[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008179714A - Flame-retardant copolyester composition and flame-retardant polyester fiber - Google Patents

Flame-retardant copolyester composition and flame-retardant polyester fiber Download PDF

Info

Publication number
JP2008179714A
JP2008179714A JP2007014969A JP2007014969A JP2008179714A JP 2008179714 A JP2008179714 A JP 2008179714A JP 2007014969 A JP2007014969 A JP 2007014969A JP 2007014969 A JP2007014969 A JP 2007014969A JP 2008179714 A JP2008179714 A JP 2008179714A
Authority
JP
Japan
Prior art keywords
flame
polyester copolymer
retardant polyester
polyester
copolymer composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007014969A
Other languages
Japanese (ja)
Inventor
Motoyoshi Suzuki
東義 鈴木
Mitsue Kamiyama
三枝 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2007014969A priority Critical patent/JP2008179714A/en
Publication of JP2008179714A publication Critical patent/JP2008179714A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame-retardant copolyester composition excellent in melt dripping resistance (dripping resistance) and a self-extinguishing property, and to provide a flame-retardant polyester fiber. <P>SOLUTION: This flame-retardant copolyester composition is characterized by containing substantially spherical fine particles containing phosphorus atoms and having an average primary particle diameter of ≤100 nm in a copolyester copolymerized with a specific phosphaphenanthrene-based organic phosphorous compound in an amount of 0.3 to 1.5 wt.% as phosphorus atoms in an amount of 0.1 to 5 wt.% based on the copolyester. A formed product, especially a fiber, obtained from the same is especially excellent in dripping resistance and a self-extinguishing property, and is useful in fields of clothing, interiors, industrial uses, and the like. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は難燃性ポリエステル共重合体組成物及び難燃性ポリエステル繊維に関するものである。さらに詳細には、耐溶融滴下性(耐ドリップ性)と自己消火性とに優れた難燃性ポリエステル共重合体組成物及び難燃性ポリエステル繊維に関するものである。   The present invention relates to a flame retardant polyester copolymer composition and a flame retardant polyester fiber. More specifically, the present invention relates to a flame retardant polyester copolymer composition and a flame retardant polyester fiber excellent in melt dripping resistance (drip resistance) and self-extinguishing properties.

近年、各種有機高分子材料に対して難燃性の付与が要求され、種々の技術が開発されている。ポリエステルは多くの優れた特性を有するがゆえに繊維、フィルム、樹脂として広く用いられているが、燃焼性が「可燃性」に分類され、空気中で燃焼する。このため従来からポリエステルの難燃性を高める方法が種々開発されている。   In recent years, various organic polymer materials are required to be provided with flame retardancy, and various techniques have been developed. Polyester is widely used as a fiber, film, and resin because it has many excellent properties, but its flammability is classified as “flammable” and burns in air. For this reason, various methods for increasing the flame retardancy of polyester have been developed.

例えば、ポリエチレンテレフタレートを主とするポリエステル繊維について説明すると、その難燃性を高める方法として、(A)後加工法、(B)ブレンド法、(C)共重合法の3つの方法が知られている。   For example, a polyester fiber mainly composed of polyethylene terephthalate will be described. As a method for improving the flame retardancy, (A) a post-processing method, (B) a blend method, and (C) a copolymerization method are known. Yes.

上記(A)の後加工法は糸や織編物で処理する方法であり、ハロゲン系難燃剤を浴中法又はパディング法により繊維に吸尽もしくは付着させる方法(特許文献1参照)や、地球環境保全に対する意識の高まりから、より環境負荷の少ない難燃加工技術としてリン系難燃剤を浴中法又はパディング法により繊維に吸尽もしくは付着させる方法(特許文献2参照)が提案されている。上記(B)のブレンド法は難燃剤をポリエステルの製造段階もしくは紡糸段階でポリマーに練り込む方法であるが、この方法は技術的に種々の困難性があり、実用化された例は少ない。上記(C)の共重合法としてはリンを含む共重合性のモノマー(難燃剤)をポリエステル製造段階で反応系に添加してポリエステルにランダムに共重合する方法が実用化されており、このようなモノマーとしてはカルボキシホスフィン酸系化合物(特許文献3参照)やホスファフェナンスレン系化合物(特許文献4参照)が提案されている。   The post-processing method (A) is a method of treating with a yarn or a woven or knitted fabric. A method of exhausting or adhering a halogen-based flame retardant to a fiber by a bathing method or a padding method (see Patent Document 1) From the heightened awareness of maintenance, a method of exhausting or adhering a phosphorus-based flame retardant to a fiber by a bathing method or a padding method has been proposed as a flame retardant processing technique with less environmental load (see Patent Document 2). The blending method (B) is a method in which a flame retardant is kneaded into a polymer at the polyester production stage or spinning stage, but this method has various technical difficulties and few examples have been put to practical use. As the copolymerization method of (C) above, a method in which a copolymerizable monomer (flame retardant) containing phosphorus is added to the reaction system at the polyester production stage and copolymerized randomly with the polyester has been put into practical use. As such monomers, carboxyphosphinic acid compounds (see Patent Document 3) and phosphaphenanthrene compounds (see Patent Document 4) have been proposed.

しかしながら、上記の各方法はいずれも、リン化合物の特徴である自己消火性とリン化合物による溶融粘度低下に基づく溶融ドリップ促進効果により繊維が溶融滴下して火源から除かれる作用効果によるドリップ促進型の難燃性付与方法であり、溶融を阻害する混紡繊維製品への適用が難しいことや、皮膚に付着すると火傷の危険性があり、しかもドリップによる二次延焼火災の危険性があるという問題があった。
このような背景から、接炎時の耐ドリップ性が改善されると共に自己消火性も兼ね備えた難燃性ポリエステル繊維が望まれていた。
However, each of the above methods is a drip-promoting type due to the action effect that the fiber melts and drops from the fire source due to the self-extinguishing property that is characteristic of the phosphorus compound and the melt drip acceleration effect based on the melt viscosity reduction by the phosphorus compound. This method is difficult to apply to blended fiber products that impede melting, and there is a risk of burns if it adheres to the skin, and there is also a risk of secondary fire due to drip. there were.
From such a background, a flame-retardant polyester fiber having improved drip resistance during flame contact and having self-extinguishing properties has been desired.

特開昭62−57985号公報JP 62-57985 A 特開2001−11775号公報JP 2001-11775 A 特公昭53−13479号公報Japanese Patent Publication No.53-13479 特公昭55−41610号公報Japanese Patent Publication No. 55-41610

本発明は、上記背景に鑑みなされたもので、その目的は、接炎時の耐ドリップ性が改善されると共に自己消火性も兼ね備えた難燃性ポリエステル繊維等を与えることのできる新規な難燃性ポリエステル共重合体組成物及びそれを用いた難燃性ポリエステル繊維を提供することにある。   The present invention has been made in view of the above background, and its object is to provide a novel flame retardant polyester fiber that has improved drip resistance at the time of flame contact and has self-extinguishing properties. It is providing a flame-retardant polyester copolymer composition and a flame-retardant polyester fiber using the same.

本発明者は、上記目的を達成すべく、上記したホスファフェナンスレン系化合物を共重合したポリエステルに着目して種々検討した結果、該ホスファフェナンスレン系化合物の特定量を共重合すると共に平均の一次粒子径が100nm以下でかつリン原子を含有する球状微粒子の特定量を該ポリエステル共重合体中に添加することによって、耐ドリップ性が著しく改善されると同時に優れた難燃性(自己消火性)を付与できること見出した。本発明は、これらの知見に基づいてさらに検討を重ねた結果、完成したものである。   In order to achieve the above object, the present inventor has made various studies focusing on polyesters copolymerized with the above-described phosphaphenanthrene compounds, and as a result, has copolymerized a specific amount of the phosphaphenanthrene compounds. In addition, by adding a specific amount of spherical fine particles having an average primary particle size of 100 nm or less and containing phosphorus atoms to the polyester copolymer, dripping resistance is remarkably improved and excellent flame retardancy ( It was found that self-extinguishing properties can be imparted. The present invention has been completed as a result of further studies based on these findings.

すなわち、本発明は、以下の難燃性ポリエステル共重合体組成物ならびに該ポリエステル共重合体組成物からなる難燃性ポリエステル繊維に係るものである。   That is, the present invention relates to the following flame retardant polyester copolymer composition and flame retardant polyester fiber comprising the polyester copolymer composition.

