[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008182825A - Manufacturing method of rotor in synchronous motor - Google Patents

Manufacturing method of rotor in synchronous motor Download PDF

Info

Publication number
JP2008182825A
JP2008182825A JP2007014419A JP2007014419A JP2008182825A JP 2008182825 A JP2008182825 A JP 2008182825A JP 2007014419 A JP2007014419 A JP 2007014419A JP 2007014419 A JP2007014419 A JP 2007014419A JP 2008182825 A JP2008182825 A JP 2008182825A
Authority
JP
Japan
Prior art keywords
rotor
magnet
synchronous motor
manufacturing
back yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007014419A
Other languages
Japanese (ja)
Other versions
JP4838160B2 (en
Inventor
Atsushi Matsuoka
篤 松岡
Sachiko Kawasaki
祥子 川崎
Yoshio Takita
芳雄 滝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007014419A priority Critical patent/JP4838160B2/en
Publication of JP2008182825A publication Critical patent/JP2008182825A/en
Application granted granted Critical
Publication of JP4838160B2 publication Critical patent/JP4838160B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a rotor in a synchronous motor, which minimizes a fluctuation in magnetization of a magnet, and is excellent in a motor torque characteristic. <P>SOLUTION: The rotor 1 in the synchronous motor comprises: the magnet 2 disposed on a plane facing a stator, and having a shape with a nonuniform radial thickness; and a back yoke 3 having a polygonal plane contacting the magnet 2. In the manufacturing method of the rotor 1 in the synchronous motor, the back yoke 3 is disposed and fixed so as to shift a phase to a magnetic field applied from the outside and to magnetize the magnet 2 at a predetermined angle in the direction opposite to the rotational direction of the rotor 1, and the magnet 2 is magnetized. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、同期電動機の回転子の製造方法に関するものである。   The present invention relates to a method for manufacturing a rotor of a synchronous motor.

マグネットトルクとリラクタンストルクの合成トルクを大きくすることができ、かつ、電流位相をトルクが大きい領域に合わせることが容易で、高効率の駆動を可能にする永久磁石電動機を提供するために、永久磁石を内蔵した突極形回転子を有する永久磁石電動機において、永久磁石による界磁磁束分布の中心と電機子起磁力の中心とが電気的にπ/2ずれる軸に対して、電機子巻線のインダクタンスが最大になる回転子軸を、回転方向と反対側にずらしたものであり、具体的には、回転子の永久磁石の配向特性又は着磁方向を、永久磁石の外周の突極鉄心の幾何学的中心軸よりも回転方向側にずらしたり、あるいは、回転子の永久磁石の外周の突極鉄心に、該突極鉄心の幾何学的中心から見て回転方向側の端部に周方向への磁束の通りを妨げるギャップ又は打ち抜き孔を設けたりする永久磁石電動機が提案されている(例えば、特許文献1参照)。   To provide a permanent magnet motor that can increase the combined torque of the magnet torque and the reluctance torque and that can easily adjust the current phase to a region where the torque is large and enables high-efficiency driving. In a permanent magnet motor having a salient pole type rotor with a built-in coil, the armature winding of the armature winding with respect to the axis where the center of the field magnetic flux distribution by the permanent magnet and the center of the armature magnetomotive force are electrically shifted by π / 2 The rotor axis where the inductance is maximized is shifted to the opposite side to the rotation direction. Specifically, the orientation characteristics or magnetization direction of the permanent magnet of the rotor is determined by the salient pole iron core on the outer periphery of the permanent magnet. Shift to the rotational direction side from the geometric center axis, or to the salient pole core on the outer periphery of the permanent magnet of the rotor, circumferentially at the end on the rotational direction side when viewed from the geometric center of the salient pole core The magnetic flux to Permanent magnet motor or providing a gel gap or punched holes has been proposed (e.g., see Patent Document 1).

組み立てが容易でしかも全体のコギングトルクおよびリラクタンストルクの脈動分が低減され、効率の良い低振動で低騒音の永久磁石回転型モータを安価に提供するために、永久磁石回転型モータは、積層ロータコアに6個の永久磁石を埋設してなるロータと、このロータに回転空隙を介して同心的に配置されたステータとを備え、ロータコアには1磁極当たり1層の永久磁石をロータの中心側に対して凸状となる軸方向に延びた6個の磁石挿入孔に埋設し、かつ極対ごとにロータの突極とステータの歯部の位置関係を円周方向に適当な角度、例えばロータの軸方向を10゜づつずらすように配置している永久磁石回転型モータが提案されている(例えば、特許文献2参照)。   In order to provide a low-cost, low-noise, low-noise permanent magnet rotary motor that is easy to assemble and has reduced cogging torque and reluctance torque pulsation, the permanent magnet rotary motor is a laminated rotor core. A rotor having six permanent magnets embedded therein and a stator arranged concentrically on the rotor via a rotation gap, and the rotor core has one layer of permanent magnet per magnetic pole on the center side of the rotor. It is embedded in six axially extending magnet insertion holes that are convex, and for each pole pair, the positional relationship between the salient poles of the rotor and the teeth of the stator is set at an appropriate angle in the circumferential direction, for example, the rotor A permanent magnet rotary motor has been proposed in which the axial direction is shifted by 10 ° (see, for example, Patent Document 2).

これに対して、表面にマグネットを配置する形態の回転子を用いる同期電動機においては、モータの出力を向上させるため、また出力されるトルクの脈動を抑えるために、回転子に用いるマグネットの形状を磁極の中心を肉厚に、極間を薄肉にする偏肉形状のマグネットを回転子表面に配置する形態のものがある。このとき、バックヨークはマグネットと接する面が円ではなく、回転子の極数に合わせた略多角形である場合がある。   On the other hand, in a synchronous motor using a rotor with a magnet arranged on the surface, in order to improve the output of the motor and to suppress the pulsation of the output torque, the shape of the magnet used for the rotor is changed. There is a configuration in which an unevenly shaped magnet having a thick magnetic pole center and a thin gap between the poles is arranged on the rotor surface. At this time, the back yoke may have a substantially polygonal shape in accordance with the number of poles of the rotor, instead of a circle in contact with the magnet.

