[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008166096A - Flat plate heater, fixing device, and image processing device - Google Patents

Flat plate heater, fixing device, and image processing device Download PDF

Info

Publication number
JP2008166096A
JP2008166096A JP2006353944A JP2006353944A JP2008166096A JP 2008166096 A JP2008166096 A JP 2008166096A JP 2006353944 A JP2006353944 A JP 2006353944A JP 2006353944 A JP2006353944 A JP 2006353944A JP 2008166096 A JP2008166096 A JP 2008166096A
Authority
JP
Japan
Prior art keywords
longitudinal direction
insulating substrate
heating
connection conductor
heating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006353944A
Other languages
Japanese (ja)
Inventor
Kentaro Kimura
健太郎 木村
Takaaki Karibe
孝明 苅部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2006353944A priority Critical patent/JP2008166096A/en
Publication of JP2008166096A publication Critical patent/JP2008166096A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Surface Heating Bodies (AREA)
  • Control Of Resistance Heating (AREA)
  • Resistance Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a temperature rise in a region forming a paper non-passing part while using an inexpensive material having a TCR of negative characteristics for a heat generating resistor. <P>SOLUTION: Heat generating resistors 16, 18 having widths in the longitudinal direction of a long flat plate-like insulating substrate 11 made of ceramic and having lengths in its short direction are formed in the longitudinal direction on the substrate. The heat generating resistors 16, 18 are connected in series by a connecting conductor 17. One end of the heat generating resistor 16 is connected to the connecting conductor 17 while the other end is connected to an electrode 12 for power supply through a connecting conductor 14 and one end of the heat generating resistor 18 is connected to the connecting conductor 17 while the other end is connected to an electrode 13 for power supply through a connecting conductor 15. The heat generating resistor 16 has a negative temperature coefficient of resistance, and a narrowed width part 161 is formed in the center part of the longitudinal direction of the insulating substrate, and wide width parts 162, 163 made wider than the narrow width part 161 are formed at its both ends. The heat generating resistor 18 has a negative temperature coefficient of resistance, and a narrowed width part 181 is formed in the center part of the longitudinal direction of the insulating substrate, and wide width parts 182, 183 made wider than the narrow width part 181 are formed at its both ends. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、情報機器、家電製品や製造設備などの小型機器類に装着されて用いられる薄型の平板ヒータおよびこの平板ヒータを実装したプリンタ、複写機、ファクシミリやリライタブルカードリーダライタなどの加熱装置ならびにこの加熱装置を用いた画像形成装置に関する。   The present invention relates to a thin flat plate heater used by being mounted on small equipment such as information equipment, home appliances and manufacturing equipment, a heating device such as a printer, a copying machine, a facsimile, a rewritable card reader / writer, and the like mounted with the flat plate heater, The present invention relates to an image forming apparatus using the heating device.

従来は、短冊状の絶縁基板の短手方向に単数の幅広発熱抵抗体を形成し、この発熱抵抗体が正の温度係数(PTC:Positive Temperature Coefficient)を有する平板ヒータとともに、単数の幅広発熱抵抗体を形成し、ヒータサイズに対して、小さいサイズの用紙を定着させる場合、通紙により熱が奪われるヒータ中央部に対して、端部は温度が高くなることがあり、ヒータ端部の温度が高くなると給電用コネクターとの接触抵抗が大きくなり、接点不良などの不具合を起こす場合がある。このため、基板長手方向にPTC幅広発熱抵抗体を形成し、PTC幅広発熱抵抗体の長手両端部に沿って導体を形成し、導体を給電用電極に接続するようにしている。(例えば、特許文献1)
特開平7−94260号公報
Conventionally, a single wide heating resistor is formed in the short direction of a strip-shaped insulating substrate, and this heating resistor is a single wide heating resistor together with a flat plate heater having a positive temperature coefficient (PTC). When fixing a paper that is smaller than the heater size, the temperature at the end may be higher than the center of the heater where heat is taken away by the paper passing through the heater. If the value becomes high, the contact resistance with the power feeding connector increases, which may cause problems such as contact failure. For this reason, a PTC wide heating resistor is formed in the longitudinal direction of the substrate, a conductor is formed along both longitudinal ends of the PTC wide heating resistor, and the conductor is connected to the power feeding electrode. (For example, Patent Document 1)
JP-A-7-94260

上記した特許文献1の技術は、PTC発熱抵抗体材として一般的にAg(銀)/Pd(パラジウム)の合金やRuO(酸化ルテニウム)といった価格の高い貴金属を使用しており、製造コストが高くなる問題がある。安価な発熱抵抗体として、炭素よりなるグラファイトもしくはカーボンを主成分としたものも考えられるが、抵抗温度係数(TCR:Temperature Coefficient of Resistance)が負の発熱抵抗体であることから、ヒータ長手方向に温度差が生じた場合、温度の高い部分の抵抗値が低くなり、より発熱量が多くなってしまう、という問題があった。 The technique of the above-mentioned Patent Document 1 uses a high-priced noble metal such as an alloy of Ag (silver) / Pd (palladium) or RuO 2 (ruthenium oxide) as a PTC heating resistor material, and the manufacturing cost is high. There is a problem of getting higher. Inexpensive heat generating resistors may be composed of graphite made of carbon or carbon as the main component. However, since the temperature coefficient of resistance (TCR) is a negative heat generating resistor, When the temperature difference occurs, there is a problem that the resistance value at the high temperature portion is lowered and the amount of heat generation is increased.

この発明の目的は、絶縁基板長手方向で均一な温度分布のヒータを安価で製造できる平板ヒータ、この平板ヒータを用いた定着装置、この定着装置を用いた画像形成装置を提供することにある。   An object of the present invention is to provide a flat plate heater capable of manufacturing a heater having a uniform temperature distribution in the longitudinal direction of an insulating substrate at a low cost, a fixing device using the flat plate heater, and an image forming apparatus using the fixing device.

上記した課題を解決するために、この発明の平板ヒータは、耐熱・絶縁性材料で形成される長尺平板の絶縁基板と、前記絶縁基板の長手方向に沿って形成され、それぞれ前記絶縁基板の長手方向を幅とし短手方向を長さとする第1および第2の発熱抵抗体と、前記第1および第2の発熱抵抗体を、前記絶縁基板上で直列に接続した第1の接続導体と、前記第1の発熱抵抗体の一端に接続された第2の接続導体と、前記第1の接続導体に接続した第1の電極と、前記第2の発熱抵抗体の他端に接続された第3の接続導体と、前記第2の接続導体に接続された第2の電極と、を具備し、前記第1の発熱抵抗体は、負の抵抗温度係数を有し、長手方向の中央部分の幅を広くした幅広部とし、長手方向の両端部分の幅を、前記幅広部よりも狭い幅狭部とし、前記第2の発熱抵抗体は、負の抵抗温度係数を有し、長手方向の中央部分の幅を狭くした幅狭部とし、長手方向の両端部分の幅を、前記幅狭部よりも広い幅広部としたことを特徴とする。   In order to solve the above-described problems, a flat plate heater according to the present invention is formed of a long flat plate insulating substrate made of a heat-resistant and insulating material, and formed along the longitudinal direction of the insulating substrate. First and second heating resistors having a width in the longitudinal direction and a length in the short direction, and a first connection conductor in which the first and second heating resistors are connected in series on the insulating substrate; A second connecting conductor connected to one end of the first heating resistor, a first electrode connected to the first connecting conductor, and a second electrode connected to the other end of the second heating resistor. A third connection conductor; and a second electrode connected to the second connection conductor, wherein the first heating resistor has a negative resistance temperature coefficient and has a longitudinal center portion. A wide portion with a wider width, and the width of both end portions in the longitudinal direction is narrower than the wide portion. The second heating resistor has a negative resistance temperature coefficient, is a narrow portion with a narrow central portion in the longitudinal direction, and has a width at both end portions in the longitudinal direction that is smaller than the narrow portion. It is characterized by a wide wide part.

