JP2008178351A - Non-human model animal with mental retardation, and method for screening substance having activity for improving mental retardation symptoms - Google Patents
Non-human model animal with mental retardation, and method for screening substance having activity for improving mental retardation symptoms Download PDFInfo
- Publication number
- JP2008178351A JP2008178351A JP2007014795A JP2007014795A JP2008178351A JP 2008178351 A JP2008178351 A JP 2008178351A JP 2007014795 A JP2007014795 A JP 2007014795A JP 2007014795 A JP2007014795 A JP 2007014795A JP 2008178351 A JP2008178351 A JP 2008178351A
- Authority
- JP
- Japan
- Prior art keywords
- pqbp
- mental retardation
- gene
- dpqbp
- model animal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 241001465754 Metazoa Species 0.000 title claims abstract description 49
- 208000036626 Mental retardation Diseases 0.000 title claims abstract description 39
- 230000000694 effects Effects 0.000 title claims abstract description 37
- 238000000034 method Methods 0.000 title claims abstract description 25
- 239000000126 substance Substances 0.000 title claims abstract description 18
- 208000024891 symptom Diseases 0.000 title claims abstract description 16
- 238000012216 screening Methods 0.000 title claims abstract description 12
- 230000006870 function Effects 0.000 claims abstract description 25
- 102100040748 Polyglutamine-binding protein 1 Human genes 0.000 claims abstract description 10
- 108010030799 polyglutamine-binding protein 1 Proteins 0.000 claims abstract description 10
- 230000002950 deficient Effects 0.000 claims description 49
- 108090000623 proteins and genes Proteins 0.000 claims description 31
- 230000035772 mutation Effects 0.000 claims description 22
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 claims description 21
- 230000009329 sexual behaviour Effects 0.000 claims description 21
- 230000014509 gene expression Effects 0.000 claims description 16
- 230000007812 deficiency Effects 0.000 claims description 10
- 230000008632 circadian clock Effects 0.000 claims description 8
- 108700028369 Alleles Proteins 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 5
- 238000010171 animal model Methods 0.000 claims description 4
- 210000000349 chromosome Anatomy 0.000 claims description 3
- 238000004904 shortening Methods 0.000 claims 1
- 108091012237 poly-glutamine tract binding proteins Proteins 0.000 description 62
- 238000004458 analytical method Methods 0.000 description 37
- 230000015654 memory Effects 0.000 description 25
- 235000019645 odor Nutrition 0.000 description 21
- 238000012217 deletion Methods 0.000 description 15
- 230000037430 deletion Effects 0.000 description 15
- MQWCXKGKQLNYQG-UHFFFAOYSA-N 4-methylcyclohexan-1-ol Chemical compound CC1CCC(O)CC1 MQWCXKGKQLNYQG-UHFFFAOYSA-N 0.000 description 14
- 241000255925 Diptera Species 0.000 description 13
- 230000027288 circadian rhythm Effects 0.000 description 13
- NMRPBPVERJPACX-UHFFFAOYSA-N octan-3-ol Chemical compound CCCCCC(O)CC NMRPBPVERJPACX-UHFFFAOYSA-N 0.000 description 12
- 230000000638 stimulation Effects 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 230000003750 conditioning effect Effects 0.000 description 9
- 229920000155 polyglutamine Polymers 0.000 description 8
- 108010040003 polyglutamine Proteins 0.000 description 8
- 230000007436 olfactory function Effects 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- NMRPBPVERJPACX-QMMMGPOBSA-N 3-Octanol Natural products CCCCC[C@@H](O)CC NMRPBPVERJPACX-QMMMGPOBSA-N 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 230000007659 motor function Effects 0.000 description 6
- 238000000636 Northern blotting Methods 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 230000012447 hatching Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 238000012549 training Methods 0.000 description 5
- 238000007792 addition Methods 0.000 description 4
- 230000027455 binding Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 238000002073 fluorescence micrograph Methods 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 230000035807 sensation Effects 0.000 description 4
- 235000019615 sensations Nutrition 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 102000009572 RNA Polymerase II Human genes 0.000 description 3
- 108010009460 RNA Polymerase II Proteins 0.000 description 3
- 210000001766 X chromosome Anatomy 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 210000003128 head Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000008685 targeting Effects 0.000 description 3
- 102000007372 Ataxin-1 Human genes 0.000 description 2
- 108010032963 Ataxin-1 Proteins 0.000 description 2
- 108020004414 DNA Proteins 0.000 description 2
- 206010012559 Developmental delay Diseases 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 241000244206 Nematoda Species 0.000 description 2
- 102100026459 POU domain, class 3, transcription factor 2 Human genes 0.000 description 2
- 102000015097 RNA Splicing Factors Human genes 0.000 description 2
- 108010039259 RNA Splicing Factors Proteins 0.000 description 2
- 201000008206 Renpenning syndrome Diseases 0.000 description 2
- 108091023040 Transcription factor Proteins 0.000 description 2
- 102000040945 Transcription factor Human genes 0.000 description 2
- 230000006399 behavior Effects 0.000 description 2
- 210000002459 blastocyst Anatomy 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000013005 courtship behavior Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000003340 mental effect Effects 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 101150027852 pou3f2 gene Proteins 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000037152 sensory function Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 206010000117 Abnormal behaviour Diseases 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 101150038243 CLOCK gene Proteins 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 206010008805 Chromosomal abnormalities Diseases 0.000 description 1
- 208000031404 Chromosome Aberrations Diseases 0.000 description 1
- 108700024394 Exon Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102100039556 Galectin-4 Human genes 0.000 description 1
- 206010064571 Gene mutation Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101000608765 Homo sapiens Galectin-4 Proteins 0.000 description 1
- 101000611427 Homo sapiens Polyglutamine-binding protein 1 Proteins 0.000 description 1
- 101000773153 Homo sapiens Thioredoxin-like protein 4A Proteins 0.000 description 1
- 206010021033 Hypomenorrhoea Diseases 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 101150081664 PAX6 gene Proteins 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102100030272 Thioredoxin-like protein 4A Human genes 0.000 description 1
- 208000010206 X-Linked Mental Retardation Diseases 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 125000003275 alpha amino acid group Chemical group 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 230000004641 brain development Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000035606 childbirth Effects 0.000 description 1
- 230000008045 co-localization Effects 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- RGWHQCVHVJXOKC-SHYZEUOFSA-J dCTP(4-) Chemical compound O=C1N=C(N)C=CN1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)C1 RGWHQCVHVJXOKC-SHYZEUOFSA-J 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 231100000089 gene mutation induction Toxicity 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 102000050505 human PQBP1 Human genes 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008655 medium-term memory Effects 0.000 description 1
- 230000007087 memory ability Effects 0.000 description 1
- 230000036630 mental development Effects 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000002686 mushroom body Anatomy 0.000 description 1
- 210000005036 nerve Anatomy 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 239000003016 pheromone Substances 0.000 description 1
- 230000035935 pregnancy Effects 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 230000000384 rearing effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 208000031906 susceptibility to X-linked 2 autism Diseases 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000037426 transcriptional repression Effects 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 230000014616 translation Effects 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
Images
Landscapes
- Investigating Or Analysing Biological Materials (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Description
本発明は、精神発達遅滞の非ヒト動物モデル及び精神発達遅滞の症状を改善する活性を有する物質をスクリーニングする方法に関する。 The present invention relates to a non-human animal model for mental retardation and a method for screening a substance having an activity for improving symptoms of mental retardation.
精神発達遅滞(MR)とは、精神の発達停止あるいは発達不全の状態であり、発達期に明らかになる全体的な知能水準に寄与する能力、例えば認知、言語、運動及び社会的能力の障害によって特徴づけられる。精神発達遅滞は、さまざまな原因によって引き起こされ、染色体異常や、妊娠出産時の事故などといった脳の発達に支障を及ぼす要因が原因になり得る。 Mental developmental delay (MR) is a state of mental retardation or developmental deficiency that is caused by impairments in the ability to contribute to the overall level of intelligence revealed during development, such as cognitive, language, motor and social abilities. Characterized. Mental developmental delay is caused by a variety of causes and can be caused by factors that interfere with brain development, such as chromosomal abnormalities and accidents during pregnancy and childbirth.