この場合、バックヨークから見たステータとの間の空隙は、不均一となり、回転子の磁極中心付近は空隙が大きくなり、極間の空隙は小さくなる。このため、回転子に外周から磁場を加えた場合、磁極間の空隙の小さい部分に磁束が集まりやすく、これによって僅かであるがバックヨークにリラクタンストルクが発生する。   In this case, the gap between the stator and the stator as viewed from the back yoke becomes non-uniform, the gap increases near the magnetic pole center of the rotor, and the gap between the poles decreases. For this reason, when a magnetic field is applied to the rotor from the outer periphery, the magnetic flux tends to collect in a small portion of the gap between the magnetic poles, thereby generating a reluctance torque in the back yoke, although it is slight.

このような回転子の場合、マグネットの着磁を行う際には着磁ヨークの磁極の中心とマグネットの肉厚部分を一致させて着磁を行う。しかし、バックヨークの磁気回路としては、最も不安定な位置となるため、回転子の位置の僅かな違いによって、着磁の際にバックヨークに生じるトルクの方向が異なってしまう。このため、回転子の固定をしっかり行わないと、回転子が回転して着磁のばらつきが生じる。   In the case of such a rotor, when the magnet is magnetized, the center of the magnetic pole of the magnetizing yoke is aligned with the thick part of the magnet. However, since the magnetic circuit of the back yoke is the most unstable position, the direction of the torque generated in the back yoke at the time of magnetization differs depending on a slight difference in the position of the rotor. For this reason, if the rotor is not fixed firmly, the rotor rotates and variations in magnetization occur.

また、偏肉形状のマグネットを射出成形等により製造する場合、回転子の磁極数に応じた配向磁場を金型内部に形成する。バックヨークをこの金型内部にインサートして一体成形する場合、磁極の中心は、バックヨーク外径の一番小さい部分、すなわちマグネットが一番厚肉となる部分が対向する様に設置する必要がある。そのためバックヨークの磁気回路としては、前述と同様最も不安定な状態であり、僅かな設置位置の違いによってバックヨークの受けるリラクタンストルクの向きが変わってしまい、設置が難しく位置の固定にも大きな力が必要であり、固定位置の精度も必要である。   Further, when a magnet having an uneven thickness is manufactured by injection molding or the like, an orientation magnetic field corresponding to the number of magnetic poles of the rotor is formed inside the mold. When the back yoke is inserted into this mold and molded integrally, the center of the magnetic pole must be installed so that the portion with the smallest outer diameter of the back yoke, that is, the portion with the thickest magnet faces each other. is there. For this reason, the magnetic circuit of the back yoke is the most unstable state as described above, and the direction of the reluctance torque received by the back yoke changes due to a slight difference in the installation position, making installation difficult and a great force for fixing the position. And the accuracy of the fixed position is also required.

同期電動機としては、マグネットの厚みがある分、IPM回転子(永久磁石埋込型)と比較すると、運転時に発生するリラクタンストルクは小さいが、マグネットの着磁や配向成形時の磁場は、非常に大きいため、わずかな空隙の差によっても比較的大きなトルクが発生する。マグネットの着磁、配向のばらつきを抑えるためには、その際の位置決めの精度を高くする必要があり、同時にバックヨークに発生するリラクタンストルクよって回転子が回転しないように強固に固定する必要がある。そのためには、生産設備が大がかりになるという課題がある。
特開平11−98737号公報 特開2000−316242号公報
As a synchronous motor, the reluctance torque generated during operation is small compared to the IPM rotor (permanent magnet embedded type) due to the thickness of the magnet, but the magnetic field during magnet magnetization and orientation molding is very high. Since it is large, a relatively large torque is generated even by a slight gap difference. In order to suppress variations in magnet magnetization and orientation, it is necessary to increase the positioning accuracy, and at the same time, it is necessary to firmly fix the rotor so that it does not rotate due to the reluctance torque generated in the back yoke. . For this purpose, there is a problem that the production facility becomes a large scale.
JP 11-98737 A JP 2000-316242 A

この発明は、上記のような課題を解決するためになされたもので、マグネットの着磁ばらつきを最小限に抑えることができ、且つモータトルク特性が優れた同期電動機回転子の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and provides a method of manufacturing a synchronous motor rotor that can minimize variations in magnet magnetization and has excellent motor torque characteristics. For the purpose.

この発明に係る同期電動機の回転子の製造方法は、固定子と対向する面に配置され、径方向の厚みが不均一な偏肉形状のマグネットと、このマグネットと接する面が略多角形であるバックヨークとを有する同期電動機の回転子の製造方法において、マグネットを着磁するために外部より印加する磁場に対して、回転子の回転方向とは逆向きにバックヨークを所定の角度だけ位相をずらして配置、固定してマグネットを着磁することを特徴とする。   In the method for manufacturing a rotor of a synchronous motor according to the present invention, a magnet having an uneven thickness which is disposed on a surface facing a stator and has a nonuniform radial thickness, and a surface in contact with the magnet are substantially polygonal. In a method of manufacturing a rotor of a synchronous motor having a back yoke, a phase of the back yoke is shifted by a predetermined angle in a direction opposite to the rotation direction of the rotor with respect to a magnetic field applied from outside to magnetize the magnet. It is characterized in that the magnets are magnetized by disposing and fixing them.

この発明に係る同期電動機の回転子の製造方法は、着磁過程において、バックヨークの位相を予め回転方向の逆方向になるように回転子を着磁ヨークに配置することで、着磁磁界を印加した際にバックヨークに生じるリラクタンストルクの向きを一方向に固定することで、位置決めの精度が向上し、マグネットの着磁ばらつきを最小限に抑えることができる。また、このようにして着磁された回転子は、同期電動機の運転時にバックヨークに生じるリラクタンストルクを常に回転方向側に発生させることができるため、モータトルク向上が可能である。   In the method for manufacturing a rotor of a synchronous motor according to the present invention, in the magnetization process, the rotor is arranged on the magnetizing yoke so that the phase of the back yoke is in the reverse direction of the rotation direction in advance. By fixing the direction of reluctance torque generated in the back yoke in one direction when applied, positioning accuracy can be improved, and the magnetization variation of the magnet can be minimized. In addition, the rotor magnetized in this way can always generate reluctance torque generated in the back yoke during the operation of the synchronous motor in the rotational direction, so that the motor torque can be improved.