(1)下記一般式(I)で表わされる有機リン化合物がポリエステル共重合体中のリン原子の含有量として0.3〜1.5重量%となる量共重合された共重合ポリエステル中に、平均一次粒子径が100nm以下である、リン原子を含有する実質的に球状の微粒子を該ポリエステル共重合体に対して0.1〜5重量%となる量含有していることを特徴とする難燃性ポリエステル共重合体組成物。   (1) In the copolymerized polyester in which the organic phosphorus compound represented by the following general formula (I) is copolymerized in an amount of 0.3 to 1.5% by weight as the phosphorus atom content in the polyester copolymer, A difficulty characterized by containing substantially spherical fine particles containing phosphorus atoms having an average primary particle size of 100 nm or less, in an amount of 0.1 to 5% by weight based on the polyester copolymer. A flammable polyester copolymer composition.

Figure 2008179714
Figure 2008179714

(2)リン原子を含有する球状粒子が、グリコール可溶性のリン化合物とグリコール可溶性の金属化合物とをポリエステル反応系内部で反応させて析出せしめた内部析出系微粒子であることを特徴とする上記(1)の難燃性ポリエステル共重合体組成物。   (2) The above-described (1), wherein the spherical particles containing phosphorus atoms are internal precipitation fine particles obtained by causing a glycol-soluble phosphorus compound and a glycol-soluble metal compound to react with each other inside the polyester reaction system. A flame retardant polyester copolymer composition.

(3)グリコール可溶性のリン化合物が、下記一般式(II)で表わされるリン化合物であり、かつグリコール可溶性の金属化合物がアルカリ土類金属化合物である上記(2)の難燃性ポリエステル共重合体組成物。   (3) The flame-retardant polyester copolymer of (2) above, wherein the glycol-soluble phosphorus compound is a phosphorus compound represented by the following general formula (II) and the glycol-soluble metal compound is an alkaline earth metal compound Composition.

Figure 2008179714
Figure 2008179714

(4)ポリエステル共重合体における共重合成分として、上記一般式(I)で表わされる有機リン化合物に加えて、下記一般式(III)で表わされるジカルボン酸化合物がポリエステル共重合体を構成する全酸成分に対して0.5〜5.0モル%となる量共重合されている請求項1〜請求項3のいずれか1項に記載の難燃性ポリエステル共重合体組成物。   (4) As a copolymerization component in the polyester copolymer, in addition to the organophosphorus compound represented by the above general formula (I), the dicarboxylic acid compound represented by the following general formula (III) comprises all of the polyester copolymer. The flame-retardant polyester copolymer composition according to any one of claims 1 to 3, which is copolymerized in an amount of 0.5 to 5.0 mol% with respect to the acid component.

Figure 2008179714
Figure 2008179714

(5)ポリエステル共重合体が、エチレンテレフタレート主たる構成単位とする共重合体であることを特徴とする上記(1)〜(4)のいずれかの難燃性ポリエステル共重合体組成物。   (5) The flame retardant polyester copolymer composition according to any one of the above (1) to (4), wherein the polyester copolymer is a copolymer having ethylene terephthalate as a main structural unit.

(6)窒素雰囲気下において室温から10℃/分の昇温速度で加熱したときの600℃到達時点における加熱残分量が15重量%以上、かつ空気雰囲気下において室温から10℃/分の昇温速度で加熱したときの減量開始温度が405℃以上である、上記(1)〜(5)のいずれかの難燃性ポリエステル共重合体組成物。   (6) The heating residual amount when reaching 600 ° C. when heated from room temperature at a rate of 10 ° C./min in a nitrogen atmosphere is 15% by weight or more, and the temperature is raised from room temperature to 10 ° C./min in an air atmosphere. The flame-retardant polyester copolymer composition according to any one of the above (1) to (5), wherein the weight loss starting temperature when heated at a speed is 405 ° C or higher.

(7)上記(1)〜(6)のいずれかの難燃性ポリエステル共重合体組成物からなり、かつLOI値(限界酸素指数)が27以上であって単繊維繊度が20dtex未満であることを特徴とする難燃性ポリエステル繊維。   (7) The flame retardant polyester copolymer composition according to any one of (1) to (6) above, having an LOI value (limit oxygen index) of 27 or more and a single fiber fineness of less than 20 dtex. Flame retardant polyester fiber characterized by.

本発明によれば、燃焼時にドリップを抑制する難燃性の高いポリエステル共重合体組成物を得ることができ、繊維、フィルム、シート、樹脂成型品等の成形物にしたときに耐ドリップ型の優れた難燃性成形物を得ることができる。特に、本発明のポリエステル共重合体組成物を溶融紡糸して製造したポリエステル繊維は、従来のドリップ型難燃性ポリエステル繊維とは異なり、耐ドリップ型の難燃性を呈するため、着炎部分のドリップが抑制される。このため、着炎物や溶融物による火傷や延焼の危険性を防ぐことができるので、カーテン、インテリア、椅子張り等のホーム・リビングテキスタイル用途、衣料用途、産業用途等で好適に用いることができる。   According to the present invention, a highly flame-retardant polyester copolymer composition that suppresses drip during combustion can be obtained, and when formed into a molded product such as a fiber, a film, a sheet, or a resin molded product, An excellent flame-retardant molded product can be obtained. In particular, the polyester fiber produced by melt spinning the polyester copolymer composition of the present invention, unlike the conventional drip-type flame-retardant polyester fiber, exhibits a drip-type flame-retardant property. Drip is suppressed. For this reason, it is possible to prevent the risk of burns and spread of fire due to flammables and melts, so that it can be suitably used for home / living textile applications such as curtains, interiors, and upholstery, clothing applications, industrial applications, etc. .

本発明でいうポリエステルとは、テレフタル酸を主たる二官能性カルボン酸成分とし、炭素数2〜4のアルキレングリコールを主たるグリコール成分とするテレフタレート系ポリエステルを主たる対象とする。なかでも全ポリエステル構成単位の85モル%以上がエチレンテレフタレート単位であるポリエステルが好ましい。   The polyester referred to in the present invention mainly includes a terephthalate-based polyester having terephthalic acid as a main difunctional carboxylic acid component and C2-4 alkylene glycol as a main glycol component. Among them, a polyester in which 85 mol% or more of all the polyester structural units are ethylene terephthalate units is preferable.

かかるポリエステルは任意の方法によって合成される。ポリエチレンテレフタレートを例に説明すると、通常、テレフタル酸とエチレングリコールとを直接エステル化反応させるか、テレフタル酸ジメチルの如きテレフタル酸の低級アルキルエステルとエチレングリコールとをエステル交換反応させるか又はテレフタル酸とエチレンオキサイドとを反応させるかしてテレフタル酸のグリコールエステル及び/又はその低重合体を生成させる第1段階の反応と、第1段階の反応生成物を減圧下加熱して所望の重合度になるまで重縮合反応させる第2段階の反応によって製造される。   Such polyester is synthesized by any method. For example, polyethylene terephthalate is usually esterified directly with terephthalic acid or ethylene glycol, or transesterified with a lower alkyl ester of terephthalic acid such as dimethyl terephthalate and ethylene glycol, or with terephthalic acid and ethylene. The first stage reaction in which a glycol ester of terephthalic acid and / or its low polymer is produced by reacting with oxide and the reaction product in the first stage is heated under reduced pressure until the desired degree of polymerization is reached. It is produced by a second stage reaction that undergoes a polycondensation reaction.

本発明の難燃性ポリエステル共重合体においては、上記ポリエステルに、必須共重合成分として、下記一般式(I)で表わされるホスファフェナンスレン系の有機リン化合物が共重合されていることが必要である。   In the flame-retardant polyester copolymer of the present invention, the polyester is copolymerized with a phosphaphenanthrene-based organophosphorus compound represented by the following general formula (I) as an essential copolymerization component. is necessary.

Figure 2008179714
Figure 2008179714

上記一般式(I)において、Rは1価のエステル形成性官能基であり、R、Rは互いに同一又は相異なる基であって、それぞれ炭素原子数1〜10の炭化水素基及びRの中から選ばれ、Aは2価もしくは3価の有機残基を示す。n1は1又は2であり、n2、n3はそれぞれ0〜4の整数を表わす。 In the above general formula (I), R 1 is a monovalent ester-forming functional group, R 2 and R 3 are the same or different from each other, each having a hydrocarbon group having 1 to 10 carbon atoms and Selected from R 1 , A represents a divalent or trivalent organic residue. n1 is 1 or 2, and n2 and n3 each represent an integer of 0 to 4.

