[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008177750A - Piezoelectric thin film device - Google Patents

Piezoelectric thin film device Download PDF

Info

Publication number
JP2008177750A
JP2008177750A JP2007008004A JP2007008004A JP2008177750A JP 2008177750 A JP2008177750 A JP 2008177750A JP 2007008004 A JP2007008004 A JP 2007008004A JP 2007008004 A JP2007008004 A JP 2007008004A JP 2008177750 A JP2008177750 A JP 2008177750A
Authority
JP
Japan
Prior art keywords
thin film
substrate
piezoelectric thin
cavity
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007008004A
Other languages
Japanese (ja)
Inventor
Naoki Koda
直樹 幸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP2007008004A priority Critical patent/JP2008177750A/en
Publication of JP2008177750A publication Critical patent/JP2008177750A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To render a piezoelectric thin film device low-profile without providing an insulation portion as essential constitution between a substrate and a piezoelectric thin film. <P>SOLUTION: A piezoelectric vibrating resonator 1 is provided with the substrate 2 made of an insulating material, the piezoelectric thin film 3 formed on the substrate 2, and upper and lower electrodes 41 and 42 which are formed on the substrate 2 and opposite to top and reverse surfaces 31 and 32 of the piezoelectric thin film 3, the lower electrode 42 being interposed between the substrate 2 and piezoelectric thin film 3. The lower electrode 42 comprises a driven electrode portion 421 opposed to the upper electrode 41 with the piezoelectric thin film 3 interposed, and a connection electrode portion 422 for making an external electric connection. A cavity 23 is formed in the substrate 2 and the driven electrode portion 421 of the lower electrode 42 is disposed in the cavity 23 while exposed. An adjusting section 51 for oscillation frequency adjustment is provided in a portion of the driven electrode portion 421 of the lower electrode 42 where the adjusting section is exposed at least from the cavity 23. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、圧電薄膜デバイスに関する。   The present invention relates to a piezoelectric thin film device.

近年、無線通信や電気回路に用いられる周波数の高周波数化にともない、これらの電気振動に対して用いられる電子機器も高周波数化に対応したものが求められている。   In recent years, with the increase in frequency used for wireless communication and electric circuits, electronic devices used for these electric vibrations are also required to support higher frequencies.

例えば、電子機器のうち、バルク波振動を用いたFBAR(Film Bulk Acoustic Resonator)構造の圧電薄膜デバイス(圧電薄膜共振子)があり、この圧電薄膜デバイスでは圧電材料に圧電薄膜が用いられている(下記する特許文献1参照)。   For example, among electronic devices, there is a piezoelectric thin film device (piezoelectric thin film resonator) having an FBAR (Film Bulk Acoustic Resonator) structure using bulk wave vibration. In this piezoelectric thin film device, a piezoelectric thin film is used as a piezoelectric material ( See Patent Document 1 below).

特許文献1に記載された圧電薄膜共振子では、シリコンを材料とした基板の表面上にシリコン酸化膜が設けられ、このシリコン酸化膜上に、アルミニウムからなる下部電極と上部電極に挟まれた酸化亜鉛からなる圧電薄膜が設けられてなる。   In the piezoelectric thin film resonator described in Patent Document 1, a silicon oxide film is provided on the surface of a substrate made of silicon, and an oxide sandwiched between a lower electrode and an upper electrode made of aluminum is formed on the silicon oxide film. A piezoelectric thin film made of zinc is provided.

上記したように、特許文献1では、圧電薄膜として酸化亜鉛を用いており、圧電薄膜と基板との間に、絶縁材料からなるシリコン酸化膜が用いられている。
特公平1−31728号公報
As described above, in Patent Document 1, zinc oxide is used as the piezoelectric thin film, and a silicon oxide film made of an insulating material is used between the piezoelectric thin film and the substrate.
Japanese Patent Publication No. 1-31728

ところで、現在、圧電薄膜デバイスでは薄型化、すなわち低背化がすすめられている。そこで、上記した特許文献1に記載の圧電薄膜共振子の場合、シリコン酸化膜を構成から省いて低背化を図ることが考えられる。しかしながら、シリコンの基板が完全な絶縁材料ではないために圧電薄膜との間に絶縁材料のシリコン酸化膜を介在させる必要があり、このシリコン酸化膜を構成から省くことができない。   By the way, at present, thinning, that is, low profile is promoted in the piezoelectric thin film device. Therefore, in the case of the piezoelectric thin film resonator described in Patent Document 1, it is conceivable to reduce the height by omitting the silicon oxide film from the configuration. However, since the silicon substrate is not a perfect insulating material, it is necessary to interpose a silicon oxide film of an insulating material between the piezoelectric thin film, and this silicon oxide film cannot be omitted from the configuration.

そこで、上記課題を解決するために、本発明は、基板と圧電薄膜との間に絶縁部(絶縁膜や絶縁層など)を必須の構成として設けずに当該圧電薄膜デバイスの低背化を図る圧電薄膜デバイスを提供することを目的とする。   Therefore, in order to solve the above problems, the present invention aims to reduce the height of the piezoelectric thin film device without providing an insulating part (insulating film, insulating layer, etc.) as an essential component between the substrate and the piezoelectric thin film. An object is to provide a piezoelectric thin film device.

上記の目的を達成するため、本発明にかかる圧電薄膜デバイスは、基板と、前記基板上に形成された圧電薄膜と、前記基板上に形成されるとともに前記圧電薄膜の表裏面に対向して形成された一対の上電極および下電極とが積層状態で設けられ、前記下電極が前記基板と前記圧電薄膜との間に介在された圧電薄膜デバイスにおいて、前記上下電極は、それぞれ前記圧電薄膜を挟んで対向する励振電極部と、外部と電気的接続を行う接続電極部とから構成され、前記基板は絶縁性材料からなり、前記基板にキャビティが形成されるとともに前記キャビティ内で前記下電極の前記励振電極部が露出して配され、前記下電極の前記励振電極部のうち、少なくとも前記キャビティから露出される部位に、発振周波数調整を行う調整部が設けられたことを特徴とする。   In order to achieve the above object, a piezoelectric thin film device according to the present invention is formed on a substrate, a piezoelectric thin film formed on the substrate, and formed on the substrate and facing the front and back surfaces of the piezoelectric thin film. In the piezoelectric thin film device in which the paired upper and lower electrodes are provided in a stacked state, and the lower electrode is interposed between the substrate and the piezoelectric thin film, the upper and lower electrodes sandwich the piezoelectric thin film, respectively. The substrate is made of an insulating material, and a cavity is formed in the substrate and the lower electrode is formed in the cavity. The excitation electrode portion is disposed so as to be exposed, and at least a portion of the excitation electrode portion of the lower electrode that is exposed from the cavity is provided with an adjustment portion that performs oscillation frequency adjustment. And features.

本発明によれば、前記上下電極は前記励振電極部と前記接続電極部とから構成され、前記基板は絶縁性材料からなり、前記基板に形成された前記キャビティ内で前記下電極の前記励振電極部が露出して配され、前記下電極の前記励振電極部のうち、少なくとも前記キャビティから露出される部位に前記調整部が設けられるので、前記圧電薄膜及び前記上下電極と前記基板との間に絶縁材を設けなくてもよい。そのため、当該圧電薄膜デバイスの低背化を図ることが可能となる。特に、高周波化に対応させた当該圧電薄膜デバイスの設計を容易にする。   According to the present invention, the upper and lower electrodes are composed of the excitation electrode portion and the connection electrode portion, the substrate is made of an insulating material, and the excitation electrode of the lower electrode is formed in the cavity formed in the substrate. Since the adjustment portion is provided at least in a portion of the excitation electrode portion of the lower electrode exposed from the cavity, the piezoelectric thin film, the upper and lower electrodes, and the substrate are provided. It is not necessary to provide an insulating material. Therefore, it is possible to reduce the height of the piezoelectric thin film device. In particular, the design of the piezoelectric thin film device corresponding to high frequency is facilitated.

また、一般的なFBAR構造の圧電薄膜デバイスでは、予め設定した量の前記上下電極を形成して当該圧電薄膜デバイスの製造後の発振周波数の調整を行うことができないが、本発明によれば、前記上下電極は前記励振電極部と前記接続電極部とから構成され、前記基板は絶縁性材料からなり、前記基板に形成された前記キャビティ内で前記下電極の前記励振電極部が露出して配され、前記下電極の前記励振電極部のうち、少なくとも前記キャビティから露出される部位に前記調整部が設けられるので、当該圧電薄膜デバイスの製造後の発振周波数の調整を行うことが可能となる。具体的に、前記基板に前記上下電極を形成した後であっても発振周波数調整を行うことが可能となる。   Moreover, in a general FBAR structure piezoelectric thin film device, the upper and lower electrodes of a preset amount cannot be formed to adjust the oscillation frequency after manufacturing the piezoelectric thin film device. The upper and lower electrodes are composed of the excitation electrode portion and the connection electrode portion, the substrate is made of an insulating material, and the excitation electrode portion of the lower electrode is exposed in the cavity formed in the substrate. And since the said adjustment part is provided in the site | part exposed from the said cavity at least among the said excitation electrode parts of the said lower electrode, it becomes possible to adjust the oscillation frequency after manufacture of the said piezoelectric thin film device. Specifically, the oscillation frequency can be adjusted even after the upper and lower electrodes are formed on the substrate.

また、本発明と上記従来技術である特許文献1に示すような構成とを比較すると、本発明と異なり、特許文献1に示す構成では、下部電極がキャビティから露出していない。すなわち、特許文献1では、基板にキャビティが形成されているが、キャビティの底面部材が薄肉の基板からなる。そのため、特許文献1の構成によれば薄肉の基板の厚さによる発振周波数の低減を考慮しなければならない。また、特許文献1では、キャビティに発振周波数調整用の薄膜(周波数調整用膜)を設けて、発振周波数の調整を行なっているが、その周波数調整用膜の厚さは薄肉の基板の厚さを考慮して制限され、周波数調整用膜を用いた発振周波数の調整に幅をもたせることができない。これに対して、本発明では、前記調整部を前記励振電極部の一部として構成しているので、発振周波数の調整に用いる前記調整部の膜厚を制限することなく、発振周波数の調整に幅をもたせることが可能となる。   Further, when the present invention is compared with the configuration shown in Patent Document 1 as the prior art, unlike the present invention, in the configuration shown in Patent Document 1, the lower electrode is not exposed from the cavity. That is, in Patent Document 1, a cavity is formed in a substrate, but the bottom surface member of the cavity is made of a thin substrate. Therefore, according to the configuration of Patent Document 1, it is necessary to consider the reduction of the oscillation frequency due to the thickness of the thin substrate. In Patent Document 1, an oscillation frequency adjustment thin film (frequency adjustment film) is provided in the cavity to adjust the oscillation frequency. The thickness of the frequency adjustment film is the thickness of a thin substrate. Therefore, the adjustment of the oscillation frequency using the frequency adjusting film cannot be widened. On the other hand, in the present invention, since the adjustment unit is configured as a part of the excitation electrode unit, it is possible to adjust the oscillation frequency without limiting the film thickness of the adjustment unit used to adjust the oscillation frequency. It becomes possible to have a width.

前記構成において、さらに、前記キャビティに発振周波数調整を行う付加調整部が設けられてもよい。   The said structure WHEREIN: Furthermore, the additional adjustment part which adjusts an oscillation frequency may be provided in the said cavity.

この場合、前記キャビティに前記付加調整部が設けられるので、前記基板に前記上下電極を形成した後であっても発振周波数調整を行うことが可能となるだけでなく、前記調整部と併せてさらに発振周波数の調整に幅をもたせることが可能となる。   In this case, since the additional adjusting portion is provided in the cavity, not only can the oscillation frequency be adjusted even after the upper and lower electrodes are formed on the substrate, but further in combination with the adjusting portion. It is possible to provide a wide range of adjustment of the oscillation frequency.

前記構成において、前記基板は水晶からなり、前記下電極では前記励振電極部はモリブデンからなり前記接続電極部はクロムと金とが積層してなり、前記調整部は金からなり、前記圧電薄膜は窒化アルミニウムからなってもよい。   In the above configuration, the substrate is made of quartz, the excitation electrode portion is made of molybdenum, the connection electrode portion is made of chrome and gold, the adjustment portion is made of gold, and the piezoelectric thin film is made of the lower electrode. It may be made of aluminum nitride.

この場合、前記基板は前記下電極の材料と近い熱膨張係数を有しているので、熱膨張係数が異なることによる前記基板と前記接続電極部との接合不良を避けることが可能であるとともに、前記励振電極部と前記振動領域との接合強度を良好にすることが可能となる。また、前記下電極の励振電極部にミーリングされにくいモリブデンを用いているが、前記下電極の前記励振電極部のうち前記キャビティから露出される部位に前記調整部が設けられるので、前記励振電極部にモリブデンを用いた状態で、前記基板に前記下電極を形成した後であっても発振周波数調整を行うことが可能となる。   In this case, since the substrate has a thermal expansion coefficient close to that of the material of the lower electrode, it is possible to avoid a bonding failure between the substrate and the connection electrode portion due to a different thermal expansion coefficient, It is possible to improve the bonding strength between the excitation electrode portion and the vibration region. In addition, the excitation electrode portion of the lower electrode is made of molybdenum that is not easily milled, but the adjustment electrode is provided in a portion of the excitation electrode portion of the lower electrode that is exposed from the cavity. It is possible to adjust the oscillation frequency even after forming the lower electrode on the substrate in a state where molybdenum is used.

前記構成において、前記基板はZ板水晶(XY’カット)からなり、前記キャビティの側面がテーパー形成され、前記側面の傾斜角度が前記基板の主面に対して35度であってもよい。   In the above configuration, the substrate may be made of a Z plate crystal (XY ′ cut), the side surface of the cavity may be tapered, and the inclination angle of the side surface may be 35 degrees with respect to the main surface of the substrate.

この場合、前記キャビティの側面がテーパー形成され、前記側面の傾斜角度が前記基板の主面に対して約35度であるので、前記基板にシリコンを用いた場合と比較して前記キャビティで露出した前記励振電極を用いて発振周波数を調整するのに好適である。具体的に、ICチップなどに使われる一般的なシリコンは異方性材料であり、テーパー面の傾斜角度が約55度のSi(111)面とされる。そのため、シリコンでは、本願発明に示すようにテーパー面を寝かすことができずに、発振周波数の調整を行うことは難しい。また、前記キャビティの側面の傾斜角度が基板の面に対して35度であるので、薄型の前記基板を用いた場合であっても、前記基板と前記圧電薄膜との間に介在した前記下電極の前記励振電極部を前記キャビティから露出させることが可能となる。また、前記キャビティの側面の傾斜面を、前記基板の面に対して寝かせることで前記キャビティで露出した前記下電極の部位全体に対して均一に物理的なミーリングや反応ガスを用いた(化学的処理も付加した)エッチングなどによる発振周波数調整を行うことが可能となる。その結果、当該圧電薄膜デバイスの縦振動が生じる前記励振電極部のそれぞれの部位で質量や密度が異なることによって複数の周波数が生じるのを抑制することが可能となる。特に、近年開発がすすんでいる高周波数域では前記上下電極(特に前記励振電極部)の厚みが相対的に薄くなっているが、本構成によれば前記励振電極部(前記調整部)全体に対して均一に、ミーリングや反応ガスを用いたエッチングなどによる発振周波数調整を行うので、薄型の前記下電極に対しても有効に用いることが可能となる。また、発振周波数調整後の層厚の不均一による圧電振動デバイスの特性変動も抑制することが可能となる。   In this case, since the side surface of the cavity is tapered and the inclination angle of the side surface is about 35 degrees with respect to the main surface of the substrate, it is exposed in the cavity as compared with the case where silicon is used for the substrate. It is suitable for adjusting the oscillation frequency using the excitation electrode. Specifically, general silicon used for an IC chip or the like is an anisotropic material, and a Si (111) surface having a taper surface with an inclination angle of about 55 degrees. Therefore, with silicon, it is difficult to adjust the oscillation frequency without laying down the tapered surface as shown in the present invention. In addition, since the inclination angle of the side surface of the cavity is 35 degrees with respect to the surface of the substrate, the lower electrode interposed between the substrate and the piezoelectric thin film even when the thin substrate is used. It is possible to expose the excitation electrode portion of the cavity from the cavity. Further, the physical surface of the lower electrode exposed by the cavity is uniformly applied to the entire surface of the lower electrode by laying the inclined surface of the side surface of the cavity with respect to the surface of the substrate (chemically). It is possible to adjust the oscillation frequency by etching or the like (with processing added). As a result, it is possible to suppress the generation of a plurality of frequencies due to the difference in mass and density at each portion of the excitation electrode portion where longitudinal vibration of the piezoelectric thin film device occurs. In particular, the upper and lower electrodes (especially the excitation electrode part) are relatively thin in the high frequency region that has been developed recently, but according to this configuration, the entire excitation electrode part (adjustment part) On the other hand, since the oscillation frequency is adjusted uniformly by milling or etching using a reactive gas, it can be effectively used for the thin lower electrode. In addition, it is possible to suppress fluctuations in the characteristics of the piezoelectric vibrating device due to non-uniform layer thickness after adjusting the oscillation frequency.

本発明によれば、基板と圧電薄膜との間に絶縁部を必須の構成として設けずに当該圧電薄膜デバイスの低背化を図ることが可能となる。   According to the present invention, it is possible to reduce the height of the piezoelectric thin film device without providing an insulating portion as an essential component between the substrate and the piezoelectric thin film.

以下、本発明の実施の形態について図面を参照して説明する。なお、以下に示す実施例では、圧電薄膜デバイスとして圧電薄膜共振子に本発明を適用した場合を示す。   Embodiments of the present invention will be described below with reference to the drawings. In the following examples, the present invention is applied to a piezoelectric thin film resonator as a piezoelectric thin film device.

本実施例にかかる圧電薄膜共振子1は、図1,13に示すように、FBAR構造からなり、基板2と、基板2上に形成された圧電薄膜3と、基板2上に形成されるとともに圧電薄膜3の表裏面31,32に対向して形成された一対の上電極41および下電極42とが設けられている。この圧電薄膜共振子1は、基板2と下電極42と圧電薄膜3と上電極41とが積層状態で構成され、下電極42が基板2と圧電薄膜3との間に介在されている。   The piezoelectric thin film resonator 1 according to the present embodiment has an FBAR structure as shown in FIGS. 1 and 13 and is formed on the substrate 2, the piezoelectric thin film 3 formed on the substrate 2, and the substrate 2. A pair of an upper electrode 41 and a lower electrode 42 formed to face the front and back surfaces 31 and 32 of the piezoelectric thin film 3 are provided. In the piezoelectric thin film resonator 1, a substrate 2, a lower electrode 42, a piezoelectric thin film 3, and an upper electrode 41 are laminated, and the lower electrode 42 is interposed between the substrate 2 and the piezoelectric thin film 3.

上電極41は、下電極42と圧電薄膜3を挟んで対向する励振電極部411と、外部と電気的接続を行う接続電極部412とから構成されている。この上電極41の励振電極部411は円形状であり、図1に示すように、下記するキャビティ23の閉口端面26に対応する位置に配されている。なお、上電極41のうち励振電極部411はモリブデンからなり、接続電極部412はモリブデンからなる電極と、クロムと金とが積層してなる電極とから構成される。また、上電極41の厚さは例えば200nmであるが、この厚さは発振周波数等の所望の特性によって調整される。   The upper electrode 41 includes an excitation electrode portion 411 that is opposed to the lower electrode 42 with the piezoelectric thin film 3 interposed therebetween, and a connection electrode portion 412 that is electrically connected to the outside. The excitation electrode portion 411 of the upper electrode 41 has a circular shape, and is arranged at a position corresponding to a closed end face 26 of the cavity 23 described below, as shown in FIG. Of the upper electrode 41, the excitation electrode portion 411 is made of molybdenum, and the connection electrode portion 412 is made of an electrode made of molybdenum and an electrode formed by laminating chromium and gold. The thickness of the upper electrode 41 is, for example, 200 nm, and this thickness is adjusted according to desired characteristics such as the oscillation frequency.

下電極42は、上電極41と圧電薄膜3を挟んで対向する励振電極部421と、外部と電気的接続を行う接続電極部422とから構成されている。この下電極42では、励振電極部421と接続電極部422とのそれぞれ一部が重なって形成され、キャビティ23内で励振電極部421が露出して配されている。この励振電極部421のうち少なくともキャビティ23から露出される部位に、発振周波数調整を行う調整部51が設けられている。なお、接続電極部422の一部と調整部51とが同一材料からなり、励振電極部421と接続電極部422の一部との材料が異なる。具体的に、励振電極部421はモリブデンからなり、接続電極部422はモリブデンからなる電極と、クロムと金とが積層してなる電極とから構成され、調整部51はクロムと金とが積層してなる。ここでいう接続電極部422の一部とはクロムと金とが積層してなる電極のことをいう。さらに、この下電極42の励振電極部421は、図1,13に示すように、上記した上電極41の励振電極部411よりも大きな寸法(平面視の寸法)を有する矩形状からなる。また、励振電極部421の厚さは例えば200nmであるが、この厚さは発振周波数等の所望の特性によって調整される。なお、モリブデンからなる電極に対して、クロムと金とが積層してなる電極のエッチングレートは、高い。   The lower electrode 42 includes an excitation electrode portion 421 that is opposed to the upper electrode 41 with the piezoelectric thin film 3 interposed therebetween, and a connection electrode portion 422 that is electrically connected to the outside. In the lower electrode 42, the excitation electrode portion 421 and the connection electrode portion 422 are partially overlapped, and the excitation electrode portion 421 is disposed in the cavity 23 so as to be exposed. An adjustment portion 51 that adjusts the oscillation frequency is provided at least in a portion of the excitation electrode portion 421 that is exposed from the cavity 23. Note that a part of the connection electrode part 422 and the adjustment part 51 are made of the same material, and the materials of the excitation electrode part 421 and a part of the connection electrode part 422 are different. Specifically, the excitation electrode part 421 is made of molybdenum, the connection electrode part 422 is made of an electrode made of molybdenum and an electrode made by laminating chromium and gold, and the adjusting part 51 is made of laminating chromium and gold. It becomes. The part of the connection electrode portion 422 here refers to an electrode formed by laminating chromium and gold. Further, as shown in FIGS. 1 and 13, the excitation electrode portion 421 of the lower electrode 42 has a rectangular shape having a size (dimension in plan view) larger than the excitation electrode portion 411 of the upper electrode 41 described above. Further, the thickness of the excitation electrode portion 421 is, for example, 200 nm, and this thickness is adjusted by desired characteristics such as an oscillation frequency. Note that the etching rate of an electrode formed by stacking chromium and gold is higher than that of an electrode made of molybdenum.

圧電薄膜3は、窒化アルミニウムからなる。この圧電薄膜3は、その表裏面31,32に対向して形成された上下電極41,42間の振動領域33と、それ以外の他領域34とから構成されている。なお、この圧電薄膜3の振動領域の厚さは2μmであり、この厚さは発振周波数等の所望の特性によって調整される。   The piezoelectric thin film 3 is made of aluminum nitride. The piezoelectric thin film 3 includes a vibration region 33 between the upper and lower electrodes 41 and 42 formed to face the front and back surfaces 31 and 32 and another region 34 other than the vibration region 33. The thickness of the vibration region of the piezoelectric thin film 3 is 2 μm, and this thickness is adjusted by desired characteristics such as the oscillation frequency.

基板2は、絶縁性材料であるZ板水晶からなり、その最大厚さは、80μmである。この基板2の両主面21,22は鏡面加工され、基板2を成形した時の表面粗さを抑えている。なお、ここでいうZ板水晶とは、水晶の結晶軸のZ軸に垂直なX−Y面からなる水晶板のことをいい、本実施例ではX軸回りに+1〜2度回転したZ板水晶を用いている。また、ここでいう鏡面加工時の表面粗さとは、例えば表面粗さ10点平均法で1〜3μmのもののことをいう。鏡面加工することにより、基板2上に形成される上電極41および下電極42の表面状態を良好にし、ひいては良好な特性の圧電薄膜3を得ることができるので好ましい。また、この基板2には、キャビティ23が形成され、キャビティ23に対応して下電極42の励振電極部421が配され、キャビティ23内で調整部51が露出して配されている。また、キャビティ23の側面24はテーパー形成され、側面24の傾斜角度が基板2の面に対して約35度傾いて構成される。この傾斜角度は、エッチングによりキャビティ23を形成した場合、Z板水晶のX軸回りの回転角度に依存するので、35度前後の値に設定されることがある。また、キャビティ23の開口端面25および閉口端面26は円形状または略三角形状に形成されている。   The substrate 2 is made of a Z plate crystal that is an insulating material, and its maximum thickness is 80 μm. Both main surfaces 21 and 22 of the substrate 2 are mirror-finished to suppress the surface roughness when the substrate 2 is molded. Here, the Z plate crystal means a crystal plate composed of an XY plane perpendicular to the Z axis of the crystal axis of the crystal, and in this embodiment, a Z plate rotated by +1 to 2 degrees around the X axis. Crystal is used. Moreover, the surface roughness at the time of mirror surface processing here means the thing of 1-3 micrometers by the surface roughness 10 point average method, for example. The mirror finishing is preferable because the surface state of the upper electrode 41 and the lower electrode 42 formed on the substrate 2 can be improved, and the piezoelectric thin film 3 having good characteristics can be obtained. Further, a cavity 23 is formed in the substrate 2, and an excitation electrode portion 421 of the lower electrode 42 is disposed corresponding to the cavity 23, and the adjustment portion 51 is disposed in the cavity 23 so as to be exposed. Further, the side surface 24 of the cavity 23 is tapered, and the inclination angle of the side surface 24 is inclined by about 35 degrees with respect to the surface of the substrate 2. When the cavity 23 is formed by etching, this inclination angle depends on the rotation angle around the X axis of the Z-plate crystal and may be set to a value around 35 degrees. The open end face 25 and the closed end face 26 of the cavity 23 are formed in a circular shape or a substantially triangular shape.

次に、上記した本実施例にかかる圧電薄膜共振子1の製造工程について、図面(図1〜13)を用いて説明する。   Next, the manufacturing process of the piezoelectric thin film resonator 1 according to this embodiment will be described with reference to the drawings (FIGS. 1 to 13).

まず、図示しない水晶インゴットから図示しない水晶ウエハを複数枚成形する。水晶インゴットから成形した水晶ウエハの両主面をポリッシュして研磨し、その後に洗浄して水晶ウエハの両主面を平坦にする。この水晶ウエハの平坦な両主面にクロムを形成し、その上層に金を積層して、クロムと金からなる金属層(以下、Cr−Au金属層61(図2参照))を形成する。このCr−Au金属層61に対して、レジスト(図示省略)を塗布して露光現像を行ない、基板2の外形パターン及びキャビティ23のパターンを形成して、Cr−Au金属層61を所定のパターン形状にメタルエッチングする。そして、レジストを剥離して、図2に示すように基板2にキャビティ23をエッチング成形する。   First, a plurality of crystal wafers (not shown) are formed from a crystal ingot (not shown). Both main surfaces of the crystal wafer molded from the crystal ingot are polished and polished, and then cleaned to flatten both main surfaces of the crystal wafer. Chromium is formed on both flat main surfaces of the quartz wafer, and gold is laminated on the upper surface to form a metal layer made of chromium and gold (hereinafter referred to as Cr—Au metal layer 61 (see FIG. 2)). The Cr—Au metal layer 61 is coated with a resist (not shown), exposed and developed to form the outer pattern of the substrate 2 and the pattern of the cavity 23, and the Cr—Au metal layer 61 is formed into a predetermined pattern. Metal etch into shape. Then, the resist is peeled off, and the cavity 23 is etched in the substrate 2 as shown in FIG.

図2に示すようにキャビティ23を形成した後に、基板2の表面側の主面21に形成したCr−Au金属層61上に、レジスト64を塗布する(図3参照)。そして、塗布したレジスト64に対して露光現像を行ない、上下電極41,42の接続電極部411,422の一部の電極および調整部51のパターンを形成し(図4参照)、Cr−Au金属層61を所定のパターン形状にメタルエッチングする(図5参照)。そして、Cr−Au金属層61をメタルエッチングした後に、図6に示すようにレジスト64を剥離して上下電極41,42の接続電極部411,422の一部の電極および調整部51を成形する。   After forming the cavity 23 as shown in FIG. 2, a resist 64 is applied on the Cr—Au metal layer 61 formed on the main surface 21 on the surface side of the substrate 2 (see FIG. 3). Then, the applied resist 64 is exposed and developed to form a part of the electrodes of the connection electrode portions 411 and 422 of the upper and lower electrodes 41 and 42 and the pattern of the adjustment portion 51 (see FIG. 4), and Cr—Au metal The layer 61 is metal etched into a predetermined pattern shape (see FIG. 5). Then, after the Cr—Au metal layer 61 is subjected to metal etching, the resist 64 is peeled off as shown in FIG. 6 to form part of the connection electrode portions 411 and 422 of the upper and lower electrodes 41 and 42 and the adjustment portion 51. .

図6に示すよう状態の基板2に対して、図7に示すように、モリブデンからなる金属層(以下、Mo金属層62)を積層する。そして、基板2の表面側の主面21に形成したMo金属層62上に、レジスト64を塗布する(図8参照)。そして、塗布したレジスト64に対して露光現像を行ない、下電極42の励振電極部421および接続電極部422の残りの電極のパターンを形成し(図9参照)、Mo金属層62を所定のパターン形状にメタルエッチングする(図10参照)。そして、Mo金属層62をメタルエッチングした後に、図11に示すようにレジスト64を剥離して下電極42の励振電極部421および接続電極部422の残りの電極を成形して下電極42を成形する。   As shown in FIG. 7, a metal layer made of molybdenum (hereinafter referred to as Mo metal layer 62) is laminated on the substrate 2 in the state shown in FIG. And the resist 64 is apply | coated on the Mo metal layer 62 formed in the main surface 21 at the surface side of the board | substrate 2 (refer FIG. 8). Then, the applied resist 64 is exposed and developed to form the pattern of the excitation electrodes 421 of the lower electrode 42 and the remaining electrodes of the connection electrode 422 (see FIG. 9), and the Mo metal layer 62 is formed into a predetermined pattern. Metal etching is performed to the shape (see FIG. 10). Then, after metal etching of the Mo metal layer 62, the resist 64 is peeled off as shown in FIG. 11, and the excitation electrode portion 421 of the lower electrode 42 and the remaining electrodes of the connection electrode portion 422 are formed to form the lower electrode 42. To do.

図11に示すよう状態の基板2に対して、窒化アルミニウムからなるAlN層63を積層する。そして、基板2の表面側の主面21に形成したAlN層63上に、レジスト(図示省略)を塗布し、塗布したレジストに対して露光現像を行ない、圧電薄膜3の外形パターンを形成し、AlN層63を所定のパターン形状にメタルエッチングする。そして、AlN層63をメタルエッチングした後に、レジストを剥離して図12に示すように圧電薄膜3を成形する。   An AlN layer 63 made of aluminum nitride is stacked on the substrate 2 in the state shown in FIG. Then, a resist (not shown) is applied on the AlN layer 63 formed on the main surface 21 on the surface side of the substrate 2, and the applied resist is exposed and developed to form an outer pattern of the piezoelectric thin film 3. The AlN layer 63 is metal etched into a predetermined pattern shape. Then, after the AlN layer 63 is metal etched, the resist is peeled off to form the piezoelectric thin film 3 as shown in FIG.

図12に示すよう状態の基板2に対して、モリブデンからなる金属層(以下、Mo金属層62)を積層する。そして、基板2の表面側の主面21に形成したMo金属層62上に、レジスト(図示省略)を塗布する。そして、塗布したレジストに対して露光現像を行ない、上電極41の励振電極部411および接続電極部412の残りの電極のパターンを形成し、Mo金属層62を所定のパターン形状にメタルエッチングする。そして、Mo金属層62をメタルエッチングした後に、レジストを剥離し、図13に示すように上電極41の励振電極部411および接続電極部412の残りの電極を成形して上電極41を成形し、圧電薄膜共振子1を得る。   A metal layer made of molybdenum (hereinafter, Mo metal layer 62) is laminated on the substrate 2 in the state shown in FIG. Then, a resist (not shown) is applied on the Mo metal layer 62 formed on the main surface 21 on the surface side of the substrate 2. Then, the applied resist is exposed and developed to form the pattern of the excitation electrode portion 411 of the upper electrode 41 and the remaining electrode of the connection electrode portion 412, and the Mo metal layer 62 is metal etched into a predetermined pattern shape. Then, after the metal etching of the Mo metal layer 62, the resist is peeled off, and the upper electrode 41 is formed by forming the excitation electrode portion 411 of the upper electrode 41 and the remaining electrode of the connection electrode portion 412 as shown in FIG. The piezoelectric thin film resonator 1 is obtained.

上記した本実施例にかかる圧電薄膜共振子1によれば、上下電極41,42は励振電極部411,421と接続電極部412,422とから構成され、基板2は絶縁性材料からなり、基板2に形成されたキャビティ23内で下電極42の励振電極部421が露出して配され、下電極42の励振電極部421のうち、少なくともキャビティ23から露出される部位に調整部51が設けられるので、圧電薄膜3及び上下電極41,42と基板2との間に絶縁材を設けなくてもよい。そのため、圧電薄膜共振子1の低背化を図ることができる。特に、高周波化に対応させた圧電薄膜共振子1の設計を容易にする。   According to the above-described piezoelectric thin film resonator 1 according to the present embodiment, the upper and lower electrodes 41 and 42 are constituted by the excitation electrode portions 411 and 421 and the connection electrode portions 412 and 422, and the substrate 2 is made of an insulating material. 2, the excitation electrode portion 421 of the lower electrode 42 is disposed so as to be exposed, and the adjustment portion 51 is provided at least in a portion exposed from the cavity 23 in the excitation electrode portion 421 of the lower electrode 42. Therefore, it is not necessary to provide an insulating material between the piezoelectric thin film 3 and the upper and lower electrodes 41 and 42 and the substrate 2. Therefore, the piezoelectric thin film resonator 1 can be reduced in height. In particular, the design of the piezoelectric thin film resonator 1 corresponding to high frequency is facilitated.

また、一般的なFBAR構造の圧電薄膜デバイスでは、予め設定した量の上下電極を形成して圧電薄膜デバイスの製造後の発振周波数の調整を行うことができないが、本実施例によれば、上下電極41,42は励振電極部411,421と接続電極部412,422とから構成され、基板2は絶縁性材料からなり、基板2に形成されたキャビティ23内で下電極42の励振電極部421が露出して配され、下電極42の励振電極部421のうち、少なくともキャビティ23から露出される部位に調整部51が設けられるので、圧電薄膜共振子1の製造後の発振周波数の調整を行うことができる。具体的に、基板2に上下電極41,42を形成した後であっても発振周波数調整を行うことができる。   In addition, in a general FBAR structure piezoelectric thin film device, it is not possible to adjust the oscillation frequency after manufacturing the piezoelectric thin film device by forming a predetermined amount of upper and lower electrodes. The electrodes 41 and 42 are composed of excitation electrode portions 411 and 421 and connection electrode portions 412 and 422, and the substrate 2 is made of an insulating material, and the excitation electrode portion 421 of the lower electrode 42 in the cavity 23 formed in the substrate 2. Is provided, and the adjustment portion 51 is provided at least in the portion of the excitation electrode portion 421 of the lower electrode 42 that is exposed from the cavity 23. Therefore, the oscillation frequency after the manufacture of the piezoelectric thin film resonator 1 is adjusted. be able to. Specifically, the oscillation frequency can be adjusted even after the upper and lower electrodes 41 and 42 are formed on the substrate 2.

また、本実施例と上記の特許文献1に示すような従来の構成とを比較すると、本実施例と異なり、特許文献1に示す構成では、下部電極がキャビティから露出していない。すなわち、特許文献1では、基板にキャビティが形成されているが、キャビティの底面部材が薄肉の基板からなる。そのため、特許文献1の構成によれば薄肉の基板の厚さによる発振周波数の低減を考慮しなければならない。また、特許文献1では、キャビティに発振周波数調整用の薄膜(周波数調整用膜)を設けて、発振周波数の調整を行なっているが、その周波数調整用膜の厚さは薄肉の基板の厚さを考慮して制限され、周波数調整用膜を用いた発振周波数の調整に幅をもたせることができない。これに対して、本実施例によれば、調整部51を励振電極部421の一部として構成しているので、発振周波数の調整に用いる調整部51の膜厚を制限することなく、発振周波数の調整に幅をもたせることができる。   Further, when this example is compared with the conventional configuration as shown in Patent Document 1, in the configuration shown in Patent Document 1, the lower electrode is not exposed from the cavity. That is, in Patent Document 1, a cavity is formed in a substrate, but the bottom surface member of the cavity is made of a thin substrate. Therefore, according to the configuration of Patent Document 1, it is necessary to consider the reduction of the oscillation frequency due to the thickness of the thin substrate. In Patent Document 1, an oscillation frequency adjustment thin film (frequency adjustment film) is provided in the cavity to adjust the oscillation frequency. The thickness of the frequency adjustment film is the thickness of a thin substrate. Therefore, the adjustment of the oscillation frequency using the frequency adjusting film cannot be widened. On the other hand, according to the present embodiment, since the adjustment unit 51 is configured as a part of the excitation electrode unit 421, the oscillation frequency is not limited without limiting the film thickness of the adjustment unit 51 used to adjust the oscillation frequency. The width of the adjustment can be increased.

また、従前の圧電薄膜共振子のうち、本実施例の圧電薄膜3の他領域34を有していない圧電薄膜共振子の場合、圧電薄膜共振子の低背化にともない上下電極の間の距離が非常に近くになり上下電極が繋がってショートが起こり易くなる。しかしながら、本実施例によれば、圧電薄膜3の他領域34により上下電極41,42間のショートを回避することができる。   In the case of the piezoelectric thin film resonator that does not have the other region 34 of the piezoelectric thin film 3 of the present embodiment among the conventional piezoelectric thin film resonators, the distance between the upper and lower electrodes with the reduction in the height of the piezoelectric thin film resonator. Becomes very close and the upper and lower electrodes are connected to each other, so that a short circuit is likely to occur. However, according to this embodiment, a short circuit between the upper and lower electrodes 41 and 42 can be avoided by the other region 34 of the piezoelectric thin film 3.

上記したことから、本実施例にかかる圧電薄膜共振子1によれば、Q値を高い状態で保ちながらスプリアスを抑制することができ、さらに、DLD特性の問題を発生し難くすることができる。   From the above, according to the piezoelectric thin film resonator 1 according to the present example, spurious can be suppressed while maintaining a high Q value, and further, the problem of the DLD characteristic can be made difficult to occur.

また、基板2は下電極42の材料と近い熱膨張係数を有しているので、熱膨張係数が異なることによる基板2と接続電極部422との接合不良を避けることができるとともに、励振電極部421と振動領域33の接合強度を良好にすることができる。また、下電極42の励振電極部421にミーリングされにくいモリブデンを用いているが、下電極42の励振電極部421のうちキャビティ23から露出される部位に調整部51が設けられるので、励振電極部421にモリブデンを用いた状態で、基板2に下電極42を形成した後であっても発振周波数調整を行うことができる。   In addition, since the substrate 2 has a thermal expansion coefficient close to that of the material of the lower electrode 42, it is possible to avoid a bonding failure between the substrate 2 and the connection electrode portion 422 due to a difference in the thermal expansion coefficient, and the excitation electrode portion. The bonding strength between 421 and the vibration region 33 can be improved. Further, although molybdenum that is difficult to be milled is used for the excitation electrode portion 421 of the lower electrode 42, the adjustment portion 51 is provided in a portion of the excitation electrode portion 421 of the lower electrode 42 that is exposed from the cavity 23. The oscillation frequency can be adjusted even after the lower electrode 42 is formed on the substrate 2 in the state where molybdenum is used for 421.

また、キャビティ23の側面がテーパー形成され、側面の傾斜角度が基板2の面に対して約35度であるので、基板2にシリコンを用いた場合と比較してキャビティ23で露出した励振電極を用いて発振周波数を調整するのに好適である。具体的に、ICチップなどに使われる一般的なシリコンは異方性材料であり、テーパー面の傾斜角度が約55度のSi(111)面とされる。そのため、シリコンでは、本実施例に示すようにテーパー面を寝かすことができずに、発振周波数の調整を行うことは難しい。また、キャビティ23の側面24の傾斜角度が基板2の面に対して35度であるので、薄型の基板2を用いた場合であっても、基板2と圧電薄膜3との間に介在した下電極42の励振電極部421をキャビティ23から露出することができる。また、キャビティ23の側面の傾斜面を、基板2の面に対して寝かせることでキャビティ23で露出した下電極42の部位全体に対して均一に、物理的なミーリングや反応ガスを用いた(化学的処理も付加した)エッチングなどによる発振周波数調整を行うことができる。その結果、圧電薄膜共振子1の縦振動が生じる励振電極部421のそれぞれの部位で質量や密度が異なることによって複数の周波数が生じるのを抑制することができる。特に、近年開発がすすんでいる高周波数域では上下電極41,42(特に励振電極部411,421)の厚みが相対的に薄くなっているが、本構成によれば励振電極部421(調整部51)全体に対して均一に、ミーリングや反応ガスを用いたエッチングなどによる発振周波数調整を行うので、薄型の下電極42に対しても有効に用いることが可能となる。また、発振周波数調整後の層厚の不均一による圧電振動共振子1の特性変動も抑制することができる。   Further, since the side surface of the cavity 23 is tapered and the inclination angle of the side surface is about 35 degrees with respect to the surface of the substrate 2, the excitation electrode exposed in the cavity 23 is compared with the case where silicon is used for the substrate 2. And is suitable for adjusting the oscillation frequency. Specifically, general silicon used for an IC chip or the like is an anisotropic material, and a Si (111) surface having a taper surface with an inclination angle of about 55 degrees. Therefore, with silicon, it is difficult to adjust the oscillation frequency without laying down the tapered surface as shown in the present embodiment. In addition, since the inclination angle of the side surface 24 of the cavity 23 is 35 degrees with respect to the surface of the substrate 2, even when the thin substrate 2 is used, the lower surface interposed between the substrate 2 and the piezoelectric thin film 3 is used. The excitation electrode portion 421 of the electrode 42 can be exposed from the cavity 23. Also, physical milling and reaction gas were used uniformly over the entire portion of the lower electrode 42 exposed by the cavity 23 by laying the inclined surface of the side surface of the cavity 23 against the surface of the substrate 2 (chemical) Oscillation frequency can be adjusted by etching or the like. As a result, it is possible to suppress the generation of a plurality of frequencies due to the difference in mass and density at each portion of the excitation electrode portion 421 where longitudinal vibration of the piezoelectric thin film resonator 1 occurs. In particular, the upper and lower electrodes 41 and 42 (especially the excitation electrode portions 411 and 421) are relatively thin in the high frequency region that has been developed recently, but according to this configuration, the excitation electrode portion 421 (adjustment portion) 51) Since the oscillation frequency is adjusted uniformly by milling, etching using a reactive gas, or the like, the thin lower electrode 42 can be used effectively. In addition, fluctuations in characteristics of the piezoelectric resonator 1 due to non-uniform layer thickness after adjustment of the oscillation frequency can be suppressed.

なお、本実施例では、キャビティ23の開口端面25および閉口端面26は円形状に形成されているが、これに限定されるものではなく、基板2にZ板水晶を用いているので、キャビティ23の閉口端面26が三角形状に形成されてもよい。なお、ここでいう三角形状の各辺は湾曲しても構わない。また、キャビティ23の閉口端面26が三角形状に形成された場合、キャビティ23の閉口端面26の形状に合わせて上電極41の励振電極部411の形状を三角形状としてもよい。   In this embodiment, the open end face 25 and the closed end face 26 of the cavity 23 are formed in a circular shape. However, the present invention is not limited to this, and a Z-plate crystal is used for the substrate 2. The closed end face 26 may be formed in a triangular shape. Note that the triangular sides referred to here may be curved. When the closed end face 26 of the cavity 23 is formed in a triangular shape, the shape of the excitation electrode portion 411 of the upper electrode 41 may be triangular according to the shape of the closed end face 26 of the cavity 23.

また、本実施例では、下電極42の励振電極部421及び上電極41にモリブデンを用いているが、これは好適な例でありこれに限定されるものではなく、例えば、アルミニウムやチタンや金や白金やタングステンであってもよい。また上下電極41,42の接続電極411,421の一部にモリブデン下地に金を形成した構成を採用してもよい。   In this embodiment, molybdenum is used for the excitation electrode portion 421 and the upper electrode 41 of the lower electrode 42. However, this is a preferred example and is not limited to this. For example, aluminum, titanium or gold Or platinum or tungsten. Moreover, you may employ | adopt the structure which formed gold | metal | money on the molybdenum base in a part of connection electrode 411,421 of the upper and lower electrodes 41,42.

また、本実施例では、圧電薄膜3に窒化アルミニウムを用いているが、これは好適な例でありこれに限定されるものではなく、例えば、酸化亜鉛であってもよい。   Further, in this embodiment, aluminum nitride is used for the piezoelectric thin film 3, but this is a preferred example and is not limited to this. For example, zinc oxide may be used.

また、本実施例では、基板2にX軸回りに+1〜2度回転したZ板水晶を用いているがこの回転角度はこれに限定されるものではなく、例えばX軸回りに回転しないZ板水晶や、2度以上回転したZ板水晶を用いる等用途に合わせて任意に設定されるものである。   In this embodiment, a Z plate crystal rotated by +1 to 2 degrees around the X axis is used as the substrate 2, but this rotation angle is not limited to this, for example, a Z plate that does not rotate around the X axis It is arbitrarily set according to the use such as using a crystal or a Z-plate crystal rotated by 2 degrees or more.

また、本実施例では、振動領域33の厚みと他領域34の厚みとを同じ厚さに設定しているが、これに限定されるものではなく、例えば、図14に示すように、振動領域33の厚みに対して他領域34の厚みが1/2以下の厚さに設定されてもよい。なお、図14に示す例では、この圧電薄膜3の振動領域33の厚さは2μmであり、他領域34の厚さは1μmであり、これらの厚さは発振周波数等の所望の特性によって調整される。この場合、振動エネルギーの漏洩を抑制して上下電極41,42に挟まれた圧電薄膜3の縦振動を行うことができる。なお、本実施例における他領域34n厚さは1μmより薄くなることが好ましく、薄くなればなるほど、振動エネルギー漏れ(圧電漏洩波)が少なくなり、圧電振動共振子1の不要振動が抑制され周波数特性の特性が向上する。   In the present embodiment, the thickness of the vibration region 33 and the thickness of the other region 34 are set to the same thickness, but the present invention is not limited to this. For example, as shown in FIG. The thickness of the other region 34 may be set to 1/2 or less of the thickness of 33. In the example shown in FIG. 14, the thickness of the vibration region 33 of the piezoelectric thin film 3 is 2 μm, and the thickness of the other region 34 is 1 μm. These thicknesses are adjusted according to desired characteristics such as the oscillation frequency. Is done. In this case, longitudinal vibration of the piezoelectric thin film 3 sandwiched between the upper and lower electrodes 41 and 42 can be performed while suppressing leakage of vibration energy. The thickness of the other region 34n in this embodiment is preferably thinner than 1 μm. The thinner the thickness, the smaller the vibration energy leakage (piezoelectric leakage wave), and the unnecessary vibration of the piezoelectric vibration resonator 1 is suppressed. Improved characteristics.

また、本実施例では、下電極42の構成として調整部51が設けられているが、これに限定されるものではなく、新たに圧電薄膜共振子1のキャビティ23に発振周波数調整を行う付加調整部52が設けられてもよい。すなわち、圧電薄膜共振子1に付加調整部52が付加されてもよい。この図15に示す付加調整部52は、金からなり、下電極42の励振電極部421と電気的に接続されている。このように、キャビティ23にさらに付加調整部52を設けることで、基板2に上下電極41,42を形成した後であっても発振周波数調整を行うことができるだけでなく、調整部51と併せてさらに発振周波数の調整に幅をもたせることができる。   In the present embodiment, the adjustment unit 51 is provided as a configuration of the lower electrode 42, but is not limited to this, and additional adjustment for newly adjusting the oscillation frequency to the cavity 23 of the piezoelectric thin film resonator 1 is performed. A part 52 may be provided. That is, the addition adjusting unit 52 may be added to the piezoelectric thin film resonator 1. The additional adjustment unit 52 shown in FIG. 15 is made of gold and is electrically connected to the excitation electrode unit 421 of the lower electrode 42. Thus, by providing the additional adjustment portion 52 in the cavity 23, not only can the oscillation frequency be adjusted even after the upper and lower electrodes 41, 42 are formed on the substrate 2, but also together with the adjustment portion 51. Further, it is possible to provide a wide range for adjusting the oscillation frequency.

また、本実施例では、下電極42のうちモリブデンからなる電極と、クロムと金とが積層してなる電極との一部が重なって形成されている。この構成は、本実施例に限定されるものではなく、異なる材料が重なって形成されていれば、下電極42のうち励振電極部421と接続電極部422との材料を異ならせて、これら励振電極部421と接続電極部422との一部が重なって形成されてもよい。すなわち、励振電極部421で必要とする材料(本実施例ではMo金属層62)と、接続電極部422で必要とする材料(本実施例ではCr−Au金属層61)とが重なって形成されていればよい。   Further, in this embodiment, the lower electrode 42 is formed by overlapping a part of the electrode made of molybdenum and the electrode formed by laminating chromium and gold. This configuration is not limited to the present embodiment, and if different materials are formed to overlap, the excitation electrode portion 421 and the connection electrode portion 422 of the lower electrode 42 are made of different materials, and these excitations are made. A part of the electrode part 421 and the connection electrode part 422 may overlap each other. That is, the material required for the excitation electrode portion 421 (Mo metal layer 62 in this embodiment) and the material required for the connection electrode portion 422 (Cr—Au metal layer 61 in this embodiment) overlap each other. It only has to be.

なお、本発明は、その精神や主旨または主要な特徴から逸脱することなく、他のいろいろな形で実施することができる。そのため、上述の実施例はあらゆる点で単なる例示にすぎず、限定的に解釈してはならない。本発明の範囲は特許請求の範囲によって示すものであって、明細書本文には、なんら拘束されない。さらに、特許請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。   It should be noted that the present invention can be implemented in various other forms without departing from the spirit, gist, or main features. For this reason, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner. The scope of the present invention is indicated by the claims, and is not restricted by the text of the specification. Further, all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.

基板に水晶を用いた圧電薄膜デバイスに利用可能である。   It can be used for a piezoelectric thin film device using quartz as a substrate.

図1は、本実施例にかかる圧電薄膜共振子の概略平面図である。FIG. 1 is a schematic plan view of a piezoelectric thin film resonator according to this example. 図2は、本実施例にかかる圧電薄膜共振子の製造工程において、キャビティを形成した基板の概略側面図である。FIG. 2 is a schematic side view of the substrate on which the cavity is formed in the manufacturing process of the piezoelectric thin film resonator according to this example. 図3は、本実施例にかかる圧電薄膜共振子の製造工程のうち図2に示す製造工程の後工程を示した基板の概略側面図である。FIG. 3 is a schematic side view of the substrate showing a subsequent process of the manufacturing process shown in FIG. 2 among the manufacturing processes of the piezoelectric thin film resonator according to the present example. 図4は、本実施例にかかる圧電薄膜共振子の製造工程のうち図3に示す製造工程の後工程を示した基板の概略側面図である。FIG. 4 is a schematic side view of the substrate showing the subsequent process of the manufacturing process shown in FIG. 3 among the manufacturing processes of the piezoelectric thin film resonator according to the present example. 図5は、本実施例にかかる圧電薄膜共振子の製造工程のうち図4に示す製造工程の後工程を示した基板の概略側面図である。FIG. 5 is a schematic side view of the substrate showing a subsequent process of the manufacturing process shown in FIG. 4 among the manufacturing processes of the piezoelectric thin film resonator according to the present example. 図6は、本実施例にかかる圧電薄膜共振子の製造工程のうち図5に示す製造工程の後工程を示した基板の概略側面図である。FIG. 6 is a schematic side view of the substrate showing a subsequent process of the manufacturing process shown in FIG. 5 among the manufacturing processes of the piezoelectric thin film resonator according to the present example. 図7は、本実施例にかかる圧電薄膜共振子の製造工程のうち図6に示す製造工程の後工程を示した基板の概略側面図である。FIG. 7 is a schematic side view of the substrate showing a subsequent process of the manufacturing process shown in FIG. 6 among the manufacturing processes of the piezoelectric thin film resonator according to the present example. 図8は、本実施例にかかる圧電薄膜共振子の製造工程のうち図7に示す製造工程の後工程を示した基板の概略側面図である。FIG. 8 is a schematic side view of the substrate showing the subsequent process of the manufacturing process shown in FIG. 7 among the manufacturing processes of the piezoelectric thin film resonator according to the present example. 図9は、本実施例にかかる圧電薄膜共振子の製造工程のうち図8に示す製造工程の後工程を示した基板の概略側面図である。FIG. 9 is a schematic side view of the substrate showing a subsequent process of the manufacturing process shown in FIG. 8 among the manufacturing processes of the piezoelectric thin film resonator according to the present example. 図10は、本実施例にかかる圧電薄膜共振子の製造工程のうち図9に示す製造工程の後工程を示した基板の概略側面図である。FIG. 10 is a schematic side view of the substrate showing the subsequent process of the manufacturing process shown in FIG. 9 among the manufacturing processes of the piezoelectric thin film resonator according to the present example. 図11は、本実施例にかかる圧電薄膜共振子の製造工程のうち図10に示す製造工程の後工程を示した、基板に下電極を成形した状態の基板の概略側面図である。FIG. 11 is a schematic side view of the substrate in a state where the lower electrode is formed on the substrate, showing a subsequent step of the manufacturing step shown in FIG. 10 among the manufacturing steps of the piezoelectric thin film resonator according to the present example. 図12は、本実施例にかかる圧電薄膜共振子の製造工程のうち図11に示す製造工程の後工程を示した、基板に下電極および圧電薄膜を成形した状態の基板の概略側面図である。FIG. 12 is a schematic side view of the substrate in which the lower electrode and the piezoelectric thin film are formed on the substrate, showing a subsequent step of the manufacturing step shown in FIG. 11 among the steps of manufacturing the piezoelectric thin film resonator according to the present example. . 図13は、本実施例にかかる圧電薄膜共振子の概略側面図である。FIG. 13 is a schematic side view of the piezoelectric thin film resonator according to the present example. 図14は、本実施例の他の例にかかる圧電薄膜共振子の概略側面図である。FIG. 14 is a schematic side view of a piezoelectric thin film resonator according to another example of the present embodiment. 図15は、本実施例の他の例にかかる圧電薄膜共振子の概略側面図である。FIG. 15 is a schematic side view of a piezoelectric thin film resonator according to another example of the present embodiment.

符号の説明Explanation of symbols

1 圧電薄膜共振子
2 基板
23 キャビティ
24 キャビティの側面
3 圧電薄膜
31,32 圧電薄膜の表裏面
33 振動領域
34 他領域
41 上電極
42 下電極
411,421 励振電極部
412,422 接続電極部
51 調整部
52 付加調整部
DESCRIPTION OF SYMBOLS 1 Piezoelectric thin film resonator 2 Substrate 23 Cavity 24 Cavity side surface 3 Piezoelectric thin films 31, 32 Front and back surfaces of piezoelectric thin film 33 Vibration region 34 Other region 41 Upper electrode 42 Lower electrode 411, 421 Excitation electrode portion 412, 422 Connection electrode portion 51 Adjustment Part 52 Additional adjustment part

Claims (4)

基板と、前記基板上に形成された圧電薄膜と、前記基板上に形成されるとともに前記圧電薄膜の表裏面に対向して形成された一対の上電極および下電極とが積層状態で設けられ、前記下電極が前記基板と前記圧電薄膜との間に介在された圧電薄膜デバイスにおいて、
前記上下電極は、それぞれ前記圧電薄膜を挟んで対向する励振電極部と、外部と電気的接続を行う接続電極部とから構成され、
前記基板は絶縁性材料からなり、前記基板にキャビティが形成されるとともに前記キャビティ内で前記下電極の前記励振電極部が露出して配され、
前記下電極の前記励振電極部のうち、少なくとも前記キャビティから露出される部位に、発振周波数調整を行う調整部が設けられたことを特徴とする圧電薄膜デバイス。
A substrate, a piezoelectric thin film formed on the substrate, and a pair of upper and lower electrodes formed on the substrate and opposed to the front and back surfaces of the piezoelectric thin film are provided in a stacked state, In the piezoelectric thin film device in which the lower electrode is interposed between the substrate and the piezoelectric thin film,
The upper and lower electrodes are each composed of an excitation electrode portion facing each other with the piezoelectric thin film interposed therebetween, and a connection electrode portion that performs electrical connection with the outside,
The substrate is made of an insulating material, and a cavity is formed in the substrate, and the excitation electrode portion of the lower electrode is exposed and disposed in the cavity.
A piezoelectric thin film device, wherein an adjustment portion for adjusting an oscillation frequency is provided at least in a portion exposed from the cavity in the excitation electrode portion of the lower electrode.
さらに、前記キャビティに発振周波数調整を行う付加調整部が設けられたことを特徴とする請求項1に記載の圧電薄膜デバイス。   The piezoelectric thin film device according to claim 1, further comprising an additional adjustment unit that adjusts an oscillation frequency in the cavity. 前記基板は、水晶からなり、
前記下電極では、前記励振電極部はモリブデンからなり、前記接続電極部はクロムと金とが積層してなり、
前記調整部は、金からなり、
前記圧電薄膜は、窒化アルミニウムからなることを特徴とする請求項1または2に記載の圧電薄膜デバイス。
The substrate is made of quartz,
In the lower electrode, the excitation electrode portion is made of molybdenum, and the connection electrode portion is a laminate of chromium and gold,
The adjustment unit is made of gold,
The piezoelectric thin film device according to claim 1, wherein the piezoelectric thin film is made of aluminum nitride.
前記基板は、Z板水晶からなり、
前記キャビティの側面がテーパー形成され、前記側面の傾斜角度が前記基板の主面に対して35度であることを特徴とする請求項1乃至3のうちいずれか1つに記載の圧電薄膜デバイス。
The substrate is made of Z-plate crystal,
4. The piezoelectric thin film device according to claim 1, wherein a side surface of the cavity is tapered, and an inclination angle of the side surface is 35 degrees with respect to a main surface of the substrate.
JP2007008004A 2007-01-17 2007-01-17 Piezoelectric thin film device Pending JP2008177750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008004A JP2008177750A (en) 2007-01-17 2007-01-17 Piezoelectric thin film device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008004A JP2008177750A (en) 2007-01-17 2007-01-17 Piezoelectric thin film device

Publications (1)

Publication Number Publication Date
JP2008177750A true JP2008177750A (en) 2008-07-31

Family

ID=39704449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008004A Pending JP2008177750A (en) 2007-01-17 2007-01-17 Piezoelectric thin film device

Country Status (1)

Country Link
JP (1) JP2008177750A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072837A (en) * 2011-09-29 2013-04-22 Seiko Epson Corp Sensor element, sensor device, force detection device and robot
US11495734B2 (en) * 2014-06-06 2022-11-08 Akoustis, Inc. Method of manufacture for single crystal capacitor dielectric for a resonance circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013072837A (en) * 2011-09-29 2013-04-22 Seiko Epson Corp Sensor element, sensor device, force detection device and robot
US11495734B2 (en) * 2014-06-06 2022-11-08 Akoustis, Inc. Method of manufacture for single crystal capacitor dielectric for a resonance circuit

Similar Documents

Publication Publication Date Title
US7224101B2 (en) Elastic boundary wave device and method of manufacturing the same
US7129806B2 (en) Thin film bulk acoustic wave resonator and production method of the same
US9225314B2 (en) Resonating element, resonator, electronic device, electronic apparatus, and mobile object
CN203851109U (en) Composite substrate
CN100546178C (en) Method for manufacturing piezoelectric thin film device and piezoelectric thin film device
US20150171821A1 (en) Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
JP4688070B2 (en) Piezoelectric thin film resonator, piezoelectric thin film device, and manufacturing method thereof
US8431031B2 (en) Method for producing a bulk wave acoustic resonator of FBAR type
CN111010099B (en) Bulk acoustic resonator with concave structure and convex structure, filter and electronic equipment
JP2022507325A (en) Bulk acoustic wave resonator and its manufacturing method, filter, radio frequency communication system
CN209844929U (en) Bulk acoustic wave resonator with fracture structure, filter, and electronic device
WO2020199511A1 (en) Bulk acoustic resonator and manufacturing method therefor, filter, and radio frequency communication system
CN111010108A (en) Bulk Acoustic Resonators, Filters, and Electronics with Sag and Air Wing Structures
CN112311353B (en) Firmly-arranged bulk acoustic wave resonator and manufacturing method thereof
JP2022507219A (en) Bulk acoustic wave resonator and its manufacturing method, filter, radio frequency communication system
JPH11284484A (en) Uhf band fundamental frequency crystal oscillator and its filter
WO2022158249A1 (en) Elastic wave device, filter device, and method for manufacturing elastic wave device
JP5824958B2 (en) Vibration element, vibrator, electronic device, and electronic apparatus
JP2008177750A (en) Piezoelectric thin film device
JP4730383B2 (en) Thin film acoustic resonator and manufacturing method thereof
WO2020098484A1 (en) Bulk acoustic wave resonator having fracture structure and manufacturing method therefor, filter, and electronic device
JP2022507221A (en) Bulk acoustic wave resonator and its manufacturing method, filter, radio frequency communication system
JP2008177749A (en) Piezoelectric thin film device
JP2008301111A (en) Edge mode piezoelectric vibration chip and frequency adjustment method thereof
TW201807848A (en) Crystal resonator