実施の形態1.
図1乃至図4は実施の形態1を示す図で、図1は同期電動機の回転子1の断面図、図2は同期電動機の回転子1と着磁ヨーク4とを示す断面図、図3は同期電動機の回転子1と着磁ヨーク4との位置関係を示す図、図4は同期電動機の回転子1と着磁ヨーク4の位置のズレ量と同期電動機の出力トルクの関係を示す図である。
Embodiment 1 FIG.
1 to 4 show the first embodiment. FIG. 1 is a sectional view of the rotor 1 of the synchronous motor. FIG. 2 is a sectional view of the rotor 1 and the magnetized yoke 4 of the synchronous motor. FIG. 4 is a diagram showing the positional relationship between the rotor 1 and the magnetizing yoke 4 of the synchronous motor, and FIG. 4 is a diagram showing the relationship between the amount of displacement between the rotor 1 and the magnetizing yoke 4 of the synchronous motor and the output torque of the synchronous motor. It is.

図1は同期電動機の回転子1(8極)の1磁極対を示している。バックヨーク3は略八角形となっている。マグネット2の外周を円筒、内周をバックヨーク3と同形状の略八角形の偏肉形状になっている。   FIG. 1 shows one magnetic pole pair of a rotor 1 (8 poles) of a synchronous motor. The back yoke 3 is substantially octagonal. The magnet 2 has a substantially octagonal uneven shape with the outer circumference being cylindrical and the inner circumference being the same shape as the back yoke 3.

マグネット2の着磁は、通常は、1磁極の表面磁束の分布が対称になるように、マグネット磁極の中心を厚肉に、また極間を薄肉になる位置に着磁を行う。図1に示す、本実施の形態の同期電動機の回転子1は、磁極の形状が対称になっていない。磁極の中心が、磁石形状が対称となる位置(磁石形状対称軸)より反時計方向にずれた位置になっている。この場合、同期電動機の回転子1の回転方向は、反時計方向である。つまり、同期電動機の回転子1は、磁極の中心が、回転方向(反時計方向)に磁石形状対称軸よりずれた位置になっている。   Magnetization of the magnet 2 is usually performed at a position where the center of the magnet magnetic pole is thick and between the poles is thin so that the distribution of the surface magnetic flux of one magnetic pole is symmetric. In the rotor 1 of the synchronous motor according to the present embodiment shown in FIG. 1, the magnetic poles are not symmetrical. The center of the magnetic pole is shifted in a counterclockwise direction from a position where the magnet shape is symmetric (magnet shape symmetry axis). In this case, the rotation direction of the rotor 1 of the synchronous motor is counterclockwise. That is, in the rotor 1 of the synchronous motor, the center of the magnetic pole is at a position shifted from the axis of symmetry of the magnet shape in the rotation direction (counterclockwise direction).

図2に示すように、回転子1の回転方向に対して、反対方向に回転子1の位置をずらして配置している。着磁の際、着磁ヨーク4の巻線5に電流を流すことによって磁界(印加磁場)が発生する。この磁界を回転子1に与えると、着磁ヨーク4と回転子1のバックヨーク3との間の空隙が最も小さいマグネット2の薄肉部に磁束が集中する。この薄肉部が着磁ヨーク4の磁極中心に移動するように回転子1に力が加わる。   As shown in FIG. 2, the position of the rotor 1 is shifted in the opposite direction to the rotation direction of the rotor 1. During magnetization, a magnetic field (applied magnetic field) is generated by passing a current through the winding 5 of the magnetized yoke 4. When this magnetic field is applied to the rotor 1, the magnetic flux is concentrated on the thin portion of the magnet 2 where the gap between the magnetized yoke 4 and the back yoke 3 of the rotor 1 is the smallest. A force is applied to the rotor 1 so that this thin portion moves to the magnetic pole center of the magnetized yoke 4.

図3に示すような回転子1の位置であれば、常に回転子1に加わる力の方向は、回転方向の逆向きになる。   If the position of the rotor 1 is as shown in FIG. 3, the direction of the force applied to the rotor 1 is always opposite to the rotational direction.

このため、回転子1に加わる力の向きを一方向に限定できるため、力の発生する方向に回転しない様に周り止め等で回転子1の位置を固定することで回転子1を強固に固定する必要がなくなる。また、一方向に対して寸法を管理すれば良いので、ばらつきの少ない回転子1の位置固定が容易にできる。   For this reason, since the direction of the force applied to the rotor 1 can be limited to one direction, the rotor 1 is firmly fixed by fixing the position of the rotor 1 with a detent or the like so as not to rotate in the direction in which the force is generated. There is no need to do it. Further, since the dimensions need only be managed in one direction, the position of the rotor 1 with little variation can be easily fixed.

図4に回転子1の位置と着磁のずれと同期電動機の出力トルクの関係を示す。横軸に回転子1をずらした角度、縦軸に同一電流により発生するトルクを示す。回転子1の回転方向と反対方向の位置のずれを正の値、同方向を負の値で示す。回転子1の反対方向に着磁をずらすことで同期電動機の出力トルクが僅かであるが増加していることがわかる。   FIG. 4 shows the relationship between the position of the rotor 1, the deviation of magnetization, and the output torque of the synchronous motor. The horizontal axis shows the angle of shifting the rotor 1, and the vertical axis shows the torque generated by the same current. The position shift in the direction opposite to the rotation direction of the rotor 1 is indicated by a positive value, and the same direction is indicated by a negative value. It can be seen that the output torque of the synchronous motor is slightly increased by shifting the magnetization in the opposite direction of the rotor 1.