かかる有機リン化合物の好ましい具体例としては、下記式(a)〜(c)で表わされる化合物があげられる。

Figure 2008179714
Preferable specific examples of such organophosphorus compounds include compounds represented by the following formulas (a) to (c).
Figure 2008179714

本発明におけるポリエステルの上記必須共重合成分である上記一般式(I)で表わされるホスファフェナンスレン系有機リン化合物の共重合量は、ポリエステル共重合体中のリン原子の含有量として0.3〜1.5重量%の範囲となる量であることが必要であり、好ましい共重合量は0.5〜1.0重量%、より好ましくは0.6〜0.9重量%の範囲である。この有機リン化合物の共重合量が上記範囲より少ないと、得られるポリエステル共重合体組成物の自己消火性が不充分なものになる。一方、この有機リン化合物の共重合量が多すぎると耐ドリップ性が不足するようになる。   The amount of copolymerization of the phosphaphenanthrene-based organophosphorus compound represented by the above general formula (I), which is the essential copolymerization component of the polyester in the present invention, is 0. As the phosphorus atom content in the polyester copolymer. It is necessary that the amount is in the range of 3 to 1.5% by weight, and the preferable copolymerization amount is 0.5 to 1.0% by weight, more preferably in the range of 0.6 to 0.9% by weight. is there. When the copolymerization amount of the organic phosphorus compound is less than the above range, the self-extinguishing property of the obtained polyester copolymer composition becomes insufficient. On the other hand, when the amount of copolymerization of the organophosphorus compound is too large, drip resistance is insufficient.

上記ホスファフェナンスレン系有機リン化合物をポリエステルに共重合するには、上述したポリエステルの合成が完了するまでの任意の段階、例えば第1段階の反応開始前、反応中、反応終了後、第2段階の反応中等の任意の段階でそれぞれを添加し、添加後重縮合反応を完結すればよい。   In order to copolymerize the phosphaphenanthrene-based organophosphorus compound with polyester, any stage until the synthesis of the polyester described above is completed, for example, before the start of the first stage reaction, during the reaction, after the completion of the reaction, Each may be added at any stage such as during the two-stage reaction, and the polycondensation reaction may be completed after the addition.

なお、上記ポリエステル共重合体の合成に際し、必要に応じ、該ポリエステルの特性を本質的に損なわない範囲内で、例えば、イソフタル酸、ヘキサヒドロテレフタル酸、アジピン酸等の他のジカルボン酸成分や炭素数2〜4以外のジオール成分等を少量併用してもよいことは言うまでもない。   In addition, when synthesizing the above polyester copolymer, other dicarboxylic acid components such as isophthalic acid, hexahydroterephthalic acid, adipic acid, etc. Needless to say, a small amount of a diol component other than the number 2 to 4 may be used in combination.

本発明では、このようにして得られる上記難燃性ポリエステル共重合体に、平均一次粒子径が100nm以下であって、かつリン原子を含有する球状微粒子がポリエステル共重合体に対して0.1〜5重量%となる量含有している。   In the present invention, the flame-retardant polyester copolymer thus obtained has an average primary particle diameter of 100 nm or less and spherical fine particles containing phosphorus atoms are 0.1% to the polyester copolymer. It is contained in an amount of ˜5% by weight.

かかるリン原子を含有する微粒子としては、リン原子を含有する実質的に球状の固体微粒子であれば特に限定されず、例えば、リン酸金属塩、ホスホン酸金属塩、ホスフィン酸金属塩、ピロ燐酸金属塩、亜リン酸金属塩等の含リン化合物の球状微粒子をあげることができる。なお、ここでいう「実質的に球状」とは、アスペクト比が1〜5のものをいい、平面状や線状以外の形態であれば、真球状に限らず、ラグビーボール形、略円筒形あるいは正四面体、正六面体のような角張った形態も包含する。また、全体的にほぼ球状であれば一部に小さな突起を有する形状(金平糖形等)や凹凸がある形状でも構わない。   The fine particles containing phosphorus atoms are not particularly limited as long as they are substantially spherical solid fine particles containing phosphorus atoms. For example, metal phosphate, metal phosphonate, metal phosphinate, metal pyrophosphate Examples thereof include spherical fine particles of phosphorus-containing compounds such as salts and metal phosphites. Here, “substantially spherical” refers to those having an aspect ratio of 1 to 5, as long as the shape is other than a flat shape or a linear shape. Or, an angular form such as a regular tetrahedron or a regular hexahedron is included. Moreover, as long as it is substantially spherical as a whole, a shape having a small protrusion (such as a confetti shape) or a shape having irregularities may be used.

該微粒子を構成する好ましい含リン化合物の具体例としては、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸及び亜リン酸のCa、Mg、Al、Sb、Sn、Ge、Ti、Fe、Zr、Zn、Ce、Bi、Sr、Mn、Li、Na、K塩等があげられる。   Specific examples of preferable phosphorus-containing compounds constituting the fine particles include phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid and phosphorous acid Ca, Mg, Al, Sb, Sn, Ge, Ti, Fe, Zr, Zn , Ce, Bi, Sr, Mn, Li, Na, K salt and the like.

かかる微粒子は、その平均一次粒子径が100nm以下であることが必要であり、好ましくは50nm以下、さらに好ましくは1nm〜20nmである。この微粒子の平均一次粒子径が100nmを超えると難燃性ポリエステル共重合体の溶融粘度を高める効果(チキソトロピー効果)が実質的に発現し難くなり、耐ドリップ性が不充分なものとなる。また、本発明の微粒子は実質的に球状であることが必要である。   Such fine particles are required to have an average primary particle diameter of 100 nm or less, preferably 50 nm or less, more preferably 1 nm to 20 nm. If the average primary particle diameter of the fine particles exceeds 100 nm, the effect of increasing the melt viscosity of the flame retardant polyester copolymer (thixotropic effect) is hardly exhibited, and the drip resistance is insufficient. The fine particles of the present invention are required to be substantially spherical.

上記微粒子は前述したポリエステル共重合体の重合段階から紡糸されるまでの任意の過程で添加すればよく、重合添加方式、マスターバッチ方式、リキッドカラー方式等による製造方法が任意に適用される。   The fine particles may be added in an arbitrary process from the above-described polyester copolymer polymerization stage to spinning, and a production method using a polymerization addition method, a master batch method, a liquid color method, or the like is arbitrarily applied.

本発明において平均一次粒子径100nm以下の含リン球状微粒子の特に好ましい態様は、グリコールに可溶性のリン化合物とグリコール可溶性の金属化合物とをポリエステル反応系内部で反応させて析出せしめた内部析出系微粒子である。かかる内部析出系微粒子の好ましい具体例としては、下記一般式(II)で表わされる含金属リン化合物とアルカリ土類金属化合物との反応により析出せしめた内部析出系微粒子をあげることができる。   In the present invention, a particularly preferred embodiment of the phosphorus-containing spherical fine particles having an average primary particle size of 100 nm or less is an internal precipitation fine particle obtained by causing a phosphorus compound soluble in glycol and a glycol-soluble metal compound to react with each other in the polyester reaction system. is there. Preferable specific examples of such internal precipitation fine particles include internal precipitation fine particles precipitated by a reaction between a metal-containing phosphorus compound represented by the following general formula (II) and an alkaline earth metal compound.

Figure 2008179714
Figure 2008179714

上記一般式(II)中において、R及びRは1価の有機基である。この1価の有機基は具体的にはアルキル基、アリール基、アラルキル基又は[(CHO](但し、Rは水素原子、アルキル基、アリール基又はアラルキル基、lは2以上の整数、kは1以上の整数)であり、RとRとは同一でも相異なっていてもよい。Mはアルカリ金属又はアルカリ土類金属であり、Li、Na、K、Mg、Ca、Srが好ましい。mはMがアルカリ金属とき1、Mがアルカリ土類金属のとき1/2である。 In the general formula (II), R 4 and R 5 are monovalent organic groups. This monovalent organic group is specifically an alkyl group, an aryl group, an aralkyl group or [(CH 2 ) 1 O] k R 6 (where R 6 is a hydrogen atom, an alkyl group, an aryl group or an aralkyl group, 1 Is an integer of 2 or more, and k is an integer of 1 or more. R 4 and R 5 may be the same or different. M is an alkali metal or alkaline earth metal, and Li, Na, K, Mg, Ca, and Sr are preferable. m is 1 when M is an alkali metal and 1/2 when M is an alkaline earth metal.

上記のグリコール可溶性のアルカリ土類金属化合物としては、アルカリ土類金属の酢酸塩、蓚酸塩、安息香酸塩、フタル酸塩、ステアリン酸塩のような有機カルボン酸塩、エチレンジアミン4酢酸塩のようなキレート化合物、塩化物のようなハロゲン化物、メチラート、エチラート、グリコレート等のアルコラート類等をあげることができる。   Examples of the glycol-soluble alkaline earth metal compound include alkaline earth metal acetates, oxalates, benzoates, phthalates, stearates, organic carboxylates, ethylenediamine tetraacetate, and the like. Examples thereof include chelate compounds, halides such as chlorides, alcoholates such as methylates, ethylates and glycolates.