また、この発明の平板ヒータは、耐熱・絶縁性材料で形成される長尺平板の絶縁基板と、前記絶縁基板の長手方向に沿って形成され、それぞれ前記絶縁基板の長手方向を幅とし短手方向を長さとする第1および第2の発熱抵抗体と、前記第1および第2の発熱抵抗体を、前記絶縁基板上で直列に接続した第1の接続導体と、前記第1の発熱抵抗体の一端に接続された第2の接続導体と、前記第1の接続導体に接続した第1の電極と、前記第2の発熱抵抗体の他端に接続された第3の接続導体と、前記第2の接続導体に接続された第2の電極と、を具備し、前記第1の発熱抵抗体は、負の抵抗温度係数を有し、長手方向の中央部分の幅を広くし、長手方向の両端にかけて漸次幅を狭くし、前記第2の発熱抵抗体は、負の抵抗温度係数を有し、長手方向の中央部分の幅を狭くし、長手方向の両端部にかけて漸次幅広くとしたことを特徴とする。   The flat plate heater according to the present invention includes a long flat insulating substrate formed of a heat-resistant / insulating material and a longitudinal direction of the insulating substrate. A first heating resistor having a length in a direction; a first connection conductor in which the first and second heating resistors are connected in series on the insulating substrate; and the first heating resistor. A second connection conductor connected to one end of the body, a first electrode connected to the first connection conductor, a third connection conductor connected to the other end of the second heating resistor, A second electrode connected to the second connection conductor, wherein the first heating resistor has a negative resistance temperature coefficient, widens the central portion in the longitudinal direction, The second heating resistor has a negative temperature coefficient of resistance and is long Narrowing the width of the center portion of the direction, characterized in that the gradually wide toward both ends in the longitudinal direction.

この発明によれば、発熱抵抗体にTCRが負の特性を有する廉価な材料を用いながら、通紙による放熱が少ない非通紙部にあたる領域の温度上昇を抑えることができる。   According to the present invention, while using an inexpensive material having a negative TCR characteristic for the heating resistor, it is possible to suppress a temperature rise in a region corresponding to a non-sheet passing portion where heat dissipation due to sheet passing is small.

以下、この発明を実施するための最良の形態について、図面を参照しながら詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1〜図3は、この発明の平板ヒータに関する第1の実施形態について説明するためのもので、図1は構成図、図2は図1のa−a’断面図、図3は図1のb−b’断面図である。
図1〜図3において、11は、耐熱、電気絶縁性材料の例えばアルミナ(Al)や窒化アルミニウム(AlN)、窒化珪素(Si)などの電気絶縁性を有する高剛性のセラミック等の基材で高い熱伝導性の短冊状絶縁基板である。
1 to 3 are diagrams for explaining a first embodiment of the flat plate heater according to the present invention. FIG. 1 is a configuration diagram, FIG. 2 is a cross-sectional view taken along the line aa 'in FIG. 1, and FIG. It is bb 'sectional drawing of.
In FIG. 1 to FIG. 3, reference numeral 11 denotes a heat-resistant, electrically insulating material such as alumina (Al 2 O 3 ), aluminum nitride (AlN), silicon nitride (Si 3 N 4 ), or other highly rigid material having electrical insulation. It is a strip-shaped insulating substrate having a high thermal conductivity and a base material such as ceramic.

絶縁基板11の両端上には銀系の導体ペーストを焼成した良導電体膜の給電用の電極12,13が形成される。14は電極12と同材料で一体的形成され、絶縁基板11の長手方向の一方縁に沿って電極13近傍まで形成された接続導体である。15は電極13と同材料で一体的形成され、絶縁基板11の長手方向の他方縁に沿って電極12近傍まで形成された接続導体である。   On both ends of the insulating substrate 11, electrodes 12 and 13 for feeding a good conductor film obtained by baking a silver-based conductor paste are formed. Reference numeral 14 denotes a connection conductor which is integrally formed of the same material as the electrode 12 and is formed up to the vicinity of the electrode 13 along one edge in the longitudinal direction of the insulating substrate 11. Reference numeral 15 denotes a connection conductor which is integrally formed of the same material as the electrode 13 and is formed up to the vicinity of the electrode 12 along the other edge in the longitudinal direction of the insulating substrate 11.

16は、絶縁基板11の表面側の長手方向に沿って形成され、長さが短く幅の広い一端が接続導体14の一部に重層する状態で形成された発熱抵抗体である。発熱抵抗体16は、長さの短い中央部161とこの両端に長さの長い端部162,163から構成される。発熱抵抗体16は、図中下側が凹形状となっている。   Reference numeral 16 denotes a heating resistor formed along the longitudinal direction on the surface side of the insulating substrate 11 and formed in a state where one end having a short length and a wide width overlaps a part of the connection conductor 14. The heating resistor 16 includes a short central portion 161 and long ends 162 and 163 at both ends. The heating resistor 16 has a concave shape on the lower side in the figure.

発熱抵抗体16の他端は、例えば接続導体14と同材料で形成された幅が略同じで中央が突出した接続導体17の一部に重層する状態で接続される。   The other end of the heating resistor 16 is connected, for example, in a state where it overlaps with a part of the connection conductor 17 formed of the same material as that of the connection conductor 14 and having the substantially same width and protruding at the center.

18は、絶縁基板11の表面側の長手方向に沿って形成され、長さが短く幅の広い一端が接続導体15の一部に重層する状態で形成された発熱抵抗体である。発熱抵抗体18は、長さの長い中央部181とこの両端に長さの短い端部182,183から構成される。発熱抵抗体16は、図中下側が凸形状となっている。   Reference numeral 18 denotes a heating resistor formed along the longitudinal direction on the surface side of the insulating substrate 11 and formed in a state where one end having a short length and a wide width overlaps a part of the connection conductor 15. The heating resistor 18 includes a long central portion 181 and short end portions 182 and 183 at both ends. The heating resistor 16 has a convex shape on the lower side in the figure.

発熱抵抗体16,18は、それぞれTCRが負の特性を有する例えばペースト状のグラファイト抵抗体を高温で焼成し、所定の抵抗値を有した厚膜形成により構成される。発熱抵抗体16,18は、TCRが負の特性を有する材料で形成されていることから、図4に示すような特性を有する。すなわち、グラファイトによる発熱抵抗体は、温度が低いときは抵抗値が大きく、温度が高いときは抵抗値が小さくなる特性を備える。TCRが負とは、例えば―100ppm/℃以下にする。   The heating resistors 16 and 18 are each formed by forming a thick film having a predetermined resistance value, for example, by baking a paste-like graphite resistor having a negative TCR characteristic at a high temperature. The heating resistors 16 and 18 have characteristics as shown in FIG. 4 because the TCR is formed of a material having negative characteristics. That is, the heating resistor made of graphite has a characteristic that the resistance value is large when the temperature is low and the resistance value is small when the temperature is high. TCR is negative, for example, -100 ppm / ° C. or less.

また、接続導体14と接続導体17間の発熱抵抗体16の抵抗値は、接続導体17と接続導体15間の発熱抵抗体18の抵抗値は同様の値に設定してある。   The resistance value of the heating resistor 16 between the connection conductor 14 and the connection conductor 17 is set to the same value as the resistance value of the heating resistor 18 between the connection conductor 17 and the connection conductor 15.

19は、接続導体14,15,17および発熱抵抗体16,18を覆い、電気的、機械的、化学的な保護を行うために、例えばガラスペーストを厚膜印刷方法で塗布、焼成して形成されたオーバーコート層である。   19 covers the connection conductors 14, 15, 17 and the heating resistors 16, 18, and is formed by applying and baking a glass paste, for example, by a thick film printing method in order to provide electrical, mechanical and chemical protection. Overcoat layer.

図1中の発熱抵抗体16,18におけるt1は、例えばA4サイズの用紙を定着されせるに必要な幅に相当する領域を示し、領域t2,t3は、領域t1とを合わせて例えばA3サイズの用紙が定着される大きさの幅に相当する領域t4(=t1+t2+t3)の幅を備える。   In FIG. 1, t1 in the heating resistors 16 and 18 indicates an area corresponding to a width necessary for fixing, for example, an A4 size sheet, and the areas t2 and t3 include, for example, an A3 size area together with the area t1. The width of the region t4 (= t1 + t2 + t3) corresponding to the width of the size on which the sheet is fixed is provided.

ここで、電極12,13に通電され発熱抵抗体16,18が昇温開始時や発熱抵抗体16,18の有効な全加熱領域t4を通紙させている場合には、発熱抵抗体16,18の中央部の領域t1とその両側の領域t2,t3にほとんど温度差を生じない。直列接続された発熱抵抗体16,18の領域t1の抵抗R1と領域t2およびt3の発熱抵抗体16,18の抵抗R2は略等しい。このため領域t1の発熱量W1と領域t2,t3の発熱量W2は同程度となる。つまり、R1≒R2→W1≒W2となる。   Here, when the electrodes 12 and 13 are energized and the heating resistors 16 and 18 start the temperature increase or when the effective heating area t4 of the heating resistors 16 and 18 is passed, the heating resistors 16 and 18 There is almost no temperature difference between the region t1 at the center of 18 and the regions t2 and t3 on both sides thereof. The resistance R1 in the region t1 of the heating resistors 16 and 18 connected in series is substantially equal to the resistance R2 of the heating resistors 16 and 18 in the regions t2 and t3. For this reason, the heat generation amount W1 in the region t1 and the heat generation amount W2 in the regions t2 and t3 are approximately the same. That is, R1≈R2 → W1≈W2.

よって、図5に示すように、絶縁基板11中央部の領域t1の発熱量W1と絶縁基板11端部の領域t2,t3の発熱量W2は同程度である。これら発熱量W1,W2を合成して得られる発熱量Wは、絶縁基板11の長手方向に対して略均一な温度分布を得ることができる。   Therefore, as shown in FIG. 5, the heat generation amount W1 in the central region t1 of the insulating substrate 11 and the heat generation amount W2 in the end regions t2 and t3 of the insulating substrate 11 are approximately the same. The calorific value W obtained by synthesizing these calorific values W1 and W2 can obtain a substantially uniform temperature distribution in the longitudinal direction of the insulating substrate 11.

上記のように発熱抵抗体16,18のTCRは負の材料で形成されていることから、温度が高くなるに従い抵抗値は小さくなる。発熱抵抗体16,18の有効な全加熱領域よりサイズの小さい用紙を加熱し定着させた場合は、端部の領域t2,t3の温度が中央部t1より上昇しようとするが、発熱抵抗体16,18のTCRが負の特性を有していることから領域t2,t3側の抵抗値の低下が領域t1より大きい。   As described above, since the TCR of the heating resistors 16 and 18 is formed of a negative material, the resistance value decreases as the temperature increases. When a sheet having a size smaller than the entire effective heating region of the heating resistors 16 and 18 is heated and fixed, the temperature of the end regions t2 and t3 tends to rise from the central portion t1, but the heating resistor 16 , 18 have negative characteristics, the decrease in resistance value on the regions t2 and t3 side is larger than that on the region t1.

領域t2の抵抗値をR(t2)、領域t2の抵抗値をR(t1)とし、その差をΔRとすると、ΔR=R(t1)−R(t2)となる。領域t3の抵抗値は、領域t2と同じような値であり、その差ΔRの値も略同じとなる。この関係から、領域t2,t3の温度T(t2,t3)と領域t1の温度T(t1)は、T(t2,t3)>T(t1)となり、領域t2,t3のΔR(t2,t3)と領域t1のΔR(t1)は、ΔR(t2,t3)<ΔR(t1)となる。   When the resistance value of the region t2 is R (t2), the resistance value of the region t2 is R (t1), and the difference is ΔR, ΔR = R (t1) −R (t2). The resistance value of the region t3 is the same value as that of the region t2, and the value of the difference ΔR is substantially the same. From this relationship, the temperature T (t2, t3) of the regions t2 and t3 and the temperature T (t1) of the region t1 are T (t2, t3)> T (t1), and ΔR (t2, t3 of the regions t2 and t3 ) And ΔR (t1) in the region t1 are ΔR (t2, t3) <ΔR (t1).

領域t1の発熱抵抗体16,18、領域t2,t3の発熱抵抗体16,18の抵抗値は、端部である領域t2,t3と中央部である領域t1に温度差がない場合に比べて、端部の抵抗値が小さくなる。このため端部の抵抗値が大きい発熱抵抗体18は、中央部の抵抗値が大きい発熱抵抗体16に比べて抵抗値が小さくなる。つまり、温度がT(t2,t3)>T(t1)関係の場合、抵抗はR16(t2,t3)<R18(t1)となる。   The resistance values of the heating resistors 16 and 18 in the region t1 and the heating resistors 16 and 18 in the regions t2 and t3 are compared to the case where there is no temperature difference between the regions t2 and t3 which are the end portions and the region t1 which is the central portion. The resistance value of the end portion becomes small. For this reason, the heating resistor 18 having a large resistance at the end portion has a smaller resistance value than the heating resistor 16 having a large resistance at the center. That is, when the temperature has a relationship of T (t2, t3)> T (t1), the resistance is R16 (t2, t3) <R18 (t1).

図6に示すように、発熱抵抗体16,18は直列接続されているため、抵抗値の大きい領域t1の発熱抵抗体16,18の発熱量W1より、抵抗値の小さい領域t2,t3の発熱量W2が小さくなる。つまり、温度がT(t2,t3)>T(t1)の関係の場合、発熱量はW2(t2,t3)<W1(t1)となる。これにより、温度の高い端部の発熱量が抑制された発熱量を得ることができる。   As shown in FIG. 6, since the heating resistors 16 and 18 are connected in series, the heat generation in the regions t2 and t3 having a lower resistance value than the heat generation amount W1 of the heating resistors 16 and 18 in the region t1 having a higher resistance value. The amount W2 is reduced. That is, when the temperature is in the relationship of T (t2, t3)> T (t1), the heat generation amount is W2 (t2, t3) <W1 (t1). Thereby, the calorific value in which the calorific value of the end portion having a high temperature is suppressed can be obtained.

この実施形態では、発熱抵抗体にTCRが負の特性を有する材料を用いながら、通紙による放熱が少ない非通紙部にあたる領域の温度上昇を抑え、発熱抵抗体16,18の全有効領域の均一な温度分布を得ることができる。   In this embodiment, while using a material having a negative TCR characteristic for the heating resistor, the temperature rise in the region corresponding to the non-sheet passing portion where heat dissipation due to the sheet passing is small is suppressed, and the entire effective region of the heating resistors 16 and 18 is reduced. A uniform temperature distribution can be obtained.

図7〜図9は、この発明の平板ヒータに関する第2の実施形態について説明するためのもので、図7は構成図、図8は図7のc−c’断面図、図9は図7のd−d’断面図である。上記した各実施形態と同一の構成部分には同一の符号を付して説明する。   7 to 9 are for explaining a second embodiment relating to the flat plate heater of the present invention. FIG. 7 is a structural view, FIG. 8 is a sectional view taken along the line cc 'of FIG. 7, and FIG. It is dd 'sectional drawing of. The same components as those in the above-described embodiments will be described with the same reference numerals.

図7において、71は、絶縁基板11の表面側の長手方向に沿って形成され、長さが短く幅の広い一端が接続導体14の一部に重層する状態で形成された発熱抵抗体である。発熱抵抗体71は、絶縁基板11長手方向の中央部分では長さが短くその両端部に向けてそれぞれ漸次長さを長くした形状となっている。従って、発熱抵抗体71は、図中下側が凹の湾曲形状となっている。   In FIG. 7, reference numeral 71 denotes a heating resistor formed along the longitudinal direction on the surface side of the insulating substrate 11 and formed in a state where one end having a short length and a wide width overlaps a part of the connection conductor 14. . The heating resistor 71 has a shape in which the length is short at the central portion in the longitudinal direction of the insulating substrate 11 and the length is gradually increased toward both ends thereof. Accordingly, the heating resistor 71 has a concave curved shape on the lower side in the drawing.

発熱抵抗体71の他端は、例えば接続導体14と同材料で形成された湾曲形状で同様の幅の接続導体73の一部に重層する状態で接続される。   The other end of the heating resistor 71 is connected in a state where it overlaps with a part of the connection conductor 73 having a curved shape, for example, made of the same material as the connection conductor 14 and having the same width.

72は、絶縁基板11の表面側の長手方向に沿って形成され、長さが短く幅の広い一端が接続導体73の一部に重層する状態で形成された発熱抵抗体である。発熱抵抗体72は、中央部分の長さが長くその両端部に向けてそれぞれ漸次長さを短くした形状となっている。従って、発熱抵抗体71は、図中上側が凸の湾曲形状となっている。発熱抵抗体72の他端は、接続導体15の一部に重層する状態で接続される。   Reference numeral 72 denotes a heating resistor formed along the longitudinal direction on the surface side of the insulating substrate 11 and formed in a state where one end having a short length and a wide width overlaps a part of the connection conductor 73. The heating resistor 72 has a shape in which the length of the central portion is long and the length is gradually shortened toward both ends thereof. Therefore, the heating resistor 71 has a curved shape with a convex upper side in the drawing. The other end of the heating resistor 72 is connected in a state of being overlaid on a part of the connection conductor 15.

発熱抵抗体71,72は、それぞれTCRが負の特性を有する例えばペースト状のグラファイト抵抗体を高温で焼成し、所定の抵抗値を有した厚膜形成により構成される。発熱抵抗体71,72は、TCRが負の特性を有する材料で形成されていることから、図4に示すような特性を有する。すなわち、グラファイトによる発熱抵抗体は、温度が低いときは抵抗値が大きく、温度が高いときは抵抗値が小さくなる特性を備える。   The heating resistors 71 and 72 are each formed by forming a thick film having a predetermined resistance value, for example, by baking a paste-like graphite resistor having a negative TCR characteristic at a high temperature. Since the heating resistors 71 and 72 are made of a material having a negative TCR characteristic, they have characteristics as shown in FIG. That is, the heating resistor made of graphite has a characteristic that the resistance value is large when the temperature is low and the resistance value is small when the temperature is high.

また、導体14と接続導体73間の発熱抵抗体71の抵抗値は、接続導体73と導体15間の発熱抵抗体72の抵抗値は同様の値に設定してある。   The resistance value of the heating resistor 71 between the conductor 14 and the connection conductor 73 is set to the same value as the resistance value of the heating resistor 72 between the connection conductor 73 and the conductor 15.

図7中の発熱抵抗体71,72におけるt1は、例えばA4サイズ定着に必要な幅に相当する領域を示し、領域t2,t3は、領域t1とを合わせて例えばA3サイズの用紙が定着される大きさの幅に相当する領域t4(=t1+t2+t3)の幅を備える。   In FIG. 7, t1 in the heating resistors 71 and 72 indicates an area corresponding to, for example, a width necessary for A4 size fixing, and areas t2 and t3 are fixed together with, for example, A3 size paper. The width of the region t4 (= t1 + t2 + t3) corresponding to the size width is provided.

ここで、電極12,13に通電され発熱抵抗体71,72が昇温開始時やA3サイズの用紙を通紙している場合は、発熱抵抗体71,72の中央部の領域t1とその両側の領域t2,t3にほとんど温度差を生じない。直列接続された発熱抵抗体71,72の領域t1の抵抗R1と領域t2およびt3の発熱抵抗体71,72の抵抗R2は略等しい。このために、領域t1の発熱量W1と領域t2,t3の発熱量W2は同程度となる。つまり、R1≒R2→W1≒W2となる。   Here, when the electrodes 12 and 13 are energized and the heating resistors 71 and 72 start temperature rising or when A3 size paper is passed, the central region t1 of the heating resistors 71 and 72 and both sides thereof. There is almost no temperature difference between the regions t2 and t3. The resistance R1 in the region t1 of the heating resistors 71 and 72 connected in series is substantially equal to the resistance R2 of the heating resistors 71 and 72 in the regions t2 and t3. For this reason, the heat generation amount W1 in the region t1 and the heat generation amount W2 in the regions t2 and t3 are approximately the same. That is, R1≈R2 → W1≈W2.

よって、図5に示すように、中央部の領域t1の発熱量W1と端部の領域t2,t3の発熱量W2は同程度である。これら発熱量W1,W2を合成して得られる発熱量Wは、絶縁基板11の長手方向に対して略均一な温度分布を得ることができる。   Therefore, as shown in FIG. 5, the calorific value W1 of the central region t1 and the calorific value W2 of the end regions t2 and t3 are approximately the same. The calorific value W obtained by synthesizing these calorific values W1 and W2 can obtain a substantially uniform temperature distribution in the longitudinal direction of the insulating substrate 11.

発熱抵抗体71,72のTCRは負の材料で形成され、温度上昇に従い抵抗値は小さくなる。発熱抵抗体71,72の有効な全加熱領域より小サイズの用紙を加熱し定着させた場合は、領域t2,t3の温度が領域t1より上昇しようとするが、発熱抵抗体71,72のTCRが負の特性であることから領域t2,t3側の抵抗値の低下が領域t1より大きい。   The TCRs of the heating resistors 71 and 72 are made of a negative material, and the resistance value decreases as the temperature rises. When a sheet having a size smaller than the effective heating area of the heating resistors 71 and 72 is heated and fixed, the temperature of the areas t2 and t3 tends to rise from the area t1, but the TCR of the heating resistors 71 and 72 is increased. Is a negative characteristic, the decrease in the resistance value on the regions t2 and t3 side is larger than that on the region t1.

領域t2の抵抗値をR(t2)、領域t2の抵抗値をR(t1)とし、その差をΔRとすると、ΔR=R(t1)−R(t2)となる。領域t3の抵抗値は、領域t2と同様の値であり、その差ΔRの値も略同じとなる。この関係から、領域t2,t3の温度T(t2,t3)と領域t1の温度T(t1)は、T(t2,t3)>T(t1)となり、領域t2,t3のΔR(t2,t3)と領域t1のΔR(t1)は、ΔR(t2,t3)<ΔR(t1)となる。   When the resistance value of the region t2 is R (t2), the resistance value of the region t2 is R (t1), and the difference is ΔR, ΔR = R (t1) −R (t2). The resistance value of the region t3 is the same value as that of the region t2, and the value of the difference ΔR is substantially the same. From this relationship, the temperature T (t2, t3) of the regions t2 and t3 and the temperature T (t1) of the region t1 are T (t2, t3)> T (t1), and ΔR (t2, t3 of the regions t2 and t3 ) And ΔR (t1) in the region t1 are ΔR (t2, t3) <ΔR (t1).

領域t1の発熱抵抗体71,72、領域t2,t3の発熱抵抗体71,72の抵抗値は、端部である領域t2,t3と中央部である領域t1に温度差がない場合に比べて、端部の抵抗値が小さくなる。このため端部の抵抗値が大きい発熱抵抗体71,72は、中央部の抵抗値が大きい発熱抵抗体71,72に比べて抵抗値が小さくなる。つまり、T(t2,t3)>T(t1)→R(t2,t3)<R(t1)となる。   The resistance values of the heat generating resistors 71 and 72 in the region t1 and the heat generating resistors 71 and 72 in the regions t2 and t3 are compared to the case where there is no temperature difference between the regions t2 and t3 which are the end portions and the region t1 which is the central portion. The resistance value of the end portion becomes small. For this reason, the resistance values of the heating resistors 71 and 72 having a large resistance at the end are smaller than those of the heating resistors 71 and 72 having a large resistance at the center. That is, T (t2, t3)> T (t1) → R (t2, t3) <R (t1).

図6に示すように、発熱抵抗体71,72は直列接続されているため、抵抗値の大きい領域t1の発熱抵抗体71,72の発熱量W1より、抵抗値の小さい領域t2,t3の発熱量W2が小さくなる。つまり、T(t2,t3)>T(t1)→W2(t2,t3)<W1(t1)となり、温度の高い端部の発熱量を抑えることができる。   As shown in FIG. 6, since the heat generating resistors 71 and 72 are connected in series, the heat generation in the regions t2 and t3 having a smaller resistance value than the heat generation amount W1 of the heat generating resistors 71 and 72 in the region t1 having a large resistance value. The amount W2 is reduced. That is, T (t2, t3)> T (t1) → W2 (t2, t3) <W1 (t1), and the amount of heat generated at the end portion having a high temperature can be suppressed.

この実施形態では、領域t4の範囲内であればどの位置でも上記で説明した関係が成り立つ。従って、領域t4以内のサイズの用紙であれば、どの大きさのサイズの用紙を通紙させた場合でも、通紙させない他の領域における温度上昇を抑えることが可能となる。   In this embodiment, the relationship described above is established at any position within the range of the region t4. Therefore, as long as the size of the paper is within the region t4, it is possible to suppress a temperature rise in other regions where the paper is not passed, regardless of the size of the paper that is passed.

図10〜図12は、この発明の平板ヒータに関する第3の実施形態について説明するためのもので、図10は構成図、図11は図10の背面図、図12は図10のc−c’断面図である。上記した実施形態と同一の構成部分には同一の符号を付してその説明は省略する。   10 to 12 are for explaining a third embodiment relating to the flat plate heater of the present invention. FIG. 10 is a block diagram, FIG. 11 is a rear view of FIG. 10, and FIG. 'Cross section. The same components as those in the above-described embodiment are denoted by the same reference numerals, and the description thereof is omitted.

すなわち、接続導体141は、一端が接続導体17に接続された発熱抵抗体16の他端に一部を重層させた状態で絶縁基板11上に形成させる。接続導体141の絶縁基板11長手方向の中間部にはスルーホール101が形成され、図11に示す絶縁基板11の背面側に形成された接続導体111の一端と電気的な接続を行う。接続導体111の他端は、スルーホール102を介して電極12と電気的な接続を行う。接続導体141は、TCRが正の特性を有する例えばAg系の材料で形成する。TCRは、1000ppm/℃以上とする。   That is, the connection conductor 141 is formed on the insulating substrate 11 in a state where a part of the connection conductor 141 is overlaid on the other end of the heating resistor 16 connected to the connection conductor 17 at one end. A through hole 101 is formed in the intermediate portion of the connecting conductor 141 in the longitudinal direction of the insulating substrate 11, and is electrically connected to one end of the connecting conductor 111 formed on the back side of the insulating substrate 11 shown in FIG. The other end of the connection conductor 111 is electrically connected to the electrode 12 through the through hole 102. The connection conductor 141 is made of, for example, an Ag-based material having a positive TCR characteristic. TCR is set to 1000 ppm / ° C. or higher.

また、接続導体151は、一端が接続導体17に接続された発熱抵抗体18の他端に一部を重層させた状態で絶縁基板11上に形成させる。接続導体151の絶縁基板11長手方向の中間部にはスルーホール103が形成され、図11に示す絶縁基板11の背面側に形成された接続導体112の一端と電気的な接続を行う。接続導体111の他端は、スルーホール104を介して電極13と電気的な接続を行う。接続導体151は、TCRが正の特性を有する例えばAg系の材料で形成する。   Further, the connection conductor 151 is formed on the insulating substrate 11 in a state where a part of the connection conductor 151 is layered on the other end of the heating resistor 18 connected to the connection conductor 17 at one end. A through hole 103 is formed in the intermediate portion of the connecting conductor 151 in the longitudinal direction of the insulating substrate 11, and is electrically connected to one end of the connecting conductor 112 formed on the back side of the insulating substrate 11 shown in FIG. The other end of the connection conductor 111 is electrically connected to the electrode 13 through the through hole 104. The connection conductor 151 is formed of, for example, an Ag-based material having a positive TCR characteristic.

113は、接続導体111,112それにスルーホール101〜104を覆い、電気的、機械的、化学的な保護を行うために、例えばガラスペーストを厚膜印刷方法で塗布、焼成して形成されたオーバーコート層である。   113 is an over-layer formed by coating and baking, for example, glass paste by a thick film printing method in order to cover the connection conductors 111 and 112 and the through holes 101 to 104 and perform electrical, mechanical and chemical protection. It is a coat layer.

図13〜図16は、この発明の平板ヒータに関する第4の実施形態について説明するためのもので、図13は構成図、図14は図13のd−d’断面図、図15は図13のe−e’断面図、図16は図13のf−f’断面図である。   13 to 16 are for explaining a fourth embodiment relating to the flat plate heater of the present invention. FIG. 13 is a structural view, FIG. 14 is a sectional view taken along the line dd ′ of FIG. 13, and FIG. FIG. 16 is a sectional view taken along the line ef ′ of FIG.

この実施形態では、スルーホールを用いることなく絶縁基板11の同一面で発熱抵抗体16,18の中間部部分に、電極12,13が電気的に接続されるようにしたものである。   In this embodiment, the electrodes 12 and 13 are electrically connected to intermediate portions of the heating resistors 16 and 18 on the same surface of the insulating substrate 11 without using through holes.

すなわち、接続導体142は、一端が接続導体17に接続された発熱抵抗体16の他端に一部を重層させた状態で絶縁基板11に形成される。接続導体142の絶縁基板11長手方向の中間部と電極12は、接続導体143で接続する。接続導体142,143は、TCRが正の特性を有する例えばAg系の材料で形成する。   That is, the connection conductor 142 is formed on the insulating substrate 11 in a state where a part of the connection conductor 142 is overlapped with the other end of the heating resistor 16 connected to the connection conductor 17 at one end. The intermediate portion of the connecting conductor 142 in the longitudinal direction of the insulating substrate 11 and the electrode 12 are connected by the connecting conductor 143. The connection conductors 142 and 143 are made of, for example, an Ag-based material having a positive TCR characteristic.

また、接続導体152は、一端が接続導体17に接続された発熱抵抗体18の他端に一部を重層させた状態で絶縁基板11に形成される。接続導体152の絶縁基板11長手方向の中間部と電極13は、接続導体153を接続で接続する。接続導体152,153は、TCRが正の特性を有する例えばAg系の材料で形成する。   Further, the connection conductor 152 is formed on the insulating substrate 11 in a state where a part of the connection conductor 152 is overlapped with the other end of the heating resistor 18 connected at one end to the connection conductor 17. The intermediate portion of the connecting conductor 152 in the longitudinal direction of the insulating substrate 11 and the electrode 13 connect the connecting conductor 153 by connection. The connection conductors 152 and 153 are made of, for example, an Ag-based material having a positive TCR characteristic.

上記の第3および第4の実施形態では、接続導体14,142,143、15,152,153は、TCRが正の特性を備えた導体で形成されていることから、温度が高くなるに従い抵抗値は高くなる。つまり、温度がT(t2,t3)>T(t1)関係の場合、抵抗はR(t2,t3)<R(t1)となる。   In the third and fourth embodiments described above, since the connection conductors 14, 142, 143, 15, 152, and 153 are formed of conductors having a positive TCR characteristic, the resistance increases as the temperature increases. The value gets higher. That is, when the temperature has a relationship of T (t2, t3)> T (t1), the resistance is R (t2, t3) <R (t1).

また、発熱抵抗体16,18の中間部部分に、電力が供給される電極12,13が接続導体を介してそれぞれ接続されている。絶縁基板11の長手方向の端部である流域t2,t3の温度が高くなった場合、領域t2,t3の導体の抵抗値が高くなり、発熱抵抗体16,18へ電流が流れにくくなる。そのため、長手方向端部の発熱抵抗体16,18に電流が流れにくくなり、発熱量を抑えることができる。   In addition, electrodes 12 and 13 to which electric power is supplied are connected to intermediate portions of the heating resistors 16 and 18 through connection conductors, respectively. When the temperatures of the flow areas t2 and t3, which are the ends in the longitudinal direction of the insulating substrate 11, increase, the resistance value of the conductors in the areas t2 and t3 becomes high, and the current hardly flows to the heating resistors 16 and 18. Therefore, it becomes difficult for current to flow through the heating resistors 16 and 18 at the ends in the longitudinal direction, and the amount of generated heat can be suppressed.

このように、第3、第4の実施形態の場合は、通紙による放熱が少ない非通紙部にあたる領域の温度上昇を抑え、発熱抵抗体16,18の全有効領域の均一な温度分布を得ることができる。   As described above, in the case of the third and fourth embodiments, the temperature rise in the region corresponding to the non-sheet passing portion where the heat radiation due to the sheet passing is small is suppressed, and the uniform temperature distribution in the entire effective region of the heating resistors 16 and 18 is obtained. Obtainable.

次に、この発明の平板ヒータに関する第5、第6の実施形態について説明する。図17〜図19は第5の実施形態について、図20〜図23は第6の実施形態について説明するためのものである。   Next, fifth and sixth embodiments relating to the flat plate heater of the present invention will be described. FIGS. 17 to 19 are for explaining the fifth embodiment, and FIGS. 20 to 23 are for explaining the sixth embodiment.

まず、図17〜図19において、図17は構成図、図18は図17の背面図、図19は図17のi−i’断面図である。上記第2の実施形態の図7〜図9および第3の実施形態の図10〜図12と同一の構成部分には同一の符号を付し、ここでは異なる部分を中心に説明する。   First, in FIGS. 17 to 19, FIG. 17 is a configuration diagram, FIG. 18 is a rear view of FIG. 17, and FIG. 19 is a cross-sectional view taken along line i-i ′ of FIG. The same components as those in FIGS. 7 to 9 of the second embodiment and FIGS. 10 to 12 of the third embodiment are denoted by the same reference numerals, and different portions will be mainly described here.

この実施形態は、図7の構成の接続導体14,15に相当する部分を、図18で説明したようにTCRが正の特性を有する例えばAg系の材料の接続導体141,151とした。さらに、図10、図11で説明したように、接続導体141と電極12は、スルーホール101、接続導体111、スルーホール102を介して接続する。接続導体151と電極13は、スルーホール103、接続導体112、スルーホール104を介して接続する。   In this embodiment, the portions corresponding to the connection conductors 14 and 15 having the configuration of FIG. 7 are the connection conductors 141 and 151 made of, for example, Ag-based material having a positive TCR characteristic as described with reference to FIG. Further, as described in FIGS. 10 and 11, the connection conductor 141 and the electrode 12 are connected through the through hole 101, the connection conductor 111, and the through hole 102. The connection conductor 151 and the electrode 13 are connected through the through hole 103, the connection conductor 112, and the through hole 104.

次に、図20〜図23において、図20は構成図、図21は図20のj−j’断面図、図22は図20のk−k’断面図、図23は図20のl−l’断面図である。この実施形態は、上記第5の実施形態の図17〜図19に、スルーホールを用いることなく絶縁基板11の同一面で、発熱抵抗体71,72の中間部部分に、電極12,13が電気的に接続されるようにしたものである
上記した第5および第6の実施形態においても、接続導体141,142の中間部と電極12が、接続導体151,152の中間部と電極13が接続されるとともに、これら接続導体は、TCRが正の特性を有する例えばAg系の材料で形成されている。
Next, in FIGS. 20 to 23, FIG. 20 is a configuration diagram, FIG. 21 is a cross-sectional view taken along line j ′ of FIG. 20, FIG. 22 is a cross-sectional view taken along line kk ′ of FIG. It is l 'sectional drawing. This embodiment is similar to the fifth embodiment shown in FIGS. 17 to 19 in that the electrodes 12 and 13 are formed on the same surface of the insulating substrate 11 without using through-holes and in the intermediate portions of the heating resistors 71 and 72. In the fifth and sixth embodiments described above, the intermediate portions of the connection conductors 141 and 142 and the electrode 12 are connected to each other, and the intermediate portions of the connection conductors 151 and 152 and the electrode 13 are connected to each other. In addition to being connected, these connection conductors are made of, for example, an Ag-based material having a positive TCR characteristic.

従って、温度が高くなるに従い抵抗値は高くなる。つまり、温度がT(t2,t3)>T(t1)関係の場合、抵抗はR(t2,t3)<R(t1)となる。   Therefore, the resistance value increases as the temperature increases. That is, when the temperature has a relationship of T (t2, t3)> T (t1), the resistance is R (t2, t3) <R (t1).

また、発熱抵抗体71,72の中間部部分に、電力が供給される電極12,13が接続導体を介してそれぞれ接続されている。絶縁基板11の長手方向の端部である流域t2,t3の温度が高くなった場合、領域t2,t3の導体の抵抗値が高くなり、発熱抵抗体71,72へ電流が流れにくくなる。そのため、長手方向端部の発熱抵抗体71,72に電流が流れにくくなり、発熱量を抑えることができる。   In addition, electrodes 12 and 13 to which electric power is supplied are connected to intermediate portions of the heating resistors 71 and 72 via connecting conductors, respectively. When the temperatures of the flow areas t2 and t3, which are the ends in the longitudinal direction of the insulating substrate 11, increase, the resistance value of the conductors in the areas t2 and t3 increases, and it becomes difficult for current to flow to the heating resistors 71 and 72. Therefore, it becomes difficult for current to flow through the heating resistors 71 and 72 at the ends in the longitudinal direction, and the amount of generated heat can be suppressed.

図24は、この発明の板状ヒータをトナー定着の加熱装置200とした場合の実施形態について説明するための断面図である。   FIG. 24 is a cross-sectional view for explaining an embodiment in which the plate heater of the present invention is a heating device 200 for toner fixing.

図24において、201は、支持体202の底部に板状ヒータ100を固着させ、板状ヒータ100に交流電圧を供給させ、加熱した板状ヒータ100のオーバーコート層19に圧接加熱されながら移動するポリイミド樹脂等の耐熱性のシートをロール状にして循環自在に巻装された円筒の定着フィルムである。203はその表面に耐熱性弾性材料であるたとえばシリコーンゴム層204が嵌合してある加圧ローラであり、加圧ローラ203の回転軸205と対向して板状ヒータ100が、定着フィルム201と並置して図示しない基台内に取り付けられている。加圧ローラ203は、図示しない手段に基づいて定着フィルム201と相互に圧接させてニップ部を形成するとともに、作動時には矢印方向に回転させる。   In FIG. 24, reference numeral 201 denotes a plate heater 100 fixed to the bottom of a support 202, an AC voltage is supplied to the plate heater 100, and the plate heater 100 moves while being pressed against the overcoat layer 19 of the heated plate heater 100. This is a cylindrical fixing film in which a heat-resistant sheet of polyimide resin or the like is rolled to be circulated. Reference numeral 203 denotes a pressure roller having a heat resistant elastic material, for example, a silicone rubber layer 204 fitted on the surface thereof. The plate heater 100 is opposed to the fixing film 201 so as to face the rotating shaft 205 of the pressure roller 203. They are mounted side by side in a base (not shown). The pressure roller 203 is brought into pressure contact with the fixing film 201 based on a means (not shown) to form a nip portion, and is rotated in the direction of the arrow during operation.

このとき、オーバーコート層28上に配置された定着フィルム201面とシリコーンゴム層204との間で、トナー像To1がまず定着フィルム201を介して板状ヒータ100により加熱溶融され、少なくともその表面部は融点を大きく上回り完全に軟化して溶融する。この後、加圧ローラ203の用紙排出側では複写用紙Pが板状ヒータ100から離れ、トナー像To2は自然放熱して再び冷却固化し、定着フィルム201も複写用紙Pから離反される。   At this time, between the surface of the fixing film 201 disposed on the overcoat layer 28 and the silicone rubber layer 204, the toner image To1 is first heated and melted by the plate heater 100 via the fixing film 201, and at least the surface portion thereof. Greatly exceeds the melting point and completely softens and melts. Thereafter, on the paper discharge side of the pressure roller 203, the copy paper P is separated from the plate heater 100, the toner image To2 is naturally radiated and cooled and solidified again, and the fixing film 201 is also separated from the copy paper P.

この実施形態では、平板ヒータの発熱抵抗体にTCRが負の特性を有するグラファイト等の廉価材料を用いることができることから、通紙による放熱が少ない非通紙部にあたる領域の温度上昇を簡単な構成で抑えることができる。   In this embodiment, since a low-priced material such as graphite having a negative TCR characteristic can be used for the heating resistor of the flat plate heater, the temperature rise in the region corresponding to the non-sheet passing portion with less heat dissipation due to sheet passing can be simplified. Can be suppressed.

次に、図25を参照して、この発明の加熱装置200を搭載した複写機を例とした、この発明の画像形成装置について説明する。図中、加熱装置200の部分は、上記した説明と同じであり、同一部分には同一の符号を付し、その説明は省略する。   Next, with reference to FIG. 25, an image forming apparatus according to the present invention will be described using a copying machine equipped with the heating device 200 according to the present invention as an example. In the figure, the part of the heating device 200 is the same as described above, and the same reference numerals are given to the same parts, and the description thereof is omitted.

図25において、301は複写機300の筐体、302は筐体301の上面に設けられたガラス等の透明部材からなる原稿載置台で、矢印Y方向に往復動作させて原稿P1を走査する。   In FIG. 25, 301 is a casing of the copying machine 300, 302 is a document placing table made of a transparent member such as glass provided on the upper surface of the casing 301, and scans the document P1 by reciprocating in the arrow Y direction.

筐体301内の上方向には光照射用のランプと反射鏡とからなる照明装置302が設けられており、この照明装置302により照射された原稿P1からの反射光源が短焦点小径結像素子アレイ303によって感光ドラム304上スリット露光される。なお、この感光ドラム304は矢印方向に回転する。   An illuminating device 302 including a light irradiation lamp and a reflecting mirror is provided in the upper direction in the housing 301, and a reflected light source from the document P1 irradiated by the illuminating device 302 is a short focus small diameter imaging element. A slit exposure is performed on the photosensitive drum 304 by the array 303. The photosensitive drum 304 rotates in the direction of the arrow.

また、305は帯電器で、例えば酸化亜鉛感光層あるいは有機半導体感光層が被覆された感光ドラム304上に一様に帯電を行う。この帯電器305により帯電された感光ドラム304には、結像素子アレイ303によって画像露光が行われた静電画像が形成される。この静電画像は、現像器306による加熱で軟化溶融する樹脂等からなるトナーを用いて顕像化される。   Reference numeral 305 denotes a charger that uniformly charges, for example, a photosensitive drum 304 coated with a zinc oxide photosensitive layer or an organic semiconductor photosensitive layer. An electrostatic image subjected to image exposure by the imaging element array 303 is formed on the photosensitive drum 304 charged by the charger 305. This electrostatic image is visualized using toner made of a resin that softens and melts when heated by the developing device 306.

カセット307内に収納されている複写用紙Pは、給送ローラ308と感光ドラム304上の画像と同期するタイミングをとって上下方向で圧接して回転される対の搬送ローラ309によって、感光ドラム304上に送り込まれる。そして、転写放電器310によって感光ドラム304上に形成されているトナー像は複写用紙P上に転写される。   The copy paper P stored in the cassette 307 is rotated by a pair of conveying rollers 309 that are rotated in pressure contact with each other in synchronization with the feeding roller 308 and the image on the photosensitive drum 304. Sent to the top. The toner image formed on the photosensitive drum 304 is transferred onto the copy paper P by the transfer discharger 310.

その後、感光ドラム304上から離れた用紙Pは、搬送ガイド311によって加熱装置200に導かれて加熱定着処理された後に、トレイ312内に排出される。なお、トナー像が転写された後、感光ドラム304上の残留トナーはクリーナ313を用いて除去される。   Thereafter, the paper P that is separated from the photosensitive drum 304 is guided to the heating device 200 by the conveyance guide 311 and subjected to a heat fixing process, and then is discharged into the tray 312. After the toner image is transferred, residual toner on the photosensitive drum 304 is removed using a cleaner 313.

加熱装置200は、複写用紙Pの移動方向と直交する方向に、この複写機300が複写できる最大判用紙の幅(長さ)に合わせた有効長、すなわち最大判用紙の幅(長さ)より長い発熱抵抗体16,18を備えた板状ヒータ100が、加圧ローラ203の外周に取り付けられたシリコーンゴム層204に加圧された状態で設けられている。   The heating device 200 has an effective length according to the width (length) of the maximum size paper that can be copied by the copying machine 300 in the direction orthogonal to the moving direction of the copy paper P, that is, the width (length) of the maximum size paper. A plate heater 100 having long heating resistors 16 and 18 is provided in a state where it is pressed against a silicone rubber layer 204 attached to the outer periphery of the pressure roller 203.

そして、板状ヒータ100と加圧ローラ203との間を送られる用紙P上の未定着トナー像T1は、発熱抵抗体16の熱を受け溶融して複写用紙P面上に文字、英数字、記号、図面等の複写像を現出させる。   The unfixed toner image T1 on the paper P sent between the plate heater 100 and the pressure roller 203 is melted by the heat of the heating resistor 16 and is printed on the surface of the copy paper P with characters, alphanumeric characters, Copy images such as symbols and drawings are displayed.

この実施形態では、グラファイト等の廉価な発熱抵抗体による板状ヒータ100による加熱装置を用いたことにより、非通紙部分の温度上昇を抑えた画像形成装置を実現することができる。   In this embodiment, an image forming apparatus that suppresses a temperature rise in a non-sheet passing portion can be realized by using a heating device by the plate heater 100 using an inexpensive heating resistor such as graphite.

板状ヒータの用途としては、複写機等の画像形成装置の定着用に用いたが、これに限らず、家庭用の電気製品、業務用や実験用の精密機器や化学反応用の機器等に装着して加熱や保温の熱源としても使用できる。   The plate heater is used for fixing image forming apparatuses such as copying machines, but is not limited to this. For household appliances, precision equipment for business use and experiments, equipment for chemical reaction, etc. It can be used as a heat source for heating and heat retention.

この発明の平板ヒータに関する第1の実施形態について説明するための構成図。The block diagram for demonstrating 1st Embodiment regarding the flat plate heater of this invention. 図1のa−a’断面図。FIG. 2 is a cross-sectional view taken along the line a-a ′ in FIG. 1. 図1のb−b’断面図。B-b 'sectional drawing of FIG. この発明に用いる発熱抵抗体の温度特性について説明するための説明図。Explanatory drawing for demonstrating the temperature characteristic of the heating resistor used for this invention. この発明の効果について説明するための説明図。Explanatory drawing for demonstrating the effect of this invention. この発明の効果について説明するための説明図。Explanatory drawing for demonstrating the effect of this invention. この発明の平板ヒータに関する第2の実施形態について説明するための構成図。The block diagram for demonstrating 2nd Embodiment regarding the flat plate heater of this invention. 図7のc−c’断面図。C-c 'sectional drawing of FIG. 図7のd−d’断面図。D-d 'sectional drawing of FIG. この発明の平板ヒータに関する第3の実施形態について説明するための構成図。The block diagram for demonstrating 3rd Embodiment regarding the flat heater of this invention. 図10の背面図。The rear view of FIG. 図10のe−e’断面図。E-e 'sectional drawing of FIG. この発明の平板ヒータに関する第4の実施形態について説明するための構成図。The block diagram for demonstrating 4th Embodiment regarding the flat heater of this invention. 図13のf−f’断面図。F-f 'sectional drawing of FIG. 図13のg−g’断面図。FIG. 14 is a g-g ′ sectional view of FIG. 13. 図13のh−h’断面図。FIG. 14 is a cross-sectional view taken along the line h-h ′ in FIG. 13. この発明の平板ヒータに関する第5の実施形態について説明するための構成図。The block diagram for demonstrating 5th Embodiment regarding the flat heater of this invention. 図17の背面図。The rear view of FIG. 図17のi−i’断面図。I-i 'sectional drawing of FIG. この発明の平板ヒータに関する第6の実施形態について説明するための構成図。The block diagram for demonstrating 6th Embodiment regarding the flat plate heater of this invention. 図20のj−j’断面図。J-j 'sectional drawing of FIG. 図20のk−k’断面図。K-k 'sectional drawing of FIG. 図20のl−l’断面図。FIG. 21 is a cross-sectional view taken along the line l-l ′ of FIG. 20. この発明の加熱装置に関する一実施形態について説明するための説明図。Explanatory drawing for demonstrating one Embodiment regarding the heating apparatus of this invention. この発明の画像形成装置に関する一実施形態について説明するための説明図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram for explaining an embodiment of an image forming apparatus according to the present invention;

符号の説明Explanation of symbols

11 絶縁基板
12,13 電極
14,15,17,73,111,112,141〜143,151〜153 接続導体
16,18,71,72 発熱抵抗体
19,113 オーバーコート層
101〜104 スルーホール
100 平板ヒータ
200 加熱装置
300 複写機
11 Insulating substrate 12, 13 Electrodes 14, 15, 17, 73, 111, 112, 141-143, 151-153 Connecting conductors 16, 18, 71, 72 Heating resistors 19, 113 Overcoat layers 101-104 Through hole 100 Flat plate heater 200 Heating device 300 Copying machine

Claims (8)

耐熱・絶縁性材料で形成される長尺平板の絶縁基板と、
前記絶縁基板の長手方向に沿って形成され、それぞれ前記絶縁基板の長手方向を幅とし短手方向を長さとする第1および第2の発熱抵抗体と、
前記第1および第2の発熱抵抗体を、前記絶縁基板上で直列に接続した第1の接続導体と、
前記第1の発熱抵抗体の一端に接続された第2の接続導体と、
前記第1の接続導体に接続した第1の電極と、
前記第2の発熱抵抗体の他端に接続された第3の接続導体と、
前記第2の接続導体に接続された第2の電極と、を具備し、
前記第1の発熱抵抗体は、負の抵抗温度係数を有し、前記絶縁基板長手方向の中央部分の幅を広くした幅広部とし、長手方向の両端部分の幅を、前記幅広部よりも狭い幅狭部とし、
前記第2の発熱抵抗体は、負の抵抗温度係数を有し、前記絶縁基板長手方向の中央部分の幅を狭くした幅狭部とし、長手方向の両端部分の幅を、前記幅狭部よりも広い幅広部としたことを特徴とする平板ヒータ。
A long flat insulating substrate formed of a heat-resistant and insulating material;
First and second heating resistors formed along the longitudinal direction of the insulating substrate, each having a longitudinal direction as a width and a short direction as a length;
A first connecting conductor in which the first and second heating resistors are connected in series on the insulating substrate;
A second connection conductor connected to one end of the first heating resistor;
A first electrode connected to the first connection conductor;
A third connecting conductor connected to the other end of the second heating resistor;
A second electrode connected to the second connection conductor,
The first heating resistor has a negative resistance temperature coefficient, and has a wide portion in which the width of the central portion in the longitudinal direction of the insulating substrate is widened, and the width of both end portions in the longitudinal direction is narrower than that of the wide portion. A narrow part,
The second heating resistor has a negative temperature coefficient of resistance, and has a narrow portion with a narrow central portion in the longitudinal direction of the insulating substrate. The width of both end portions in the longitudinal direction is smaller than that of the narrow portion. A flat heater characterized by a wide and wide part.
耐熱・絶縁性材料で形成される長尺平板の絶縁基板と、
前記絶縁基板の長手方向に沿って形成され、それぞれ前記絶縁基板の長手方向を幅とし短手方向を長さとする第1および第2の発熱抵抗体と、
前記第1および第2の発熱抵抗体を、前記絶縁基板上で直列に接続した第1の接続導体と、
前記第1の発熱抵抗体の一端に接続された第2の接続導体と、
前記第1の接続導体に接続した第1の電極と、
前記第2の発熱抵抗体の他端に接続された第3の接続導体と、
前記第2の接続導体に接続された第2の電極と、を具備し、
前記第1の発熱抵抗体は、負の抵抗温度係数を有し、前記絶縁基板長手方向の中央部分の幅を広くし、長手方向の両端にかけて漸次幅を狭くし、
前記第2の発熱抵抗体は、負の抵抗温度係数を有し、前記絶縁基板長手方向の中央部分の幅を狭くし、長手方向の両端部にかけて漸次幅広くとしたことを特徴とする平板ヒータ。
A long flat insulating substrate formed of a heat-resistant and insulating material;
First and second heating resistors formed along the longitudinal direction of the insulating substrate, each having a longitudinal direction as a width and a short direction as a length;
A first connecting conductor in which the first and second heating resistors are connected in series on the insulating substrate;
A second connection conductor connected to one end of the first heating resistor;
A first electrode connected to the first connection conductor;
A third connecting conductor connected to the other end of the second heating resistor;
A second electrode connected to the second connection conductor,
The first heating resistor has a negative resistance temperature coefficient, widens the width of the central portion in the longitudinal direction of the insulating substrate, and gradually narrows the width toward both ends in the longitudinal direction,
The flat plate heater, wherein the second heating resistor has a negative temperature coefficient of resistance, the width of the central portion in the longitudinal direction of the insulating substrate is narrowed, and gradually widened at both end portions in the longitudinal direction.
前記絶縁基板の短手方向の前記第1および第2の発熱抵抗体を合わせた抵抗値は、長手方向の各箇所と同様の値としたことを特徴とする請求項1または2記載の平板ヒータ。   The flat plate heater according to claim 1 or 2, wherein a resistance value of the first and second heating resistors in the short direction of the insulating substrate is the same value as each portion in the longitudinal direction. . 前記第1の電極は、前記第2の接続導体の中間部分に接続し、前記第2の電極は、前記第3の接続導体の中間部分にそれぞれ接続したことを特徴とする請求項1または2記載の平板ヒータ。   The first electrode is connected to an intermediate portion of the second connection conductor, and the second electrode is connected to an intermediate portion of the third connection conductor, respectively. The flat plate heater described. 前記第1の電極と前記第2の接続導体との接続および前記第2の電極と前記第3の接続導体との接続は、前記絶縁基板の異なる面でスルーホールを介して接続したことを特徴とする請求項4記載の平板ヒータ。   The connection between the first electrode and the second connection conductor and the connection between the second electrode and the third connection conductor are connected via different through-holes on different surfaces of the insulating substrate. The flat plate heater according to claim 4. 前記第2および第3の接続導体は、正の抵抗温度係数を有する材料で形成してなることを特徴とする請求項4または5に記載の平板ヒータ。   6. The flat plate heater according to claim 4, wherein the second and third connection conductors are made of a material having a positive resistance temperature coefficient. 加熱ローラと、
前記加熱ローラに対向配置された発熱抵抗体が圧接された請求項1〜6の何れかに記載の加熱ヒータと、
前記加熱ヒータと前記加圧ローラとの間を移動可能に設けられた定着フィルムとを具備したことを特徴とする加熱装置。
A heating roller;
The heating heater according to any one of claims 1 to 6, wherein a heating resistor disposed to face the heating roller is pressed against the heating roller.
A heating apparatus comprising a fixing film movably provided between the heater and the pressure roller.
媒体に形成された静電潜像にトナーを付着させてこのトナーを用紙に転写して所定の画像を形成する形成手段と、
画像が形成された用紙を加圧ローラにより定着フィルムを介して前記加熱ヒータに圧接しながら通過させることによって、トナーを定着するようにした請求項7記載の加熱装置と、を具備したことを特徴とする画像形成装置。
Forming means for attaching a toner to an electrostatic latent image formed on a medium and transferring the toner to a sheet to form a predetermined image;
8. A heating apparatus according to claim 7, wherein the toner is fixed by passing a sheet on which an image is formed while being pressed against the heater via a fixing film by a pressure roller. An image forming apparatus.
JP2006353944A 2006-12-28 2006-12-28 Flat plate heater, fixing device, and image processing device Withdrawn JP2008166096A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006353944A JP2008166096A (en) 2006-12-28 2006-12-28 Flat plate heater, fixing device, and image processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006353944A JP2008166096A (en) 2006-12-28 2006-12-28 Flat plate heater, fixing device, and image processing device

Publications (1)

Publication Number Publication Date
JP2008166096A true JP2008166096A (en) 2008-07-17

Family

ID=39695289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006353944A Withdrawn JP2008166096A (en) 2006-12-28 2006-12-28 Flat plate heater, fixing device, and image processing device

Country Status (1)

Country Link
JP (1) JP2008166096A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029088A (en) * 2009-07-28 2011-02-10 Harison Toshiba Lighting Corp Ceramic heater, heating device, and image forming apparatus
US20120308280A1 (en) * 2011-06-02 2012-12-06 Canon Kabushiki Kaisha Image heating apparatus and heater used in the apparatus
US20140076878A1 (en) * 2012-09-19 2014-03-20 Canon Kabushiki Kaisha Heater and image heating device mounted with heater
US9098035B2 (en) 2012-12-17 2015-08-04 Canon Kabushiki Kaisha Fixing device and heater used in fixing device
US20150289317A1 (en) * 2009-09-11 2015-10-08 Canon Kabushiki Kaisha Heater and image heating apparatus including the same
JP2020042938A (en) * 2018-09-07 2020-03-19 株式会社東芝 Wiring structure, fixing device, and image forming apparatus
US11067927B2 (en) 2019-05-27 2021-07-20 CANON KABUSHIKI KAlSHA Heater, image heating device, and image forming apparatus having plural heating resistors and having plural electric contact portions connected to different poles of a power supply

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011029088A (en) * 2009-07-28 2011-02-10 Harison Toshiba Lighting Corp Ceramic heater, heating device, and image forming apparatus
US20150289317A1 (en) * 2009-09-11 2015-10-08 Canon Kabushiki Kaisha Heater and image heating apparatus including the same
US9445457B2 (en) * 2009-09-11 2016-09-13 Canon Kabushiki Kaisha Heater and image heating apparatus including the same
US20120308280A1 (en) * 2011-06-02 2012-12-06 Canon Kabushiki Kaisha Image heating apparatus and heater used in the apparatus
US8592726B2 (en) * 2011-06-02 2013-11-26 Canon Kabushiki Kaisha Image heating apparatus and heater used in the apparatus
US8841587B2 (en) 2011-06-02 2014-09-23 Canon Kabushiki Kaisha Image heating apparatus and heater used in the apparatus
CN103676575B (en) * 2012-09-19 2016-04-06 佳能株式会社 Well heater and be provided with the image heating equipment of well heater
US9235166B2 (en) * 2012-09-19 2016-01-12 Canon Kabushiki Kaisha Heater and image heating device mounted with heater
CN103676575A (en) * 2012-09-19 2014-03-26 佳能株式会社 Heater and image heating device mounted with heater
US20140076878A1 (en) * 2012-09-19 2014-03-20 Canon Kabushiki Kaisha Heater and image heating device mounted with heater
US9098035B2 (en) 2012-12-17 2015-08-04 Canon Kabushiki Kaisha Fixing device and heater used in fixing device
JP2020042938A (en) * 2018-09-07 2020-03-19 株式会社東芝 Wiring structure, fixing device, and image forming apparatus
US11067927B2 (en) 2019-05-27 2021-07-20 CANON KABUSHIKI KAlSHA Heater, image heating device, and image forming apparatus having plural heating resistors and having plural electric contact portions connected to different poles of a power supply

Similar Documents

Publication Publication Date Title
JP5124134B2 (en) Heater, heating device, image forming apparatus
JP2007232819A (en) Fixing heater, heating device and image forming apparatus
JP2008166096A (en) Flat plate heater, fixing device, and image processing device
JP5447933B2 (en) Ceramic heater, heating device, image forming device
US20200285179A1 (en) Heater, fixing device, and image forming apparatus
JP5042525B2 (en) Heater, heating device, image forming apparatus
JP2015210989A (en) Heater and image forming apparatus
JP2011091006A (en) Ceramic heater, heating device, and image forming device
JP2007035505A (en) Heater, heating device, and image processing device
JP2006252897A (en) Heater, heating device, and image-forming device
JP2009224209A (en) Plate heater, heater unit, heating device, and image forming device
JP5447932B2 (en) Ceramic heater, heating device, image forming device
JP5010365B2 (en) Plate heater, heating device, image forming device
JP2009059539A (en) Planar heater, heating device, and image-forming device
JP5381255B2 (en) Ceramic heater, heating device, image forming device
JP2010129444A (en) Plate heater, heating device, image forming device
JP5320549B2 (en) Ceramic heater, heating device, image forming device
JP2008040097A (en) Heating heater, heating device, image forming device
JP5573348B2 (en) Heating apparatus and image forming apparatus
JP2011096464A (en) Ceramic heater, heating device, and image forming apparatus
JP4948898B2 (en) Heater, heating device, image forming apparatus
JP2009087548A (en) Ceramic heater, heating device, image forming device
JP2020187319A (en) Heater and image forming apparatus
JP2008181682A (en) Plate heater, heating device, and image forming device
JP2007265647A (en) Heater, heating device, and image forming device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100302