また、同方向にずらした場合には、ずらした角度に従って発生トルクの低下が大きくなっている。これは、モータ運転時に僅かながらバックヨーク3に生じるリラクタンストルクが出力に影響しているためである。回転方向と逆方向に回転子1をずらして着磁することで出力トルクと同方向のリラクタンストルクが作用する。また同方向にずらして着磁することで逆方向のリラクタンストルクが作用する。そのため、図4に示すようなトルク特性になる。   Further, when shifting in the same direction, the decrease in generated torque increases according to the shifted angle. This is because the reluctance torque generated in the back yoke 3 slightly influences the output during motor operation. The reluctance torque in the same direction as the output torque acts by shifting the rotor 1 in the direction opposite to the rotation direction and magnetizing it. Moreover, the reluctance torque of a reverse direction acts by shifting and magnetizing in the same direction. Therefore, torque characteristics as shown in FIG. 4 are obtained.

以上より、製造ばらつきが少なく、特性の良い同期電動機の回転子1を得ることができる。   From the above, it is possible to obtain the rotor 1 of the synchronous motor with little manufacturing variation and good characteristics.

ここで、回転子1に用いるマグネット2を等方性のマグネット2とした場合、マグネット2が着磁される向きは、印加された磁場の向きによるため、着磁工程において、回転子1に発生する力は、バックヨーク3が多角形形状であることにより生じるリラクタンストルクのみとなるので、前述の手段(バックヨーク3の位相を予め回転方向の逆方向になるように回転子1を着磁ヨーク4に配置することで、着磁磁界を印加した際にバックヨーク3に生じるリラクタンストルクの向きを一方向に固定する)によって、特性の安定した回転子1を得ることができる。   Here, when the magnet 2 used for the rotor 1 is an isotropic magnet 2, the direction in which the magnet 2 is magnetized depends on the direction of the applied magnetic field, and thus is generated in the rotor 1 in the magnetization process. The force to be applied is only the reluctance torque generated by the back yoke 3 having a polygonal shape. Therefore, the above-mentioned means (the rotor 1 is magnetized so that the phase of the back yoke 3 is in the reverse direction of the rotation direction in advance). 4, the direction of reluctance torque generated in the back yoke 3 when a magnetizing magnetic field is applied is fixed in one direction), so that the rotor 1 having stable characteristics can be obtained.

また、マグネット2に希土類系の材料を用いる場合、薄肉のマグネット2を用いることが多いため、バックヨーク3と着磁ヨーク4との間の空隙がより小さくなり、着磁の際に発生するリラクタンストルクの影響が大きくなる。このため、上記の手段(バックヨーク3の位相を予め回転方向の逆方向になるように回転子1を着磁ヨーク4に配置することで、着磁磁界を印加した際にバックヨーク3に生じるリラクタンストルクの向きを一方向に固定する)による特性の安定化の効果はより大きく得られることとなる。   Further, when a rare earth-based material is used for the magnet 2, the thin magnet 2 is often used, so that the gap between the back yoke 3 and the magnetized yoke 4 becomes smaller, and the reluctance generated during magnetization is reduced. The effect of torque is increased. For this reason, by arranging the rotor 1 in the magnetizing yoke 4 in advance so that the phase of the back yoke 3 is in the reverse direction of the rotation direction, the back yoke 3 is generated in the back yoke 3 when a magnetizing magnetic field is applied. The effect of stabilizing the characteristics by fixing the direction of the reluctance torque in one direction can be obtained more greatly.

実施の形態2.
図5、図6は実施の形態2を示す図で、図5は回転子1と着磁ヨーク4の形状及び両者の位置関係を示す図、図6は同期電動機のギャップ磁束密度分布を示す図である。
Embodiment 2. FIG.
5 and 6 are diagrams showing the second embodiment. FIG. 5 is a diagram showing the shapes of the rotor 1 and the magnetized yoke 4 and the positional relationship between them. FIG. 6 is a diagram showing the gap magnetic flux density distribution of the synchronous motor. It is.

図5に示すように、回転子1と着磁ヨーク4との位置関係は、実施の形態1と同様である。しかし、着磁ヨーク4の形状が異なる。着磁ヨーク4は磁極の中心に対して、非対称な形状になっている。実施の形態1による回転子1の場合、着磁によって得られる回転子表面の磁束密度分布は、1磁極の形状が非対称となるため、1磁極分の表面磁束密度の分布も磁極中心に対して非対称な波形となる。これによって、同期電動機の固定子巻線に生じる誘起電圧に歪みが発生し、運転時のトルク脈動が増加する。例えば、送風機用途の様に、低振動・低騒音が求められる場合、トルクリップルを小さく抑える必要がある。そのため、回転子表面の磁束密度分布も歪みが少ない方が望ましい。   As shown in FIG. 5, the positional relationship between the rotor 1 and the magnetized yoke 4 is the same as that in the first embodiment. However, the shape of the magnetized yoke 4 is different. The magnetized yoke 4 has an asymmetric shape with respect to the center of the magnetic pole. In the case of the rotor 1 according to the first embodiment, the magnetic flux density distribution on the rotor surface obtained by magnetization is asymmetric in the shape of one magnetic pole, so the surface magnetic flux density distribution for one magnetic pole is also relative to the magnetic pole center. It becomes an asymmetric waveform. As a result, distortion occurs in the induced voltage generated in the stator winding of the synchronous motor, and torque pulsation during operation increases. For example, when low vibration and low noise are required as in a blower application, it is necessary to keep torque ripple small. Therefore, it is desirable that the magnetic flux density distribution on the rotor surface is also less distorted.

このため、本実施の形態では、図5に示すように、着磁ヨーク4は磁極の中心に対して、非対称な形状になっている。具体的には、着磁ヨーク4と回転子1との間のギャップを磁極の中心に対して非対称にする。磁極の中心に対して、磁極の片側(図5では右側)にギャップを拡大したギャップ拡大部6を形成する。   For this reason, in this embodiment, as shown in FIG. 5, the magnetized yoke 4 has an asymmetric shape with respect to the center of the magnetic pole. Specifically, the gap between the magnetized yoke 4 and the rotor 1 is made asymmetric with respect to the center of the magnetic pole. With respect to the center of the magnetic pole, the gap enlarged portion 6 is formed by enlarging the gap on one side (right side in FIG. 5) of the magnetic pole.