上記の含金属リン化合物及びアルカリ土類金属化合物の使用モル比としては、該含金属リン化合物に対して0.5〜1.2倍モルとなる量のアルカリ土類金属化合物を使用するのが好ましい。   Regarding the use molar ratio of the metal-containing phosphorus compound and the alkaline earth metal compound, it is preferable to use an alkaline earth metal compound in an amount of 0.5 to 1.2 times the mole of the metal-containing phosphorus compound. preferable.

このような内部析出系微粒子をポリエステル共重合体中に形成せしめるには、上記したグリコール可溶性のリン化合物及びグリコール可溶性の金属化合物をそれぞれポリエステルの合成が完了するまでの任意の段階において任意の順序で行なうことができる。しかし、リン化合物のみを第1段階の反応が未終了の段階で添加したのでは、第1段階の反応の完結が阻害されることがある。金属化合物のみを第1段階の反応終了前に添加すると、この反応がエステル化反応のときは、この反応中に粗大粒子が発生するおそれがあり、また、エステル交換反応のときは、その反応が異常に速く進行し突沸現象を引起すことがあるので、この場合の添加量は、添加すべき金属化合物全量の20重量%程度未満に抑えるのが好ましい。それ故、金属化合物の少なくとも80重量%ないし全量の添加時期は、ポリエステル共重合体合成の第1段階の反応が実質的に終了した段階以降とすることが好ましい。また、リン化合物及び金属化合物を、第2段階の反応があまりに進行した段階で添加すると、析出粒子の凝集、粗大化が生じ易くなる傾向があるので、添加時期は第2段階の反応における反応混合物の固有粘度(35℃、オルソクロロフェノール溶液で測定)が0.3に到達する以前であることが好ましい。該リン化合物及び金属化合物はそれぞれ一時に添加しても、2回以上に分割して添加しても又は連続的に添加してもよい。   In order to form such internally precipitated fine particles in the polyester copolymer, the above-described glycol-soluble phosphorus compound and glycol-soluble metal compound can be added in any order at any stage until the synthesis of the polyester is completed. Can be done. However, if only the phosphorus compound is added at the stage where the first stage reaction has not been completed, the completion of the first stage reaction may be inhibited. If only the metal compound is added before the completion of the first stage reaction, when this reaction is an esterification reaction, coarse particles may be generated during this reaction. In this case, the amount added is preferably less than about 20% by weight of the total amount of the metal compound to be added, since it may proceed abnormally fast and cause a bumping phenomenon. Therefore, it is preferable that the addition time of at least 80% by weight to the total amount of the metal compound is after the stage at which the first stage reaction of the polyester copolymer synthesis is substantially completed. In addition, if the phosphorus compound and the metal compound are added at a stage where the second stage reaction has progressed too much, the precipitated particles tend to agglomerate and coarsen. Therefore, the addition timing is the reaction mixture in the second stage reaction. It is preferable that the intrinsic viscosity (measured with an orthochlorophenol solution at 35 ° C.) reaches 0.3. Each of the phosphorus compound and the metal compound may be added at one time, divided into two or more times, or added continuously.

本発明においては、第1段階の反応に任意の触媒を使用することができるが、上記金属化合物の中で第1段階の反応、特にエステル交換反応の触媒能を有するものがあり、かかる化合物を使用する場合は別に触媒を使用することを要さず、この金属化合物を第1段階の反応の反応開始前又は反応中に添加して、触媒としても兼用することができるが、上述したように突沸現象を引起すことがあるので、その使用量は添加する金属化合物の20重量%未満にとどめるのが好ましい。   In the present invention, any catalyst can be used for the first-stage reaction, but some of the above metal compounds have catalytic ability for the first-stage reaction, particularly the transesterification reaction. When used, it is not necessary to use a separate catalyst, and this metal compound can be added before the start of the reaction of the first stage reaction or during the reaction, and can also be used as a catalyst. Since the bumping phenomenon may be caused, the amount used is preferably less than 20% by weight of the metal compound to be added.

本発明の難燃性ポリエステル共重合体にあっては、上記一般式(I)で表わされるホスフアフェナンスレン系有機リン化合物以外に、さらに下記一般式(III)で表わされるジカルボン酸化合物を第2の共重合成分として共重合すると、耐ドリップ性がさらに向上するので特に好ましい。   In the flame-retardant polyester copolymer of the present invention, in addition to the phosphaphenanthrene-based organic phosphorus compound represented by the general formula (I), a dicarboxylic acid compound represented by the following general formula (III) is further added. Copolymerization as the copolymerization component 2 is particularly preferred because the drip resistance is further improved.

Figure 2008179714
Figure 2008179714

上記一般式(III)中、Bはナフタレン基又はビフェニレン基を示し、R及びRは、水素原子、低級アルキル基(好ましくは炭素原子数1〜4のアルキル基)又はフェニル基である、これらのR及びRは互いに同一でもよく、異なっていてもよい。R及びRは、これらのなかでも水素原子又はメチル基が特に好ましい。 In the general formula (III), B represents a naphthalene group or a biphenylene group, and R 6 and R 7 are a hydrogen atom, a lower alkyl group (preferably an alkyl group having 1 to 4 carbon atoms) or a phenyl group. R 6 and R 7 may be the same as or different from each other. R 6 and R 7 are particularly preferably a hydrogen atom or a methyl group.

第2の共重合成分として好ましいジカルボン酸化合物の具体例としては、1,2−ナフタレンジカルボン酸、1,3−ナフタレンジカルボン酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、1,6−ナフタレンジカルボン酸、1,7−ナフタレンジカルボン酸、1,8−ナフタレンジカルボン酸、2,3−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、2,7−ナフタレンジカルボン酸及びそれらのジメチルエステルをあげることができ、これらのなかでも、分子構造的に対称性を有する2,6−ナフタレンジカルボン酸又は2,6−ナフタレンジカルボン酸ジメチルが特に好ましい。好ましいジカルボン酸化合物の他の具体例としては、ジフェニル−2,2’−ジカルボン酸、ジフェニル−2,3’−ジカルボン酸、ジフェニル−2,4’−ジカルボン酸、ジフェニル−2,5’−ジカルボン酸、ジフェニル−2,6’−ジカルボン酸、ジフェニル−2,2’−ジカルボン酸、ジフェニル−2,2’−ジカルボン酸、ジフェニル−3,3’−ジカルボン酸、ジフェニル−3,4’−ジカルボン酸、ジフェニル−3,5’−ジカルボン酸、ジフェニル−3,6’−ジカルボン酸、ジフェニル−4,4’−ジカルボン酸、ジフェニル−4,5’−ジカルボン酸、ジフェニル−4,6’−ジカルボン酸及びそれらのジメチルエステルをあげることができ、これらのなかでも、ジフェニル−4,4’−ジカルボン酸又はジフェニル−4,4’−ジカルボン酸ジメチルが特に好ましい。かかるジカルボン酸化合物は単独で用いても2種以上を併用してもよい。   Specific examples of the dicarboxylic acid compound preferable as the second copolymer component include 1,2-naphthalenedicarboxylic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 1 , 6-Naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 2,3-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid and dimethyl thereof Esters may be mentioned, and among these, 2,6-naphthalenedicarboxylic acid or dimethyl 2,6-naphthalenedicarboxylate having a molecular structure symmetry is particularly preferable. Other specific examples of preferred dicarboxylic acid compounds include diphenyl-2,2′-dicarboxylic acid, diphenyl-2,3′-dicarboxylic acid, diphenyl-2,4′-dicarboxylic acid, diphenyl-2,5′-dicarboxylic acid. Acid, diphenyl-2,6′-dicarboxylic acid, diphenyl-2,2′-dicarboxylic acid, diphenyl-2,2′-dicarboxylic acid, diphenyl-3,3′-dicarboxylic acid, diphenyl-3,4′-dicarboxylic acid Acid, diphenyl-3,5′-dicarboxylic acid, diphenyl-3,6′-dicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenyl-4,5′-dicarboxylic acid, diphenyl-4,6′-dicarboxylic acid Acids and their dimethyl esters, among which diphenyl-4,4′-dicarboxylic acid or diphenyl- , 4'-dicarboxylic acid dimethyl is particularly preferred. Such dicarboxylic acid compounds may be used alone or in combination of two or more.