一方で、PQBP−1(Polyglutamine tract binding protein)は転写因子であるBrn2のポリグルタミン配列に結合するタンパク質として同定され、ポリグルタミン病原因遺伝子であるataxin−1(AT−1)やhuntingtin(Htt)と共局在及び相互作用する事が報告されている。また、PQBP−1は、ヒトにおいてはX染色体に位置し、3つの主要な領域がある事が知られている。一つは、RNAポリメラ−ゼIIと結合するWW領域(WWD)。二つ目は、スプライシング因子複合体U5の構成成分であるU5−15kDと相互作用する事が判っているC末端領域(CTD)。そして、ポリグルタミン病の原因遺伝子に含まれるポリグルタミン配列と結合するpolar−rich amino acid repeat領域(PRD)である。これらの構造上の特徴から、PQBP−1はポリグルタミン病のみならず、転写やRNA代謝など生物の生命活動に不可欠なプロセスに関与していることが示唆される(例えば、非特許文献1参照)。 On the other hand, PQBP-1 (Polyglutamine tract binding protein) has been identified as a protein that binds to the polyglutamine sequence of Brn2, which is a transcription factor. Have been reported to co-localize and interact with. Moreover, it is known that PQBP-1 is located on the X chromosome in human and has three main regions. One is a WW region (WWD) that binds to RNA polymerase II. The second is a C-terminal region (CTD) that is known to interact with U5-15 kD, a component of the splicing factor complex U5. It is a polar-rich amino acid repeat region (PRD) that binds to a polyglutamine sequence contained in the gene responsible for polyglutamine disease. These structural features suggest that PQBP-1 is involved not only in polyglutamine disease but also in processes essential to biological activities such as transcription and RNA metabolism (see, for example, Non-Patent Document 1). ).
最近では、PQBP−1遺伝子中のWWDとCTD間の結合領域での挿入又は欠損により高頻度でヒト精神発達遅滞が引き起こされると共に、CTD内に変異をもつ精神発達遅滞患者には、この領域の部分的な欠損がみられる事が報告されている(例えば、非特許文献2参照)。
また、現在までPQBP−1は、Renpenning症候群やSutherland−Haan症候群、Golabi−Ito−Hall症候群として知られるX染色体関連精神発達遅滞の原因遺伝子であることが報告されている。
Recently, insertion or deletion in the binding region between WWD and CTD in the PQBP-1 gene frequently causes human mental retardation, and mental retardation patients with mutations in CTD have It has been reported that a partial defect is observed (see, for example, Non-Patent Document 2).
In addition, to date, PQBP-1 has been reported to be a causative gene of X chromosome-related mental development delay known as Renpenning syndrome, Sutherland-Haan syndrome, and Golabi-Ito-Hall syndrome.
しかしながら、PQBP−1遺伝子は生物種によって構造が大きく異なっている場合もあり、ヒト以外の生物における機能及び作用機序については、不明な点が多い。特に、精神発達遅滞におけるPQBP−1の病的機能については、全く判明しておらず、PQBP−1遺伝子を標的とした精神発達遅滞のモデル動物については、未だに作成されていない。 However, the structure of the PQBP-1 gene may vary greatly depending on the species, and there are many unclear points regarding the functions and mechanisms of action in non-human organisms. In particular, the pathological function of PQBP-1 in mental retardation is not known at all, and a model animal of mental retardation that targets the PQBP-1 gene has not yet been prepared.
本発明は、前記従来における諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、精神発達遅滞の非ヒトモデル動物を提供することを目的とする。また、本発明は、前記精神発達遅滞の非ヒトモデル動物を用いて、精神発達遅滞の症状を改善する活性を有する物質をスクリーニングする方法を提供することを目的とする。 An object of the present invention is to solve the conventional problems and achieve the following objects. That is, an object of the present invention is to provide a non-human model animal with mental retardation. Another object of the present invention is to provide a method for screening a substance having an activity to improve symptoms of mental retardation using the non-human model animal of mental retardation.
前記課題を解決するため、本発明者らは鋭意検討した結果、以下のような知見を得た。即ち、ヒトPQBP−1の相同遺伝子であるdPQBP−1を機能欠損させた、精神発達遅滞の非ヒトモデル動物としてのショウジョウバエは、学習獲得能力の低下、寿命短縮、性行動の亢進、概日時計の乱れといった、行動異常が引き起こされるという知見である。 In order to solve the above-mentioned problems, the present inventors have made extensive studies and as a result, obtained the following findings. That is, Drosophila as a non-human animal model of mental retardation, deficient in function of dPQBP-1, which is a homologous gene of human PQBP-1, has a reduced ability to acquire learning, shortened life span, increased sexual behavior, circadian clock It is the knowledge that behavioral abnormalities such as disturbances are caused.
本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては、以下の通りである。即ち、
<1> PQBP−1の機能が欠損していることを特徴とする精神発達遅滞の非ヒトモデル動物である。
<2> PQBP−1遺伝子の変異によって、PQBP−1の機能が欠損している<1>に記載のモデル動物である。
<3> PQBP−1遺伝子内のWW領域の変異によって、PQBP−1の機能が欠損している<2>に記載のモデル動物である。
<4> PQBP−1遺伝子の発現制御領域の変異によって、PQBP−1の機能が欠損している<1>に記載のモデル動物である。
<5> 染色体上の両アレルに前記変異を有する<2>から<4>のいずれかに記載のモデル動物である。
<6> 学習獲得能力の低下、寿命短縮、性行動の亢進及び概日時計の乱れのうち、少なくともいずれか一つを有する<1>から<5>のいずれかに記載のモデル動物である。
<7> 動物がショウジョウバエである、<1>から<6>のいずれかに記載のモデル動物である。
<8> <7>に記載のモデル動物を用いた精神発達遅滞の症状を改善する活性を有する物質をスクリーニングする方法である。
<9> 学習獲得能力、寿命、性行動及び概日時計のうち、少なくともいずれか一つを測定する<8>に記載の方法である。
The present invention is based on the above findings by the present inventors, and means for solving the above problems are as follows. That is,
<1> A non-human animal model of mental retardation, characterized by a lack of PQBP-1 function.
<2> The model animal according to <1>, wherein the function of PQBP-1 is deficient due to a mutation in the PQBP-1 gene.
<3> The model animal according to <2>, wherein the function of PQBP-1 is deficient due to a mutation in the WW region in the PQBP-1 gene.
<4> The model animal according to <1>, wherein the function of PQBP-1 is deficient due to a mutation in the expression control region of the PQBP-1 gene.
<5> The model animal according to any one of <2> to <4>, which has the mutation in both alleles on a chromosome.
<6> The model animal according to any one of <1> to <5>, wherein the model animal has at least one of reduced learning acquisition ability, shortened life span, increased sexual behavior, and circadian clock disturbance.
<7> The model animal according to any one of <1> to <6>, wherein the animal is Drosophila.
<8> A method for screening a substance having an activity to improve symptoms of mental retardation using the model animal according to <7>.
<9> The method according to <8>, wherein at least one of learning acquisition ability, life span, sexual behavior, and circadian clock is measured.
本発明によれば、精神発達遅滞の非ヒトモデル動物及び精神発達遅滞の症状を改善する活性を有する物質をスクリーニングする方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the method of screening the substance which has the activity which improves the nonhuman model animal of mental retardation and the symptom of mental retardation can be provided.
以下、本発明の精神発達遅滞の非ヒトモデル動物について詳細に説明する。
(精神発達遅滞の非ヒトモデル動物)
本発明の精神発達遅滞の非ヒトモデル動物は、PQBP−1の機能が欠損していることを特徴とする。
Hereinafter, the nonhuman model animal of mental retardation of the present invention will be described in detail.
(Non-human model animal with mental retardation)
The non-human model animal with mental retardation of the present invention is characterized by lacking the function of PQBP-1.
<PQBP−1>
本発明において、「PQBP−1」(Polyglutamine tract binding protein)とは、転写因子であるBrn2のポリグルタミン配列に結合するタンパク質として同定され、ポリグルタミン病原因遺伝子であるataxin−1(AT−1)やhuntingtin(Htt)と共局在及び相互作用する事が報告されている。
なお、PQBP−1の呼称は種によって異なり、例えば、ショウジョウバエの場合には、dPQBP−1と呼ばれている。
<PQBP-1>
In the present invention, “PQBP-1” (Polyglutamine tract binding protein) is identified as a protein that binds to the polyglutamine sequence of Brn2, which is a transcription factor, and is ataxin-1 (AT-1), which is a gene causing polyglutamine disease. And co-localization and interaction with huntingtin (Htt) have been reported.
The name of PQBP-1 varies depending on the species. For example, in the case of Drosophila, it is called dPQBP-1.
本発明において、「PQBP−1の機能が欠損している」とは、PQBP−1遺伝子がコードしているPQBP−1タンパク質の機能が欠損していることを意味し、具体的には、PQBP−1タンパク質の産生量が欠損ないし低下している場合や、PQBP−1タンパク質の産生量に変化がなくてもPQBP−1タンパク質の活性が欠損ないし低下している場合を含む。 In the present invention, “the function of PQBP-1 is deficient” means that the function of the PQBP-1 protein encoded by the PQBP-1 gene is deficient, specifically, PQBP-1 -1 protein production amount is deficient or reduced, and PQBP-1 protein activity is deficient or reduced even if there is no change in the production amount of PQBP-1 protein.
ここで、前記「PQBP−1タンパク質の活性」とは、PQBP−1タンパク質が本来有する活性であって、前記活性の欠損ないし低下によって動物が精神発達遅滞の症状を呈するものであれば特に制限はなく、例えば、ポリグルタミン配列との結合活性、RNAポリメラーゼIIとの結合活性、スプライシング因子複合体U5の構成成分であるU5−15kDと相互作用する活性、転写抑制作用などが考えられる。 Here, the “activity of the PQBP-1 protein” is an activity inherently possessed by the PQBP-1 protein, and is not particularly limited as long as the animal exhibits symptoms of mental retardation due to a deficiency or decrease in the activity. For example, binding activity with a polyglutamine sequence, binding activity with RNA polymerase II, activity interacting with U5-15kD, which is a component of the splicing factor complex U5, and transcriptional repression activity are conceivable.
このようなPQBP−1の機能の欠損は、PQBP−1遺伝子の変異やPQBP−1遺伝子の発現制御領域の変異などにより生じさせることができる。また、PQBP−1の機能の欠損は、正常なPQBP−1のタンパク質やmRNAを分解又はその活性を阻害する物質を産生させる改変により生じさせることもできる。 Such a deficiency in the function of PQBP-1 can be caused by a mutation in the PQBP-1 gene or a mutation in the expression control region of the PQBP-1 gene. The deficiency in the function of PQBP-1 can also be caused by a modification that degrades normal PQBP-1 protein or mRNA or produces a substance that inhibits its activity.
PQBP−1遺伝子の塩基配列は、例えばヒト、マウス、ナズナ、線虫、ショウジョウバエにおいて公知であり、その配列はGenBank(NCBI)などの公共データベースを通じて容易に入手することができる(例えば、ショウジョウバエdPQBP−1:NCBI accession number NM−143074)。また、公共データベースにその配列が登録されていない非ヒトモデル動物の場合には、常法により、既知の動物のPQBP−1遺伝子との相同性から、そのPQBP−1遺伝子をクローニングし、配列を決定することができる。 The base sequence of the PQBP-1 gene is known, for example, in humans, mice, nazuna, nematodes, and Drosophila, and the sequence can be easily obtained through a public database such as GenBank (NCBI) (for example, Drosophila dPQBP- 1: NCBI accession number NM-143074). In the case of a non-human model animal whose sequence is not registered in the public database, the PQBP-1 gene is cloned from the homology with a known animal PQBP-1 gene by a conventional method, and the sequence is determined. Can be determined.
前記「PQBP−1遺伝子の変異」とは、PQBP−1遺伝子配列の欠失、置換、付加及び挿入のうち、少なくとも一つを含むものとする。前記PQBP−1遺伝子において前記欠失、置換、付加又は挿入を行う部位は、PQBP−1の機能が欠損しうる限り特に限定されるものではなく、エキソンだけでなくイントロンも含む。
さらに、本発明者らの知見により、ショウジョウバエの知能や他の行動に関してPQBP−1遺伝子内のWW領域が重要であることが示唆された。したがって、精神発達遅滞に関連するPQBP−1の機能を欠損させるために、PQBP−1遺伝子の中でもWW領域において変異していることが特に好ましい。WW領域は、RNAポリメラーゼIIと結合する領域として知られている。なお、WW領域が重要であるという知見に関しては、後記する実施例において詳細に説明する。
The “mutation of the PQBP-1 gene” includes at least one of deletion, substitution, addition and insertion of the PQBP-1 gene sequence. The site for the deletion, substitution, addition or insertion in the PQBP-1 gene is not particularly limited as long as the function of PQBP-1 can be deleted, and includes not only exons but also introns.
Furthermore, the findings of the present inventors have suggested that the WW region in the PQBP-1 gene is important for Drosophila intelligence and other behaviors. Therefore, it is particularly preferable that the PQBP-1 gene is mutated in the WW region in order to lose the function of PQBP-1 related to mental retardation. The WW region is known as a region that binds to RNA polymerase II. Note that the knowledge that the WW region is important will be described in detail in an example described later.
前記「PQBP−1遺伝子の発現制御領域の変異」とは、PQBP−1遺伝子の発現制御領域の欠失、置換、付加及び挿入のうち、少なくとも一つを含むものとする。前記発現制御領域としては、例えば、プロモーター、エンハンサー、サプレッサーなどが挙げられ、前記発現制御領域において前記欠失、置換、付加又は挿入を行う部位は、PQBP−1の機能が欠損しうる限り特に限定されるものではない。
また、ポリアデニル鎖付加シグナル、ターミネーターなどの変異によりPQBP−1遺伝子の発現を低下させてもよい。
The “mutation of expression control region of PQBP-1 gene” includes at least one of deletion, substitution, addition and insertion of the expression control region of PQBP-1 gene. Examples of the expression control region include a promoter, an enhancer, a suppressor, and the like, and the site for performing the deletion, substitution, addition or insertion in the expression control region is particularly limited as long as the function of PQBP-1 can be deleted. Is not to be done.
Further, the expression of the PQBP-1 gene may be decreased by mutations such as a polyadenyl chain addition signal and a terminator.
そして、前記「PQBP−1遺伝子の変異」及び前記「PQBP−1遺伝子の発現制御領域の変異」により本発明の非ヒトモデル動物のPQBP−1の機能を欠損させる場合には、染色体上の両アレルに同じ変異を有する方が、より確実にPQBP−1の機能を欠損させることができる点で好ましい。ただし、変異した遺伝子にコードされるタンパク質がドミナントネガティブである場合には、染色体上の一方のアレルのみの変異であっても充分にPQBP−1の機能が欠損しうるので、必ずしも染色体上の両アレルに同じ変異を有している必要はない。 When the function of PQBP-1 in the non-human model animal of the present invention is deleted by the “mutation of PQBP-1 gene” and the “mutation of expression control region of PQBP-1 gene”, It is preferable to have the same mutation in the allele because the function of PQBP-1 can be more reliably lost. However, if the protein encoded by the mutated gene is dominant negative, the function of PQBP-1 can be sufficiently lost even if only one allele on the chromosome is mutated. The alleles need not have the same mutation.
−非ヒトモデル動物−
本発明における非ヒトモデル動物は、本来PQBP−1遺伝子を有する動物のうち、ヒト以外であればどのような動物であってもよく、「動物」には非ヒト哺乳動物だけでなく昆虫などの非脊椎動物も含むものとする。非ヒト哺乳動物としては、例えば、マウス、ラット、モルモット、イヌ、ネコ、ウサギ、ウシ、サルなどが用いられる。非脊椎動物としては、例えば、ショウジョウバエ、線虫などが用いられる。また、あらゆる「動物」の中では、ショウジョウバエが、X染色体関連精神発達遅滞の疾患モデル動物として既に利用されており、知見が蓄積されている点で特に好ましい。また、ショウジョウバエであれば、扱いが容易であり、繁殖させやすいという点でも非ヒトモデル動物として好ましい。
-Non-human animal model-
The non-human model animal in the present invention may be any animal other than a human among animals originally having a PQBP-1 gene, and “animal” includes not only non-human mammals but also insects and the like. Invertebrates are also included. As the non-human mammal, for example, mouse, rat, guinea pig, dog, cat, rabbit, cow, monkey and the like are used. Examples of invertebrates include Drosophila and nematodes. Among all “animals”, Drosophila is particularly preferred in that it has already been used as a disease model animal for X chromosome-related mental retardation and has accumulated knowledge. Drosophila is also preferable as a non-human model animal because it is easy to handle and easy to breed.
<PQBP−1を欠損させた非ヒトモデル動物の作成方法>
PQBP−1を欠損させた非ヒトモデル動物の作成方法としては、特に制限はなく、常法のトランスジェニック動物やノックアウト動物の作成方法から目的に応じて適宜選択することができる。PQBP−1遺伝子の塩基配列が既知の場合には、相同組替えを利用して欠損させることが好ましい。
具体的には、ターゲティングベクターを作成する工程、ターゲティングベクターをES細胞に導入する工程、前記ES細胞を胚盤胞に導入する工程、及び、胚盤胞を仮親の子宮に移植する工程により作成する。なお、前記ターゲティングベクターには、通常、導入する変異の5’及び3’に連結された相同領域、ポジティブセレクション用のマーカーなどが含まれる。
また、非脊椎動物、例えば、昆虫であれば、トランスポゾン挿入、RNAi、化学物質誘発性遺伝子変異などにより作成することができる。
<Method for producing non-human model animal deficient in PQBP-1>
The method for producing a non-human model animal deficient in PQBP-1 is not particularly limited, and can be appropriately selected from conventional methods for producing transgenic animals and knockout animals according to the purpose. When the base sequence of the PQBP-1 gene is known, it is preferable to delete it using homologous recombination.
Specifically, the target vector is prepared by a step of creating a targeting vector, a step of introducing the targeting vector into ES cells, a step of introducing the ES cells into blastocysts, and a step of transplanting the blastocysts into the uterus of a foster parent . The targeting vector usually includes a homologous region linked to 5 ′ and 3 ′ of the mutation to be introduced, a marker for positive selection, and the like.
Further, in the case of an invertebrate, for example, an insect, it can be prepared by transposon insertion, RNAi, chemical substance-induced gene mutation, and the like.
(精神発達遅滞の症状を改善する活性を有する物質をスクリーニングする方法)
精神発達遅滞の症状を改善する活性を有する物質をスクリーニングする方法としては、特に制限はなく、目的に応じて適宜選択することができる。
例えば、本発明の精神発達遅滞の非ヒトモデル動物に対して、経口投与や静脈注射で候補物質を投与し、候補物質の投与前後で、精神発達遅滞の症状(異常行動)を測定する。そして、候補物質の投与前後での測定値を比較することにより、精神発達遅滞の症状の改善する活性を有する物質をスクリーニングすることができる。
(Method of screening for substances having activity to improve symptoms of mental retardation)
A method for screening a substance having an activity for improving symptoms of mental retardation is not particularly limited and may be appropriately selected depending on the purpose.
For example, the candidate substance is administered to the non-human model animal with mental retardation of the present invention by oral administration or intravenous injection, and the symptoms (abnormal behavior) of mental retardation are measured before and after administration of the candidate substance. And the substance which has the activity which improves the symptom of mental retardation can be screened by comparing the measured value before and behind administration of a candidate substance.
前記スクリーニング方法において、学習獲得能力、寿命、性行動及び概日時計のうち、少なくともいずれか一つを測定することが好ましい。なお、本発明の精神発達遅滞の非ヒトモデル動物が、今後、新たな症状を有することが判明した場合には、新たに判明した症状を指標としてスクリーニングしてもよい。 In the screening method, it is preferable to measure at least one of learning acquisition ability, life span, sexual behavior, and circadian clock. If the non-human model animal with mental retardation of the present invention is found to have new symptoms in the future, it may be screened using the newly found symptoms as an index.
以下に本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to these examples.
(実施例1)
実施例1は、dPQBP−1欠損変異体のショウジョウバエについて、匂い条件付け学習・記憶解析を行った実施例である。
(Example 1)
Example 1 is an example in which odor conditioning learning / memory analysis was performed on drosophila dPQBP-1 deficient mutants.
<実験材料>
−ショウジョウバエの系統−
w1118(CS)系統(野生型)は、神経科学総合研究所の斎藤実先生より供与された。
piggyBacトランスポゾン因子の遺伝子への導入により、ショウジョウバエPQBP−1遺伝子が欠損した変異体w;P{FRT(whs)}2A P{neoFRT}82B PBac{GAL4D,EYFP}CG11820PL00109(dPQBP−1欠損変異系統)、及び、前記dPQBP−1欠損変異系統と遺伝的背景が同様であるw;P{FRT(whs)}2A P{neoFRT}82B(正常系統)は、Bloomington stock centerより購入した。
<Experimental material>
-Drosophila strain-
The w 1118 (CS) line (wild type) was provided by Dr. Minoru Saito of the Neuroscience Institute.
The introduction of the gene into piggyBac transposon factor, mutant Drosophila PQBP-1 gene deficient w; P {FRT (w hs )} 2A P {neoFRT} 82B PBac {GAL4D, EYFP} CG11820 PL00109 (dPQBP-1 deficient mutant system), and, genetic background and the dPQBP-1 deficient mutant strain is similar w; P {FRT (w hs )} 2A P {neoFRT} 82B ( normal strain) were purchased from Bloomington stock center.
購入した前記dPQBP−1欠損変異系統のハエは、前記w1118(CS)系統と5回戻し交配を行い、遺伝的背景を野生型に合わせる事で、サイドエフェクトのないw;+/+;PBac{GAL4D,EYFP}CG11820PL00109(dPQBP−1欠損変異系統)を作成した。この戻し交配を行ったdPQBP−1欠損変異系統(以下、「dPQBP−1欠損変異体」と称する。)について、dPQBP−1遺伝子の欠損を確認するために、以下の試験(a)〜(c)を実施した。
The purchased flies of the dPQBP-1 deficient mutant line are backcrossed with the w 1118 (CS)
(a)dPQBP−1遺伝子地図
常法に従って、dPQBP−1欠損変異体におけるdPQBP−1遺伝子近傍の塩基配列を決定し、遺伝子地図を作成した。
図1は、dPQBP−1欠損変異体におけるdPQBP−1遺伝子とpiggyBacの特徴・導入部位を示す地図である。図1に示すように、piggyBacは、ハエの眼や脳周辺グリア細胞特異的に発現する内在性Pax6遺伝子の制御下で働くEYFP(黄色マーカー遺伝子)と転写活性遺伝子であるGAL4とを含む突然変異誘発トランスポゾン因子であり、dPQBP−1遺伝子の転写開始点より50塩基部位に導入されていた。即ち、piggyBacは、dPQBP−1遺伝子内のWW領域に導入されていた。
(A) dPQBP-1 gene map According to a conventional method, the base sequence in the vicinity of the dPQBP-1 gene in the dPQBP-1 deficient mutant was determined, and a gene map was prepared.
FIG. 1 is a map showing the features / introduction sites of dPQBP-1 gene and piggyBac in dPQBP-1 deficient mutants. As shown in FIG. 1, piggyBac is a mutation containing EYFP (yellow marker gene) that works under the control of an endogenous Pax6 gene expressed specifically in fly eyes and peri-brain glial cells, and GAL4, which is a transcriptionally active gene. It was an induced transposon factor, and was introduced into the 50 base site from the transcription start point of the dPQBP-1 gene. That is, piggyBac was introduced into the WW region in the dPQBP-1 gene.