着磁ヨーク4の形状を非対称にすることで表面の磁束密度分布を、図6に示すように対称な波形に近づける。図6において、細線は着磁ヨーク4が磁極の中心に対して、対称な形状のときの磁束密度である。太線は着磁ヨーク4が磁極の中心に対して、非対称な形状のときの磁束密度である。   By making the shape of the magnetized yoke 4 asymmetrical, the magnetic flux density distribution on the surface is brought close to a symmetrical waveform as shown in FIG. In FIG. 6, the thin line represents the magnetic flux density when the magnetized yoke 4 has a symmetrical shape with respect to the center of the magnetic pole. The thick line represents the magnetic flux density when the magnetized yoke 4 has an asymmetric shape with respect to the center of the magnetic pole.

これによって、回転子1の表面磁束密度分布の非対称な歪みを抑え、同期電動機の振動・騒音の増加を抑えることができる。   As a result, asymmetric distortion of the surface magnetic flux density distribution of the rotor 1 can be suppressed, and an increase in vibration and noise of the synchronous motor can be suppressed.

実施の形態3.
図7乃至図9は実施の形態3を示す図で、図7は同期電動機の回転子1と配向金型7とを示す断面図、図8は同期電動機の回転子1と配向金型7との位置関係を示す図、図9は回転子1と配向金型7との位置のズレ量と同期電動機の出力トルクの関係を示す図である。
Embodiment 3 FIG.
7 to 9 are diagrams showing the third embodiment. FIG. 7 is a sectional view showing the rotor 1 and the orientation mold 7 of the synchronous motor. FIG. 8 is a diagram showing the rotor 1 and the orientation mold 7 of the synchronous motor. FIG. 9 is a diagram showing the relationship between the positional deviation between the rotor 1 and the orientation mold 7 and the output torque of the synchronous motor.

図7には、8極の回転子1の1磁極対分を示している。バックヨーク3は略八角形、マグネット2の外周を円筒、内周面を略八角形としている。バックヨーク3を金型内部に配置して、外周にマグネット2を射出成形する。マグネット2が異方性の材料である場合、回転子1の磁極数に合わせて、金型内部に磁場を形成することでマグネット2は、磁極数にあった配向がかけられる。   FIG. 7 shows one magnetic pole pair of the 8-pole rotor 1. The back yoke 3 is substantially octagonal, the outer periphery of the magnet 2 is cylindrical, and the inner peripheral surface is substantially octagonal. The back yoke 3 is disposed inside the mold, and the magnet 2 is injection molded on the outer periphery. When the magnet 2 is an anisotropic material, the magnet 2 is oriented according to the number of magnetic poles by forming a magnetic field inside the mold in accordance with the number of magnetic poles of the rotor 1.

この配向の磁場を形成するために、図7に示すように、回転子1外周に磁極を形成する配向ヨーク7bと、磁束を発生させる配向磁石7aとを備える配向金型7を配置する。図7では、配向磁石7aに永久磁石を用いているが、これを電磁石に置き換えても良い。   In order to form a magnetic field of this orientation, as shown in FIG. 7, an orientation die 7 having an orientation yoke 7b that forms a magnetic pole on the outer periphery of the rotor 1 and an orientation magnet 7a that generates magnetic flux is disposed. In FIG. 7, a permanent magnet is used as the orientation magnet 7a, but it may be replaced with an electromagnet.

配向磁石7aに永久磁石を用いる場合、配向金型7内部には常に配向のための磁場が発生している。そのため、配向金型7にバックヨーク3を設置する際には、バックヨーク3の略八角形の頂点が配向ヨーク7bの中心と一致するような位置が磁気回路としては最も安定する状態である。しかし、実際はマグネット2の磁極中心が厚肉となるように成形するため、バックヨーク3の頂点を配向磁場の極間に位置するように固定しなければならない。この位置は、磁気回路しては、最も不安定な位置であり、頂点の位置が僅かにずれることによって、バックヨーク3に発生するトルクの向きが変化して、安定しない。   When a permanent magnet is used for the orientation magnet 7a, a magnetic field for orientation is always generated inside the orientation mold 7. Therefore, when the back yoke 3 is installed in the orientation mold 7, the position where the substantially octagonal apex of the back yoke 3 coincides with the center of the orientation yoke 7b is the most stable state for the magnetic circuit. However, since the magnetic pole center of the magnet 2 is actually formed so as to be thick, the apex of the back yoke 3 must be fixed so as to be positioned between the poles of the orientation magnetic field. This position is the most unstable position for the magnetic circuit, and the direction of the torque generated in the back yoke 3 changes due to a slight shift of the apex position, which is not stable.

本実施の形態では、図8に示すように、バックヨーク3を配向金型7内部の磁場に対して、回転子1の回転方向とは逆の向きに所定の角度回転させた状態で設置する。これによって、配向金型7内部でバックヨーク3に生じるリラクタンストルクは、常に回転子1の回転方向とは逆の向きとなる。   In the present embodiment, as shown in FIG. 8, the back yoke 3 is installed in a state in which the back yoke 3 is rotated by a predetermined angle in the direction opposite to the rotation direction of the rotor 1 with respect to the magnetic field inside the orientation mold 7. . As a result, the reluctance torque generated in the back yoke 3 inside the orientation mold 7 is always in the direction opposite to the rotation direction of the rotor 1.

図9は、成形時のバックヨーク3の設置位置とその状態で成形した回転子1を用いた同期電動機のモータ出力との関係を示したものである。横軸に、バックヨーク3のズレ量(配向位相)を角度(機械角)で示し、縦軸は同一電流で発生するトルク比(%)を示す(基準は配向位相0[deg])。回転子1の回転方向に反対にずらした角度を正、同方向にずらした角度を負として示している。   FIG. 9 shows the relationship between the installation position of the back yoke 3 during molding and the motor output of a synchronous motor using the rotor 1 molded in that state. The horizontal axis indicates the amount of deviation (alignment phase) of the back yoke 3 in angle (mechanical angle), and the vertical axis indicates the torque ratio (%) generated at the same current (reference is the alignment phase 0 [deg]). The angle shifted in the opposite direction to the rotation direction of the rotor 1 is shown as positive, and the angle shifted in the same direction is shown as negative.

回転子1の回転方向の逆方向にバックヨーク3をずらしてバックヨーク3を設置した方が、僅かにトルクが大きくなっており、正方向にずらした場合は、その角度に応じてトルクが低下していることがわかる。これは、実施の形態1と同様、バックヨーク3に生じるリラクタンストルクの影響が出ているものであり、配向金型7内にバックヨーク3を回転子1の回転方向の反対方向にずらして設置した方がモータ運転時に出力トルクと同じ向きのリラクタンストルクが得られているためである。   When the back yoke 3 is shifted in the direction opposite to the rotation direction of the rotor 1 and the back yoke 3 is installed, the torque is slightly increased. When the back yoke 3 is shifted in the forward direction, the torque decreases according to the angle. You can see that As in the first embodiment, this is affected by the reluctance torque generated in the back yoke 3, and the back yoke 3 is installed in the orientation mold 7 in a direction opposite to the rotation direction of the rotor 1. This is because the reluctance torque in the same direction as the output torque is obtained during motor operation.

本実施の形態では、概ね5°程度の位相ズレ(回転子1の回転方向に反対方向)とした場合が最も出力トルクが得られている。これは、必ずしも全ての形態、回転子1の形状にあてはまるものではなく、バックヨーク3、マグネット2の形状によって左右される。しかし、回転方向の逆方向にバックヨーク3をずらして配向金型7に配置することによって、同様の効果が得られる点は、共通である。   In the present embodiment, the output torque is most obtained when the phase shift is approximately 5 ° (opposite to the rotation direction of the rotor 1). This does not necessarily apply to all forms and shapes of the rotor 1, but depends on the shapes of the back yoke 3 and the magnet 2. However, it is common in that the same effect can be obtained by shifting the back yoke 3 in the direction opposite to the rotational direction and disposing it on the orientation mold 7.

ここで、回転子1に用いるマグネット2が希土類系の材料である場合、使用重量を減らすため、薄肉のリング形状とすることが多いため、配向ヨーク7bと回転子1のバックヨーク3との間の空隙が狭くなり、配向金型7内部で発生するリラクタンストルクの影響が大きくなる。本実施の形態を用いることで、このような場合でも特性の良い回転子1を安定して製造することが可能である。   Here, when the magnet 2 used for the rotor 1 is a rare earth-based material, a thin ring shape is often used in order to reduce the use weight, and therefore, the gap between the orientation yoke 7b and the back yoke 3 of the rotor 1 is reduced. And the influence of the reluctance torque generated inside the alignment mold 7 is increased. By using this embodiment, it is possible to stably manufacture the rotor 1 having good characteristics even in such a case.

また、バックヨーク3の材料が軟磁性粉末を含む樹脂で構成される場合、射出成形するマグネット材料(プラスチックマグネット)と線膨張係数が近く、温度変化によってマグネット2に加わるストレスを緩和できるため、よりマグネット2を薄くすることができる。このため、バックヨーク3と配向ヨーク7bとの間の空隙が小さくなり、配向金型7内部でのリラクタンストルクが大きくなる。本実施の形態によって、このような場合においても、特性の良い回転子1を安定して製造することができる。   Further, when the material of the back yoke 3 is made of a resin containing soft magnetic powder, the linear expansion coefficient is close to that of the magnet material to be injection-molded (plastic magnet), and stress applied to the magnet 2 due to temperature change can be alleviated. The magnet 2 can be made thin. For this reason, the gap between the back yoke 3 and the alignment yoke 7b is reduced, and the reluctance torque inside the alignment die 7 is increased. According to the present embodiment, even in such a case, the rotor 1 having good characteristics can be stably manufactured.

実施の形態4.
図6、図10は実施の形態4を示す図で、図6は同期電動機のギャップ磁束密度分布を示す図、図10は同期電動機の回転子1と配向金型7とを示す断面図である。
Embodiment 4 FIG.
FIGS. 6 and 10 are diagrams showing the fourth embodiment, FIG. 6 is a diagram showing a gap magnetic flux density distribution of the synchronous motor, and FIG. 10 is a cross-sectional view showing the rotor 1 and the orientation die 7 of the synchronous motor. .

配向金型7内部の配向ヨーク7bと回転子1の位置関係は実施の形態3と同様であるが、配向ヨーク7bの形状が異なる。配向ヨーク7bは、磁極の中心に対して、非対称な形状になっている。実施の形態2による回転子1の場合、配向によって得られる回転子表面の磁束密度分布は、1磁極の形状が非対称となるため、1磁極分の表面磁束密度の分布も磁極中心に対して非対称な波形となる。これによって、同期電動機の固定子巻線に生じる誘起電圧に歪みが発生し、運転時のトルク脈動が増加する。送風機用途の様に、低振動・低騒音が求められる場合、トルクリップルを小さく抑える必要があるため、回転子表面の磁束密度分布も歪みが少ない方が望ましい。   The positional relationship between the alignment yoke 7b and the rotor 1 inside the alignment mold 7 is the same as that in the third embodiment, but the shape of the alignment yoke 7b is different. The orientation yoke 7b has an asymmetric shape with respect to the center of the magnetic pole. In the case of the rotor 1 according to the second embodiment, the magnetic flux density distribution on the rotor surface obtained by orientation is asymmetric with respect to the shape of one magnetic pole, so the distribution of surface magnetic flux density for one magnetic pole is also asymmetric with respect to the magnetic pole center. Waveform. As a result, distortion occurs in the induced voltage generated in the stator winding of the synchronous motor, and torque pulsation during operation increases. When low vibration and low noise are required as in blower applications, it is necessary to keep the torque ripple small. Therefore, it is desirable that the magnetic flux density distribution on the rotor surface has less distortion.