第2の共重合成分となる上記ジカルボン酸化合物の共重合量は、ポリエステル共重合体を構成する全酸成分に対して0.5〜5.0モル%の範囲となる量であり、なかでも1.0〜4.0モル%の範囲が好ましい。   The amount of copolymerization of the dicarboxylic acid compound as the second copolymer component is an amount that is in the range of 0.5 to 5.0 mol% with respect to the total acid component constituting the polyester copolymer, The range of 1.0-4.0 mol% is preferable.

上記ジカルボン酸化合物をポリエステルに共重合するには、前述したポリエステル共重合体の合成が完了するまでの任意の段階、例えば第1段階の反応開始前、反応中、反応終了後、第2段階の反応中、反応終了後等の任意の段階で添加し、添加後重縮合反応を完結すればよい。   In order to copolymerize the dicarboxylic acid compound with polyester, any stage until the synthesis of the above-described polyester copolymer is completed, for example, before the start of the first stage reaction, during the reaction, after the completion of the reaction, During the reaction, it may be added at any stage such as after completion of the reaction, and the polycondensation reaction may be completed after the addition.

本発明において、上記ポリエステル共重合体としては、固有粘度(35℃、オルソクロロフェノール溶液で測定)が0.50〜0.1.20のものがよく、また、該ポリエステル共重合体は、融点が225〜250℃のものが、成形性、成形物の物性等の観点から好適である。   In the present invention, the polyester copolymer preferably has an intrinsic viscosity (measured with an orthochlorophenol solution at 35 ° C.) of 0.50 to 0.120, and the polyester copolymer has a melting point. Is preferably from 225 to 250 ° C. from the viewpoints of moldability, physical properties of the molded product, and the like.

本発明の難燃性ポリエステル共重合体組成物には、必要に応じて、任意の添加剤、例えば着色防止剤、耐熱剤、艶消剤、着色剤、無機微粒子等が含まれていてもよい。   The flame retardant polyester copolymer composition of the present invention may contain an optional additive such as an anti-coloring agent, a heat-resistant agent, a matting agent, a coloring agent, inorganic fine particles and the like, if necessary. .

本発明の難燃性ポリエステル共重合体組成物は、TGA熱重量測定装置を用いた分析において窒素雰囲気下において室温から10℃/分の昇温速度で加熱したときの600℃到達時点における加熱残分量が15重量%以上、かつ空気雰囲気下において室温から10℃/分の昇温速度で加熱したときの減量開始温度が405℃以上であることが耐ドリップ型の難燃性を得る上で好ましいことである。   The flame-retardant polyester copolymer composition of the present invention is a residual residue at the time of reaching 600 ° C. when heated from room temperature at a rate of temperature increase of 10 ° C./min in a nitrogen atmosphere in an analysis using a TGA thermogravimetric apparatus. It is preferable to obtain a drip-resistant flame resistance when the amount is 15% by weight or more and the weight loss starting temperature is 405 ° C. or more when heated from room temperature to 10 ° C./min in an air atmosphere. That is.

このようにして得られた難燃性ポリエステル共重合体組成物を成形するには、格別の方法を採用する必要はなく、通常のポリエステルの溶融成形法が任意に採用される。例えば繊維にする場合、公知の溶融紡糸法で紡糸することができ、紡出繊維は中空部を有しない中実繊維であっても、中空部を有する中空繊維であってもよい。また、紡出する繊維の横断面における外形や中空部の形状は円形であっても異形であってもよい。製糸方法としては、500〜2500m/分の速度で紡糸し、延伸・熱処理する方法、1500〜5000m/分の速度で紡糸し、延伸・仮撚加工を同時に又は逐次的に行う方法、5000m/分以上の高速で紡糸し、用途によっては延伸工程を省略する方法等の製糸条件を任意に採用すればよい。この場合、本発明においては上記微粒子の形状が球状であるので、板状や針状の微粒子に比較して単繊維繊度が20dtex未満の細繊度糸条の工程通過性や糸物性が特に優位となるため、単繊維繊度は20dtex未満であるのが好ましい。   In order to mold the flame retardant polyester copolymer composition thus obtained, it is not necessary to adopt a special method, and a normal polyester melt molding method is arbitrarily employed. For example, in the case of forming a fiber, it can be spun by a known melt spinning method, and the spun fiber may be a solid fiber having no hollow part or a hollow fiber having a hollow part. In addition, the outer shape and the shape of the hollow part in the cross section of the fiber to be spun may be circular or irregular. As a spinning method, a method of spinning at a speed of 500 to 2500 m / min, drawing and heat treatment, a method of spinning at a speed of 1500 to 5000 m / min, and performing drawing and false twisting simultaneously or sequentially, 5000 m / min. Spinning conditions such as a method of spinning at the above high speed and omitting the drawing step may be arbitrarily adopted depending on the application. In this case, since the shape of the fine particles is spherical in the present invention, the process passability and yarn physical properties of the fine fineness yarn having a single fiber fineness of less than 20 dtex are particularly superior to those of plate-like or needle-like fine particles. Therefore, the single fiber fineness is preferably less than 20 dtex.

このようにして難燃性ポリエステル共重合体組成物から溶融紡糸法によって製造された好ましい難燃性ポリエステル繊維は、後述する方法で求めたLOI値(限界酸素指数)が27以上である。   Thus, the preferable flame-retardant polyester fiber manufactured by the melt spinning method from the flame-retardant polyester copolymer composition has a LOI value (limit oxygen index) determined by the method described later of 27 or more.

本発明の難燃性ポリエステル共重合体は繊維以外にも、フィルムやシート等の成形物にすることもでき、その際任意の成形条件を採用することができる。例えば、製膜後一方向のみに張力をかけて異方性を持たせる方法、同時に又は任意の順序で二方向に延伸する方法、二段以上の多段延伸する方法等任意の条件が採用される。   The flame-retardant polyester copolymer of the present invention can be formed into a molded product such as a film or a sheet in addition to the fiber, and any molding conditions can be employed. For example, any conditions such as a method of applying anisotropy by applying tension in only one direction after film formation, a method of stretching in two directions simultaneously or in an arbitrary order, a method of stretching in two or more stages, etc. are adopted. .

以下、実施例及び比較例をあげて本発明を具体的に説明する。但し、本発明はこれらによって何ら限定されるものではない。なお、これらの実施例及び比較例中の部及び%は、特に断らない限り、それぞれ重量部及び重量%を示す。また、本発明における各測定値は以下の方法で測定されるものである。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. However, the present invention is not limited by these. In addition, unless otherwise indicated, the part and% in these Examples and Comparative Examples show a weight part and weight%, respectively. Each measured value in the present invention is measured by the following method.

(1)ポリエステル共重合体の固有粘度:
ポリエステル共重合体の固有粘度は35℃のオルソクロロフェノール溶液で測定した値から求めた。
(1) Intrinsic viscosity of polyester copolymer:
The intrinsic viscosity of the polyester copolymer was determined from the value measured with an orthochlorophenol solution at 35 ° C.

(2)析出微粒子の平均一次粒子径:
紡糸前のチップや紡糸後の繊維を該チップあるいは繊維中に存在する単粒子状の一次粒子の微粒子径より大きく、その粒径の数倍程度の厚さ以内、即ち数十nmないし100nm前後の厚みにウルトラミクロトームでスライスする。そのスライスした超薄切片を透過型電子顕微鏡で数千倍〜10万倍程度に拡大して、一次粒子とそれより形成される二次粒子が識別できるような写真を得、この拡大写真から一次粒子径の平均値を求める。
(2) Average primary particle size of precipitated fine particles:
The chips before spinning and the fibers after spinning are larger than the fine particle diameter of the single particles of primary particles existing in the chips or fibers, and within a thickness of several times the particle diameter, that is, several tens nm to around 100 nm. Slice to thickness with an ultramicrotome. The sliced ultrathin section is magnified several thousand times to 100,000 times with a transmission electron microscope to obtain a photograph in which primary particles and secondary particles formed therefrom can be identified. The average value of the particle diameter is obtained.

(3)析出微粒子の含有量:
紡糸前のチップや紡糸後の繊維をオルソクロロフェノールに溶解し(145℃×4時間)、超遠心分離法(30000rpm,40分×4回)により析出微粒子を分離し、乾燥後、その重量を精秤して求めた。
(3) Content of precipitated fine particles:
Chips before spinning and fibers after spinning are dissolved in orthochlorophenol (145 ° C. × 4 hours), and the precipitated fine particles are separated by ultracentrifugation (30000 rpm, 40 minutes × 4 times). Obtained by precise weighing.

(4)ポリエステル共重合体の融点
示差走査熱量計(TA Instruments社製 DSC2200 Differential Scanning Calorimeter)を用いて、20℃/分の昇温速度で280℃まで昇温した試料を0℃に冷却した試験管中で急冷し、非晶状態にした試料をさらに20℃/分の昇温速度で昇温し、JIS K7121に準じて融解ピーク温度を測定して融点とした。
(4) Melting point of polyester copolymer Test using a differential scanning calorimeter (DSC2200 Differential Scanning Calorimeter manufactured by TA Instruments) to cool a sample heated to 280 ° C at a temperature rising rate of 20 ° C / min. A sample rapidly cooled in a tube and brought into an amorphous state was further heated at a rate of temperature increase of 20 ° C./min, and the melting peak temperature was measured according to JIS K7121 to obtain a melting point.

(5)600℃到達時点における加熱残分量:
TGA熱重量測定装置(メトラートレド社製 熱重量測定装置 TGA851e)を用いた分析において、試料を窒素雰囲気下で室温から10℃/分の昇温速度で加熱したときの600℃到達時点における加熱残分量を、室温における測定開始時の試料重量に対する値で表示した。
(5) Residual heating amount when reaching 600 ° C .:
In the analysis using the TGA thermogravimetry device (Thermogravimetry device TGA851e manufactured by METTLER TOLEDO), the heating residue at the time of reaching 600 ° C when the sample was heated from room temperature to 10 ° C / min in a nitrogen atmosphere The amount was displayed as a value relative to the sample weight at the start of measurement at room temperature.

(6)減量開始温度:
TGA熱重量測定装置(メトラートレド社製 熱重量測定装置 TGA851e)を用い、乾燥ポリマー試料を空気雰囲気下で室温から10℃/分の昇温速度で加熱したときの試料の熱重量曲線を測定し、JIS K−7120に従って減量開始温度を求めた。
(6) Weight loss start temperature:
Measure the thermogravimetric curve of the sample when the dried polymer sample is heated from room temperature to 10 ° C / min in an air atmosphere using a TGA thermogravimetry device (Metra Toledo's thermogravimetry device TGA851e). The weight loss starting temperature was determined according to JIS K-7120.

(7)ポリマー試験小片の燃焼試験:
幅5mm、厚さ2mm、長さ5cmのポリマー試験小片を垂直に把持し、着火器具(岩谷産業製ガスマッチプロII)の炎を長さ30mmに調節して、試験小片の下端の中央部分に10秒間接炎し、試験小片に着火した。消炎すれば更に10秒間接炎して試験小片の燃焼状況を観察した燃焼状況は下記の表1に示す耐ドリップ性及び難燃性の評価基準に基づいて判定した。耐ドリップ性及び難燃性とも、評点が高いほど優れていることを示す。
(7) Combustion test of polymer test piece:
Hold a 5 mm wide, 2 mm thick, 5 cm long polymer test piece vertically, adjust the flame of the ignition device (Gasmatch Pro II made by Iwatani Corporation) to a length of 30 mm, and place it in the center of the lower end of the test piece. Indirect flame was applied for 10 seconds, and the test piece was ignited. When the flame was extinguished, an indirect flame was further observed for 10 seconds, and the combustion state of the test piece observed for combustion was determined based on the evaluation criteria for drip resistance and flame resistance shown in Table 1 below. The higher the score, the better the drip resistance and flame retardancy.

Figure 2008179714
Figure 2008179714

(8)糸強度:
オリエンテック社製テンシロンRTC−1210A型を用いた引張試験を行い、その強伸度曲線から求めた(糸長20cm、引張速度20cm/分)。
(8) Yarn strength:
A tensile test using Tensilon RTC-1210A type manufactured by Orientec Co., Ltd. was carried out, and the tensile elongation curve was obtained (yarn length 20 cm, tensile speed 20 cm / min).

(9)繊維布帛のLOI値(限界酸素指数):
JIS L 1091 E−3号(ガラス繊維ミシン縫い)に従って測定した。
(9) LOI value (limit oxygen index) of fiber fabric:
It measured according to JIS L 1091 E-3 (glass fiber sewing machine sewing).

[実施例1]
テレフタル酸ジメチル100部、エチレングリコール60部、酢酸カルシウム1水塩0.06部(テレフタル酸ジメチルに対して0.066モル%)をエステル交換缶に仕込み、窒素ガス雰囲気下4時間かけて140℃から230℃まで昇温して生成するメタノールを系外に留去しながらエステル交換反応を行った。続いて得られた反応生成物に、0.5部のリン酸トリメチル(テレフタル酸ジメチルに対して0.693モル%)と0.31部の酢酸カルシウム1水塩(リン酸トリメチルに対して1/2倍モル)とを8.5部のエチレングリコール中で120℃の温度において全還流下60分間反応せしめて調製したリン酸ジエステルカルシウム塩の透明溶液9.31部に室温下0.57分の酢酸カルシウム1水塩(リン酸トリメチルに対して0.9倍モル)を溶解せしめて得たリン酸ジエステルカルシウム塩と酢酸カルシウムとの混合透明溶液9.88部を添加した。次いで三酸化アンチモン0.04部を添加し、同時に過剰のエチレングリコールを追出しながら240℃まで昇温した後重合缶に移した。
[Example 1]
100 parts of dimethyl terephthalate, 60 parts of ethylene glycol, and 0.06 part of calcium acetate monohydrate (0.066 mol% with respect to dimethyl terephthalate) were charged into a transesterification can and 140 ° C. over 4 hours in a nitrogen gas atmosphere. The ester exchange reaction was carried out while distilling out the methanol produced by raising the temperature to 230 ° C. from the system. Subsequently, 0.5 parts of trimethyl phosphate (0.693 mol% with respect to dimethyl terephthalate) and 0.31 part of calcium acetate monohydrate (1 with respect to trimethyl phosphate) were added to the reaction product obtained. / 2 moles) in 8.5 parts of ethylene glycol at 120 ° C. for 60 minutes under total reflux for 9.31 parts of a transparent solution of calcium phosphate diester calcium salt prepared at room temperature for 0.57 minutes. 9.88 parts of a mixed clear solution of calcium phosphate diester calcium salt and calcium acetate obtained by dissolving 1 mg of calcium acetate monohydrate (0.9 moles relative to trimethyl phosphate) was added. Subsequently, 0.04 part of antimony trioxide was added, and at the same time, the temperature was raised to 240 ° C. while removing excess ethylene glycol, and then transferred to a polymerization can.

重合缶に上記式(a)で示される有機リン化合物の63%エチレングリコール溶液15.4部(テレフタル酸ジメチルに対してリン原子として0.69%、ポリエステル共重合体中のリン原子として0.64%)を添加した後、1時間かけて760Torrから1Torrまで減圧し、同時に1時間30分かけて240℃から280℃まで昇温した。1Torr以下の減圧下、重合温度280℃で更に2時間重合を行った。得られたポリマーを常法に従ってチップ化した。このチップをDSC融点測定、TGA熱重量測定及び燃焼試験に供した。結果を表2は示す通りであった。   15.4 parts of a 63% ethylene glycol solution of the organophosphorus compound represented by the above formula (a) in a polymerization can (0.69% as a phosphorus atom relative to dimethyl terephthalate, and 0.2% as a phosphorus atom in the polyester copolymer). 64%), the pressure was reduced from 760 Torr to 1 Torr over 1 hour, and the temperature was raised from 240 ° C. to 280 ° C. over 1 hour 30 minutes. Polymerization was further performed for 2 hours at a polymerization temperature of 280 ° C. under a reduced pressure of 1 Torr or less. The obtained polymer was chipped according to a conventional method. This chip was subjected to DSC melting point measurement, TGA thermogravimetry and combustion test. The results are shown in Table 2.

また、このチップを常法に従って乾燥後、孔径0.3mmの円形紡糸孔を24個穿設した紡糸口金を使用して285℃で溶融紡糸した。次いで得られた未延伸糸を、最終的に得られる延伸糸の伸度が30%になるような延伸倍率にて84℃の加熱ローラーと180℃のプレートヒーターを使って延伸熱処理して84デシテックス/24フィラメントで強度は4.5cN/dtexの延伸糸を得た。このマルチフィラメント中には、繊維横断面の透過型電子顕微鏡写真より、含リン化合物の内部析出系微粒子はアスペクト比がほぼ1の球状で存在しており、その平均の一次粒子径は5.3nmであり、その含有量は0.51%であった。
得られた延伸糸を用いて常法に従って筒編地を製編し、精練、プリセットを施した後LOI値を測定した。結果は表2に示す通りであった。
Further, this chip was dried according to a conventional method, and then melt-spun at 285 ° C. using a spinneret having 24 circular spinning holes having a hole diameter of 0.3 mm. Next, the obtained undrawn yarn was drawn and heat-treated using a heating roller at 84 ° C. and a plate heater at 180 ° C. at a draw ratio such that the elongation of the drawn yarn finally obtained was 30%. A drawn yarn having a strength of 4.5 cN / dtex with a / 24 filament was obtained. In this multifilament, from the transmission electron micrograph of the cross section of the fiber, the internally precipitated fine particles of the phosphorus-containing compound are present in a spherical shape with an aspect ratio of approximately 1, and the average primary particle diameter is 5.3 nm. And its content was 0.51%.
Using the obtained drawn yarn, a tubular knitted fabric was knitted according to a conventional method, subjected to scouring and presetting, and then the LOI value was measured. The results were as shown in Table 2.

[実施例2]
テレフタル酸ジメチル100部、2,6−ナフタレンジカルボン酸ジメチル3.77部(テレフタル酸ジメチルに対して3.0モル%)、エチレングリコール60部、酢酸カルシウム1水塩0.06部(テレフタル酸ジメチルに対して0.066モル%)をエステル交換缶に仕込み、窒素ガス雰囲気下4時間かけて140℃から230℃まで昇温して生成するメタノールを系外に留去しながらエステル交換反応を行った。続いて得られた反応生成物に、0.5部のリン酸トリメチル(テレフタル酸ジメチルに対して0.693モル%)と0.31部の酢酸カルシウム1水塩(リン酸トリメチルに対して1/2倍モル)とを8.5部のエチレングリコール中で120℃の温度において全還流下60分間反応せしめて調製したリン酸ジエステルカルシウム塩の透明溶液9.31部に室温下0.57分の酢酸カルシウム1水塩(リン酸トリメチルに対して0.9倍モル)を溶解せしめて得たリン酸ジエステルカルシウム塩と酢酸カルシウムとの混合透明溶液9.88部を添加した。次いで三酸化アンチモン0.04部を添加し、同時に過剰のエチレングリコールを追出しながら240℃まで昇温した後、重合缶に移した。
[Example 2]
100 parts of dimethyl terephthalate, 3.77 parts of dimethyl 2,6-naphthalenedicarboxylate (3.0 mol% relative to dimethyl terephthalate), 60 parts of ethylene glycol, 0.06 part of calcium acetate monohydrate (dimethyl terephthalate) 0.066 mol%) was charged in a transesterification can and the temperature was raised from 140 ° C to 230 ° C over a period of 4 hours in a nitrogen gas atmosphere. It was. Subsequently, 0.5 parts of trimethyl phosphate (0.693 mol% with respect to dimethyl terephthalate) and 0.31 part of calcium acetate monohydrate (1 with respect to trimethyl phosphate) were added to the reaction product obtained. / 2 moles) in 8.5 parts of ethylene glycol at 120 ° C. for 60 minutes under total reflux for 9.31 parts of a transparent solution of calcium phosphate diester calcium salt prepared at room temperature for 0.57 minutes. 9.88 parts of a mixed clear solution of calcium phosphate diester calcium salt and calcium acetate obtained by dissolving 1 mg of calcium acetate monohydrate (0.9 moles relative to trimethyl phosphate) was added. Next, 0.04 part of antimony trioxide was added, and the temperature was raised to 240 ° C. while expelling excess ethylene glycol.

重合缶に上記式(a)で示される有機リン化合物の63%エチレングリコール溶液15.4部(テレフタル酸ジメチルに対してリン原子として0.69%、ポリエステル共重合体中のリン原子として0.62%)を添加した後、1時間かけて760Torrから1Torrまで減圧し、同時に1時間30分かけて240℃から280℃まで昇温した。1Torr以下の減圧下、重合温度280℃で更に2時間重合を行った。得られたポリマーを常法に従ってチップ化した。このチップをDSC融点測定、TGA熱重量測定及び燃焼試験に供した。結果は表2に示す通りであった。   15.4 parts of a 63% ethylene glycol solution of the organophosphorus compound represented by the above formula (a) in a polymerization can (0.69% as a phosphorus atom relative to dimethyl terephthalate, and 0.2% as a phosphorus atom in the polyester copolymer). 62%), the pressure was reduced from 760 Torr to 1 Torr over 1 hour, and the temperature was increased from 240 ° C. to 280 ° C. over 1 hour 30 minutes. Polymerization was further performed for 2 hours at a polymerization temperature of 280 ° C. under a reduced pressure of 1 Torr or less. The obtained polymer was chipped according to a conventional method. This chip was subjected to DSC melting point measurement, TGA thermogravimetry and combustion test. The results were as shown in Table 2.

また、このチップを常法に従って乾燥後、孔径0.3mmの円形紡糸孔を24個穿設した紡糸口金を使用して285℃で溶融紡糸した。次いで、得られた未延伸糸を、最終的に得られる延伸糸の伸度が30%になるような延伸倍率にて84℃の加熱ローラーと180℃のプレートヒーターを使って延伸熱処理して、繊度84デシテックス/24フィラメント、強度4.5cN/dtexの延伸糸を得た。このマルチフィラメント中には、繊維横断面の透過型電子顕微鏡写真より、含リン化合物の内部析出系微粒子はアスペクト比がほぼ1の球状で存在しており、その平均の一次粒子径は6.5nmであり、その含有量は0.49%であった。
得られた延伸糸を用いて常法に従って筒編地を製編し、精練、プリセットを施した後LOI値を測定した。結果は表2に示す通りであった。
Further, this chip was dried according to a conventional method, and then melt-spun at 285 ° C. using a spinneret having 24 circular spinning holes having a hole diameter of 0.3 mm. Next, the obtained undrawn yarn is subjected to a drawing heat treatment using a heating roller at 84 ° C. and a plate heater at 180 ° C. at a draw ratio such that the elongation of the drawn yarn finally obtained is 30%. A drawn yarn having a fineness of 84 dtex / 24 filament and a strength of 4.5 cN / dtex was obtained. In this multifilament, from the transmission electron micrograph of the cross section of the fiber, the internally precipitated fine particles of the phosphorus-containing compound are present in a spherical shape with an aspect ratio of approximately 1, and the average primary particle diameter is 6.5 nm. And its content was 0.49%.
Using the obtained drawn yarn, a tubular knitted fabric was knitted according to a conventional method, subjected to scouring and presetting, and then the LOI value was measured. The results were as shown in Table 2.

[比較例1]
実施例1において使用したリン酸ジエステルカルシウム塩と酢酸カルシウムとの混合透明溶液に代えて平均一次粒子径0.3μmのリン酸カルシウムの15%エチレングリコール分散液4部(テレフタル酸ジメチルに対してリン酸カルシウム粒子として0.6部)を添加する以外は実施例1と同様に行った。得られたマルチフィラメント中には、繊維横断面の透過型電子顕微鏡写真より、リン酸カルシウム粒子はアスペクト比がほぼ1の球状で存在しており、その平均の一次粒子径は0.33μmであり、その含有量は0.55%であった。結果は表2に示す通りであった。
[Comparative Example 1]
Instead of the mixed transparent solution of calcium phosphate diester calcium salt and calcium acetate used in Example 1, 4 parts of 15% ethylene glycol dispersion of calcium phosphate having an average primary particle size of 0.3 μm (as calcium phosphate particles relative to dimethyl terephthalate) 0.6 part) was added in the same manner as in Example 1. In the obtained multifilament, from the transmission electron micrograph of the fiber cross section, the calcium phosphate particles are present in a spherical shape with an aspect ratio of approximately 1, and the average primary particle diameter is 0.33 μm. The content was 0.55%. The results were as shown in Table 2.

Figure 2008179714
Figure 2008179714

本発明によれば、燃焼時にドリップを抑制する難燃性の高いポリエステル共重合体組成物を得ることができ、繊維、フィルム、樹脂等の成形物にしたとき、耐ドリップ型の優れた難燃性の成形物を得ることができる。特に、本発明のポリエステル共重合体組成物を溶融紡糸して製造したポリエステル繊維は、従来のドリップ型難燃性ポリエステル繊維とは異なり耐ドリップ型の難燃性を呈するため、着炎部分のドリップが抑制される。このため、本発明の共重合ポリエステル組成物からなる繊維やその他の成形物は、カーテン、インテリア、椅子張り等のホーム・リビングテキスタイル用途、衣料用途、産業用途等で好適に使用可能である。   According to the present invention, a highly flame-retardant polyester copolymer composition that suppresses drip during combustion can be obtained, and when formed into a molded article such as a fiber, a film, or a resin, the flame retardant has excellent flame resistance. Can be obtained. In particular, the polyester fiber produced by melt spinning the polyester copolymer composition of the present invention exhibits a drip-resistant flame resistance unlike the conventional drip-type flame-retardant polyester fiber. Is suppressed. For this reason, the fibers and other molded articles made of the copolymerized polyester composition of the present invention can be suitably used for home / living textile applications such as curtains, interiors, and chair upholstery, clothing applications, and industrial applications.

Claims (7)

下記一般式(I)で表わされる有機リン化合物がポリエステル共重合体中のリン原子の含有量として0.3〜1.5重量%となる量共重合された共重合ポリエステル中に、平均一次粒子径が100nm以下である、リン原子を含有する実質的に球状の微粒子を該ポリエステル共重合体に対して0.1〜5重量%となる量含有していることを特徴とする難燃性ポリエステル共重合体組成物。
Figure 2008179714
The average primary particles in the copolymerized polyester in which the organic phosphorus compound represented by the following general formula (I) is copolymerized in an amount of 0.3 to 1.5% by weight as the content of phosphorus atoms in the polyester copolymer A flame retardant polyester having a diameter of 100 nm or less and containing substantially spherical fine particles containing phosphorus atoms in an amount of 0.1 to 5% by weight based on the polyester copolymer Copolymer composition.
Figure 2008179714
リン原子を含有する球状粒子が、グリコール可溶性のリン化合物とグリコール可溶性の金属化合物とをポリエステル反応系内部で反応させて析出せしめた内部析出系微粒子であることを特徴とする請求項1に記載の難燃性ポリエステル共重合体組成物。   The spherical particles containing a phosphorus atom are internally precipitated fine particles obtained by causing a glycol-soluble phosphorus compound and a glycol-soluble metal compound to react with each other inside a polyester reaction system and depositing them. Flame retardant polyester copolymer composition. グリコール可溶性のリン化合物が、下記一般式(II)で表わされるリン化合物であり、かつ、グリコール可溶性の金属化合物がアルカリ土類金属化合物である請求項2に記載の難燃性ポリエステル共重合体組成物。
Figure 2008179714
The flame-retardant polyester copolymer composition according to claim 2, wherein the glycol-soluble phosphorus compound is a phosphorus compound represented by the following general formula (II), and the glycol-soluble metal compound is an alkaline earth metal compound. object.
Figure 2008179714
ポリエステル共重合体において、共重合成分として上記一般式(I)で表わされる有機リン化合物に加えて、下記一般式(III)で表わされるジカルボン酸化合物がポリエステル共重合体を構成する全酸成分に対して0.5〜5.0モル%となる量共重合されている請求項1〜請求項3のいずれか1項に記載の難燃性ポリエステル共重合体組成物。
Figure 2008179714
In the polyester copolymer, in addition to the organophosphorus compound represented by the above general formula (I) as a copolymer component, the dicarboxylic acid compound represented by the following general formula (III) is added to all the acid components constituting the polyester copolymer. The flame-retardant polyester copolymer composition according to any one of claims 1 to 3, which is copolymerized in an amount of 0.5 to 5.0 mol%.
Figure 2008179714
ポリエステル共重合体が、エチレンテレフタレート主たる構成単位とする共重合体であるであることを特徴とする請求項1〜請求項4のいずれか1項に記載の難燃性ポリエステル共重合体組成物。   The flame-retardant polyester copolymer composition according to any one of claims 1 to 4, wherein the polyester copolymer is a copolymer having ethylene terephthalate as a main constituent unit. 窒素雰囲気下において室温から10℃/分の昇温速度で加熱したときの600℃到達時点における加熱残分量が15重量%以上、かつ空気雰囲気下において室温から10℃/分の昇温速度で加熱したときの減量開始温度が405℃以上である、請求項1〜請求項5のいずれか1項に載の難燃性ポリエステル共重合体組成物。   When heated at a rate of temperature increase of 10 ° C./min from room temperature in a nitrogen atmosphere, the amount of heating residue when reaching 600 ° C. is 15% by weight or more and heated at a rate of temperature increase of 10 ° C./min from room temperature in an air atmosphere The flame retardant polyester copolymer composition according to any one of claims 1 to 5, wherein the weight loss starting temperature is 405 ° C or higher. 請求項1〜請求項6のいずれか1項に記載の難燃性ポリエステル共重合体組成物からなり、かつLOI値(限界酸素指数)が27以上であって単繊維繊度が20dtex未満であることを特徴とする難燃性ポリエステル繊維。   It consists of the flame-retardant polyester copolymer composition of any one of Claims 1-6, and LOI value (limit oxygen index) is 27 or more, and a single fiber fineness is less than 20 dtex. Flame retardant polyester fiber characterized by.
JP2007014969A 2007-01-25 2007-01-25 Flame-retardant copolyester composition and flame-retardant polyester fiber Pending JP2008179714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014969A JP2008179714A (en) 2007-01-25 2007-01-25 Flame-retardant copolyester composition and flame-retardant polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014969A JP2008179714A (en) 2007-01-25 2007-01-25 Flame-retardant copolyester composition and flame-retardant polyester fiber

Publications (1)

Publication Number Publication Date
JP2008179714A true JP2008179714A (en) 2008-08-07

Family

ID=39723867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014969A Pending JP2008179714A (en) 2007-01-25 2007-01-25 Flame-retardant copolyester composition and flame-retardant polyester fiber

Country Status (1)

Country Link
JP (1) JP2008179714A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013140947A1 (en) * 2012-03-23 2015-08-03 東洋紡株式会社 Method for producing flame retardant polyester and flame retardant masterbatch
JP2021520457A (en) * 2018-04-06 2021-08-19 ビージェイブイ リサーチ エス.アール.オー. Synthetic fibers with natural materials added and their manufacturing methods
CN113817152A (en) * 2020-06-19 2021-12-21 四川大学 Flame-retardant anti-dripping copolyester based on high-temperature self-crosslinking and preparation method and application thereof
WO2021254391A1 (en) * 2020-06-19 2021-12-23 四川大学 High-temperature self-crosslinking-based flame-retardant droplet-resistant copolyester, and preparation method therefor and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013140947A1 (en) * 2012-03-23 2015-08-03 東洋紡株式会社 Method for producing flame retardant polyester and flame retardant masterbatch
JP2021520457A (en) * 2018-04-06 2021-08-19 ビージェイブイ リサーチ エス.アール.オー. Synthetic fibers with natural materials added and their manufacturing methods
CN113817152A (en) * 2020-06-19 2021-12-21 四川大学 Flame-retardant anti-dripping copolyester based on high-temperature self-crosslinking and preparation method and application thereof
WO2021254391A1 (en) * 2020-06-19 2021-12-23 四川大学 High-temperature self-crosslinking-based flame-retardant droplet-resistant copolyester, and preparation method therefor and application thereof
CN113817152B (en) * 2020-06-19 2022-11-11 四川大学 Flame-retardant anti-dripping copolyester based on high-temperature self-crosslinking and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP4329427B2 (en) Polyester composition and fibers comprising the same
JP2010510397A (en) Polymer fiber containing flame retardant, process for its production and material containing such fiber
IE920015A1 (en) Flame resistant, low pilling polyester fiber
JPH05230345A (en) Flame-resistant polyester
JP2008179714A (en) Flame-retardant copolyester composition and flame-retardant polyester fiber
TW200521152A (en) Phosphorus-containing co-polyesters modified to be flame-retarding, their use and method of preparing them
JPH06287414A (en) Production of flame-retardant polyester
JP2001172823A (en) Flame-retardant polyester fiber and method for producing the same
JP4064149B2 (en) Elastomer composition and fiber comprising the same
JP2008291134A (en) Flame-retardant polyester copolymer composition and flame-retardant polyester fiber
JPH07102418A (en) Flame-retardant polyester fiber
JP2005120254A (en) Method for producing flame-retardant polyester
JPH0782359A (en) Low-pilling, low-combustible polyester, its production, and structure formed from same
JP4080221B2 (en) Polyester composition and fibers comprising the same
JP2008088193A (en) Flame-retardant copolyester and flame retardant polyester fiber
JP2000169683A (en) Polyester composition
JP2004232172A (en) Flame retardant polyester fiber
JP3168107B2 (en) Cationic dyeable flame retardant polyester fiber
JP2883778B2 (en) Method for producing flame-retardant polyester fiber
JP2001139784A (en) Flame-retardant polyester resin composition
JP2008111018A (en) Flame retardant polyester copolymer and flame retardant polyester fiber
JP2008179715A (en) Flame-retardant copolyester and flame-retardant polyester fiber
JP2020055949A (en) Method for producing polyester composition
JP3051586B2 (en) Flame retardant polyester copolymer
JP2005273059A (en) Hygroscopic polyester fiber and method for producing the same