-based optical fiber. Since the coupling with the silica-based optical fiber is not optimized, the intensity is somewhat reduced, but it is the same as the emission spectrum of FIG. 2, the central emission wavelength is 1023 nm, and the half width is 88 nm. The resolution calculated from the emission spectrum is 5.2 μm, which is very high resolution.
このことから、本発明のガラス蛍光体は、半導体発光素子の中でも、一般的に強度が弱いLEDでも十分励起でき、光ファイバーとも結合できる蛍光体であることがわかった。したがって、容易にOCT装置に組み込むことができる。また、LEDよりも発光強度が強い半導体発光素子であるSLDやレーザダイオード(Laser Diode :LD)を用いることも可能である。 From this, it has been found that the glass phosphor of the present invention is a phosphor that can be sufficiently excited even by a generally low-intensity LED among semiconductor light-emitting elements and can be coupled to an optical fiber. Therefore, it can be easily incorporated into the OCT apparatus. It is also possible to use an SLD or a laser diode (LD) which is a semiconductor light emitting element having a light emission intensity stronger than that of an LED.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007017260A JP4982751B2 (en) | 2007-01-29 | 2007-01-29 | A light source for an optical coherence tomography apparatus composed of an infrared glass phosphor and a semiconductor light emitting element. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007017260A JP4982751B2 (en) | 2007-01-29 | 2007-01-29 | A light source for an optical coherence tomography apparatus composed of an infrared glass phosphor and a semiconductor light emitting element. |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008185378A true JP2008185378A (en) | 2008-08-14 |
JP4982751B2 JP4982751B2 (en) | 2012-07-25 |
Family
ID=39728537
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007017260A Active JP4982751B2 (en) | 2007-01-29 | 2007-01-29 | A light source for an optical coherence tomography apparatus composed of an infrared glass phosphor and a semiconductor light emitting element. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4982751B2 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011247662A (en) * | 2010-05-25 | 2011-12-08 | Nagoya Univ | Biological tissue inspection device and inspection method |
WO2012008325A1 (en) * | 2010-07-12 | 2012-01-19 | 国立大学法人名古屋大学 | Broadband infrared light emitting device |
US8405111B2 (en) | 2008-11-13 | 2013-03-26 | National University Corporation Nagoya University | Semiconductor light-emitting device with sealing material including a phosphor |
JP2013162978A (en) * | 2012-02-13 | 2013-08-22 | Aichi Prefecture | Detection system for detection target region |
WO2014112607A1 (en) * | 2013-01-21 | 2014-07-24 | 国立大学法人名古屋大学 | Cell preparation and method for enhancing cell activity |
JP2015086321A (en) * | 2013-10-31 | 2015-05-07 | 独立行政法人産業技術総合研究所 | Near infrared light-storing fluorescent material, near infrared light-storing fluorescent, and manufacturing method of near infrared light-storing fluorescent material |
JP2015086327A (en) * | 2013-10-31 | 2015-05-07 | 独立行政法人産業技術総合研究所 | Stress luminescent material, stress illuminant and method of producing stress luminescent material |
WO2017159175A1 (en) | 2016-03-14 | 2017-09-21 | 三井金属鉱業株式会社 | Fluorescent substance |
US10538679B2 (en) | 2015-03-02 | 2020-01-21 | Mitsui Mining & Smelting Co., Ltd. | Phosphor |
KR20220036409A (en) * | 2020-09-14 | 2022-03-23 | 주식회사 올릭스 | Tunable ultra-broad band near-infrared light-emitting device |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001255265A (en) * | 2000-03-10 | 2001-09-21 | Fuji Photo Film Co Ltd | Optical tomograph |
JP2003243724A (en) * | 2002-02-14 | 2003-08-29 | Matsushita Electric Works Ltd | Light emitting apparatus |
JP2006083259A (en) * | 2004-09-15 | 2006-03-30 | Sharp Corp | Fluorophor and method for producing the same and light emitting device |
JP2006193399A (en) * | 2005-01-17 | 2006-07-27 | Sumitomo Electric Ind Ltd | Inorganic optical material, light source, michelson interferometer, optical coherent tomography device, and optical amplifier |
JP2006213910A (en) * | 2005-01-06 | 2006-08-17 | Matsushita Electric Ind Co Ltd | Oxynitride phosphor and light-emitting device |
-
2007
- 2007-01-29 JP JP2007017260A patent/JP4982751B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001255265A (en) * | 2000-03-10 | 2001-09-21 | Fuji Photo Film Co Ltd | Optical tomograph |
JP2003243724A (en) * | 2002-02-14 | 2003-08-29 | Matsushita Electric Works Ltd | Light emitting apparatus |
JP2006083259A (en) * | 2004-09-15 | 2006-03-30 | Sharp Corp | Fluorophor and method for producing the same and light emitting device |
JP2006213910A (en) * | 2005-01-06 | 2006-08-17 | Matsushita Electric Ind Co Ltd | Oxynitride phosphor and light-emitting device |
JP2006193399A (en) * | 2005-01-17 | 2006-07-27 | Sumitomo Electric Ind Ltd | Inorganic optical material, light source, michelson interferometer, optical coherent tomography device, and optical amplifier |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8405111B2 (en) | 2008-11-13 | 2013-03-26 | National University Corporation Nagoya University | Semiconductor light-emitting device with sealing material including a phosphor |
JP2011247662A (en) * | 2010-05-25 | 2011-12-08 | Nagoya Univ | Biological tissue inspection device and inspection method |
US9062853B2 (en) | 2010-07-12 | 2015-06-23 | National University Corporation Nagoya University | Broadband infrared light emitting device |
WO2012008325A1 (en) * | 2010-07-12 | 2012-01-19 | 国立大学法人名古屋大学 | Broadband infrared light emitting device |
JP5000028B2 (en) * | 2010-07-12 | 2012-08-15 | 国立大学法人名古屋大学 | Broadband infrared radiation equipment |
JP2013162978A (en) * | 2012-02-13 | 2013-08-22 | Aichi Prefecture | Detection system for detection target region |
WO2014112607A1 (en) * | 2013-01-21 | 2014-07-24 | 国立大学法人名古屋大学 | Cell preparation and method for enhancing cell activity |
JP2015086321A (en) * | 2013-10-31 | 2015-05-07 | 独立行政法人産業技術総合研究所 | Near infrared light-storing fluorescent material, near infrared light-storing fluorescent, and manufacturing method of near infrared light-storing fluorescent material |
JP2015086327A (en) * | 2013-10-31 | 2015-05-07 | 独立行政法人産業技術総合研究所 | Stress luminescent material, stress illuminant and method of producing stress luminescent material |
US10538679B2 (en) | 2015-03-02 | 2020-01-21 | Mitsui Mining & Smelting Co., Ltd. | Phosphor |
WO2017159175A1 (en) | 2016-03-14 | 2017-09-21 | 三井金属鉱業株式会社 | Fluorescent substance |
KR20180098660A (en) | 2016-03-14 | 2018-09-04 | 미쓰이금속광업주식회사 | Phosphor |
US11292964B2 (en) | 2016-03-14 | 2022-04-05 | Mitsui Mining & Smelting Co., Ltd. | Phosphor |
KR20220036409A (en) * | 2020-09-14 | 2022-03-23 | 주식회사 올릭스 | Tunable ultra-broad band near-infrared light-emitting device |
KR102408688B1 (en) | 2020-09-14 | 2022-06-16 | (주)올릭스 | Tunable ultra-broad band near-infrared light-emitting device |
Also Published As
Publication number | Publication date |
---|---|
JP4982751B2 (en) | 2012-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4982751B2 (en) | A light source for an optical coherence tomography apparatus composed of an infrared glass phosphor and a semiconductor light emitting element. | |
Zhong et al. | Efficient broadband near‐infrared emission in the GaTaO4: Cr3+ phosphor | |
Basore et al. | High‐power broadband NIR LEDs enabled by highly efficient blue‐to‐NIR conversion | |
Saboktakin et al. | Metal-enhanced upconversion luminescence tunable through metal nanoparticle–nanophosphor separation | |
Wang et al. | White-light whispering-gallery-mode lasing from lanthanide-doped upconversion NaYF4 hexagonal microrods | |
Mahalingam et al. | Bright white upconversion emission from Tm3+/Yb3+/Er3+-doped Lu3Ga5O12 nanocrystals | |
Lim et al. | Microwave sol–gel synthesis of CaGd2 (MoO4) 4: Er3+/Yb3+ phosphors and their upconversion photoluminescence properties | |
Wang et al. | Tunable LLP via Energy Transfer between Na2–y (Zn1–x Ga x) GeO4 Sosoloid Host and Emission Centers with the Assistance of Zn Vacancies | |
Hao et al. | Heterogeneous core/shell fluoride nanocrystals with enhanced upconversion photoluminescence for in vivo bioimaging | |
Fuchi et al. | Wideband near‐infrared phosphor by stacking Sm3+ doped glass underneath Yb3+, Nd3+ co‐doped glass | |
Liu et al. | Strong infrared laser ablation produces white-light-emitting materials via the formation of silicon and carbon dots in silica nanoparticles | |
Pandey et al. | Photon and electron beam pumped luminescence of Ho3+ activated CaMoO4 phosphor | |
Ichikawa et al. | Mid-infrared emissions from Ho3+ in Ga2S3-GeS2-Sb2S3 glass | |
Nishimura et al. | Luminescence properties of Tm2O3-doped germanate glass phosphors for near-infrared wideband light-source | |
Zhou et al. | Interface-dependent radiative lifetimes of Yb3+, Er3+ co-doped single NaYF4 upconversion nanowires | |
Pieprz et al. | Highly Sensitive Lifetime‐Based Luminescent Manometer on Mn4+ Luminescence in Sr4Al14O25 Mn4+ | |
Fuchi et al. | High power and high resolution near-infrared light source for optical coherence tomography using glass phosphor and light emitting diode | |
Rajendran et al. | Shortwave Infrared Luminescence of Tetravalent Chromium and Divalent Nickel: Phosphor Design Principles and Applications | |
Zako et al. | Development of near infrared‐fluorescent nanophosphors and applications for cancer diagnosis and therapy | |
Fuchi et al. | Optimization of Bi 2 O 3–B 2 O 3-based glass phosphor co-doped with Yb 3+ and Nd 3+ for optical coherence tomography light source | |
Fuchi et al. | Wideband infrared emission from Yb3+-and Nd3+-doped Bi2O3–B2O3 glass phosphor for an optical coherence tomography light source | |
Vahdani Moghaddam et al. | Polarization-dependent light-induced thermionic electron emission from carbon nanotube arrays using a wide range of wavelengths | |
Yang et al. | Vacuum-assisted strong luminescence thermal enhancement in NaYF4: Ho3+/Yb3+ upconverting nanocrystals: a conclusive evidence for the effect of water desorption | |
Shi et al. | Highly precise FIR thermometer based on the thermally enhanced upconversion luminescence for temperature feedback photothermal therapy | |
CN103305222B (en) | KSc2F7: yb, preparation method and application of Er up-conversion fluorescent nanorods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110824 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111030 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20111030 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120321 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4982751 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |