[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008170454A - Mox fuel assembly for pressurized water reactor - Google Patents

Mox fuel assembly for pressurized water reactor Download PDF

Info

Publication number
JP2008170454A
JP2008170454A JP2008076551A JP2008076551A JP2008170454A JP 2008170454 A JP2008170454 A JP 2008170454A JP 2008076551 A JP2008076551 A JP 2008076551A JP 2008076551 A JP2008076551 A JP 2008076551A JP 2008170454 A JP2008170454 A JP 2008170454A
Authority
JP
Japan
Prior art keywords
fuel
mox
uranium
assembly
mixed oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008076551A
Other languages
Japanese (ja)
Inventor
Yasushi Hanayama
育志 花山
Mitsuru Kawamura
充 川村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuclear Fuel Industries Ltd
Original Assignee
Nuclear Fuel Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuclear Fuel Industries Ltd filed Critical Nuclear Fuel Industries Ltd
Priority to JP2008076551A priority Critical patent/JP2008170454A/en
Publication of JP2008170454A publication Critical patent/JP2008170454A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a MOX fuel assembly for a pressurized water reactor capable of restraining sufficiently an assembly output peaking coefficient, without reducing a Pu charge amount per assembly, by designing properly an array of fuel rods. <P>SOLUTION: This MOX fuel assembly is arranged with the first MOX fuel rods of Pu enrichment and Pu amount preliminarily determined as the MOX fuel rod, and the second MOX fuel rods of Pu enrichment same to and Pu amount different from those of the first MOX fuel rod, the sheath tubes of all the fuel rods have the same outside diameter including the first MOX fuel rods and the second MOX fuel rods, respective fuel pellets have the same Pu enrichment each other both in the first MOX fuel rods and the second MOX fuel rods, pellet weights are different each other therein, and the Pu enrichment is determined not to increase the number of replacement bodies for securing the same operation period, compared with a reactor comprising only a UO<SB>2</SB>fuel assembly set based on a reactor core operation period. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は加圧水型原子炉用燃料集合体に関し、特に、ウラン−プルトニウム混合酸化物(以下、MOXと記す)燃料棒を含む加圧水型原子炉用MOX燃料集合体に関するものである。   The present invention relates to a fuel assembly for a pressurized water reactor, and more particularly to a MOX fuel assembly for a pressurized water reactor including a uranium-plutonium mixed oxide (hereinafter referred to as MOX) fuel rod.

従来の加圧水型原子炉(以下、PWRと記す)用MOX燃料集合体としては、MOX燃料の集合体内の相対的な燃料棒出力の最大値(集合体内出力ピーキング係数)を抑制するため、MOX燃料棒のPu富化度を3種類とした、いわゆる3富化度MOX燃料集合体が実用化されている。   As a conventional MOX fuel assembly for a pressurized water reactor (hereinafter referred to as PWR), in order to suppress the maximum value of relative fuel rod output in the MOX fuel assembly (intra-body output peaking coefficient), A so-called three-enriched MOX fuel assembly having three kinds of Pu enrichment of rods has been put into practical use.

この集合体では、集合体内の外周付近に低富化度、中富化度MOX燃料棒、内側に高富化度MOX燃料棒を配置することにより、隣接するUO 燃料集合体から熱中性子がPuの含有割合の少ない低富化度、中富化度燃料棒に流れ込んできても、集合体内の外周付近のMOX燃料棒の出力を抑制でき、流れ込む熱中性子の影響の及びにくい集合体内側にPuの含有割合のより高い高富化度燃料棒を配列しているため、出力のバランスが取れ、集合体内出力ピーキング係数を十分に抑制することが可能である。 In this assembly, by arranging low enrichment and medium enrichment MOX fuel rods near the outer periphery of the assembly, and high enrichment MOX fuel rods inside, the thermal neutrons from adjacent UO 2 fuel assemblies are made of Pu. Even if it flows into a low enrichment or medium enrichment fuel rod with a small content ratio, the output of the MOX fuel rod near the outer periphery of the assembly can be suppressed, and the inclusion of Pu inside the assembly is less affected by the flowing thermal neutrons. Since the higher enrichment fuel rods having a higher ratio are arranged, the output can be balanced and the output peaking coefficient within the assembly can be sufficiently suppressed.

ところが、この3富化度MOX燃料集合体には、以下の理由により製造コストが高くなるという欠点があった。
・Pu含有割合の異なる(富化度の異なる)3種類のMOX燃料粉末を用意するための設備が必要である。
・富化度の異なる3種類の粉末を各々ペレットに成型し、各々燃料棒に封入する必要がある。
・富化度の異なるMOX燃料を成型加工するごとに、製造ラインをクリーンアップ(富化度の異なるMOX燃料粉末やペレットが混じらないように除染すること)する必要がある。
However, this three-enriched MOX fuel assembly has a drawback that the manufacturing cost is increased for the following reason.
-Equipment for preparing three types of MOX fuel powders with different Pu content ratios (different enrichments) is required.
・ Three kinds of powders with different enrichments need to be molded into pellets and sealed in fuel rods.
・ Every time MOX fuel with different enrichment is molded, it is necessary to clean up the production line (decontamination so that MOX fuel powder and pellets with different enrichment are not mixed).

また、MOX燃料集合体の一部に毒物入りUO 燃料棒を配してMOX燃料棒のPu富化度の種類を削減する設計も考案されているが(特許文献1)、この場合でもPu富化度は2種類となっており、根本的な解決はなされていなかった。
特開平8−201555号公報
Also, a design has been devised in which a poisoned UO 2 fuel rod is arranged in a part of the MOX fuel assembly to reduce the type of Pu enrichment of the MOX fuel rod (Patent Document 1). There are two types of enrichment, and no fundamental solution has been made.
JP-A-8-201555

一方、Pu含有割合が一種類のMOX燃料棒から構成される1富化度MOX燃料集合体については、Pu含有割合を3富化度MOX燃料集合体の平均富化度より低下させ、集合体としての増倍率を、同時に炉心内に装荷されるUO 燃料集合体に比べて低くすることにより実用化することが考えられる。この場合、集合体内出力ピーキング係数は十分に抑制できないが、集合体としての増倍率が低いため、炉心全体から見た出力ピーキング係数は、炉心の安全性を満足できる範囲とすることが可能と考えられる。 On the other hand, for a 1 enriched MOX fuel assembly composed of one type of MOX fuel rod, the Pu content is decreased from the average enrichment of the 3 enriched MOX fuel assembly, It is conceivable to put it into practical use by lowering the multiplication factor as compared with the UO 2 fuel assembly loaded in the core at the same time. In this case, the output peaking coefficient in the assembly cannot be sufficiently suppressed, but the gain factor as the assembly is low, so the output peaking coefficient viewed from the whole core can be in a range that can satisfy the safety of the core. It is done.

しかし、このような低富化度の1富化度MOX燃料集合体を採用すると、UO 燃料集合体のみからなる炉心に比べて、同一運転期間を確保するための取替体数(新燃料体数)は増加することになる。従って、トータルの燃料製造コストが高くなるという欠点があった。 However, if such a low enrichment single enrichment MOX fuel assembly is adopted, the number of replacement bodies (new fuel) for ensuring the same operation period is compared to a core consisting of only UO 2 fuel assemblies. Number of bodies) will increase. Accordingly, there is a drawback that the total fuel production cost is increased.

また、軽水を用いたPWRで、MOX燃料集合体を炉心の燃料集合体体数の1/3程度まで装荷して使用する場合(いわゆるプルサーマル)、装荷されたMOX燃料集合体は、UO 燃料集合体と隣接して炉心内に配列されている。 In addition, when a MOX fuel assembly is loaded up to about 1/3 of the number of fuel assemblies in the core in a PWR using light water (so-called pull thermal), the loaded MOX fuel assembly is a UO 2 fuel. It is arranged in the core adjacent to the assembly.

このMOX燃料は、UO 燃料に比べて、熱中性子の吸収効果が大きいためMOX燃料中の中性子のエネルギースペクトルは硬化し、熱中性子束はUO 燃料に比べて低いレベルとなる。そのため、炉心内でMOX燃料集合体とUO 燃料集合体を隣接して配列すると、UO 燃料からMOX燃料へ熱中性子の流れ込みが生じる。その結果、UO 燃料集合体に隣接するMOX燃料棒において流れ込んでくる熱中性子による核分裂が活発になり、当該MOX燃料棒の出力が相対的に高くなる。 Since this MOX fuel has a greater effect of absorbing thermal neutrons than UO 2 fuel, the energy spectrum of neutrons in the MOX fuel is hardened, and the thermal neutron flux is lower than that of UO 2 fuel. Therefore, when the MOX fuel assembly and the UO 2 fuel assembly are arranged adjacent to each other in the core, thermal neutrons flow from the UO 2 fuel to the MOX fuel. As a result, fission by thermal neutrons flowing in the MOX fuel rod adjacent to the UO 2 fuel assembly becomes active, and the output of the MOX fuel rod becomes relatively high.

すなわち、MOX燃料集合体の中の外周付近のMOX燃料棒の出力が内側のそれに比べて相対的に高くなる。炉心内の燃料棒の最高出力は、炉心の安全性(燃料の健全性)の観点により制限されるが、この制限を満足するためには各燃料集合体内の相対的な燃料棒出力最大値(集合体内出力ピーキング係数)を十分に抑制する必要がある。   That is, the output of the MOX fuel rod near the outer periphery in the MOX fuel assembly is relatively higher than that on the inner side. The maximum power output of the fuel rods in the core is limited by the viewpoint of the core safety (fuel integrity), but in order to satisfy this limitation, the relative maximum fuel rod output in each fuel assembly ( It is necessary to sufficiently suppress the output peaking coefficient within the assembly.

本発明は、MOX燃料集合体に関するもので、各燃料棒の配列を適切に設計することにより、集合体当たりのPu装荷量を減らすことなく、集合体内出力ピーキング係数を十分に抑制するPWR用MOX燃料集合体を得ることを目的としたものである。   The present invention relates to a MOX fuel assembly, and by appropriately designing the arrangement of each fuel rod, the MOX for PWR that sufficiently suppresses the output peaking coefficient in the assembly without reducing the amount of Pu loaded per assembly. The purpose is to obtain a fuel assembly.

請求項1に記載された発明に係るPWR用MOX燃料集合体は、毒物入りUO 燃料棒と、MOX燃料棒とをn行n列の格子状配列中に配置したPWR用のMOX燃料集合体であって、UO 燃料集合体と隣接して炉心内に配列されるものにおいて、
前記MOX燃料棒として、予め定められたPu富化度及びPu量の第1のMOX燃料棒と、第1のMOX燃料棒に対してPu富化度は同一でPu量の相違する第2のMOX燃料棒とが、配置されており、
前記第1のウラン−プルトニウム混合酸化物燃料棒と第2のウラン−プルトニウム混合酸化物燃料棒とを含めた全ての燃料棒の被覆管が同一の外径を有し、
前記第1のウラン−プルトニウム混合酸化物燃料棒内の燃料ペレットと第2のウラン−プルトニウム混合酸化物燃料棒内の燃料ペレットとが、互いに同じPu富化度を有し、ペレット重量が互いに相違するものであり、
前記Pu富化度が、炉心運転期間に基づいて設定されたUO 燃料集合体のみからなる炉心と比べて、同一運転期間を確保するための取替体数を増加させないように定められていることを特徴とするものである。
An MOX fuel assembly for PWR according to the invention described in claim 1 is a MOX fuel assembly for PWR in which poisoned UO 2 fuel rods and MOX fuel rods are arranged in a grid array of n rows and n columns. And arranged in the core adjacent to the UO 2 fuel assembly,
As the MOX fuel rod, a first MOX fuel rod having a predetermined Pu enrichment and Pu amount, and a second MO enrichment with the same Pu enrichment and different Pu amount with respect to the first MOX fuel rod. MOX fuel rods are arranged,
The claddings of all fuel rods including the first uranium-plutonium mixed oxide fuel rod and the second uranium-plutonium mixed oxide fuel rod have the same outer diameter;
The fuel pellets in the first uranium-plutonium mixed oxide fuel rod and the fuel pellets in the second uranium-plutonium mixed oxide fuel rod have the same Pu enrichment and have different pellet weights. Is what
The Pu enrichment is determined so as not to increase the number of replacement bodies for securing the same operation period as compared with a core composed only of UO 2 fuel assemblies set based on the core operation period. It is characterized by this.

請求項2に記載された発明に係るPWR用MOX燃料集合体は、請求項1に記載の第1のMOX燃料棒には、第2のMOX燃料棒のMOX燃料ペレットに対して、同一Pu富化度であってペレット直径の相違するMOX燃料ペレットが装填され、
直径の小さい燃料ペレットが詰められたウラン−プルトニウム混合酸化物燃料棒の被覆管肉厚は、他の燃料棒の被覆管肉厚より厚くなっていることを特徴とするものである。
The MOR fuel assembly for PWR according to the invention described in claim 2 is the same as that of the MOX fuel pellet of the second MOX fuel rod in the first MOX fuel rod according to claim 1. MOX fuel pellets with different degrees of pellet diameter are loaded,
The cladding thickness of the uranium-plutonium mixed oxide fuel rod packed with fuel pellets having a small diameter is characterized by being thicker than the cladding thickness of other fuel rods.

請求項3に記載された発明に係るPWR用MOX燃料集合体は、請求項1又は2に記載の格子状配列の四隅位置又は四隅位置とその近傍とに毒物入りUO 燃料棒が配置されていることを特徴とするものである。 The MOX fuel assembly for PWR according to the invention described in claim 3 has poisonous UO 2 fuel rods arranged at the four corner positions or at the four corner positions and the vicinity thereof in the grid array according to claim 1 or 2. It is characterized by being.

請求項4に記載された発明に係るPWR用MOX燃料集合体は、請求項1から3の何れかに記載の格子状配列の外周位置に、内側位置と比較してPu量の少ないMOX燃料棒が配置されていることを特徴とするものである。   The MOX fuel assembly for PWR according to the invention described in claim 4 is a MOX fuel rod having a small amount of Pu compared to the inner position at the outer peripheral position of the grid array according to any one of claims 1 to 3. Is arranged.

本発明は以上説明した通り、各燃料棒の配列を適切に設計することにより、集合体当たりのPu装荷量を減らすことなく、集合体内出力ピーキング係数を十分に抑制するPWR用MOX燃料集合体を得ることができるという効果がある。   As described above, according to the present invention, by appropriately designing the arrangement of the fuel rods, the PWR MOX fuel assembly that sufficiently suppresses the output peaking coefficient within the assembly without reducing the Pu load per assembly. There is an effect that can be obtained.

本発明においては、Pu富化度は同じでPu量の異なる複数種類のMOX燃料棒を、毒物入りUO 燃料棒と共に燃料集合体内に配置する。例えば、毒物入りUO ペレットを詰めた毒物入りUO 燃料棒(1) と、Pu富化度が同一でPu量の異なる2種類のMOXペレットをそれぞれ詰めた第1及び第2のMOX燃料棒(2) (3) (Pu量は(2)<(3))から構成されるMOX燃料集合体が挙げられる。尚、当然のことながら、本発明では第1及び第2以外に第3、第4…のPu富化度が同一でPu量の異なるMOX燃料棒を用いても良い。 In the present invention, a plurality of types of MOX fuel rods having the same Pu enrichment but different Pu amounts are arranged in the fuel assembly together with the poisoned UO 2 fuel rods. For example, a poison containing UO 2 fuel rods filled with toxicant-containing UO 2 pellets (1), first and second MOX fuel rods Pu enrichment is packed identical Pu different amounts of two types of MOX pellets respectively (2) (3) MOX fuel assemblies composed of (Pu amount is (2) <(3)) can be mentioned. As a matter of course, in the present invention, MOX fuel rods having the same Pu enrichment and different Pu amounts may be used in addition to the first and second.

本発明の第1及び第2のMOX燃料棒(2) (3) としては、好ましくは、同じ高さと同じPu富化度とを有しペレット重量の相違するMOX燃料ペレットを同数個燃料棒被覆管内に詰めることにより得られたMOX燃料棒を用いる。具体的には、MOX燃料ペレットの直径のみを相違させたり、これ以外にもペレット密度を下げたり、ペレット中心に空孔を設けた中空ペレットの採用等により、燃料棒のMOX燃料ペレット重量を相違させることでPu量を相違させることも可能である。これにより、成形工程のみを相違する製造ラインで製造可能となるため、複数種類のMOX燃料(2) (3) を製造しても、製造コストが高くならない利点を有する。   As the first and second MOX fuel rods (2) (3) of the present invention, it is preferable to cover the same number of MOX fuel pellets having the same height and the same Pu enrichment and different pellet weights. Use MOX fuel rods obtained by packing in a tube. Specifically, the MOX fuel pellet weight of the fuel rod is different by changing only the diameter of the MOX fuel pellet, reducing the pellet density, or adopting a hollow pellet with a hole in the center of the pellet. It is also possible to make the amount of Pu different. This makes it possible to produce on a production line that differs only in the molding process, and thus has an advantage that the production cost does not increase even if a plurality of types of MOX fuels (2) (3) are produced.

また、本発明では、好ましくは、集合体内の外周コーナー又は該コーナーとその付近とに毒物入りUO 燃料棒(1) を配置する。更に、本発明では、より好ましくは、毒物入りUO 燃料棒(1) 以外の位置でUO 燃料集合体と隣接してMOX燃料が炉心に装荷されたときに出力が高くなる位置(例えば最外周位置)にPu量の少ないMOX燃料棒(2) を、残りの位置にPu量の多いMOX燃料棒(3) を配置する。尚、MOX燃料棒のPu富化度は、同時に炉心内に装荷されるUO 燃料集合体と寿命を通じた増倍率が等価となるように好ましくは設定する。 In the present invention, preferably, poisoned UO 2 fuel rods (1) are arranged at the outer peripheral corner of the assembly or at the corner and the vicinity thereof. Further, in the present invention, more preferably, a position where the output becomes high when the MOX fuel is loaded in the core adjacent to the UO 2 fuel assembly at a position other than the poisoned UO 2 fuel rod (1) (for example, the highest The MOX fuel rod (2) with a small amount of Pu is disposed at the outer peripheral position), and the MOX fuel rod (3) with a large amount of Pu is disposed at the remaining positions. Note that the Pu enrichment degree of the MOX fuel rod is preferably set so that the multiplication factor over the life and the UO 2 fuel assembly loaded in the core are equivalent at the same time.

また、MOX燃料は、UO 燃料に比べて、熱中性子の吸収効果が大きいためMOX燃料中の中性子のエネルギースペクトルは硬化し、熱中性子束はUO 燃料に比べて低いレベルとなる。そのため、炉心内でMOX燃料集合体とUO 燃料集合体を隣接して配列すると、UO 燃料からMOX燃料へ熱中性子の流れ込みが生じる。 Further, since the MOX fuel has a greater effect of absorbing thermal neutrons than the UO 2 fuel, the energy spectrum of neutrons in the MOX fuel is hardened, and the thermal neutron flux is at a lower level than that of the UO 2 fuel. Therefore, when the MOX fuel assembly and the UO 2 fuel assembly are arranged adjacent to each other in the core, thermal neutrons flow from the UO 2 fuel to the MOX fuel.

本発明のMOX燃料集合体では、この流れ込んでくる熱中性子を毒物入りUO 燃料棒により吸収させその近辺に配置されるMOX燃料棒の出力を抑制するだけではなく、集合体の最外周位置等の流れ込んでくる熱中性子束のレベルの高い位置にPu量の少ないMOX燃料棒(2) を配置することにより、熱中性子によるPuの核分裂数を抑制し集合体内出力ピーキング係数を従来の3富化度MOX燃料集合体と同等に抑えることが出来る。 In the MOX fuel assembly of the present invention, the flowing thermal neutrons are absorbed by the poisoned UO 2 fuel rods and not only the output of the MOX fuel rods arranged in the vicinity thereof is suppressed, but also the outermost peripheral position of the assembly, etc. By placing a MOX fuel rod (2) with a small amount of Pu at a position where the level of thermal neutron flux that flows in is high, the number of Pu fission by thermal neutrons is suppressed, and the output peaking coefficient in the assembly is increased by 3 It can be suppressed to the same degree as the MOX fuel assembly.

本発明の一実施例(17×17配列)を図1に示す。図に示す通り、本実施例の燃料集合体は、毒物としてガドリニアを用いたガドリニア入りUO ペレットを詰めたUO 燃料棒(1) と、ガドリニア入りUO ペレットより直径の小さいMOXペレットを詰めた第1のMOX燃料棒(2) と、及びガドリニア入りUO ペレットと同じ直径のMOXペレットを詰めた第2のMOX燃料棒(3) とから構成される。 One embodiment of the present invention (17 × 17 array) is shown in FIG. As shown in the figure, the fuel assembly of this example is packed with UO 2 fuel rods (1) packed with gadolinia-filled UO 2 pellets using gadolinia as a poison, and MOX pellets with a smaller diameter than gadolinia-filled UO 2 pellets. And a first MOX fuel rod (2) and a second MOX fuel rod (3) packed with MOX pellets having the same diameter as the gadolinia-filled UO 2 pellets.

なお、実際の炉心では、MOX燃料集合体の制御棒案内管位置に、ウラン等の核燃料物質を含まず、ほう素等の中性子吸収核種から構成される可燃性毒物棒(Burnable Poison 棒もしくはBP棒)が挿入されることが多い。この場合の集合体図を図2に示す。更に、表1及び表2に本実施例のMOX燃料集合体の主要仕様を示す。   In an actual core, the control rod guide tube position of the MOX fuel assembly does not contain nuclear fuel material such as uranium and is composed of neutron absorbing nuclides such as boron (Burnable Poison rod or BP rod) ) Is often inserted. An assembly diagram in this case is shown in FIG. Further, Tables 1 and 2 show the main specifications of the MOX fuel assembly of this embodiment.

図3は従来の3富化度MOX燃料のMOX燃料集合体内の燃料棒配置の一例を示す図である。図4は可燃性毒物棒のないMOX燃料集合体(ケース1)と可燃性毒物棒入りMOX燃料集合体(ケース2)との出力ピーキング係数の計算体系を示す図である。図5は図4の計算体系で図1及び図2に示したMOX燃料集合体と図3に示した典型的な3富化度分布を有するMOX燃料集合体について、集合体内出力ピーキング係数を比較した図である。図に示す通り、PWR炉心を模擬した典型的な計算体系で計算した場合の集合体内出力ピーキング係数は、従来の3富化度MOX燃料集合体(図3)と同等もしくはそれ以下である。   FIG. 3 is a view showing an example of the arrangement of fuel rods in the MOX fuel assembly of the conventional 3-rich MOX fuel. FIG. 4 is a diagram showing a calculation system of the output peaking coefficient of the MOX fuel assembly without the flammable poison rod (case 1) and the MOX fuel assembly with the flammable poison rod (case 2). FIG. 5 is a comparison of the output peaking coefficients in the assembly for the MOX fuel assembly shown in FIGS. 1 and 2 and the MOX fuel assembly having the typical three enrichment distribution shown in FIG. FIG. As shown in the figure, the output peaking coefficient in the assembly when calculated with a typical calculation system simulating the PWR core is equal to or less than that of the conventional 3-rich MOX fuel assembly (FIG. 3).

また、90万kWe級3ループPWRプラントで13ヶ月運転を行う場合には、集合体燃焼度約28200MWd/tにて、MOX燃料集合体の集合体増倍率がUO 燃料集合体のそれとほぼ等しければ、MOX燃料を装荷しても新燃料体数の増加はない。ここで本実施例では、MOX燃料集合体のPu富化度は、UO 燃料集合体( 235U濃縮度:4.1wt%)と寿命を通じた集合体増倍率が同一になるように設定できる。即ち、本実施例では、MOX燃料集合体のPu富化度は、UO 燃料集合体( 235U濃縮度:4.1wt%)と集合体燃焼度約28200MWd/tにて集合体増倍率が同一になるように設定できる。(図6) In addition, when 13 months operation is performed in a 900,000 kW class three-loop PWR plant, the assembly multiplication factor of the MOX fuel assembly is almost equal to that of the UO 2 fuel assembly at an assembly burnup of about 28200 MWd / t. For example, even if MOX fuel is loaded, the number of new fuel bodies will not increase. Here, in this embodiment, the Pu enrichment of the MOX fuel assembly can be set so that the assembly multiplication factor over the life is the same as that of the UO 2 fuel assembly ( 235 U enrichment: 4.1 wt%). . In other words, in this example, the Pu enrichment of the MOX fuel assembly is as follows: the assembly multiplication factor is UO 2 fuel assembly ( 235 U enrichment: 4.1 wt%) and the assembly burnup is about 28200 MWd / t. Can be set to be the same. (Fig. 6)

尚、ガドリニア入りUO ペレットより直径の小さいMOXペレットを詰めたMOX燃料棒(2) の被覆管肉厚は他の燃料棒(1) (3) の被覆管より厚くなるが、被覆管外径は全て同一とすると、熱水力的な問題を生じない。 The cladding tube thickness of the MOX fuel rods (2) packed with MOX pellets smaller in diameter than the gadolinia-filled UO 2 pellets is thicker than the cladding tubes of the other fuel rods (1) (3). If they are all the same, there will be no thermal hydraulic problems.

Figure 2008170454
Figure 2008170454

Figure 2008170454
Figure 2008170454

逆に、ガドリニア入りUO ペレットより直径の小さいMOXペレットを詰めたMOX燃料棒(2) の被覆管外径を他の燃料棒より細くすることも上記の応用として可能である。 On the contrary, it is also possible to make the outer diameter of the cladding tube (2) of the MOX fuel rod (2) packed with MOX pellets smaller in diameter than gadolinia-filled UO 2 pellets thinner than other fuel rods.

また、MOXペレット直径を小さくする以外にも、ペレット密度を下げたり、ペレット中心に空孔を設ける中空ペレットの採用等により、燃料棒のPu量を小さくすることも可能である。   Besides reducing the MOX pellet diameter, it is also possible to reduce the Pu amount of the fuel rod by reducing the pellet density or adopting a hollow pellet having a hole at the center of the pellet.

更に、本実施例の燃料集合体では、集合体当たりのPu装荷量は従来の3富化度MOXと同等である。
・従来の3富化度MOX(Pu富化度:約9.7wt%Pu-total):約45kg
・実施例における1富化度MOX :約41kg
Further, in the fuel assembly of this embodiment, the amount of Pu loaded per assembly is equivalent to the conventional three enrichment MOX.
-Conventional 3 enrichment MOX (Pu enrichment: about 9.7wt% Pu-total): About 45kg
-1 enrichment MOX in the example: about 41 kg

以上のように、本発明による1富化度MOX燃料集合体を用いることにより、富化度の異なるMOX燃料を成型加工するごとに、製造ラインをクリーンアップ(富化度の異なるMOX燃料粉末やペレットが混じらないように除染すること)する必要がなくなり、製造コストの低減が可能となる。しかも、原子炉での使用時の安全性、経済性は、従来の3富化度MOX燃料と同等である。   As described above, by using one enriched MOX fuel assembly according to the present invention, the production line is cleaned up every time MOX fuel having a different enrichment is molded (MOX fuel powder having a different enrichment or This eliminates the need to decontaminate the pellets so that they do not mix, and the manufacturing cost can be reduced. Moreover, the safety and economy when used in a nuclear reactor are equivalent to those of the conventional 3-rich MOX fuel.

本発明の一実施例におけるMOX燃料集合体内の燃料棒配置を示す図である。It is a figure which shows the fuel rod arrangement | positioning in the MOX fuel assembly in one Example of this invention. 本発明の別の実施例におけるMOX燃料集合体内の燃料棒配置を示す図(可燃性毒物棒使用時)である。It is a figure (at the time of combustible poison rod use) which shows fuel rod arrangement in a MOX fuel assembly in another example of the present invention. 従来の3富化度MOX燃料のMOX燃料集合体内の燃料棒配置の一例を示す図である。It is a figure which shows an example of the fuel rod arrangement | positioning in the MOX fuel assembly of the conventional 3 enrichment MOX fuel. 可燃性毒物棒のないMOX燃料集合体(ケース1)と可燃性毒物棒入りMOX燃料集合体(ケース2)との出力ピーキング係数の計算体系を示す図である。It is a figure which shows the calculation system of the output peaking coefficient of the MOX fuel assembly (case 1) without a combustible poison rod and the MOX fuel assembly with a combustible poison rod (case 2). 図4の計算体系で図1及び図2に示したMOX燃料集合体と図3に示した典型的な3富化度分布を有するMOX燃料集合体とについて、集合体内出力ピーキング係数を比較した図である。FIG. 4 is a diagram comparing the output peaking coefficients in the assembly for the MOX fuel assembly shown in FIGS. 1 and 2 and the MOX fuel assembly having the typical three enrichment distribution shown in FIG. It is. 本発明の一実施例におけるMOX燃料集合体内のMOX燃料棒のPu富化度をUO 燃料集合体( 235U濃縮度:4.1wt%)と寿命を通じた集合体増倍率が同一になるように設定したことを示す図である。In one embodiment of the present invention, the enrichment of the MOX fuel rods in the MOX fuel assembly is the same as that of the UO 2 fuel assembly ( 235 U enrichment: 4.1 wt%) in the assembly multiplication factor over the lifetime. It is a figure which shows having set to.

Claims (4)

毒物入りUO 燃料棒と、ウラン−プルトニウム混合酸化物燃料棒とをn行n列の格子状配列中に配置した加圧水型原子炉用のMOX燃料集合体であって、UO 燃料集合体と隣接して炉心内に配列されるものにおいて、
前記ウラン−プルトニウム混合酸化物燃料棒として、予め定められたPu富化度及びPu量の第1のウラン−プルトニウム混合酸化物燃料棒と、第1のウラン−プルトニウム混合酸化物燃料棒に対してPu富化度は同一でPu量の相違する第2のウラン−プルトニウム混合酸化物燃料棒とが、配置されており、
前記第1のウラン−プルトニウム混合酸化物燃料棒と第2のウラン−プルトニウム混合酸化物燃料棒とを含めた全ての燃料棒の被覆管が同一の外径を有し、
前記第1のウラン−プルトニウム混合酸化物燃料棒内の燃料ペレットと第2のウラン−プルトニウム混合酸化物燃料棒内の燃料ペレットとが、互いに同じPu富化度を有し、ペレット重量が互いに相違するものであり、
前記Pu富化度が、炉心運転期間に基づいて設定されたUO 燃料集合体のみからなる炉心と比べて、同一運転期間を確保するための取替体数を増加させないように定められていることを特徴とする加圧水型原子炉用MOX燃料集合体。
A poison-containing UO 2 fuel rods, uranium - a MOX fuel assembly for a pressurized water nuclear reactor arranged and plutonium mixed oxide fuel rods in grid-like array of n rows and n columns, and UO 2 fuel assemblies In what is arranged in the reactor core,
As the uranium-plutonium mixed oxide fuel rod, the first uranium-plutonium mixed oxide fuel rod having a predetermined Pu enrichment and Pu amount, and the first uranium-plutonium mixed oxide fuel rod. A second uranium-plutonium mixed oxide fuel rod having the same Pu enrichment and a different Pu content is disposed;
The claddings of all fuel rods including the first uranium-plutonium mixed oxide fuel rod and the second uranium-plutonium mixed oxide fuel rod have the same outer diameter;
The fuel pellets in the first uranium-plutonium mixed oxide fuel rod and the fuel pellets in the second uranium-plutonium mixed oxide fuel rod have the same Pu enrichment and have different pellet weights. Is what
The Pu enrichment is determined so as not to increase the number of replacement bodies for securing the same operation period as compared with a core composed only of UO 2 fuel assemblies set based on the core operation period. A MOX fuel assembly for a pressurized water reactor characterized by the above.
前記第1のウラン−プルトニウム混合酸化物燃料棒には、第2のウラン−プルトニウム混合酸化物燃料棒のウラン−プルトニウム混合酸化物燃料ペレットに対して、同一Pu富化度であってペレット直径の相違するウラン−プルトニウム混合酸化物燃料ペレットが装填され、
直径の小さい燃料ペレットが詰められたウラン−プルトニウム混合酸化物燃料棒の被覆管肉厚は、他の燃料棒の被覆管肉厚より厚くなっていることを特徴とする請求項1に記載の加圧水型原子炉用MOX燃料集合体。
The first uranium-plutonium mixed oxide fuel rod has the same Pu enrichment and pellet diameter as the uranium-plutonium mixed oxide fuel rod of the second uranium-plutonium mixed oxide fuel rod. Loaded with different uranium-plutonium mixed oxide fuel pellets,
2. The pressurized water according to claim 1, wherein the cladding tube thickness of the uranium-plutonium mixed oxide fuel rod packed with fuel pellets having a small diameter is thicker than the cladding tube thickness of the other fuel rod. MOX fuel assembly for type reactor.
前記格子状配列の四隅位置又は四隅位置とその近傍とに毒物入りUO 燃料棒が配置されていることを特徴とする請求項1又は2に記載の加圧水型原子炉用MOX燃料集合体。 3. The MOX fuel assembly for pressurized water reactor according to claim 1, wherein poisoned UO 2 fuel rods are arranged at four corner positions of the grid-like arrangement or at four corner positions and the vicinity thereof. 4. 前記格子状配列の外周位置に、内側位置と比較してPu量の少ないウラン−プルトニウム混合酸化物燃料棒が配置されていることを特徴とする請求項1から3の何れかに記載の加圧水型原子炉用MOX燃料集合体。   The pressurized water mold according to any one of claims 1 to 3, wherein a uranium-plutonium mixed oxide fuel rod having a small amount of Pu as compared with an inner position is arranged at an outer peripheral position of the lattice arrangement. MOX fuel assembly for nuclear reactors.
JP2008076551A 2008-03-24 2008-03-24 Mox fuel assembly for pressurized water reactor Pending JP2008170454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008076551A JP2008170454A (en) 2008-03-24 2008-03-24 Mox fuel assembly for pressurized water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008076551A JP2008170454A (en) 2008-03-24 2008-03-24 Mox fuel assembly for pressurized water reactor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002144276A Division JP2003337190A (en) 2002-05-20 2002-05-20 Mox fuel assembly for pressurized water reactor

Publications (1)

Publication Number Publication Date
JP2008170454A true JP2008170454A (en) 2008-07-24

Family

ID=39698649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008076551A Pending JP2008170454A (en) 2008-03-24 2008-03-24 Mox fuel assembly for pressurized water reactor

Country Status (1)

Country Link
JP (1) JP2008170454A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015166742A (en) * 2010-05-11 2015-09-24 トリウム・パワー、インクThorium Power,Inc. fuel assembly
US9355747B2 (en) 2008-12-25 2016-05-31 Thorium Power, Inc. Light-water reactor fuel assembly (alternatives), a light-water reactor, and a fuel element of fuel assembly
US10170207B2 (en) 2013-05-10 2019-01-01 Thorium Power, Inc. Fuel assembly
US10192644B2 (en) 2010-05-11 2019-01-29 Lightbridge Corporation Fuel assembly
CN113795893A (en) * 2019-05-10 2021-12-14 法玛通公司 Nuclear fuel assembly for a pressurized-water reactor and nuclear reactor core comprising such an assembly

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529792A (en) * 1975-07-15 1977-01-25 Hitachi Ltd Fuel assembly
JPS53109089A (en) * 1977-03-03 1978-09-22 Toshiba Corp Fuel assembly
JPS54153987A (en) * 1978-05-26 1979-12-04 Toshiba Corp Fuel assembly
JPS5539046A (en) * 1978-09-13 1980-03-18 Tokyo Shibaura Electric Co Nuclear fuel assembly
JPS6157882A (en) * 1984-08-30 1986-03-24 株式会社東芝 Nuclear fuel aggregate
JPH01109296A (en) * 1987-10-21 1989-04-26 Hitachi Ltd Fuel assembly
JPH0868886A (en) * 1994-08-29 1996-03-12 Nuclear Fuel Ind Ltd Mox fuel assembly for pwr
JPH08201555A (en) * 1995-01-20 1996-08-09 Genshiryoku Eng:Kk Mox fuel assembly for pwr
JP2001501310A (en) * 1996-10-02 2001-01-30 ブリテイツシユ・ニユクリアー・フユールズ・ピー・エル・シー Nuclear fuel assemblies with MOX rods and MOX gadolinia rods
WO2001050477A1 (en) * 2000-01-07 2001-07-12 British Nuclear Fuels Plc Improvements in and relating to nuclear fuel assemblies

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529792A (en) * 1975-07-15 1977-01-25 Hitachi Ltd Fuel assembly
JPS53109089A (en) * 1977-03-03 1978-09-22 Toshiba Corp Fuel assembly
JPS54153987A (en) * 1978-05-26 1979-12-04 Toshiba Corp Fuel assembly
JPS5539046A (en) * 1978-09-13 1980-03-18 Tokyo Shibaura Electric Co Nuclear fuel assembly
JPS6157882A (en) * 1984-08-30 1986-03-24 株式会社東芝 Nuclear fuel aggregate
JPH01109296A (en) * 1987-10-21 1989-04-26 Hitachi Ltd Fuel assembly
JPH0868886A (en) * 1994-08-29 1996-03-12 Nuclear Fuel Ind Ltd Mox fuel assembly for pwr
JPH08201555A (en) * 1995-01-20 1996-08-09 Genshiryoku Eng:Kk Mox fuel assembly for pwr
JP2001501310A (en) * 1996-10-02 2001-01-30 ブリテイツシユ・ニユクリアー・フユールズ・ピー・エル・シー Nuclear fuel assemblies with MOX rods and MOX gadolinia rods
WO2001050477A1 (en) * 2000-01-07 2001-07-12 British Nuclear Fuels Plc Improvements in and relating to nuclear fuel assemblies

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9355747B2 (en) 2008-12-25 2016-05-31 Thorium Power, Inc. Light-water reactor fuel assembly (alternatives), a light-water reactor, and a fuel element of fuel assembly
US10192644B2 (en) 2010-05-11 2019-01-29 Lightbridge Corporation Fuel assembly
CN105895178A (en) * 2010-05-11 2016-08-24 钍能源股份有限公司 Fuel assembly
CN105895178B (en) * 2010-05-11 2018-03-27 钍能源股份有限公司 Fuel assembly
US10037823B2 (en) 2010-05-11 2018-07-31 Thorium Power, Inc. Fuel assembly
JP2015166742A (en) * 2010-05-11 2015-09-24 トリウム・パワー、インクThorium Power,Inc. fuel assembly
US10991473B2 (en) 2010-05-11 2021-04-27 Thorium Power, Inc. Method of manufacturing a nuclear fuel assembly
US11195629B2 (en) 2010-05-11 2021-12-07 Thorium Power, Inc. Fuel assembly
US11837371B2 (en) 2010-05-11 2023-12-05 Thorium Power, Inc. Method of manufacturing a nuclear fuel assembly
US11862353B2 (en) 2010-05-11 2024-01-02 Thorium Power, Inc. Fuel assembly
US10170207B2 (en) 2013-05-10 2019-01-01 Thorium Power, Inc. Fuel assembly
US11211174B2 (en) 2013-05-10 2021-12-28 Thorium Power, Inc. Fuel assembly
CN113795893A (en) * 2019-05-10 2021-12-14 法玛通公司 Nuclear fuel assembly for a pressurized-water reactor and nuclear reactor core comprising such an assembly

Similar Documents

Publication Publication Date Title
EP1085525B1 (en) Light water reactor core and fuel assembly
JP2008170454A (en) Mox fuel assembly for pressurized water reactor
KR102095810B1 (en) Fuel assembly, core design method and fuel assembly design method of light-water reactor
JP3874466B2 (en) Fuel assembly
JP2008286529A (en) Method for controlling criticality of nuclear fuel cycle facility, method for manufacturing uranium dioxide powder, nuclear reactor&#39;s fuel rods, and fuel assembly
Raj et al. Operational characteristics of LWR core fuelled with thorium-based fuel
WO2005004167A1 (en) Mox fuel assembly for pressurized water reactor
JP4040888B2 (en) Fuel assembly
JP2006064678A (en) Fuel assembly arrangement method, fuel rod, and fuel assembly of nuclear reactor
JP2007225624A (en) Reactor core
JP3514869B2 (en) Fuel assemblies for boiling water reactors
JP2886555B2 (en) Fuel assembly for boiling water reactor
JP2001116875A (en) Fuel assembly and nuclear reactor
Nguyen et al. A spectral optimization study of fuel assembly for soluble-boron-free SMR
JP4351798B2 (en) Fuel assemblies and reactors
JP2012122770A (en) Fuel rod and fuel assembly
JP5986802B2 (en) Fuel assemblies for boiling water reactors
JP3916807B2 (en) MOX fuel assembly
JP5085522B2 (en) Reactor core for long-term continuous operation
JP3075749B2 (en) Boiling water reactor
JP4713224B2 (en) Boiling water reactor fuel assembly set and core
JP2004361179A (en) Core and fuel assembly for boiling water reactor
JP2003337190A (en) Mox fuel assembly for pressurized water reactor
JP3943624B2 (en) Fuel assembly
JP3884192B2 (en) MOX fuel assembly, reactor core, and operating method of reactor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100805

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120104