このため、本実施の形態では、図10に示すように、配向ヨーク7bの形状を非対称にする。具体的には、配向ヨーク7bと回転子1との間のギャップを磁極の中心に対して非対称にする。磁極の中心に対して、磁極の片側(図10では右側)にギャップを拡大したギャップ拡大部6を形成する。それにより、回転子表面の磁束密度分布を図6に示すように対称な波形に近づけることができる。これによって、回転子1の表面磁束密度分布の非対称な歪みを抑え、同期電動機の振動・騒音の増加を抑えることができる。   For this reason, in this embodiment, as shown in FIG. 10, the shape of the orientation yoke 7b is made asymmetric. Specifically, the gap between the orientation yoke 7b and the rotor 1 is made asymmetric with respect to the center of the magnetic pole. The gap enlargement portion 6 is formed by enlarging the gap on one side (right side in FIG. 10) of the magnetic pole with respect to the center of the magnetic pole. Thereby, the magnetic flux density distribution on the rotor surface can be brought close to a symmetrical waveform as shown in FIG. As a result, asymmetric distortion of the surface magnetic flux density distribution of the rotor 1 can be suppressed, and an increase in vibration and noise of the synchronous motor can be suppressed.

本発明の活用例として、マグネットを表面に配置する形態の回転子を用いることの多い、空気調和機、送風機に用いられる同期電動機への適用が可能である。   As an application example of the present invention, the present invention can be applied to an air conditioner and a synchronous motor used for a blower, which often use a rotor having a magnet disposed on the surface.

実施の形態1を示す図で、同期電動機の回転子1の断面図。FIG. 3 shows the first embodiment and is a cross-sectional view of the rotor 1 of the synchronous motor. 実施の形態1を示す図で、同期電動機の回転子1と着磁ヨーク4とを示す断面図。FIG. 3 is a diagram showing the first embodiment, and is a cross-sectional view showing a rotor 1 and a magnetized yoke 4 of the synchronous motor. 実施の形態1を示す図で、同期電動機の回転子1と着磁ヨーク4との位置関係を示す図。FIG. 3 shows the first embodiment and shows the positional relationship between the rotor 1 and the magnetized yoke 4 of the synchronous motor. 実施の形態1を示す図で、同期電動機の回転子1と着磁ヨーク4の位置のズレ量と同期電動機の出力トルクの関係を示す図。FIG. 3 is a diagram illustrating the first embodiment, and is a diagram illustrating a relationship between a displacement amount between the rotor 1 and the magnetizing yoke 4 of the synchronous motor and an output torque of the synchronous motor. 実施の形態2を示す図で、回転子1と着磁ヨーク4の形状及び両者の位置関係を示す図。FIG. 6 is a diagram showing the second embodiment, and shows the shape of the rotor 1 and the magnetized yoke 4 and the positional relationship between them. 実施の形態2,4を示す図で、同期電動機のギャップ磁束密度分布を示す図。The figure which shows Embodiment 2, 4, and is a figure which shows gap magnetic flux density distribution of a synchronous motor. 実施の形態3を示す図で、同期電動機の回転子1と配向金型7とを示す断面図。FIG. 6 is a diagram showing a third embodiment, and is a cross-sectional view showing a rotor 1 and an orientation mold 7 of a synchronous motor. 実施の形態3を示す図で、同期電動機の回転子1と配向金型7との位置関係を示す図。FIG. 10 is a diagram illustrating the third embodiment and is a diagram illustrating a positional relationship between the rotor 1 of the synchronous motor and the orientation mold 7. 実施の形態3を示す図で、回転子1と配向金型7との位置のズレ量と同期電動機の出力トルクの関係を示す図。FIG. 9 is a diagram illustrating the third embodiment, and is a diagram illustrating a relationship between a positional deviation between the rotor 1 and the orientation mold 7 and an output torque of the synchronous motor. 実施の形態4を示す図で、同期電動機の回転子1と配向金型7とを示す断面図。FIG. 10 is a diagram showing the fourth embodiment, and is a cross-sectional view showing a rotor 1 and an orientation mold 7 of a synchronous motor.

符号の説明Explanation of symbols

1 回転子、2 マグネット、3 バックヨーク、4 着磁ヨーク、5 巻線、6 ギャップ拡大部、7 配向金型、7a 配向磁石、7b 配向ヨーク。   1 rotor, 2 magnets, 3 back yoke, 4 magnetized yoke, 5 windings, 6 gap enlarged portion, 7 orientation mold, 7a orientation magnet, 7b orientation yoke.

Claims (8)

固定子と対向する面に配置され、径方向の厚みが不均一な偏肉形状のマグネットと、このマグネットと接する面が略多角形であるバックヨークとを有する同期電動機の回転子の製造方法において、
前記マグネットを着磁するために外部より印加する磁場に対して、前記回転子の回転方向とは逆向きに前記バックヨークを所定の角度だけ位相をずらして配置、固定して前記マグネットを着磁することを特徴とする同期電動機の回転子の製造方法。
In a method for manufacturing a rotor of a synchronous motor, which is arranged on a surface facing a stator and has a magnet having an uneven thickness with a nonuniform radial thickness and a back yoke having a substantially polygonal surface in contact with the magnet ,
The magnet is magnetized by arranging and fixing the back yoke by shifting the phase by a predetermined angle in the direction opposite to the rotation direction of the rotor with respect to the magnetic field applied from outside to magnetize the magnet. A method for manufacturing a rotor of a synchronous motor, characterized in that:
着磁された前記回転子の表面磁束密度分布が磁極中心に対して左右対称になるように、前記マグネットの着磁に用いる印加磁場の1磁極分の分布波形を磁極の中心に対して左右非対称とすることを特徴する請求項1記載の同期電動機の回転子の製造方法。   The distribution waveform for one magnetic pole of the applied magnetic field used for magnetizing the magnet is asymmetric with respect to the center of the magnetic pole so that the surface magnetic flux density distribution of the magnetized rotor is symmetrical with respect to the magnetic pole center. The method for manufacturing a rotor of a synchronous motor according to claim 1, wherein: 前記マグネットに、等方性のマグネットを用いることを特徴とする請求項1又は請求項2記載の同期電動機の回転子の製造方法。   3. The method of manufacturing a rotor of a synchronous motor according to claim 1, wherein an isotropic magnet is used as the magnet. 固定子と対向する面に配置され、径方向の厚みが不均一な偏肉形状のマグネットと、このマグネットと接する面が略多角形であるバックヨークとを有する同期電動機の回転子の製造方法において、
前記マグネットを成形、配向するために外部より印加する磁場に対して、前記回転子の回転方向とは逆向きに前記バックヨークを所定の角度だけ位相をずらして配置、固定して前記マグネットを成形することを特徴とする同期電動機の回転子の製造方法。
In a method for manufacturing a rotor of a synchronous motor, which is arranged on a surface facing a stator and has a magnet having an uneven thickness with a nonuniform radial thickness and a back yoke having a substantially polygonal surface in contact with the magnet ,
The magnet is formed by arranging and fixing the back yoke by shifting the phase by a predetermined angle in the direction opposite to the rotation direction of the rotor with respect to the magnetic field applied from the outside in order to form and orient the magnet. A method for manufacturing a rotor of a synchronous motor, characterized in that:
前記マグネットが配向成形された前記回転子の表面磁束密度分布を磁極中心に対して左右対称になるように、前記マグネットの配向に用いる配向金型内部の磁場の1磁極分の分布波形を磁極中心に対して左右非対称とすることを特徴する請求項4記載の同期電動機の回転子の製造方法。   The distribution waveform for one magnetic pole of the magnetic field inside the orientation mold used for orientation of the magnet is set so that the surface magnetic flux density distribution of the rotor on which the magnet is oriented is symmetrical with respect to the magnetic pole center. The method for manufacturing a rotor of a synchronous motor according to claim 4, wherein the rotor is asymmetric with respect to the left and right. 前記マグネットに、異方性のマグネットを用いることを特徴とする請求項4又は請求項5記載の同期電動機の回転子の製造方法。   6. The method for manufacturing a rotor of a synchronous motor according to claim 4, wherein an anisotropic magnet is used as the magnet. 前記マグネットに、希土類のマグネットを用いることを特徴とする請求項1乃至6のいずれかに記載の同期電動機の回転子の製造方法。   7. The method of manufacturing a rotor of a synchronous motor according to claim 1, wherein a rare earth magnet is used as the magnet. 前記バックヨークに軟磁性粉末と樹脂を混合した材料を用いることを特徴とした請求項1乃至6のいずれかに記載の同期電動機の回転子の製造方法。   The method for manufacturing a rotor of a synchronous motor according to any one of claims 1 to 6, wherein a material obtained by mixing soft magnetic powder and resin is used for the back yoke.
JP2007014419A 2007-01-25 2007-01-25 Method for manufacturing rotor of synchronous motor Active JP4838160B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014419A JP4838160B2 (en) 2007-01-25 2007-01-25 Method for manufacturing rotor of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014419A JP4838160B2 (en) 2007-01-25 2007-01-25 Method for manufacturing rotor of synchronous motor

Publications (2)

Publication Number Publication Date
JP2008182825A true JP2008182825A (en) 2008-08-07
JP4838160B2 JP4838160B2 (en) 2011-12-14

Family

ID=39726293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014419A Active JP4838160B2 (en) 2007-01-25 2007-01-25 Method for manufacturing rotor of synchronous motor

Country Status (1)

Country Link
JP (1) JP4838160B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831729B2 (en) 2012-01-16 2017-11-28 Samsung Electronics Co., Ltd. Electric motor's sectional rotor with asymmetric poles having permanent magnets

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112945A (en) * 1996-10-07 1998-04-28 Matsushita Electric Ind Co Ltd Permanent magnet rotor and manufacturing method thereof
JP2002272034A (en) * 2001-03-07 2002-09-20 Isuzu Ceramics Res Inst Co Ltd Magnet rotor and high output ac machine having the magnet rotor
WO2006064948A1 (en) * 2004-12-17 2006-06-22 Hitachi Metals, Ltd. Rotor for motor and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10112945A (en) * 1996-10-07 1998-04-28 Matsushita Electric Ind Co Ltd Permanent magnet rotor and manufacturing method thereof
JP2002272034A (en) * 2001-03-07 2002-09-20 Isuzu Ceramics Res Inst Co Ltd Magnet rotor and high output ac machine having the magnet rotor
WO2006064948A1 (en) * 2004-12-17 2006-06-22 Hitachi Metals, Ltd. Rotor for motor and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831729B2 (en) 2012-01-16 2017-11-28 Samsung Electronics Co., Ltd. Electric motor's sectional rotor with asymmetric poles having permanent magnets

Also Published As

Publication number Publication date
JP4838160B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP6667084B2 (en) Surface magnet type motor
US10630122B2 (en) Motor
KR101566047B1 (en) Spoke type permanent magnet motor
JP6448810B2 (en) Rotor, permanent magnet synchronous motor, method for manufacturing permanent magnet synchronous motor, and air conditioner
US9490670B2 (en) Rotor and motor
US9762097B2 (en) Rotor and motor
US9780610B2 (en) Rotor and motor
JP2013515455A (en) Rotor for modulating pole machine
JP2008167615A (en) Single-phase claw pole permanent magnet motor
KR20170062889A (en) Surface permanent magnet synchronous motor
JP2004242453A (en) Motor
JP6950361B2 (en) motor
JP6824348B2 (en) Manufacturing method of single-phase brushless motor, single-phase brushless motor, vacuum cleaner equipped with single-phase brushless motor, and manufacturing method of vacuum cleaner
JP4838160B2 (en) Method for manufacturing rotor of synchronous motor
CN113646994B (en) Rotor and method for manufacturing rotor
JP6950275B2 (en) Rotor and motor
KR20160112611A (en) Rotor and motor comprising the same
JP5144923B2 (en) Rotating electric machine
JP6390172B2 (en) Rotor and motor
JP2006254622A (en) Permanent magnet type motor
WO2023218743A1 (en) Rotor and ipm motor having same
JP2005312166A (en) Anisotropic bond magnet for four magnetic pole motor and motor employing it
JP2005160131A (en) Rotating motor
JP6539975B2 (en) Lundell rotor and motor
JP4737202B2 (en) Method for orienting anisotropic bonded magnet for motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4838160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250