(b)蛍光顕微鏡観察
蛍光顕微鏡観察により、piggyBac導入マーカーであるEYFPの発現パターンを確認した。
図2は、野生型とdPQBP−1欠損変異体との蛍光顕微鏡像であって、(A)は野生型の外観についての蛍光顕微鏡像、(B)はdPQBP−1欠損変異体の外観についての蛍光顕微鏡像、(C)は、dPQBP−1欠損変異体の頭部の凍結切片についての蛍光顕微鏡像である。図2(A)で示す野生型ではEYFPの発現が確認できなかったのに対し、図2(B)で示すdPQBP−1欠損変異体では眼以外にもアンテナなどの数箇所の部位でEYFPの発現を確認できた。さらに、図2(C)に示すように、dPQBP−1欠損変異体では、眼と神経系でのEYFPの発現を確認できた。
(B) Fluorescence microscope observation The expression pattern of EYFP which is a piggyBac introduction marker was confirmed by fluorescence microscope observation.
FIG. 2 is a fluorescence microscopic image of a wild type and a dPQBP-1 deletion mutant, wherein (A) is a fluorescence microscopic image of the wild type appearance, and (B) is an appearance of the dPQBP-1 deletion mutant. A fluorescence microscope image, (C), is a fluorescence microscope image of a frozen section of the head of a dPQBP-1 deficient mutant. In the wild type shown in FIG. 2 (A), expression of EYFP could not be confirmed, whereas in the dPQBP-1 deficient mutant shown in FIG. 2 (B), EYFP Expression was confirmed. Furthermore, as shown in FIG. 2 (C), in the dPQBP-1 deficient mutant, the expression of EYFP in the eyes and nervous system could be confirmed.
(c)ノーザンブロット解析
ノーザンブロット解析により、dPQBP−1遺伝子の発現を調べた。ノーザンブロット解析は、以下の手順で行った。
dPQBP−1欠損変異体の頭部を採取し、TRIZOL Reagent(Invitrogen)を用いてトータルRNAを抽出した。その後、MOPSバッファー中のホルムアルデヒド−アガロースゲルで、15μgのRNAを電気泳動して分離し、Hybond−Nメンブラン(Amersham Bioscience)にRNAを転写した。メンブランに転写したRNAをUV−cross link(120000μJ/cm2)でメンブレンに固定した。プローブはdPQBP−1 EcoRI/NotI DNA断片を用いた。プローブを[α−32P]dCTP(Amersham Bioscience)とrandom primer DNA labeling kit(Takara)を用いて放射標識し、RNAを転写したメンブレンに60℃、一晩、ハイブリダイズした。1×SSCバッファー,0.1%SDS,50℃,20分で二回洗った。メンブレンをX線フィルムに当て、−80℃で適当な時間置いた後、バンドを検出した。野生型及びw;P{FRT(whs)}2A P{neoFRT}82B(正常系統)についても、同様に解析した。
(C) Northern blot analysis The expression of the dPQBP-1 gene was examined by Northern blot analysis. Northern blot analysis was performed according to the following procedure.
The head of dPQBP-1 deletion mutant was collected, and total RNA was extracted using TRIZOL Reagent (Invitrogen). Thereafter, 15 μg of RNA was separated by electrophoresis on a formaldehyde-agarose gel in MOPS buffer, and the RNA was transferred to Hybond-N membrane (Amersham Bioscience). RNA transcribed on the membrane was fixed to the membrane with UV-cross link (120,000 μJ / cm 2 ). The probe used was a dPQBP-1 EcoRI / NotI DNA fragment. The probe was radiolabeled using [α- 32 P] dCTP (Amersham Bioscience) and random primer DNA labeling kit (Takara) and hybridized overnight at 60 ° C. to the membrane onto which RNA was transferred. Washed twice with 1 × SSC buffer, 0.1% SDS, 50 ° C. for 20 minutes. The membrane was applied to an X-ray film and allowed to stand at −80 ° C. for an appropriate time, and then a band was detected. The wild type and w; P {FRT (w hs )} 2AP P {neoFRT} 82B (normal line) were also analyzed in the same manner.
図3は、ノーザンブロット解析の結果を示す図である。図3に示すように、野生型及びw;P{FRT(whs)}2A P{neoFRT}82B(正常系統)ではdPQBP−1遺伝子の発現が見られたのに対し、dPQBP−1欠損変異体ではdPQBP−1遺伝子の発現は全く見られなかった。 FIG. 3 is a diagram showing the results of Northern blot analysis. As shown in FIG. 3, dPQBP-1 gene expression was observed in the wild type and w; P {FRT (w hs )} 2AP P {neoFRT} 82B (normal strain), whereas dPQBP-1 deletion mutation was observed. The body did not show any expression of dPQBP-1 gene.
以上のようにdPQBP−1遺伝子の欠損が確認された、dPQBP−1欠損変異体について、匂い条件付け学習・記憶解析を行った。なお、対照としては野生型を用いた。 As described above, odor conditioning learning / memory analysis was performed on dPQBP-1 deficient mutants in which dPQBP-1 gene deficiency was confirmed. A wild type was used as a control.
<方法>
匂い条件付け学習・記憶解析の評価方法としては、1985年にTullyらによって開発されたティーチングマシンによる匂い条件付けを採用した。具体的には、以下の手順で行った。
約100匹のハエをトレーニングチャンバーに入れ、まず3−Octanol(OCT)を嗅がせながら電気ショック(60V)を1分間与える。次いで4−Methylcyclohexanol(MCH)を電気ショックなしで1分間嗅がせる。OCTと電気ショックの関係を学習したハエは、テストで2つの匂いを嗅がせた時に、電気ショックのなかったMCHの方(正解)のチューブに移動する。正答率は、Performance Index(PI)として、下記(1)式により算出した。次に電気ショック時に嗅がせる匂いをMCHにして同様の操作を行い、2つのPI値の平均値を算出した(n=1)。
なお、0時間後の記憶特性はトレーニング直後にテストを行うことで評価した。1時間後及び3時間後の記憶特性は、トレーニングを1回実施してから1時間後及び3時間後にテストを行うことで評価した。24時間後の記憶特性は、トレーニングを1時間毎に5回実施してから24時間後にテストを行うことで評価した。
<Method>
As an evaluation method of odor conditioning learning / memory analysis, odor conditioning by a teaching machine developed by Tully et al. Specifically, the following procedure was used.
About 100 flies are placed in a training chamber, and an electric shock (60 V) is applied for 1 minute while sniffing 3-octanol (OCT). Then 4-Methylcyclohexanol (MCH) is sniffed for 1 minute without electric shock. A fly who has learned the relationship between OCT and electric shock moves to the tube of MCH (correct answer) without electric shock when two odors are smelled in the test. The correct answer rate was calculated by the following formula (1) as a performance index (PI). Next, the same operation was performed with MCH as the scent smelled during electric shock, and the average value of the two PI values was calculated (n = 1).
The memory characteristics after 0 hour were evaluated by performing a test immediately after training. The memory characteristics after 1 hour and 3 hours were evaluated by performing
<結果>
図4は、匂い条件付け学習・記憶解析の結果を示すグラフであって、(A)は、0〜3時間後の記憶特性を示すグラフであり、(B)は24時間後の記憶特性を示すグラフである。
図4(A)で示すように、dPQBP−1欠損変異体(図中では、piggyBacPQBP−1と記載)は、匂いと電気刺激を関連づけてハエに覚えさせるトレーニングを行ってから直後に匂いをテストする0時間記憶(学習獲得能力テスト)が、野生型よりも顕著に低いことが判った。しかしながら、その後の記憶保持に関しては、1時間・3時間までの記憶の低下が野生型と同様のパターンを示す事から、短期記憶から中期記憶までの記憶保持は正常であることが示唆された。
<Result>
FIG. 4 is a graph showing the results of odor conditioning learning / memory analysis, where (A) is a graph showing memory characteristics after 0 to 3 hours, and (B) is a memory characteristics after 24 hours. It is a graph.
As shown in FIG. 4 (A), dPQBP-1 deficient mutants (indicated as piggyBacPQBP-1 in the figure) are tested for odor immediately after training to associate odors with electrical stimuli and make them remember. It was found that the 0-hour memory (learning acquisition ability test) was significantly lower than the wild type. However, regarding subsequent memory retention, the decrease in memory up to 1 hour and 3 hours showed a pattern similar to that of the wild type, suggesting that the memory retention from short-term memory to medium-term memory is normal.
また、図4(B)で示すように、長期記憶を評価する24時間記憶解析においても野生型に比べdPQBP−1欠損変異体(図中では、piggyBacPQBP−1と記載)では記憶の大幅な減少が見られたが、一定の記憶は保持されていた。 In addition, as shown in FIG. 4B, in the 24-hour memory analysis for evaluating long-term memory, the dPQBP-1 deficient mutant (denoted as piggyBacPQBP-1 in the figure) has a significant decrease in memory compared to the wild type. However, a certain amount of memory was maintained.
実施例1によれば、dPQBP−1欠損変異体の学習獲得能力は顕著に低下するが、学習段階以降の記憶過程においては、正常に記憶は保持されることが判った。 According to Example 1, it was found that the dPQBP-1 deficient mutant has a significantly reduced ability to learn, but the memory is normally retained in the memory process after the learning stage.
(実施例2)
実施例2は、dPQBP−1欠損変異体のショウジョウバエについて、匂い回避嗅覚機能及び電気刺激感覚・運動機能解析を行った実施例である。
なお、実施例2で用いたdPQBP−1欠損変異体及びその対照としての野生型は、実施例1の<実験材料>で記載されたものと同じであるので、説明は省略する。
(Example 2)
Example 2 is an example in which odor avoidance olfactory function and electrical stimulation sensation / motor function analysis were performed on drosophila dPQBP-1 deficient mutant.
In addition, since the dPQBP-1 deletion mutant used in Example 2 and the wild type as a control thereof are the same as those described in <Experimental material> of Example 1, description thereof is omitted.
<方法>
匂い回避嗅覚機能解析の評価方法としては、実施例1の匂い条件付け学習・記憶解析で用いたティーチングマシンにおいて、匂い物質(ハエの嫌う匂い)OCT又はMCHをそれぞれ別々に空気(無臭)と同時に90秒間嗅がせ、OCT又はMCHの匂いに対して匂いのない方向へ逃げたハエの数を前記(1)式に当てはめ、PI値を算出する事で匂い回避嗅覚機能を評価した。なお、実施例2で使用したOCT又はMCHの濃度は、実施例1の匂い条件付け学習・記憶解析時に用いたものと同じ濃度(原液濃度)と1/10濃度である。
<Method>
As an evaluation method of the odor avoidance olfactory function analysis, in the teaching machine used in the odor conditioning learning / memory analysis of the first embodiment, the odorous substance (odor which flies hate) OCT or MCH is separately separated from the air (odorless) simultaneously with 90. The scent avoidance olfactory function was evaluated by calculating the PI value by applying the number of flies that smelled for a second and escaped in the direction of no scent to the scent of OCT or MCH to the formula (1). The OCT or MCH concentration used in Example 2 is the same concentration (stock solution concentration) and 1/10 concentration as used in the odor conditioning learning / memory analysis of Example 1.
電気刺激感覚・運動機能解析の評価方法としては、60V及び20Vの電気刺激と電気刺激のない条件を90秒間同時に与え、電気が流れるグリッドから、電気刺激のないチューブに逃げたハエの数より、匂い回避嗅覚機能解析と同様にPI値を算出し、電気刺激に対する感覚・運動機能を評価した。 As an evaluation method of electrical stimulation sensation / motor function analysis, 60V and 20V electrical stimulation and conditions without electrical stimulation were simultaneously applied for 90 seconds, and from the number of flies escaping from a grid through which electricity flows to a tube without electrical stimulation, The PI value was calculated in the same manner as the odor avoidance olfactory function analysis, and the sensory / motor function for the electrical stimulation was evaluated.
<結果>
表1は、匂い回避嗅覚機能及び電気刺激感覚・運動機能解析の結果を示す表である。
<Result>
Table 1 is a table showing the results of odor avoidance olfactory function and electrical stimulation sensation / motor function analysis.
表1に示すように、匂い回避嗅覚機能において、野生型とdPQBP−1欠損変異体(表中では、piggyBacPQBP−1と記載)と間に差は見られなかった。また、電気刺激感覚・運動機能においても、野生型とdPQBP−1欠損変異体との間に差は見られなかった。 As shown in Table 1, in the odor avoidance olfactory function, no difference was observed between the wild type and dPQBP-1 deficient mutant (described as piggyBacPQBP-1 in the table). Also, no difference was found between the wild type and dPQBP-1 deficient mutants in the electrical stimulation sensation / motor function.
実施例2によれば、学習・記憶能力値に影響する要因として考えられる匂いに対する嗅覚機能及び電気刺激に対する感覚・運動機能が、dPQBP−1欠損変異体において正常であることが示された。したがって、実施例1の匂い条件付け学習・記憶解析の結果は、dPQBP−1遺伝子欠損依存的に引き起こされたことが示唆された。さらには、dPQBP−1欠損変異体において、匂い記憶の中枢であるキノコ体や匂い刺激を伝える投射神経で、形態的又は機能的変化が引き起こされている可能性が示唆された。 According to Example 2, it was shown that the olfactory function with respect to odor and the sensory / motor function with respect to electrical stimulation, which are considered as factors affecting the learning / memory ability value, are normal in the dPQBP-1 deficient mutant. Therefore, it was suggested that the result of the odor conditioning learning / memory analysis of Example 1 was caused depending on dPQBP-1 gene deficiency. Furthermore, in the dPQBP-1 deficient mutant, it was suggested that morphological or functional changes may be caused in the mushroom body, which is the center of odor memory, and in the projection nerve that transmits odor stimulation.
(実施例3)
実施例3は、dPQBP−1欠損変異体のショウジョウバエについて、寿命解析を行った実施例である。
なお、実施例3で用いたdPQBP−1欠損変異体及びその対照としての野生型は、実施例1の<実験材料>で記載されたものと同じであるので、説明は省略する。
(Example 3)
Example 3 is an example in which life analysis was performed on drosophila dPQBP-1 deficient mutant.
In addition, since the dPQBP-1 deletion mutant used in Example 3 and the wild type as a control thereof are the same as those described in <Experimental material> of Example 1, description thereof is omitted.
<方法>
寿命解析の評価方法は以下の手順で行った。
ハエを孵化後から4時間以内にバージンの状態で採取し、通常のエサ(コーンミール/アガー含む)の入ったバイアル1本につき雄・雌それぞれ25匹ずつ分けて回収した。これを各8バイアルずつ(w1118(CS)系統とショウジョウバエPQBP−1欠損変異体を、それぞれ雄200匹・雌200匹、計400匹ずつ)用意し、解析を試みた。ハエの飼育は、通常の飼育条件である室温25℃・湿度60%の条件下で行った。ハエは3日毎に新しいエサバイアルに移し、死んだハエの数を記録し、日毎のハエ生存率を算出し評価した。この解析は、全てのハエが死ぬまで行った。
<Method>
The evaluation method of the life analysis was performed according to the following procedure.
Flies were collected in a virgin state within 4 hours after hatching, and 25 males and 25 females were collected separately for each vial containing normal food (including corn meal / agar). Eight vials of each were prepared (w 1118 (CS) strain and Drosophila PQBP-1 deficient mutant, 200 males and 200 females, 400 each in total), and analysis was attempted. Flies were reared under normal conditions of
<結果>
図5は、寿命解析の結果を示すグラフである。
図5に示すように、野生型よりもdPQBP−1欠損変異体(図中では、piggyBacPQBP−1と記載)では全体的に極端に寿命が短くなっていた。さらに、これら2つの系統間での最長寿命においても10日以上の差が見られた。
<Result>
FIG. 5 is a graph showing the results of life analysis.
As shown in FIG. 5, the life span of the dPQBP-1 deficient mutant (denoted as piggyBacPQBP-1 in the figure) was extremely short overall compared to the wild type. Furthermore, a difference of 10 days or more was also observed in the longest lifespan between these two lines.
実施例3の結果によれば、dPQBP−1遺伝子欠損依存的にハエの寿命が極端に短くなっていることが判った。 According to the result of Example 3, it was found that the life span of the fly was extremely shortened depending on dPQBP-1 gene deficiency.
(実施例4)
実施例4は、dPQBP−1欠損変異体のショウジョウバエについて、性行動解析を行った実施例である。
なお、実施例4で用いたdPQBP−1欠損変異体及びその対照としての野生型は、実施例1の<実験材料>で記載されたものと同じであるので、説明は省略する。
Example 4
Example 4 is an example in which sexual behavior analysis was performed on drosophila dPQBP-1 deficient mutant.
In addition, since the dPQBP-1 deletion mutant used in Example 4 and the wild type as a control thereof are the same as those described in <Experimental material> of Example 1, description thereof is omitted.
<方法>
性行動解析の評価方法としては、1999年にMcBrideらよって確立された性行動解析を用いた。具体的には、以下の手順で行った。
テストに用いるハエ(雄)は、孵化してから4時間以内にバージンの状態で麻酔をかけ、エサ入りバイアルに採取し、明期・暗期が12:12時間の条件下で4−6日間飼育した後、解析に用いた。また、前記テストバエの対象のハエ(w1118(CS)系統)は、孵化してから3時間以内のバ―ジンの雌、又は、孵化後30分以内に採取し、孵化3時間以内のバージンの雄を用いた。
解析は、直径15mm,深さ5mmのガラス交配チャンバー(Ikeda工房)中に、麻酔をかけていないテスト雄ハエとバージン雌又はバージン雄を同時に入れ、10分間観察する事で行った。Courtship Index(CI)は、10分間の観察時間に対し、テストハエが対象ハエに求愛行動を示した時間の割合から評価した。全ての解析は、明期に行った。
<Method>
As an evaluation method for sexual behavior analysis, sexual behavior analysis established in 1999 by McBride et al. Was used. Specifically, the following procedure was used.
Flies (male) used for the test are anesthetized in the virgin state within 4 hours after hatching, collected in a vial containing food, and light and dark conditions are 12:12 hours for 4-6 days After rearing, it was used for analysis. In addition, the target fly (w 1118 (CS) line) is a virgin female within 3 hours of hatching, or collected within 30 minutes after hatching, and virgin within 3 hours of hatching. Males were used.
The analysis was performed by simultaneously placing an unanesthetized test male fly and virgin female or virgin male in a glass mating chamber (Ikeda Kobo) having a diameter of 15 mm and a depth of 5 mm and observing for 10 minutes. The Courtship Index (CI) was evaluated from the ratio of the time when the test fly showed courtship behavior to the target fly with respect to the observation time of 10 minutes. All analyzes were performed during the light period.
<結果>
図6は、性行動解析の結果を示すグラフであって、(A)は、テストバエ雄の対象ハエ雌への性行動を示すグラフであり、(B)は、テストバエ雄の対象ハエ雄への性行動を示すグラフである。
図6(A)に示すように、w1118(CS)系統のバージンの雌に対する野性型の成熟した雄の求愛活動は観察時間の約2割であったのに対し、dPQBP−1欠損変異体(図中では、piggyBacPQBP−1と記載)の成熟した雄ではおよそ5割程度の求愛活動を示し、亢進した性行動が認められた。
さらに、図6の(B)に示すように、バージンの雌とは異なる形態及びフェロモン特性を持つ未成熟な雄に対しても積極的に性行動を示し、バージン雌に対する求愛活動と同程度の性行動がdPQBP−1欠損変異体(図中では、piggyBacPQBP−1と記載)で観察された。面白いことに、ここで見られた性行動の殆どが求愛行動の初段階である対象バエの後を追いかけ翅をパタつかせる段階で見られた。
<Result>
FIG. 6 is a graph showing the results of sexual behavior analysis, in which (A) is a graph showing sexual behavior of a test fly male to a target fly female, and (B) is a test fly male to the target fly male. It is a graph which shows sexual behavior.
As shown in FIG. 6 (A), the wild-type mature male courtship activity for w 1118 (CS) virgin female was about 20% of the observation time, whereas dPQBP-1 deficient mutant Mature males (depicted as piggyBacPQBP-1 in the figure) showed about 50% courtship activity, and enhanced sexual behavior was observed.
Furthermore, as shown in FIG. 6 (B), sexual behavior was positively exhibited even for immature males having different forms and pheromone characteristics from virgin females, which was similar to courtship activities for virgin females. Sexual behavior was observed in dPQBP-1 deficient mutants (denoted as piggyBacPQBP-1 in the figure). Interestingly, most of the sexual behavior seen here was seen at the stage of chasing after the target flies, the first stage of courtship behavior.
実施例4の結果によれば、dPQBP−1遺伝子欠損依存的に雄の亢進した求愛活動が観察された。また、この亢進した性行動は、実施例3で認められたような減少した寿命が関与している事が示唆された。 According to the result of Example 4, the courtship activity which male enhanced was observed depending on dPQBP-1 gene deficiency. It was also suggested that this increased sexual behavior was associated with a decreased life span as observed in Example 3.
(実施例5)
実施例5は、dPQBP−1欠損変異体のショウジョウバエについて、概日リズム及び活動性解析を行った実施例である。
なお、実施例5で用いたdPQBP−1欠損変異体及びその対照としての野生型は、実施例1の<実験材料>で記載されたものと同じであるので、説明は省略する。
(Example 5)
Example 5 is an example in which circadian rhythm and activity analysis were performed on drosophila dPQBP-1 deficient mutant.
In addition, since the dPQBP-1 deletion mutant used in Example 5 and the wild type as a control thereof are the same as those described in <Experimental material> of Example 1, description thereof is omitted.
<方法>
概日リズム及び活動性解析の評価方法は、以下の手順で行った。
w1118(CS)系統とショウジョウバエPQBP−1欠損変異体のバージンハエ雄・雌それぞれ8匹ずつ(各16匹)を用いた。これらのハエを一匹ずつDrosophila Activity Monitor装置(Trikinetics)のガラスチューブに移し、明期・暗期が12:12時間(LD)の条件下で2日間概日リズムを同調させた。その後、Appleコンピューターに接続したDrosophila Activity Monitor装置を使い、LD及びDD(暗期のみ)の条件下で各2日間解析を行った。
<Method>
The circadian rhythm and activity analysis were evaluated according to the following procedure.
The w 1118 (CS) strain and the Drosophila PQBP-1 deficient mutant virgin fly male / female 8 each (16 each) were used. These flies were transferred one by one to a glass tube of the Drosophila Activity Monitor device (Trikinetics), and the circadian rhythm was synchronized for 2 days under the condition of light / dark period of 12:12 hours (LD). Thereafter, using a Drosophila Activity Monitor device connected to an Apple computer, analysis was performed for 2 days under conditions of LD and DD (dark period only).
<結果>
図7は、概日リズム及び活動性解析の結果を示すグラフであって、(A)は、LDの条件下での概日リズム及び活動性を示すグラフであり、(B)は、DD(暗期のみ)の条件下での概日リズム及び活動性を示すグラフである。図7(A)、(B)においては、縦軸は活動量を示し、横軸は、明暗の周期を示している。
図7(A)に示すように、LD条件下においてdPQBP−1欠損変異体(図中では、piggyBacPQBP−1と記載)は、野生型と同様に光刺激に依存した活動パターン(概日リズム)を示した。
しかしながら、図7(B)に示すように、DD条件下においてdPQBP−1欠損変異体(図中では、piggyBacPQBP−1と記載)は、野生型のような2相性の概日リズムは殆ど見られなく、一日の活動量が全体的に顕著に低い事がわかった。
<Result>
FIG. 7 is a graph showing the results of circadian rhythm and activity analysis, where (A) is a graph showing circadian rhythm and activity under LD conditions, and (B) is DD ( It is a graph which shows the circadian rhythm and activity on the conditions of only a dark period). 7A and 7B, the vertical axis represents the amount of activity, and the horizontal axis represents the light / dark cycle.
As shown in FIG. 7 (A), the dPQBP-1 deficient mutant (denoted as piggyBacPQBP-1 in the figure) under LD conditions is an activity pattern (circadian rhythm) depending on light stimulation as in the wild type. showed that.
However, as shown in FIG. 7B, under the DD conditions, the dPQBP-1 deficient mutant (denoted as piggyBacPQBP-1 in the figure) has almost no biphasic circadian rhythm like the wild type. However, it was found that the amount of daily activity was significantly low.
実施例5によれば、dPQBP−1欠損変異体は、LD条件下では野生型と同様の活動パターン(概日リズム)を示したが、DD条件下では野生型のような概日リズムは殆ど見られなく、顕著な活動能力の低下がみられた。この事は、dPQBP−1が概日時計を制御している時計遺伝子機能又は時計分子シグナル経路に影響している可能性が考えられる。 According to Example 5, the dPQBP-1 deficient mutant showed an activity pattern (circadian rhythm) similar to the wild type under LD conditions, but almost no circadian rhythm like wild type under DD conditions. There was no significant decline in activity capacity. This may be because dPQBP-1 may influence the clock gene function or clock molecule signal pathway that controls the circadian clock.
(その他)
以上のように、本実施例(実施例1ないし実施例5)によれば、ショウジョウバエにおける種々の行動(例えば、学習獲得能力の低下、寿命短縮、性行動の亢進、概日時計の乱れ)はdPQBP−1遺伝子が重要であり、このdPQBP−1欠損変異体が精神発達遅滞疾患のモデル動物になりえる事が証明された。
(Other)
As described above, according to this example (Examples 1 to 5), various behaviors in Drosophila (for example, decreased ability to acquire learning, shortened life span, increased sexual behavior, disturbance of the circadian clock) The dPQBP-1 gene is important, and it has been proved that this dPQBP-1 deficient mutant can be a model animal for mental retardation disease.
本発明の精神発達遅滞の非ヒトモデル動物は、精神発達遅滞におけるPQBP−1遺伝子の病的機能の解明に利用することができ、また、精神発達遅滞の症状を改善する活性を有する物質のスクリーニングに利用することができる。 The nonhuman model animal of mental retardation of the present invention can be used for elucidating the pathological function of the PQBP-1 gene in mental retardation, and screening for a substance having an activity to improve the symptoms of mental retardation Can be used.
Claims (9)
The method according to claim 8, wherein at least one of learning acquisition ability, life span, sexual behavior, and circadian clock is measured.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007014795A JP5066710B2 (en) | 2007-01-25 | 2007-01-25 | Method for screening non-human animal model of mental retardation and substances having activity to improve symptoms of mental retardation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007014795A JP5066710B2 (en) | 2007-01-25 | 2007-01-25 | Method for screening non-human animal model of mental retardation and substances having activity to improve symptoms of mental retardation |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2008178351A true JP2008178351A (en) | 2008-08-07 |
JP2008178351A5 JP2008178351A5 (en) | 2010-03-11 |
JP5066710B2 JP5066710B2 (en) | 2012-11-07 |
Family
ID=39722751
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007014795A Active JP5066710B2 (en) | 2007-01-25 | 2007-01-25 | Method for screening non-human animal model of mental retardation and substances having activity to improve symptoms of mental retardation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5066710B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016002854A1 (en) * | 2014-07-02 | 2016-01-07 | 国立大学法人東京医科歯科大学 | Preparation used for promotion of proliferation of neural stem cells, preparation used for prevention or treatment of diseases associated with decrease in neural stem cells, preparation used for promotion of formation of postsynapses, preparation used for prevention or treatment of diseases associated with decrease in formation of postsynapses, and screening method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003073098A1 (en) * | 2002-02-28 | 2003-09-04 | Japan Science And Technology Agency | Method of screening psychotropic |
JP2006067944A (en) * | 2004-09-03 | 2006-03-16 | Japan Science & Technology Agency | Synapse maturation-disordered model animal |
JP2006075156A (en) * | 2004-08-10 | 2006-03-23 | Mitsubishi Chemicals Corp | New non-human animal |
-
2007
- 2007-01-25 JP JP2007014795A patent/JP5066710B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003073098A1 (en) * | 2002-02-28 | 2003-09-04 | Japan Science And Technology Agency | Method of screening psychotropic |
JP2006075156A (en) * | 2004-08-10 | 2006-03-23 | Mitsubishi Chemicals Corp | New non-human animal |
JP2006067944A (en) * | 2004-09-03 | 2006-03-16 | Japan Science & Technology Agency | Synapse maturation-disordered model animal |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016002854A1 (en) * | 2014-07-02 | 2016-01-07 | 国立大学法人東京医科歯科大学 | Preparation used for promotion of proliferation of neural stem cells, preparation used for prevention or treatment of diseases associated with decrease in neural stem cells, preparation used for promotion of formation of postsynapses, preparation used for prevention or treatment of diseases associated with decrease in formation of postsynapses, and screening method |
Also Published As
Publication number | Publication date |
---|---|
JP5066710B2 (en) | 2012-11-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DiCarlo et al. | Autism-linked dopamine transporter mutation alters striatal dopamine neurotransmission and dopamine-dependent behaviors | |
Orefice et al. | Peripheral mechanosensory neuron dysfunction underlies tactile and behavioral deficits in mouse models of ASDs | |
Toth et al. | Neurite sprouting and synapse deterioration in the aging Caenorhabditis elegans nervous system | |
Baskoylu et al. | Single copy/knock-in models of ALS SOD1 in C. elegans suggest loss and gain of function have different contributions to cholinergic and glutamatergic neurodegeneration | |
Grundmann et al. | Generation of a novel rodent model for DYT1 dystonia | |
Tsika et al. | Conditional expression of Parkinson's disease-related R1441C LRRK2 in midbrain dopaminergic neurons of mice causes nuclear abnormalities without neurodegeneration | |
Khelfaoui et al. | Loss of X-linked mental retardation gene oligophrenin1 in mice impairs spatial memory and leads to ventricular enlargement and dendritic spine immaturity | |
Janus et al. | Spatial learning in transgenic mice expressing human presenilin 1 (PS1) transgenes | |
Gilliam et al. | Golden Retriever dogs with neuronal ceroid lipofuscinosis have a two-base-pair deletion and frameshift in CLN5 | |
Adinolfi et al. | Behavioral characterization of DAT-KO rats and evidence of asocial-like phenotypes in DAT-HET rats: The potential involvement of norepinephrine system | |
Finch et al. | Primate aging in the mammalian scheme: the puzzle of extreme variation in brain aging | |
Shoji et al. | Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and-L100P mutant mice | |
Volders et al. | Drosophila rugose is a functional homolog of mammalian Neurobeachin and affects synaptic architecture, brain morphology, and associative learning | |
Siuciak et al. | Disruption of the neurokinin-3 receptor (NK3) in mice leads to cognitive deficits | |
McDowell et al. | Reduced cortical BDNF expression and aberrant memory in Carf knock-out mice | |
Casimiro et al. | Targeted point mutagenesis of mouse Kcnq1: phenotypic analysis of mice with point mutations that cause Romano-Ward syndrome in humans | |
Inoue et al. | LMTK3 deficiency causes pronounced locomotor hyperactivity and impairs endocytic trafficking | |
Kojima et al. | Genetic disruption of the alternative splicing of drebrin gene impairs context-dependent fear learning in adulthood | |
Huebner et al. | Mice lacking the nuclear pore complex protein ALADIN show female infertility but fail to develop a phenotype resembling human triple A syndrome | |
Flint et al. | Animal models of psychiatric disease | |
Bianchi et al. | Forebrain deletion of αGDI in adult mice worsens the pre-synaptic deficit at cortico-lateral amygdala synaptic connections | |
JP5066710B2 (en) | Method for screening non-human animal model of mental retardation and substances having activity to improve symptoms of mental retardation | |
Tamura et al. | Drosophila PQBP1 regulates learning acquisition at projection neurons in aversive olfactory conditioning | |
Baghdadi et al. | Sex-specific effects of Cre expression in Syn1Cre mice | |
JP7012310B2 (en) | Mental illness model animals and their manufacturing methods |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100125 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100125 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120625 |
|
TRDD | Decision of grant or rejection written | ||
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120627 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120717 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |