[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008169494A - Method for producing carbonized fabric and carbonized fabric obtained thereby - Google Patents

Method for producing carbonized fabric and carbonized fabric obtained thereby Download PDF

Info

Publication number
JP2008169494A
JP2008169494A JP2007001703A JP2007001703A JP2008169494A JP 2008169494 A JP2008169494 A JP 2008169494A JP 2007001703 A JP2007001703 A JP 2007001703A JP 2007001703 A JP2007001703 A JP 2007001703A JP 2008169494 A JP2008169494 A JP 2008169494A
Authority
JP
Japan
Prior art keywords
fabric
carbonized
fiber
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007001703A
Other languages
Japanese (ja)
Other versions
JP2008169494A5 (en
JP4392434B2 (en
Inventor
Takeshi Kimura
武司 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIN NIPPON TEX KK
Asahi Trading Co Ltd
Mitsui Global Strategic Studies Institute
Original Assignee
SHIN NIPPON TEX KK
Asahi Trading Co Ltd
Mitsui Global Strategic Studies Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIN NIPPON TEX KK, Asahi Trading Co Ltd, Mitsui Global Strategic Studies Institute filed Critical SHIN NIPPON TEX KK
Priority to JP2007001703A priority Critical patent/JP4392434B2/en
Priority to PCT/JP2007/075259 priority patent/WO2008084734A1/en
Priority to CNA2007800495229A priority patent/CN101578406A/en
Publication of JP2008169494A publication Critical patent/JP2008169494A/en
Publication of JP2008169494A5 publication Critical patent/JP2008169494A5/ja
Application granted granted Critical
Publication of JP4392434B2 publication Critical patent/JP4392434B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Woven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a carbonized fabric by which the carbonized fabric having excellent electroconductive characteristics, heat resistance, electromagnetic wave absorbency etc., and excellent mechanical strength and flexibility is relatively easily and economically be produced. <P>SOLUTION: The method for producing the carbonized fabric uses a woven fabric, a knitted fabric or a woven and knitted fabric composed of cellulosic fiber yarns as a raw material fiber fabric, heats and carbonizes the raw material fiber fabric, and produces the carbonized fiber fabric. The method includes restraining and holding the raw material fiber fabric with a moisture content less than 25% in a dry state from either one of the longitudinal or the transverse direction of the fabric, directly heating up the fabric in an oxidizing atmosphere under an oxygen partial pressure of 50 mmHg or greater at 50-200°C/h to a temperature region of 250-450°C, then continuously heating up the fabric in a nonoxidizing atmosphere under an oxygen partial pressure less than 50 mmHg to a final heating temperature region of 1,000-1,600°C at a heating rate of 50-200°C/h and subjecting the fabric to heating where the fabric is held at the final heating temperature for a prescribed time in a heating furnace. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭素化布帛の製造方法およびこれにより得られた炭素化布帛に関するものである。詳しく述べると本発明は、機械的強度、柔軟性、耐薬品性、耐洗濯強度等に優れるためにハンドリングが容易であり、かつ導電特性、耐熱性、臭気吸着性等に優れるため各種の用途に応用できる炭素化布帛を、セルロース系繊維布帛を原料として、歩留まり良くかつ経済的に製造する方法に関するものである。   The present invention relates to a method for producing a carbonized fabric and a carbonized fabric obtained thereby. More specifically, the present invention is easy to handle because it is excellent in mechanical strength, flexibility, chemical resistance, washing resistance, etc., and is excellent in conductive properties, heat resistance, odor adsorption, etc. The present invention relates to a method for producing an applicable carbonized fabric with a high yield and economically using a cellulosic fiber fabric as a raw material.

炭素繊維は、その比弾性率、比強度が、他の繊維に比べて大きく、また、化学的、熱的にも安定であるので、従来、各種構造用複合材の素材として、またその電気的特徴、振動減衰性、X線透過性等の優れた特徴を生かして各種工業材料の複合材の素材としても広く用いられている。   Carbon fiber has a higher specific modulus and strength than other fibers, and is chemically and thermally stable, so it has traditionally been used as a material for various structural composites and its electrical properties. It is widely used as a material for composite materials of various industrial materials, taking advantage of its excellent features such as features, vibration damping, and X-ray permeability.

このような構造用複合材に用いられる炭素繊維としては、今日、その大部分がポリアクリロニトリル系繊維を原料として製造されたPAN系のものである。PAN系炭素繊維は、既に高分子量化している有機合成繊維を原料とするため、原料繊維そのものの強度および伸度が十分なものであるため、製造工程における機械的取り扱いが容易であるが、原料中に窒素分が多く、炭化過程における重量損失が多い。また、ピッチ類を原料として製造されたピッチ系のものも実用化されている。ピッチ系炭素繊維は、一般にPAN系のものよりも、弾性率、熱伝導度及び導電性が高いという特徴を有し、原料コスト的にも有利であるが、ピッチ系繊維においては、その強度が発現されるのは炭化過程においてであって、それに至るまでのピッチ繊維や不融化繊維の状態では機械的強度が非常に小さくかつ非常に脆いものであるため、製造工程における取り扱いが難しく高度な技術が必要とされるために、製造コストが高くなるという欠点を有している。   Most of the carbon fibers used in such a structural composite material are PAN-based products manufactured using polyacrylonitrile-based fibers as raw materials. PAN-based carbon fiber is made from organic synthetic fiber that has already been made high in molecular weight, so the strength and elongation of the raw material fiber itself are sufficient, and mechanical handling in the manufacturing process is easy. It contains a lot of nitrogen and has a large weight loss during the carbonization process. Pitch-type products manufactured using pitches as raw materials have also been put into practical use. Pitch-based carbon fibers are generally characterized by higher elastic modulus, thermal conductivity, and conductivity than PAN-based fibers, and are advantageous in terms of raw material costs. It is manifested in the carbonization process, and in the state of pitch fiber and infusible fiber up to that point, the mechanical strength is very small and very brittle, so it is difficult to handle in the manufacturing process and advanced technology Therefore, the manufacturing cost is high.

また、PAN系、ピッチ系のいずれの炭素繊維も、良く知られるように、高い剛性を有する反面、破断伸度が小さく、屈折に弱いという問題点を有している。さらに、PAN系、ピッチ系のいずれの炭素繊維も、一般に非常に細いフィラメントやトウの形で製造されるため、各種の用途に用いる上でのハンドリング性に難点がある。このため、これらの炭素繊維は、布帛ないしシート状に加工して提供することが望ましいが、上記したように破断伸度が小さく、屈折に弱いという特性を有するため、一般的な繊維のように、紡糸、織編加工することが難しく、炭素繊維を一方向に引き揃え、これに各種樹脂を含浸させて構造を安定化させたプリプレグという形態へと加工されているのが現状である。このようにして得られるプリプレグは、比較的組織が単純で密度の粗いものであり、また成形時における曲面追従性が低い、あるいは曲面成形時に糸束の目ずれが起こりやすいといった欠点を有している。また、含浸樹脂の影響によって、炭素繊維の各種の機能性の低下、例えば、複合構造材とする上でのマトリックスとの接着性の低下、導電性および熱伝導性の低下、燃焼時における有害物質の発生等の問題が生じ、炭素繊維本来の特性を活かしきれず、応用用途を限定するものとなっていた。   Further, as is well known, both PAN-based and pitch-based carbon fibers have high rigidity, but have a problem that they are small in elongation at break and weak in refraction. Furthermore, since both PAN-based and pitch-based carbon fibers are generally manufactured in the form of very thin filaments or tows, there is a difficulty in handling when used for various applications. For this reason, it is desirable that these carbon fibers be processed and provided in the form of a fabric or a sheet. However, as described above, the carbon fiber has characteristics such as low elongation at break and weakness to refraction, so However, it is difficult to perform spinning and weaving and knitting, and the present state is that the prepreg is formed by aligning carbon fibers in one direction and impregnating them with various resins to stabilize the structure. The prepreg thus obtained has a disadvantage that it has a relatively simple structure and is coarse in density, and has a low curved surface following property during molding, or yarn bundle misalignment tends to occur during curved surface molding. Yes. In addition, due to the influence of the impregnating resin, various functionalities of the carbon fiber are reduced, for example, the adhesiveness with the matrix in the case of a composite structure material, the electrical conductivity and the thermal conductivity are reduced, and the harmful substances during combustion Occurrence of problems such as the occurrence of carbon dioxide, the inherent characteristics of carbon fiber could not be fully utilized, limiting the application.

ところで、上記したような広く実用化されているPAN系、ピッチ系の炭素繊維以外に、各種の有機高分子を原料として炭素化繊維を得ようとする試みは、従来より行われている。例えば、レーヨンを中心とするセルロース系繊維を原料として炭素化繊維を得る方法もその1つである。   By the way, in addition to the PAN-type and pitch-type carbon fibers that have been widely put into practical use as described above, attempts have been made to obtain carbonized fibers using various organic polymers as raw materials. For example, one method is to obtain carbonized fibers from cellulosic fibers centered on rayon.

なお、セルロース系繊維の場合、PAN系、ピッチ系の場合とは異なり、炭素化処理時の加熱によって、溶融することなく、面相炭化するものであるため、その製造プロセスとしても当然異なるものが必要とされる。   In the case of cellulosic fibers, unlike in the case of PAN and pitch systems, surface carbonization is not caused by melting during heating during carbonization treatment, so naturally the manufacturing process must be different. It is said.

例えば、特許文献1においては、ビスコースレーヨン等のセルロース系繊維を、不活性雰囲気下に300°F(約146℃)〜500°F(約260℃)の温度範囲で加熱し、500°Fとなるまで所定時間かけて加熱し、部分炭素化することによって、固有繊維密度および引張強度の良好な半導性の炭素化繊維を得ることが開示されている。   For example, in Patent Document 1, cellulosic fibers such as viscose rayon are heated in a temperature range of 300 ° F. (about 146 ° C.) to 500 ° F. (about 260 ° C.) under an inert atmosphere, and 500 ° F. It is disclosed that semiconducting carbonized fibers having good intrinsic fiber density and good tensile strength can be obtained by heating for a predetermined time until partial polymerization and partial carbonization.

また、特許文献2においては、レーヨン繊維を、100℃から450℃まで約10℃/時〜約50℃/時のゆっくりした昇温速度で、次いで、900℃まで約100℃/時以上の昇温速度で、さらに実質的なグラファイト化が起こるまで約3000℃に加熱することによって、布状の柔軟な繊維状グラファイトを製造することが開示されている。   In Patent Document 2, the rayon fiber is heated at a slow temperature increase rate of about 10 ° C./hour to about 50 ° C./hour from 100 ° C. to 450 ° C., and then increased to about 900 ° C./hour or more up to 900 ° C. It is disclosed to produce cloth-like flexible fibrous graphite by heating at about 3000 ° C. at a high rate until further substantial graphitization occurs.

特許文献1および2に示される技術においては、例えば、窒素ガスを流しながら不活性雰囲気下でゆっくりと昇温し、セルロースの分解反応を確実に行うものであるが、この分解反応は発熱反応であるために原料繊維中に熱が蓄積されやすく、いわゆる暴走反応を起こしやすいため、これを防止する上で、不活性雰囲気下で、その処理に非常に長時間を要するものとなる。また、炭素化焼成工程においては、熱分解が進むにつれて、繊維には大きな構造変化が引き起こされ、繊維には収縮が生じるが、収縮に伴う大きな応力が構造弱部に集中し、炭素化焼成時に構造弱部での破損や破壊が起こり、結果的に、得られる炭素化繊維の機械的特性を低下させてしまうものであった。さらに、長時間の加熱によるエネルギーの消費とともに、窒素ガス等の不活性ガスを長時間流しつづける必要があるために、製造コストの増大を招くものであった。   In the techniques disclosed in Patent Documents 1 and 2, for example, the temperature is slowly raised in an inert atmosphere while flowing nitrogen gas to reliably perform the decomposition reaction of cellulose. This decomposition reaction is an exothermic reaction. For this reason, heat is likely to be accumulated in the raw fiber, so that a so-called runaway reaction is likely to occur. Therefore, in order to prevent this, the treatment takes a very long time under an inert atmosphere. In the carbonization firing process, as the thermal decomposition progresses, a large structural change is caused in the fiber, and the fiber shrinks. However, a large stress accompanying the shrinkage concentrates on the weak structure, and during the carbonization firing. Damage and destruction occurred in weak structural parts, and as a result, the mechanical properties of the obtained carbonized fiber were deteriorated. Furthermore, since it is necessary to continue flowing inert gas, such as nitrogen gas, for a long time with the consumption of energy by heating for a long time, the manufacturing cost was increased.

さらに、特許文献3においては、セルロース系繊維布をリン酸等の酸溶液に浸漬し、乾燥して溶媒を除去した後、酸化雰囲気中で約100〜350℃で加熱することで、セルロース系物質を部分的かつ選択的分解して、恒久的に脱水された熱処理物質を得、その後、酸化を防止しながら当該物質を炭素化温度に加熱して炭素化し、さらに炭素化された物質を、窒素ガスで浄化された電気炉で加熱してグラファイト化する技術が開示されている。   Furthermore, in patent document 3, after immersing a cellulosic fiber cloth in acid solutions, such as phosphoric acid, and drying and removing a solvent, it is heated at about 100-350 degreeC in oxidizing atmosphere, A cellulosic substance Is partially and selectively decomposed to obtain a permanently dehydrated heat-treated material, which is then carbonized by heating the material to a carbonization temperature while preventing oxidation, and further converting the carbonized material to nitrogen A technique for heating to a graphite in an electric furnace purified with gas is disclosed.

特許文献3に記載される技術は、セルロース系繊維が大気中の湿度と平衡する通常約5〜20%程度の水分を含有しており、この水分は加熱によって脱水するが、冷却において非常に短い時間で水分は再吸収されること、そして吸収された水分は、繊維物質の個々のフィラメント上にタール状の表面析出物の形成を促進し可撓性炭素質繊維物質の製造を妨害し、これらのタール状析出物は、更なる熱分解において分解し、その結果、個々のフィラメントが他のフィラメント、特に交差関係にある他のフィラメントと粘着してしまい、その結果脆く、弱い製品ができてしまうため、上記したように、最初に完全に脱水されたセルロース系繊維を得ることで、これを解消しようというものである。   The technique described in Patent Document 3 contains about 5 to 20% of moisture in which the cellulosic fibers are balanced with atmospheric humidity, and this moisture is dehydrated by heating, but is very short in cooling. Moisture is reabsorbed over time, and the absorbed moisture promotes the formation of tar-like surface deposits on the individual filaments of the fiber material and interferes with the production of flexible carbonaceous fiber material, The tar-like precipitates of the material decompose in further pyrolysis, which results in individual filaments sticking to other filaments, especially those in cross relationship, resulting in a brittle and weak product. Therefore, as described above, this is to solve this problem by first obtaining a completely dehydrated cellulosic fiber.

特許文献3に示されるようなリン酸等の酸を用いた脱水による構造変化を行う方法以外に、金属塩化物を用いるもの、あるいは特許文献4に示されるように、臭化マグネシウム等の臭化金属物およびチオ尿素、硫酸アンモニウム等の窒素化合物を用い不活性雰囲気下で加熱して、難燃化する方法も知られている。   In addition to the method of changing the structure by dehydration using an acid such as phosphoric acid as shown in Patent Document 3, a method using a metal chloride, or as shown in Patent Document 4, bromide such as magnesium bromide is used. There is also known a method in which a metal compound and a nitrogen compound such as thiourea and ammonium sulfate are used to make the flame retardant by heating in an inert atmosphere.

しかしながら、特許文献3に示されるような酸溶液、特許文献4に示されるような臭化金属物、あるいは金属塩化物処理等の薬剤を使用してセルロース系繊維の前処理を行う方法は、セルロース系繊維の不燃化に要する加熱時間の短縮化は図れるものの、固相である繊維体という不均一系繊維における処理となるため、繊維表面の分子と、内部の分子では反応性が異なるものとなり、極端な場合、薬剤は固体の内部に到達する事ができず、内部の分子はまったく反応できない。このため、その変性は、繊維の各部位で不均一な分布を持ったものとなり、結果的に得られる炭素化繊維においてもその特性が繊維の各部位において不均一なものとなる。   However, a method of pretreating cellulosic fibers using a chemical agent such as an acid solution as shown in Patent Document 3 or a metal bromide or metal chloride as shown in Patent Document 4 is cellulose. Although it is possible to shorten the heating time required for incombustibility of the fiber, it becomes a treatment in a heterogeneous fiber called a solid phase fiber body, so the reactivity of the molecule on the fiber surface and the molecule on the inside is different, In extreme cases, the drug cannot reach the interior of the solid and the molecules inside cannot react at all. For this reason, the modification has a non-uniform distribution in each part of the fiber, and the resulting carbonized fiber also has non-uniform characteristics in each part of the fiber.

さらに、特許文献3に示されるような酸溶液にセルロース系繊維が曝されることで、原料繊維強度が低下し、結果的に得られる炭素化繊維の強度等も低下してしまう虞れがあった。また、金属塩化物や特許文献4に示されるように臭化金属物などを用いて、ハロゲン置換により難燃化した場合、炭素化処理時に有毒なガスの発生する虞れがあった。   Furthermore, exposure of the cellulosic fiber to an acid solution as shown in Patent Document 3 may decrease the strength of the raw material fiber and the resulting strength of the carbonized fiber. It was. Further, when a metal chloride or a metal bromide as shown in Patent Document 4 is used to make a flame retardant by halogen substitution, a toxic gas may be generated during the carbonization treatment.

また、セルロース系炭素繊維の機械的強度を高めるため、原料繊維にケイ素化合物を含浸させた後、炭素化処理を行うことも知られている(例えば、特許文献5〜7参照。)。   It is also known to perform carbonization treatment after impregnating raw material fibers with a silicon compound in order to increase the mechanical strength of cellulosic carbon fibers (see, for example, Patent Documents 5 to 7).

すなわち、オルガノポリシロキサン等の有機ケイ素化合物の有機溶媒溶液中にセルロース系原料繊維を浸漬し、その後、120〜300℃で0.4〜2時間加熱、18〜30℃に0.050〜0.2時間冷却、変形度0〜−10%で上記条件で再度加熱、300〜400℃の区間での変形度−25〜+30%をもって180〜600℃に加熱して炭素化、および−10〜+25%の変形度をもって900〜2800℃でグラファイト化する方法(特許文献5)、ケイ素含有の含水セルロース繊維を、さらにアンチピリン溶液に浸漬し、空気中100〜150℃にて熱処理し、さらに不活性ガス雰囲気中300〜900Paの真空圧で150℃から300〜600℃へゆるやかな温度上昇で炭素化し、その後不活性ガス雰囲気中で1000〜2000℃で熱処理する方法(特許文献6)、また、有機ケイ素化合物の有機溶媒溶液中にセルロース系原料繊維を浸漬し、10℃/分〜60℃/分の昇温速度で250℃〜350℃までの温度範囲にする初期段階、2℃/分〜10℃/分の昇温速度で350℃〜500℃までの温度範囲にする中間段階、5℃/分〜40℃/分の昇温速度で500℃〜750℃に昇温する最終段階を含む(その後、1000℃〜2800℃の範囲の高温熱処理に付すことができる。)熱処理を行う方法(特許文献7)が知られている。   That is, cellulosic raw material fibers are immersed in an organic solvent solution of an organosilicon compound such as organopolysiloxane, then heated at 120 to 300 ° C. for 0.4 to 2 hours, and then at 18 to 30 ° C. at 0.050 to 0.00. Cool for 2 hours, reheat at the deformation degree of 0 to -10% under the above conditions, heat to 180 to 600 ° C with a degree of deformation of 25 to + 30% in the section of 300 to 400 ° C and carbonize, and -10 to +25 % Graphitization at 900-2800 ° C. with a degree of deformation (Patent Document 5), silicon-containing hydrous cellulose fibers are further immersed in an antipyrine solution, heat-treated in air at 100-150 ° C., and further inert gas Carbonization is performed at a moderate temperature increase from 150 ° C. to 300 to 600 ° C. under a vacuum pressure of 300 to 900 Pa in the atmosphere, and then 1000 to 2 in an inert gas atmosphere. A method of heat-treating at 00 ° C. (Patent Document 6), and cellulosic raw material fibers are immersed in an organic solvent solution of an organosilicon compound, and a temperature rising rate of 10 ° C./min to 60 ° C./min is 250 ° C. to 350 ° C. The initial stage to make the temperature range up to 2 ° C./min to 10 ° C./min. The intermediate stage to make the temperature range from 350 ° C. to 500 ° C. at the temperature raising rate of 2 ° C./min. There is known a method of performing a heat treatment (Patent Document 7) including a final stage of raising the temperature to 500 ° C. to 750 ° C. (after that, it can be subjected to a high temperature heat treatment in the range of 1000 ° C. to 2800 ° C.).

このようにケイ素化合物を含浸させて得られた炭素化繊維は、確かに、その機械的強度の向上が望まれるものの、繊維の柔軟性という面では満足のいくレベルのものとはならず、また、炭素化繊維中にはケイ素分が残留しているため、繊維の熱的、電気的あるいは化学的特性といった面からは、あまり良好なものが期待できないものであった。   Although the carbonized fiber obtained by impregnating the silicon compound in this way is certainly desired to improve its mechanical strength, it does not have a satisfactory level in terms of the flexibility of the fiber. In addition, since silicon remains in the carbonized fiber, a very good one cannot be expected from the viewpoint of the thermal, electrical or chemical properties of the fiber.

ところで、セルロース系繊維の炭素化処理としては、従来、特許文献1〜6にも記載されているように、セルロース系繊維糸を「かせ」状態で加熱炉内に入れてバッチ式で行うか、あるいは繊維糸を加熱炉内に配したローラ等の間を引き回しながら通過させて連続式で行う方法が知られているが、炭素化処理後に製織等して布帛とすることは、PAN系、ピッチ系の炭素繊維の場合と同様に、非常に困難である。   By the way, as the carbonization treatment of the cellulosic fiber, conventionally, as described in Patent Documents 1 to 6, the cellulosic fiber yarn is put in a heating furnace in a “skein” state, and is performed in a batch system, Alternatively, a method is known in which a fiber yarn is passed through a roller disposed in a heating furnace while being routed and is continuously processed. As in the case of carbon fibers, it is very difficult.

原料としてセルロース系繊維布帛を用い、これをそのまま炭素化処理して炭素化繊維布帛を得ようとする試みもなされている。例えば、特許文献8の実施例中には、リン酸溶液処理後の原料布帛を2枚の黒鉛板に挟持し、パッキングコークス中に埋め非酸化性雰囲気下で1週間の時間をかけて900℃で炭素化することが示されている。また、前記特許文献7においては、所定の温度ゾーンを複数有する連続炉を用いて原料布帛を連続的に処理する方法も示されている。   Attempts have also been made to obtain a carbonized fiber fabric by using a cellulosic fiber fabric as a raw material and carbonizing it as it is. For example, in the example of Patent Document 8, the raw material fabric after the phosphoric acid solution treatment is sandwiched between two graphite plates, buried in packing coke, and placed in a non-oxidizing atmosphere over a period of 1 week at 900 ° C. It is shown to be carbonized. Patent Document 7 also discloses a method of continuously treating a raw fabric using a continuous furnace having a plurality of predetermined temperature zones.

しかしながら、特許文献8に示される原料繊維布帛を炭素化する方法は、非常に長時間を有するものであって効率が悪く、特許文献1および2に示される技術と同様に、得られる炭素化繊維布帛の特性も十分なものとならないものであった。さらに、製造時に原料布帛面全体に強い押圧力が常時加わるため炭素化時における布帛の収縮にうまく追従させることができず、布帛の部分的な破損等をもたらしたりする虞れがあった。また、特許文献7に示される方法は、前記したようにケイ素化合物を含浸させる前処理を行うものであって、機械的強度の向上が望まれるものの、繊維の柔軟性という面では満足のいくレベルのものとはならず、また、炭素化繊維中にはケイ素分が残留しているため、繊維の熱的、電気的あるいは化学的特性といった面から問題の残るものであった。さらに、連続炉を用いる方法は、製造装置が非常に大がかりなものとなり、また、所定の昇温パターンで加熱するために、ある特定の温度ゾーンでは、いくつもの搬送ロール、転向ロール等を配置し、原料布帛をこれらの間に掛け渡した上で引き出す操作が必要であり、炭素化途中において非常に破断伸度が小さく、屈折に弱い布帛を連続して炉内を通過させるためには、非常に微妙な張力調整が必要となるため、操作が高度なものとなり、また、一端布帛が破断してしまうと完全に操作を中断する必要があるため、効率が悪く、製造歩留まりも悪いものとなるものであった。   However, the method of carbonizing the raw fiber fabric shown in Patent Document 8 has a very long time and is inefficient, and the obtained carbonized fiber is similar to the techniques shown in Patent Documents 1 and 2. The properties of the fabric were not sufficient. Furthermore, since a strong pressing force is constantly applied to the entire raw material fabric surface during production, the fabric shrinkage during carbonization cannot be followed well, and the fabric may be partially damaged. Further, the method disclosed in Patent Document 7 is a pretreatment for impregnating a silicon compound as described above, and although an improvement in mechanical strength is desired, a satisfactory level in terms of fiber flexibility. In addition, since silicon remains in the carbonized fiber, problems remain in terms of the thermal, electrical, and chemical properties of the fiber. Furthermore, the method using a continuous furnace requires a very large manufacturing apparatus, and in order to heat with a predetermined temperature rising pattern, a number of transport rolls, turning rolls, etc. are arranged in a specific temperature zone. , It is necessary to draw the raw material fabric between them, and to pull out the fabric in the middle of the carbonization process. Therefore, when the fabric is broken, it is necessary to interrupt the operation completely, so that the operation is inefficient and the production yield is also poor. It was a thing.

このように、従来、セルロース系繊維を原料とした炭素化繊維布帛の製造は、その製造効率が低く、また得られる炭素化繊維布帛としても十分な特性を有するものが得られていないのが現状であった。
米国特許第3053775号明細書 米国特許第3107152号明細書 米国特許第3305315号明細書 特開昭58−13722号公報 ロシア特許第2045472号明細書 ロシア特許第2047674号明細書 米国特許第6967014号明細書 国際公開WO00/49213号公報
Thus, conventionally, the production of carbonized fiber fabrics using cellulosic fibers as a raw material has a low production efficiency, and the carbonized fiber fabrics obtained have not been obtained with sufficient characteristics. Met.
US Pat. No. 3,053,775 US Pat. No. 3,107,152 U.S. Pat. No. 3,305,315 JP 58-13722 A Russian Patent No. 2045472 Russian Patent No. 2047674 US Pat. No. 6,967,014 International Publication WO00 / 49213

従って、本発明は、機械的強度および柔軟性に優れた炭素化布帛を比較的容易にかつ経済的に製造することのできる炭素化布帛の製造方法を提供することを課題とする。本発明はまた、機械的強度、柔軟性、耐薬品性、耐洗濯強度等に優れるためにハンドリングが容易であり、かつ電磁波吸収能、電気的特性ないし誘電特性、耐熱性、臭気吸着性等に優れるため各種の用途に好適に応用できる炭素化布帛、およびその製造方法を提供することを課題とする。   Therefore, an object of the present invention is to provide a method for producing a carbonized fabric capable of producing a carbonized fabric excellent in mechanical strength and flexibility relatively easily and economically. The present invention is also easy to handle because of its excellent mechanical strength, flexibility, chemical resistance, washing resistance, etc., and has electromagnetic wave absorbing ability, electrical characteristics or dielectric characteristics, heat resistance, odor adsorbability, etc. It is an object of the present invention to provide a carbonized fabric that can be suitably applied to various uses because of its superiority, and a manufacturing method thereof.

上記課題を解決する本発明は、セルロース系繊維の糸からなる織布、編布または織編布を原料繊維布帛とし、これを加熱炭素化して炭素化繊維布帛を製造する方法であって、含水率25%未満の乾燥状態の原料繊維布帛を、当該布帛の縦あるいは横のいずれか一方向から拘束して保持し、そのまま、加熱炉内において、酸素分圧50mmHg以上の酸化性雰囲気下において、250〜450℃の温度領域まで50〜200℃/時間にて昇温し、その後、酸素分圧50mmHg未満の非酸化性雰囲気として1000〜1600℃の最終加熱温度領域まで50〜200℃/時間の昇温速度にて、連続して昇温し、最終加熱温度にて所定時間保持する加熱に付することを特徴とする炭素化布帛の製造方法である。   The present invention for solving the above-mentioned problems is a method for producing a carbonized fiber fabric by using a woven fabric, a knitted fabric or a woven / knitted fabric made of cellulosic fiber yarns as a raw material fiber fabric, which is heated and carbonized. A raw material fiber fabric in a dry state with a rate of less than 25% is restrained and held from either one of the longitudinal or lateral directions of the fabric, and in an oxidizing atmosphere with an oxygen partial pressure of 50 mmHg or more as it is in a heating furnace. The temperature is raised to a temperature range of 250 to 450 ° C. at 50 to 200 ° C./hour, and thereafter, a non-oxidizing atmosphere having an oxygen partial pressure of less than 50 mmHg is set to 50 to 200 ° C./hour to a final heating temperature range of 1000 to 1600 ° C. A method for producing a carbonized fabric, wherein the temperature is continuously raised at a rate of temperature rise and subjected to heating that is maintained for a predetermined time at a final heating temperature.

本発明の炭素化布帛の製造方法においてはまた、加熱開始から最終温度での加熱終了までの総合加熱保持時間が10〜50時間であることが好ましい。   In the method for producing a carbonized fabric of the present invention, it is preferable that the total heating and holding time from the start of heating to the end of heating at the final temperature is 10 to 50 hours.

本発明の炭素化布帛の製造方法においてはまた、250〜1600℃の温度領域においては、前記拘束方向において布帛に収縮による張力が加わることが好ましい。   In the method for producing a carbonized fabric of the present invention, it is preferable that a tension due to shrinkage is applied to the fabric in the restraining direction in a temperature range of 250 to 1600 ° C.

本発明の炭素化布帛の製造方法においてはまた、酸化性雰囲気から非酸化性雰囲気への置換は、加熱された原料繊維布帛の熱分解により発生する出ガスを利用して、原料繊維布帛の囲繞雰囲気より酸素含有ガスを追放することによって行われるものであることが望ましい。   In the method for producing a carbonized fabric of the present invention, the substitution from the oxidizing atmosphere to the non-oxidizing atmosphere is performed by using the outgas generated by the thermal decomposition of the heated raw fiber fabric, It is desirable that the oxygen-containing gas be expelled from the atmosphere.

本発明の炭素化布帛の製造方法はまた、原料繊維布帛は、加熱炉内において積層された状態で配置されているものである炭素化布帛の製造方法を示すものである。   The method for producing a carbonized fabric of the present invention also shows a method for producing a carbonized fabric in which the raw fiber fabrics are arranged in a laminated state in a heating furnace.

上記課題を解決する本発明はまた、セルロース系繊維の糸からなる織布、編布または織編布を原料繊維布帛とし、当該布帛を含水率25%未満の乾燥状態にて、当該布帛の縦あるいは横のいずれか一方向から拘束して保持し、そのまま、加熱炉内において、酸素分圧50mmHg以上の酸化性雰囲気下において、250〜450℃の温度領域まで50〜200℃/時間にて昇温し、その後、酸素分圧50mmHg未満の非酸化性雰囲気として1000〜1600℃の最終加熱温度領域まで50〜200℃/時間の昇温速度にて、連続して昇温し、最終加熱温度にて所定時間保持する加熱に付することを特徴とする炭素化布帛の製造方法により得られた炭素化布帛である。   The present invention for solving the above-mentioned problems is also characterized in that a woven fabric, a knitted fabric or a woven / knitted fabric made of cellulosic fiber yarns is used as a raw fiber fabric, and the fabric is stretched in a dry state with a moisture content of less than 25%. Alternatively, it is restrained and held from any one of the lateral directions, and as it is, in a heating furnace, the temperature is increased to 50 to 200 ° C./hour up to a temperature range of 250 to 450 ° C. in an oxidizing atmosphere having an oxygen partial pressure of 50 mmHg or more. Then, the temperature is continuously raised to a final heating temperature range of 1000 to 1600 ° C. at a heating rate of 50 to 200 ° C./hour as a non-oxidizing atmosphere having an oxygen partial pressure of less than 50 mmHg, and the final heating temperature is reached. The carbonized fabric obtained by the method for producing a carbonized fabric, which is subjected to heating for a predetermined time.

本発明はまた、前記炭素化布帛が面方向において体積固有抵抗0.01〜0.6Ωcm、カンチレバーソフトネステスターにより測定される炭素化布帛の剛軟度と原料繊維布帛の剛軟度との比(炭素化布帛の剛軟度/原料繊維布帛の剛軟度)が1.2〜0.8であることを特徴とする炭素化布帛を示すものである。   In the present invention, the carbonized fabric has a volume resistivity of 0.01 to 0.6 Ωcm in the plane direction, and the ratio between the stiffness of the carbonized fabric measured by a cantilever soft tester and the stiffness of the raw fiber fabric. The carbonized fabric is characterized in that (the bending resistance of the carbonized fabric / the bending resistance of the raw fiber fabric) is 1.2 to 0.8.

本発明の炭素化布帛の製造方法においては、セルロース系繊維の糸からなる織布、編布または織編布を原料として用い、原料布帛に酸溶液、ハロゲン化物あるいはケイ素化合物などを使用した前処理等を何ら施すことなくそのまま加熱炉に導入し、熱処理を行う雰囲気を酸化雰囲気から非酸化雰囲気へと変化させつつ、連続的に昇温させるという比較的簡単な処理工程により炭素化繊維布帛を得ることができるため、製造コスト面で有利な製造方法となる。また、本発明の炭素化布帛の製造方法において、前記250〜450℃の温度領域まで昇温およびその後の1000〜1600℃の最終加熱温度領域までの昇温が、それぞれ50〜200℃/時間の一定速度で行われため、製造工程における熱制御が簡単でありかつ短時間で製品を得ることができる。また、本発明の製造方法においては当該原料布帛を当該布帛の縦あるいは横のいずれか一方向から拘束して保持して加熱処理を施すため、セルロース系繊維の熱分解ないし炭素化が進行し収縮が生じる際に、適度な張力、より好ましくは、250〜1600℃の温度領域においては、前記拘束方向において布帛に収縮による張力を加えるものとなり、得られる炭素化繊維布帛の機械的強度および柔軟性が高まるものである。   In the method for producing a carbonized fabric of the present invention, a pre-treatment using a woven fabric, a knitted fabric or a woven / knitted fabric made of cellulosic fiber yarn as a raw material, and using an acid solution, a halide, a silicon compound or the like as the raw material fabric. The carbonized fiber fabric is obtained by a relatively simple treatment process in which the temperature is continuously increased while being introduced into a heating furnace without any treatment and the atmosphere for heat treatment is changed from an oxidizing atmosphere to a non-oxidizing atmosphere. Therefore, the manufacturing method is advantageous in terms of manufacturing cost. Moreover, in the manufacturing method of the carbonized fabric of this invention, temperature rising to the said 250-450 degreeC temperature range and subsequent temperature rising to 1000-1600 degreeC final heating temperature area | region are 50-200 degreeC / hour, respectively. Since it is performed at a constant speed, the heat control in the manufacturing process is simple and a product can be obtained in a short time. Further, in the production method of the present invention, since the raw material fabric is constrained from one of the vertical and horizontal directions and is subjected to heat treatment, the thermal decomposition or carbonization of the cellulosic fibers proceeds and shrinks. In the temperature range of 250 to 1600 ° C., the tensile strength is applied to the fabric in the restraining direction, and the mechanical strength and flexibility of the resulting carbonized fiber fabric is obtained. Will increase.

また本発明の炭素化布帛は、上記したような製造方法により調製できるものであるから、非常に安価で提供でき、加えて、このようにして得られる本発明に係る炭素化繊維布帛は、上記したように優れた機械的強度および柔軟性、さらに良好な耐薬品性および耐洗濯強度を有するゆえにハンドリング性に優れるという点のみならず、良好な導電性、熱伝導性、電磁波吸収性、臭気吸着性等を有しており、各種の用途に好適に用いることができるものである。殊に、本発明おけるように、1000〜1600℃の最終加熱温度にて炭化して得られたものは、その端部に電極を接続して電流を流してやれば、非常に低電力にて布帛全体が通電されて容易に発熱が起こり、また電流を遮断すると急速に降温し、しかも投入電圧によって到達温度が変化することから所定温度に加熱することが容易であるといった優れた電熱作用を発揮し、かつ遠赤外線放射も大きく、耐熱性も非常に高いことから、面状発熱体を初めとする発熱体用途に好適に使用されることが期待できるものである。   Further, since the carbonized fabric of the present invention can be prepared by the production method as described above, it can be provided at a very low cost. In addition, the carbonized fiber fabric according to the present invention thus obtained is In addition to excellent mechanical strength and flexibility, as well as excellent chemical resistance and washing strength, it has excellent handling properties, as well as good conductivity, thermal conductivity, electromagnetic wave absorption, and odor adsorption. It can be suitably used for various applications. In particular, as obtained in the present invention, the carbonized product obtained at the final heating temperature of 1000 to 1600 ° C. can be produced at a very low power if an electrode is connected to the end and an electric current is passed. The entire system is energized and heat is easily generated, and when the current is cut off, the temperature drops rapidly, and the ultimate temperature changes depending on the applied voltage. In addition, since the far-infrared radiation is large and the heat resistance is very high, it can be expected to be suitably used for heating elements such as planar heating elements.

なお、詳細な機構は明らかではないが、前記したように本発明に係る炭素化繊維布帛が優れた電熱効果を示すのは、原料繊維布帛における撚糸ないし織編構造を引き継いで、炭素化繊維布帛において炭素が多配向性を持って分布し、かつマクロおよびミクロ的な電気回路が組織内に形成されるためではないかと思われる。   Although the detailed mechanism is not clear, as described above, the carbonized fiber fabric according to the present invention exhibits an excellent electrothermal effect because the carbonized fiber fabric takes over the twisted yarn or woven / knitted structure in the raw fiber fabric. This is probably because carbon is distributed with multiple orientations and macro and micro electric circuits are formed in the tissue.

以下、本発明を実施形態に基づき、詳細に説明する。   Hereinafter, the present invention will be described in detail based on embodiments.

本発明において、原料としては、セルロース系繊維の糸からなる織布、編布または織編布が用いられる。   In the present invention, a woven fabric, a knitted fabric or a woven / knitted fabric made of cellulosic fiber yarn is used as a raw material.

本発明の出発原料となるセルロース系繊維としては、綿、麻(リネン麻、ラミー麻、マニラ麻、サイザル麻、ジュート麻、ケナフ、ヘンプ等各種のものを含む)、絹、その他、竹、こうぞ、みつまた等の植物性および動物性の天然セルロース繊維でも、ビスコースレーヨン、銅アンモニアレーヨンといったレーヨン繊維、ビスアセテート、トリアセテートといったアセテート繊維等の再生ないし半合成セルロース繊維でも構わない。   Cellulose fibers used as starting materials of the present invention include cotton, hemp (including various types such as linen hemp, ramie hemp, manila hemp, sisal hemp, jute hemp, kenaf, hemp, etc.), silk, others, bamboo, kozo Plant or animal natural cellulose fibers such as honey or honey may also be used, or regenerated or semi-synthetic cellulose fibers such as rayon fibers such as viscose rayon and copper ammonia rayon, and acetate fibers such as bisacetate and triacetate.

出発原料として、好ましいものの1つは、綿である。綿繊維はアオイ科の植物である綿を栽培し、開花後子房の胚珠の表皮細胞が伸長して形成された長い綿毛(リント)を回収して得る。木綿繊維はグルコースが鎖状に連結したセルロース(線維素)が主成分であり、この繊維は自然界で得られる最も純粋なセルロースである(乾燥時には88〜96%)。木綿繊維の断面は中空であり、生の時は円形であるが、乾燥すると扁平になり、このことにより天然撚りを生ずる。綿は、従来の炭素繊維の原料である再生セルロースとは形態が異なり、立体的な積層構造になっており、これを炭素化して得られた炭素化繊維は、綿の持つ特徴、すなわち、木綿繊維の構造上の特性である二重セルロース層が残存し、柔軟性、強度、吸着性に富む素材となる。   One preferred starting material is cotton. Cotton fiber is obtained by cultivating cotton, which is a plant of the mallow family, and collecting long fluff (lint) formed by extending ovule epidermal cells after flowering. Cotton fiber is mainly composed of cellulose (fibrin) in which glucose is linked in a chain, and this fiber is the purest cellulose obtained in nature (88 to 96% when dried). The cross section of the cotton fiber is hollow and circular when it is raw, but it becomes flat when dried, thereby producing a natural twist. Cotton is different in form from regenerated cellulose, which is a raw material of conventional carbon fiber, and has a three-dimensional laminated structure. Carbonized fiber obtained by carbonizing this has the characteristics of cotton, namely cotton. The double cellulose layer, which is a structural characteristic of the fiber, remains, and becomes a material rich in flexibility, strength, and adsorptivity.

綿のセルロース繊維はミセル状の構造を持ち、セルロース分子が一定の排列をした結晶部分と不規則に集合した非結晶部分からなり、結晶部分はお互いの結合に関与して繊維間の結合を担い、結晶部分と非結晶部分の混在によって、木綿繊維特有の強度や弾力性が決定づけられている。木綿の繊維は、全体的に捩れがあるが、外からクチクラ層(ワックスなどからなる)、セルロース第1層、セルロース第2層の3層からなる。第1層のセルロースは全て結晶化されており、第2層では結晶と非結晶が混在している。中央には断面積比が3〜4%のルーメンと言う中空部がある。これを炭化すると、クチクラ層は燃焼し、セルロース層が露出する。炭素化綿の表面には繊維の束が明確に現れており、クラチラ層は完全に分解除去されている。炭化したセルロースは繊維方向に整列しており、ロープのような構造をなしている。各繊維の束にはところどころに隙間が出来ており、この隙間は空間的に下層の炭化したセルロースに繋がっていると考えられる。高率の吸着性を示す理由は恐らく、繊維中の結晶部分と非結晶部分とが混在する構造上の特徴、繊維間の配位などが関与しているものと考えられる。このように、綿が持つ自然の捩れが、炭素化繊維を製造した場合にそのまま維持され、しなやかさや加工のし易さ、さらには強度をそのまま維持するものと考えられる。   Cotton cellulose fibers have a micellar structure, consisting of crystalline parts with a certain arrangement of cellulose molecules and non-crystalline parts that are irregularly assembled, and the crystalline parts are involved in bonding with each other and are responsible for bonding between fibers. The strength and elasticity specific to cotton fibers are determined by the mixture of crystalline and non-crystalline parts. Cotton fiber is generally twisted, but consists of three layers: a cuticle layer (made of wax, etc.), a cellulose first layer, and a cellulose second layer. The cellulose in the first layer is all crystallized, and crystals and non-crystals are mixed in the second layer. In the center, there is a hollow part called lumen with a cross-sectional area ratio of 3-4%. When carbonized, the cuticle layer burns and the cellulose layer is exposed. A bundle of fibers clearly appears on the surface of the carbonized cotton, and the cracker layer is completely decomposed and removed. Carbonized cellulose is aligned in the fiber direction and has a rope-like structure. There are some gaps in each fiber bundle, and these gaps are considered to be spatially connected to the carbonized cellulose in the lower layer. The reason for the high rate of adsorptivity is probably due to the structural features in which crystalline and non-crystalline parts in the fiber are mixed, coordination between the fibers, and the like. Thus, it is considered that the natural twist of cotton is maintained as it is when carbonized fibers are produced, and the flexibility, ease of processing, and strength are maintained as they are.

また、機械的強度等に優れた炭素化繊維を製造する上で好ましい出発原料としては、レーヨン繊維を挙げることができる。   Moreover, rayon fiber can be mentioned as a preferable starting material for producing carbonized fiber excellent in mechanical strength and the like.

原料の布帛の織り方、編み方としては、特に限定されるものではなく、例えば、平織り、綾織り、繻子織り等の織り方、横編、縦編等によるシングルニット、ダブルニット等の編み方、あるいはこれらの組合せ等の各種のものが用いられ得るが、このうち、得られる、炭素化布帛の良好な機械的強度および柔軟性、また繊維の多方向的配向性などといった面からは、編物であることが望ましい。   The weaving and knitting methods of the raw fabric are not particularly limited. For example, weaving methods such as plain weaving, twill weaving and satin weaving, weaving methods such as single knitting and double knitting by weft knitting, vertical knitting, etc. Alternatively, various types such as a combination thereof can be used. Among them, the knitted fabric is obtained from the viewpoint of the good mechanical strength and flexibility of the obtained carbonized fabric, and the multidirectional orientation of the fibers. It is desirable that

また、原料の布帛を構成する糸としては、単繊維糸であっても複数の繊維の捻糸であってもよいが、捻糸であることが、得られる炭素化布帛の良好な機械的強度および柔軟性、また繊維の多方向的配向性などといった面から望ましい。   Further, the yarn constituting the raw fabric may be a single fiber yarn or a twisted yarn of a plurality of fibers, but the fact that it is a twisted yarn has good mechanical strength of the resulting carbonized fabric. And desirable in terms of flexibility and multidirectional orientation of fibers.

さらに糸の太さとしては、用いる繊維の種類によっても左右され、特に限定されるものではないが、例えば、綿糸の場合、番手10〜100番程度、また、レーヨン繊維等の長繊維の場合、5000〜10000デニール程度であることが望ましい。   Furthermore, the thickness of the yarn depends on the type of fiber used and is not particularly limited. For example, in the case of cotton yarn, the count is about 10 to 100, and in the case of long fibers such as rayon fiber, It is desirable to be about 5000 to 10000 denier.

また原料布帛の厚さとしても、用いる繊維の種類によっても左右され、特に限定されるものではないが、例えば、綿布帛の場合、厚さが0.05〜50mm、好ましくは、0.05〜30mm程度のものであることが望ましい。   Moreover, even if it is the thickness of a raw material fabric, it is influenced by the kind of fiber to be used, and it is not specifically limited, For example, in the case of a cotton fabric, thickness is 0.05-50 mm, Preferably, 0.05- It is desirable that it is about 30 mm.

なお本発明の製造方法においては、炭素化繊維に導電性を付与するため、比較的高温度まで加熱することから、後述するような電磁波吸収用途や吸着用途のように最終加熱温度がより低温の場合に比べ、用いる原料布帛を構成する糸の太さ、布帛の厚さ等は比較的大きなものを用いることが望ましい。   In addition, in the manufacturing method of the present invention, in order to impart conductivity to the carbonized fiber, it is heated to a relatively high temperature, so that the final heating temperature is lower as in electromagnetic wave absorption applications and adsorption applications as described later. Compared to the case, it is desirable to use a relatively large yarn thickness, fabric thickness and the like constituting the raw material fabric to be used.

本発明の製造方法においては、このような原料布帛は、また、従来公知のリン酸等酸溶液、オルガノポリシロキサン等の有機ケイ素化合物、臭化マグネシウム等のハロゲン化物、チオ尿素、硫酸アンモニウム等の窒素化合物等を用いた難燃化等を目的とする前処理を何ら施すことなく、乾燥状態(含水率25%未満)で、そのまま加熱炭素化処理工程にかけられる。なお、必要に応じて、付着した異物等を除去する目的の上で、水洗および乾燥処理を施すことは可能である。   In the production method of the present invention, such a raw material fabric is made of a conventionally known acid solution such as phosphoric acid, organosilicon compounds such as organopolysiloxane, halides such as magnesium bromide, nitrogen such as thiourea and ammonium sulfate. Without any pretreatment for the purpose of flame retardancy using a compound or the like, it can be directly subjected to a heating carbonization treatment step in a dry state (moisture content of less than 25%). In addition, it is possible to perform a water washing and a drying process for the purpose of removing the adhering foreign material etc. as needed.

本発明の製法においては、このようなセルロース系繊維の糸からなる織布、編布または織編布を、乾燥状態にて、温度制御可能な加熱炉に挿入し、最初に酸素分圧50mmHg以上、より好ましくは酸素分圧100〜150mmHgの酸化性雰囲気下において、250〜450℃の温度領域まで昇温し、その後、酸素分圧50mmHg未満、より好ましくは酸素分圧10mmHg未満の非酸化性雰囲気として1000〜1600℃の最終加熱温度領域まで連続して昇温し、最終加熱温度にて所定時間保持するという熱処理を施すことで、炭素化繊維布帛を製造するものである。   In the production method of the present invention, a woven fabric, a knitted fabric or a woven / knitted fabric made of such cellulose fiber yarns is inserted into a temperature-controllable heating furnace in a dry state, and initially an oxygen partial pressure of 50 mmHg or more. More preferably, in an oxidizing atmosphere with an oxygen partial pressure of 100 to 150 mmHg, the temperature is raised to a temperature range of 250 to 450 ° C., and then an oxygen partial pressure of less than 50 mmHg, more preferably an oxygen partial pressure of less than 10 mmHg. The carbonized fiber fabric is manufactured by performing a heat treatment in which the temperature is continuously increased to a final heating temperature range of 1000 to 1600 ° C. and held at the final heating temperature for a predetermined time.

ここで、本発明において、当該原料繊維布帛は、縦あるいは横のいずれか一方向から拘束して保持された状態で加熱炉内に挿入される。   Here, in this invention, the said raw fiber fabric is inserted in a heating furnace in the state restrained and hold | maintained from either the vertical or horizontal direction.

セルロース系繊維の熱分解ないし炭素化が進行するにつれて、布帛には収縮が生じるが、本発明においては、原料布帛が上記したように縦あるいは横のいずれか一方向から拘束して保持された状態で収納されているため、布帛にはその収縮の程度に応じて適度な張力、特に限定されるものではないが、具体的には、例えば、250〜1600℃の温度領域において、前記拘束方向において布帛に収縮による、0.01N〜10.0N程度、より好ましくは0.1N〜5.0Nの張力が安定して加わることになる。このため炭素化した繊維中において、炭素原子の配向等が進行するものと思われ、得られる炭素化布帛は十分な機械的強度とともに良好な柔軟性を有するものとなる。   As the thermal decomposition or carbonization of the cellulosic fibers proceeds, the fabric shrinks. In the present invention, the raw fabric is held in a restrained state from either the vertical or horizontal direction as described above. Therefore, the fabric is not particularly limited in tension, depending on the degree of contraction. Specifically, for example, in the temperature range of 250 to 1600 ° C, A tension of about 0.01 N to 10.0 N, more preferably 0.1 N to 5.0 N due to shrinkage is stably applied to the fabric. For this reason, it is considered that the orientation of the carbon atoms proceeds in the carbonized fiber, and the obtained carbonized fabric has good mechanical strength and good flexibility.

なお、本発明において原料布帛を縦あるいは横のいずれか一方向から「拘束する」というのは、完全に両端を固定するというものではなく、布帛の収縮の程度に応じて上記したような適度な張力が加わるように保持することを意味するものである。   In the present invention, “restraining” the raw material fabric from either one of the vertical and horizontal directions does not completely fix both ends, and is appropriate as described above depending on the degree of contraction of the fabric. This means that the tension is maintained.

加熱炉としては、温度制御可能な加熱炉であれば特に限定されるものではないが、例えば、電熱炉、、ガス炉、コークス炉等を用いることができる。   The heating furnace is not particularly limited as long as the temperature can be controlled. For example, an electric heating furnace, a gas furnace, a coke furnace, or the like can be used.

また、一般に、セルロース系繊維は大気中の湿度と平衡する通常約5〜20%程度の水分を含有しており、この水分は加熱によって脱水するが、冷却において非常に短い時間で水分は再吸収されること、そして吸収された水分は、繊維物質の個々のフィラメント上にタール状の表面析出物の形成を促進し可撓性炭素質繊維物質の製造を妨害し、これらのタール状析出物は、更なる熱分解において分解し、その結果、個々のフィラメントが他のフィラメント、特に交差関係にある他のフィラメントと粘着してしまい、その結果脆く、弱い製品ができてしまう。本発明においては、最初に酸素分圧50mmHg以上の酸化性雰囲気下において、250〜450℃の温度領域まで加熱することで、セルロースの分子鎖構造を変化させて脱水させることで、その後において強靭で柔軟な繊維構造を形成するものである。   In general, cellulosic fibers contain about 5 to 20% of water that equilibrates with humidity in the atmosphere. This water is dehydrated by heating, but the water is reabsorbed in a very short time for cooling. And the absorbed moisture promotes the formation of tar-like surface deposits on the individual filaments of the fiber material and interferes with the production of flexible carbonaceous fiber materials, which tar deposits Decomposing in further pyrolysis, resulting in individual filaments sticking to other filaments, especially those in cross relationship, resulting in a brittle and weak product. In the present invention, by first heating to a temperature range of 250 to 450 ° C. in an oxidizing atmosphere having an oxygen partial pressure of 50 mmHg or more, the molecular chain structure of cellulose is changed and dehydrated. It forms a flexible fiber structure.

本発明の炭素化布帛の製造方法において、前記250〜450℃の温度領域まで昇温条件としては、50〜200℃/時間、より好ましくは80〜150℃/時間とされる。セルロース系繊維は、一般に240〜250℃前後の温度で熱分解が開始されるが、この温度域を含めて、250〜450℃の温度領域まで酸化性雰囲気下において、50〜200℃/時間の昇温条件で加熱することで、安定、確実かつ迅速に、セルロースの分子鎖構造を変化させて脱水させる。   In the method for producing a carbonized fabric of the present invention, the temperature raising condition up to the temperature range of 250 to 450 ° C. is 50 to 200 ° C./hour, more preferably 80 to 150 ° C./hour. Cellulosic fibers generally start pyrolysis at a temperature of about 240 to 250 ° C., and this temperature range includes the temperature range of 250 to 450 ° C. in an oxidizing atmosphere at 50 to 200 ° C./hour. By heating under temperature rising conditions, the molecular chain structure of cellulose is changed and dehydrated stably, reliably and rapidly.

そして、セルロース系繊維の熱分解により発生する可燃性の出ガスおよび熱分解時の発熱反応により布帛が燃焼し炭素化の制御が不能となることを抑制するために、この温度域に達したら酸化性雰囲気より非酸化性雰囲気へと置換する。   In order to prevent the combustion of the fabric due to the flammable gas generated by the thermal decomposition of the cellulosic fibers and the exothermic reaction during the thermal decomposition, and the carbonization cannot be controlled, the oxidation is performed when this temperature range is reached. The atmosphere is replaced with a non-oxidizing atmosphere.

製造途中における酸化性雰囲気から非酸化性雰囲気への切り替えは、加熱炉内の雰囲気中に外部より不活性ガスを供給することによっても行うことが可能であるが、約250℃以上の温度領域で繊維の熱分解により発生する出ガスによって雰囲気中の酸素分を加熱炉系外へ追放することによって行うことが望ましい。なお、この場合、原料繊維布帛より発生する分解ガスによって迅速かつ十分に雰囲気が置換されるよう、加熱炉内は、余剰空間の少ない状態としておくことが望ましい。   Switching from an oxidizing atmosphere to a non-oxidizing atmosphere during production can be performed by supplying an inert gas from the outside to the atmosphere in the heating furnace, but in a temperature range of about 250 ° C. or higher. It is desirable that the oxygen content in the atmosphere be expelled out of the heating furnace system by the outgas generated by the thermal decomposition of the fiber. In this case, it is desirable that the inside of the heating furnace has a small excess space so that the atmosphere is quickly and sufficiently replaced by the decomposition gas generated from the raw fiber fabric.

最終的加熱温度は、得ようとする炭素化繊維の特性によって変動するが、本発明においては、良好な導電性を示し卓越した電熱特性を発揮する炭素化繊維布帛を得るために、1000〜1600℃の温度、より好ましくは、1200〜1400℃の温度とする。   Although the final heating temperature varies depending on the characteristics of the carbonized fiber to be obtained, in the present invention, in order to obtain a carbonized fiber fabric exhibiting excellent electrical conductivity and exhibiting excellent electrothermal characteristics, 1000 to 1600 is obtained. It is set as the temperature of 1200 degreeC, More preferably, it is the temperature of 1200-1400 degreeC.

なお、250〜450℃の温度領域から、酸素分圧50mmHg未満の非酸化性雰囲気に切り替えての、この最終的加熱温度までの加熱は、安定かつ均一に炭素化が十分に進行しかつ炭素の所期の配列化が生じるように、50〜200℃/時間、より好ましくは80〜150℃/時間の昇温速度で行われることが好ましい。   In addition, the heating up to the final heating temperature by switching from the temperature range of 250 to 450 ° C. to the non-oxidizing atmosphere having an oxygen partial pressure of less than 50 mmHg is performed stably and uniformly, and the carbonization proceeds sufficiently. It is preferable to carry out the heating at a rate of temperature increase of 50 to 200 ° C./hour, more preferably 80 to 150 ° C./hour so as to achieve the desired alignment.

また最終温度での保持時間としては、特に限定されるものではないが、例えば、10〜50時間程度、好ましくは10〜30時間、より好ましくは12〜20時間程度である。   The holding time at the final temperature is not particularly limited, but is, for example, about 10 to 50 hours, preferably 10 to 30 hours, and more preferably about 12 to 20 hours.

本発明においては、このような所定の昇温速度にて加熱することによって、比較的短時間にて所期の特性を有する炭素化布帛を得ることができる。   In the present invention, the carbonized fabric having the desired characteristics can be obtained in a relatively short time by heating at such a predetermined temperature increase rate.

本発明において、このように最終温度までの所期の加熱処理を行った後の冷却条件は特に限定されるものではないが、自然冷却で良く、例えば、−10〜−100℃/時間程度、より好ましくは、−20〜−60℃/時間程度の降温条件となる。その後、得られた炭素化繊維布帛は、必要に応じて、端部裁断等の整形処理を行って製品とすることができる。   In the present invention, the cooling conditions after performing the desired heat treatment up to the final temperature are not particularly limited, but may be natural cooling, for example, about −10 to −100 ° C./hour, More preferably, the temperature lowering condition is about −20 to −60 ° C./hour. Thereafter, the obtained carbonized fiber fabric can be made into a product by performing a shaping process such as end cutting, if necessary.

さらに、本発明により製造した炭素化繊維布帛炭素化繊維布帛を、さらに1600℃〜3000℃の温度で加熱すると、得られる炭素繊維のグラファイト化が進行し、得られる繊維の剛性、導電性が高まった炭素繊維布帛とすることが可能である。なお、このグラファイト化処理は、前記最終加熱温度へと加熱後、連続昇温して行うことも、あるいは一端冷却した後行うことも可能である。   Further, when the carbonized fiber fabric produced according to the present invention is further heated at a temperature of 1600 ° C. to 3000 ° C., graphitization of the resulting carbon fiber proceeds, and the rigidity and conductivity of the resulting fiber increase. Carbon fiber fabric. This graphitization treatment can be performed by heating to the final heating temperature and then continuously raising the temperature, or after cooling once.

さらに、本発明の好ましい実施形態においては、原料繊維布帛は、加熱炉内において積層された状態で配置されているものとされる。これは、このように積層された状態で配置されていると、各繊維布帛の各層間の間隙はほとんどなく、結果的に各層を囲繞する空間を非常に狭いものとすることができるゆえ、上記したように、加熱工程途中において酸化性雰囲気から非酸化性雰囲気へと置換する際、布帛より発生する出ガスによって酸素分を囲繞空間から容易に追放することができかつ一端追放されると次々と発生する出ガスによって酸素含有ガスが侵入してくることはほとんど不可能となり良好な非酸化性雰囲気を布帛周りに形成することができるためである。また、このように、各層が相互に面することによって、加熱炉の伝熱体や熱媒体といった良熱伝導体に布帛が直接接触することが回避され、これによって布帛が急速に加熱されて燃焼を起こすといった不具合の発生を抑えることができる。さらに、このように原料繊維布帛を積層配置することによって、一度に多量の処理が行え、生産効率が向上するものである。なお、積層数としては、特に限定されるものではなく、原料繊維布帛の厚さによっても左右されるが、例えば、2〜5000層、好ましくは10〜1000層、さらに好ましくは100〜500層程度とすることができる。   Furthermore, in preferable embodiment of this invention, the raw material fiber fabric shall be arrange | positioned in the state laminated | stacked in the heating furnace. This is because, when arranged in such a laminated state, there is almost no gap between each layer of each fiber fabric, and as a result, the space surrounding each layer can be made very narrow. As described above, when replacing the oxidizing atmosphere with the non-oxidizing atmosphere in the middle of the heating process, oxygen can be easily expelled from the surrounding space by the outgas generated from the fabric, and once it has been expelled one after another. This is because it is almost impossible for the oxygen-containing gas to enter due to the generated gas, and a good non-oxidizing atmosphere can be formed around the fabric. In addition, since the layers face each other in this manner, the fabric is prevented from coming into direct contact with a good heat conductor such as a heat transfer body or a heat medium in a heating furnace, and the fabric is rapidly heated and burned. It is possible to suppress the occurrence of defects such as Furthermore, by arranging and stacking the raw fiber fabrics in this way, a large amount of processing can be performed at once, and the production efficiency is improved. The number of laminated layers is not particularly limited and depends on the thickness of the raw fiber fabric. For example, it is 2 to 5000 layers, preferably 10 to 1000 layers, more preferably about 100 to 500 layers. It can be.

なお、原料繊維布帛を積層状態として、炭素化処理すると、熱分解時に発生するタール状析出物の影響により、積層された布帛界面相互で炭素化された繊維相互が燃焼固着してしまい、炭素化処理後に層間剥離できない塊状体となってしまうということが、当業者であれば観念的に思い浮かぶところであるが、本発明者が見出した上記したような所期の条件下で処理を行うと、このような現象は発生することなく、炭素化処理後に、各層間を分離でき、原料繊維布帛の状態をほぼそのまま残した状態で炭素化した布帛状態として製造が可能となったものである。   When the raw fiber fabric is laminated and carbonized, the carbonized fibers are bonded to each other by the influence of tar-like precipitates generated during thermal decomposition, and the carbonized fibers are burnt and fixed to each other. Those skilled in the art will think that it would be a lump that cannot be delaminated after processing, but when the processing is performed under the expected conditions as found above by the present inventors, Such a phenomenon does not occur, and after the carbonization treatment, the respective layers can be separated, and the carbonized fabric state can be produced in a state in which the state of the raw fiber fabric is substantially left as it is.

このようにして得られる本発明に係る炭素化繊維布帛は、十分な機械的強度を有すると共に、原料布帛と遜色のない柔軟性を有しており、かつ炭素繊維を使用してそれを織製して織布、編布または織編布とするのではなく、炭素化焼成前の出発原料として、セルロース系繊維の糸からなる織布、編布または織編布を用いることにより、出発原料の糸自体が柔らかく自由な方向性を持っているため、剛直な炭素繊維を織ったものと比較し、繊維が面方向に揃っておらず、厚さ方向にも十分に配合するために、面方向のみならず、厚さ方向においても、良好な電気伝導性、熱伝導性、圧縮強度等に優れたものとなる。   The carbonized fiber fabric according to the present invention thus obtained has sufficient mechanical strength, has flexibility comparable to that of the raw material fabric, and is woven using carbon fiber. Rather than using a woven fabric, a knitted fabric or a woven knitted fabric as a starting material before carbonization firing, a woven fabric, a knitted fabric or a woven knitted fabric made of cellulosic fibers is used as a starting material. Since the yarn itself is soft and has a free direction, the fibers are not aligned in the surface direction compared to those woven with rigid carbon fiber, and the surface direction is sufficient to blend in the thickness direction. Not only in the thickness direction, but also excellent electrical conductivity, thermal conductivity, compressive strength and the like are obtained.

炭素化布帛が面方向において体積固有抵抗0.01〜0.6Ωcm、より好ましくは0.1〜0.5Ωcm、さらに好ましくは0.3〜0.5Ωcm、引張強度が1.5N以上、より好ましくは、2.0N以上、カンチレバーソフトネステスターにより測定される炭素化布帛の剛軟度と原料繊維布帛の剛軟度との比(炭素化布帛の剛軟度/原料繊維布帛の剛軟度)が1.2〜0.8、より好ましく1.1〜0.9である。なお引張強度としては当然にその値が高いものが望ましく、また布帛の厚さ等によっても変動するものであるので、その上限値としては、特に限定されるものではないが、例えば、50N程度の強度までのものを比較的容易に得ることができる。   The carbonized fabric has a volume resistivity in the plane direction of 0.01 to 0.6 Ωcm, more preferably 0.1 to 0.5 Ωcm, still more preferably 0.3 to 0.5 Ωcm, and a tensile strength of 1.5 N or more, more preferably. Is a ratio between the bending resistance of the carbonized fabric and the bending resistance of the raw fiber fabric measured by a cantilever softness tester at 2.0 N or more (the bending resistance of the carbonized fabric / the bending resistance of the raw fiber fabric) Is 1.2 to 0.8, more preferably 1.1 to 0.9. Of course, the tensile strength is preferably a high value, and also varies depending on the thickness of the fabric, etc., so the upper limit value is not particularly limited. Those up to strength can be obtained relatively easily.

また特に限定されるものではないが、本発明の炭素化繊維布帛は、代表的には、厚さが0.001〜30mm、単位面積当りの質量が20〜200g/mであるものとすることが、その特性およびハンドリング性の上から望ましい。 Although not particularly limited, the carbonized fiber fabric of the present invention typically has a thickness of 0.001 to 30 mm and a mass per unit area of 20 to 200 g / m 2. It is desirable from the viewpoint of its characteristics and handleability.

その他の特性としては、特に限定されるものではないが、例えば、空気中での燃焼開始温度が600℃以上、ラマン分光分析法で測定されるDバンド(1350cm-1)とGバンド(1590cm-1)の比(D/G)が、1.4〜2.0である。 Other characteristics include, but are not particularly limited to, for example, a combustion start temperature in air of 600 ° C. or higher, a D band (1350 cm −1 ) and a G band (1590 cm ) measured by Raman spectroscopy. 1 ) The ratio (D / G) is 1.4 to 2.0.

以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の実施例および比較例に記載の特性の測定方法としては次のような条件にて測定した。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these Examples. In addition, it measured on condition as follows as a measuring method of the characteristic as described in a following example and a comparative example.

<厚さ、単位面積当りの質量>
厚さは、マイクロメーターにより測定した。
<Thickness, mass per unit area>
The thickness was measured with a micrometer.

単位面積当りの質量は、JIS L 1018に規定されるところに従って測定した。   The mass per unit area was measured according to JIS L 1018.

<引張強度>
JIS L 1018 カットスリップ法に準拠して測定した。なお、測定条件としては、引張速度20cm/分、つかみ間隔20cm、試料幅5cm、試験機:定速伸張形とした。
<Tensile strength>
Measured according to JIS L 1018 cut slip method. The measurement conditions were a tensile speed of 20 cm / min, a gripping interval of 20 cm, a sample width of 5 cm, and a tester: constant speed extension type.

<剛軟度>
JIS L1018 A法(45°カンチレバー法)に準拠して、カンチレバーソフトネステスター(型式:CAN-45)により測定した。
<Bending softness>
In accordance with JIS L1018 A method (45 ° cantilever method), measurement was performed with a cantilever soft tester (model: CAN-45).

<面方向導電性>
得られた試験片を、四探針式低抵抗率計(ロレスタGP、三菱化学製)を用いて表面9箇所の抵抗(Ω)を測定し、同抵抗計により体積抵抗率(Ω・cm)に換算し、平均値を算出した。
<Surface direction conductivity>
Using the four-probe type low resistivity meter (Loresta GP, manufactured by Mitsubishi Chemical), the resistance (Ω) at the surface of the obtained test piece was measured, and the volume resistivity (Ω · cm) was measured using the same resistance meter. The average value was calculated.

<ラマン分光分析>
堀場ジョバンイボン製LabRam800を用い、アルゴンレーザーの514nmの波長を用いて測定した。
<Raman spectroscopy>
Using a LabRam800 manufactured by Horiba Jobin Yvon, measurement was performed using a wavelength of 514 nm of an argon laser.

<TG燃焼温度>
マックサイエンス製TG−DTAを用い、空気を0.1リットル/分の流速で流通させながら、10℃/分の速度で昇温し、燃焼挙動を測定した。燃焼時にTGは減量を示し、DTAは発熱ピークを示すので、発熱ピークのトップ位置を燃焼開始温度と定義した。
<TG combustion temperature>
Using TG-DTA manufactured by Mac Science, the temperature was increased at a rate of 10 ° C./min while circulating air at a flow rate of 0.1 liter / min, and the combustion behavior was measured. During combustion, TG indicates a decrease in weight, and DTA indicates an exothermic peak. Therefore, the top position of the exothermic peak was defined as the combustion start temperature.

[実施例1]
(製造条件)
以下の条件により炭素化繊維布帛を調製した。
[Example 1]
(Production conditions)
A carbonized fiber fabric was prepared under the following conditions.

原材料として、幅115mm×厚さ6mmの綿ニット(ダブルニット、木村織物株式会社製)を用いた。なお、この綿ニットのカンチレバーソフトネステスターにより測定される剛軟度は、ウェール方向:35mm、コース方向:22mmであった。この綿ニットを所定長さで300層積層し、これを加熱炉内に配して以下の加熱条件にて加熱して、炭素化繊維布帛を製造した。
加熱条件:室温(15℃±20℃)〜1200℃ 昇温速度 100℃/時間
総合加熱保持時間 15時間
冷却: 自然冷却
なお、加熱開始直後は酸素分圧約150mmHg程度であった酸化性の雰囲気は、約270℃〜300℃程度の温度域において、繊維の熱分解により発生する出ガスの影響により、酸素分圧50mmHg未満の非酸化性の雰囲気となり、それ以降はこの非酸化性雰囲気が加熱終了時まで維持された。
As a raw material, a cotton knit (double knit, manufactured by Kimura Textile Co., Ltd.) having a width of 115 mm and a thickness of 6 mm was used. In addition, the bending resistance measured by the cantilever softness tester of the cotton knit was a wale direction: 35 mm and a course direction: 22 mm. 300 layers of this cotton knit were laminated at a predetermined length, placed in a heating furnace, and heated under the following heating conditions to produce a carbonized fiber fabric.
Heating conditions: Room temperature (15 ° C ± 20 ° C) to 1200 ° C Temperature rising rate 100 ° C / hour
Total heating and holding time 15 hours
Cooling: Natural cooling In addition, the oxidizing atmosphere, which had an oxygen partial pressure of about 150 mmHg immediately after the start of heating, was oxygenated by the influence of the outgas generated by the thermal decomposition of the fiber in a temperature range of about 270 ° C to 300 ° C. A non-oxidizing atmosphere with a partial pressure of less than 50 mmHg was obtained, and thereafter this non-oxidizing atmosphere was maintained until the end of heating.

(結果)
得られた炭素化繊維布帛の表面性状を電子顕微鏡を用いて観察した。得られた結果を図1A(倍率50倍)、図1B(倍率3000倍)、図1C(倍率10000倍)に示す。
(result)
The surface property of the obtained carbonized fiber fabric was observed using an electron microscope. The obtained results are shown in FIG. 1A (magnification 50 times), FIG. 1B (magnification 3000 times), and FIG. 1C (magnification 10000 times).

また、得られた炭素化繊維布帛の物性は以下の通りであった。
体積固有抵抗: 0.35Ωcm
引張強度: ウェール方向7.21N、コース方向3.59N
カンチレバーソフトネステスターにより測定される剛軟度: ウェール方向35mm、コース方向25mm
厚さ:4mm
単位面積当りの質量:79.1g/m
空気中での燃焼開始温度:656℃
D/G比:1.5
なお、図2に、空気中での燃焼開始温度を求めたTG−DTAチャート、図3に、D/G比を求めたラマンスペクトルチャートを示す。
Moreover, the physical property of the obtained carbonized fiber fabric was as follows.
Volume resistivity: 0.35 Ωcm
Tensile strength: 7.21N in the wale direction, 3.59N in the course direction
Stiffness measured by cantilever softness tester: 35mm in the wale direction, 25mm in the course direction
Thickness: 4mm
Mass per unit area: 79.1 g / m 2
Combustion start temperature in air: 656 ° C
D / G ratio: 1.5
FIG. 2 shows a TG-DTA chart for determining the combustion start temperature in air, and FIG. 3 shows a Raman spectrum chart for determining the D / G ratio.

[応用例1]
実施例1において得られた炭素化繊維布からサンプル片(長さ300mm×幅300mm)を切り出し、このサンプル片の幅方向の両端部全長にわたって、幅30mm、厚さ0.3mmの銅板を耐熱性接着剤を用いて片面側に被着し、この銅板に電線を接合することで、ヒータユニットを作製した。
[Application Example 1]
A sample piece (length 300 mm × width 300 mm) was cut out from the carbonized fiber cloth obtained in Example 1, and a copper plate having a width of 30 mm and a thickness of 0.3 mm was heat-resistant over the entire length of both ends in the width direction of the sample piece. The heater unit was produced by attaching to one side using an adhesive and joining an electric wire to this copper plate.

このヒータユニットに通電したところ、サンプル片全体が均一に発熱した。   When this heater unit was energized, the entire sample piece generated heat uniformly.

電圧70V、電流6Aの条件下では、230℃±10℃に約2分で到達し、その後はその温度を維持し続けた。また、通電を止めると、30秒で室温(20℃)まで温度降下した。
また、同様に、電圧20V、電流5Aの条件下では、100℃±5℃に約1分で到達し、その後はその温度を維持し続けた。また、通電を止めると、17秒で室温(20℃)まで温度降下した。
Under conditions of a voltage of 70 V and a current of 6 A, 230 ° C. ± 10 ° C. was reached in about 2 minutes, and thereafter the temperature was maintained. When the current supply was stopped, the temperature dropped to room temperature (20 ° C.) in 30 seconds.
Similarly, under conditions of a voltage of 20 V and a current of 5 A, the temperature reached 100 ° C. ± 5 ° C. in about 1 minute, and thereafter maintained that temperature. When the current supply was stopped, the temperature dropped to room temperature (20 ° C.) in 17 seconds.

なお、このような高温に長期間複数回にわたり繰り返し保持しても、炭素繊維自体に特段変化は見られず、長期間経過後も同様の安定した電熱特性を発揮し、また、全体を通して、ヒータユニットでチャタリング等の不具合も発生することはなかった。   Even if the carbon fiber itself is repeatedly held at such a high temperature for a long period of time, there is no particular change in the carbon fiber itself, and the same stable electrothermal characteristics are exhibited even after a long period of time. There were no problems such as chattering in the unit.

A〜Cは、実施例で得られた炭素化繊維布の電子顕微鏡写真である。AC is an electron micrograph of the carbonized fiber cloth obtained in the Example. は、実施例で得られた炭素化繊維布のTG−DTAチャートである。These are the TG-DTA charts of the carbonized fiber cloth obtained in the examples. は、実施例で得られた炭素化繊維布のラマンスペクトルチャートである。These are the Raman spectrum charts of the carbonized fiber cloth obtained in the Example.

Claims (7)

セルロース系繊維の糸からなる織布、編布または織編布を原料繊維布帛とし、これを加熱炭素化して炭素化繊維布帛を製造する方法であって、
含水率25%未満の乾燥状態の原料繊維布帛を、当該布帛の縦あるいは横のいずれか一方向から拘束して保持し、そのまま、加熱炉内において、酸素分圧50mmHg以上の酸化性雰囲気下において、250〜450℃の温度領域まで50〜200℃/時間にて昇温し、その後、酸素分圧50mmHg未満の非酸化性雰囲気として1000〜1600℃の最終加熱温度領域まで50〜200℃/時間の昇温速度にて、連続して昇温し、最終加熱温度にて所定時間保持する加熱に付することを特徴とする炭素化布帛の製造方法。
A method of producing a carbonized fiber fabric by using a woven fabric, a knitted fabric or a knitted knitted fabric made of cellulosic fiber yarn as a raw fiber fabric, which is heated and carbonized.
A raw material fiber fabric in a dry state with a moisture content of less than 25% is constrained and held from either the vertical or horizontal direction of the fabric, and is left as it is in an oxidizing atmosphere with an oxygen partial pressure of 50 mmHg or more. The temperature is raised to a temperature range of 250 to 450 ° C. at a rate of 50 to 200 ° C./hour, and then 50 to 200 ° C./hour to a final heating temperature range of 1000 to 1600 ° C. as a nonoxidizing atmosphere with an oxygen partial pressure of less than 50 mmHg. A method for producing a carbonized fabric, characterized in that the temperature is continuously increased at a rate of temperature increase and subjected to heating that is maintained at a final heating temperature for a predetermined time.
加熱開始から最終温度での加熱終了までの総合加熱保持時間が10〜50時間であることを特徴とする請求項1に記載の炭素化布帛の製造方法。   The method for producing a carbonized fabric according to claim 1, wherein the total heating and holding time from the start of heating to the end of heating at the final temperature is 10 to 50 hours. 250〜1600℃の温度領域においては、前記拘束方向において布帛に収縮による張力が加わることを特徴とする請求項1または2に記載の炭素化布帛の製造方法。   3. The method for producing a carbonized fabric according to claim 1, wherein in the temperature range of 250 to 1600 ° C., tension due to shrinkage is applied to the fabric in the restraining direction. 酸化性雰囲気から非酸化性雰囲気への置換は、加熱された原料繊維布帛の熱分解により発生する出ガスを利用して、原料繊維布帛の囲繞雰囲気より酸素含有ガスを追放することによって行われるものである請求項1〜3のいずれか1つに記載の炭素化布帛の製造方法。   The replacement from the oxidizing atmosphere to the non-oxidizing atmosphere is performed by expelling the oxygen-containing gas from the surrounding atmosphere of the raw fiber cloth using the outgas generated by the thermal decomposition of the heated raw fiber cloth. The method for producing a carbonized fabric according to any one of claims 1 to 3. 原料繊維布帛は、加熱炉内において積層された状態で配置されているものである請求項請求項1〜4のいずれか1つに記載の炭素化布帛の製造方法。   The method for producing a carbonized fabric according to any one of claims 1 to 4, wherein the raw fiber fabrics are arranged in a stacked state in a heating furnace. 請求項1〜5のいずれか1つに記載の製造方法により得られたことを特徴とする炭素化布帛。   A carbonized fabric obtained by the production method according to any one of claims 1 to 5. 前記炭素化布帛は、面方向において体積固有抵抗0.01〜0.6Ωcm、カンチレバーソフトネステスターにより測定される炭素化布帛の剛軟度と原料繊維布帛の剛軟度との比(炭素化布帛の剛軟度/原料繊維布帛の剛軟度)が1.2〜0.8であることを特徴とする請求項6に記載の炭素化布帛。   The carbonized fabric has a volume resistivity of 0.01 to 0.6 Ωcm in the plane direction, and the ratio of the stiffness of the carbonized fabric measured by a cantilever soft tester to the stiffness of the raw fiber fabric (carbonized fabric). The carbonized fabric according to claim 6, wherein the bending resistance / the bending resistance of the raw fiber fabric is 1.2 to 0.8.
JP2007001703A 2007-01-09 2007-01-09 Method for producing carbonized fabric Expired - Fee Related JP4392434B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007001703A JP4392434B2 (en) 2007-01-09 2007-01-09 Method for producing carbonized fabric
PCT/JP2007/075259 WO2008084734A1 (en) 2007-01-09 2007-12-28 Method for production of carbonized cloth, and carbonized cloth produced by the method
CNA2007800495229A CN101578406A (en) 2007-01-09 2007-12-28 Method for production of carbonized cloth, and carbonized cloth produced thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007001703A JP4392434B2 (en) 2007-01-09 2007-01-09 Method for producing carbonized fabric

Publications (3)

Publication Number Publication Date
JP2008169494A true JP2008169494A (en) 2008-07-24
JP2008169494A5 JP2008169494A5 (en) 2009-08-06
JP4392434B2 JP4392434B2 (en) 2010-01-06

Family

ID=39608628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007001703A Expired - Fee Related JP4392434B2 (en) 2007-01-09 2007-01-09 Method for producing carbonized fabric

Country Status (3)

Country Link
JP (1) JP4392434B2 (en)
CN (1) CN101578406A (en)
WO (1) WO2008084734A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163709A (en) * 2009-01-14 2010-07-29 Maeda Toshikatsu Method for producing carbonized fabric and carbonized fabric
KR101565132B1 (en) 2015-03-26 2015-11-02 주식회사 시나프 Process for manufacturing a carbonized cotton

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6217040B2 (en) * 2013-09-05 2017-10-25 道宇 可児 Carbonized fabric manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001234435A (en) * 2000-02-25 2001-08-31 Tokai Senko Kk Carbonized cellulosic fiber, and method and apparatus for continuously producing activated carbonized cellulosic fiber
JP2006016699A (en) * 2004-06-30 2006-01-19 Le Vert:Kk Fiber charcoal and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163709A (en) * 2009-01-14 2010-07-29 Maeda Toshikatsu Method for producing carbonized fabric and carbonized fabric
KR101565132B1 (en) 2015-03-26 2015-11-02 주식회사 시나프 Process for manufacturing a carbonized cotton

Also Published As

Publication number Publication date
WO2008084734A1 (en) 2008-07-17
JP4392434B2 (en) 2010-01-06
CN101578406A (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP4392432B2 (en) Method for producing carbonized fabric
CN101911827B (en) Carbon heating element and production method thereof
JP2648711B2 (en) Manufacturing method of pitch-based carbon fiber three-dimensional fabric
JP4355343B2 (en) Carbonized fabric manufacturing method and carbonized fabric obtained thereby
RU2318932C2 (en) Tar-based graphite fabrics and needle stitched felts for gas diffusion layer substrates of fuel cell, and reinforced high thermal conductivity composites
JP4392434B2 (en) Method for producing carbonized fabric
JP4392433B2 (en) Method for producing carbonized fabric
KR20130130388A (en) Preparation method for carbon fiber with high performance using textile grade polyacrylonitrile fiber
KR102266753B1 (en) Polyimide based carbon fiber with excellent flexibility and manufacturing method thereof
JP4392435B2 (en) Method for producing carbonized fabric
JP4355344B2 (en) Carbonized fabric manufacturing method and carbonized fabric obtained thereby
KR100756053B1 (en) Manufacturing method of carbon fiber for sheet heater
JP2017066540A (en) Production method of carbon fiber and carbon fiber sheet
JP6365675B2 (en) Carbon material manufacturing method
JP2016164313A (en) Method for producing carbon fiber woven fabric and carbon fiber woven fabric
JP5811529B2 (en) Carbon fiber bundle manufacturing method
JP2017101350A (en) Manufacturing method of carbon material using cupra fiber material
KR100923417B1 (en) Method of preparing carbon narrow fabric
JP2004084136A (en) Method for producing carbonaceous fiber-woven fabric and gas diffusion layer material for solid polymer type fuel cell
JP4195564B2 (en) Carbon fiber spun yarn fabric and manufacturing method thereof
JP2023117438A (en) Heat-treated flame-resistant fiber, heat-treated flame-resistant fiber sheet and method for producing the same, and method for producing graphite fiber and graphite fiber sheet
WO2010021045A1 (en) Woven fabric of isotropic pitch carbon fiber and process for producing the same
JP3916471B2 (en) Oxidized fiber spun yarn fabric
JP4333106B2 (en) Method for producing carbon fiber woven fabric
JP3934974B2 (en) High bulk density flame resistant fiber spun yarn fabric, carbon fiber spun yarn fabric, and production method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090611

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20090611

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20090707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees