JP2008155118A - Composite membrane for separating hydrogen and module for separating hydrogen using this hydrogen permeable membrane - Google Patents
Composite membrane for separating hydrogen and module for separating hydrogen using this hydrogen permeable membrane Download PDFInfo
- Publication number
- JP2008155118A JP2008155118A JP2006346308A JP2006346308A JP2008155118A JP 2008155118 A JP2008155118 A JP 2008155118A JP 2006346308 A JP2006346308 A JP 2006346308A JP 2006346308 A JP2006346308 A JP 2006346308A JP 2008155118 A JP2008155118 A JP 2008155118A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen
- permeable membrane
- membrane
- hydrogen permeable
- hydrogen separation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
本発明は、水素を含有する混合ガス中の水素ガスを選択的に透過し、分離する水素分離用複合膜と、これを用いた水素分離用モジュールに関する。 The present invention relates to a hydrogen separation composite membrane that selectively permeates and separates hydrogen gas in a mixed gas containing hydrogen, and a hydrogen separation module using the same.
水素は次世代のエネルギー源として、その生成のため、例えば水の電気分解による方法、あるいはメタノール、プロパンガス、液化天然ガス、都市ガスなどの原料ガスから水蒸気改質によって水素ガスを得る方法など提案されている。水素ガスを発電燃料等として利用するには、その水素混合ガスから99.99%以上の高純度で水素ガスを分離することが必要となる。 As a next-generation energy source, hydrogen is proposed, for example, by electrolysis of water, or by obtaining hydrogen gas by steam reforming from source gas such as methanol, propane gas, liquefied natural gas, city gas, etc. Has been. In order to use hydrogen gas as a power generation fuel or the like, it is necessary to separate the hydrogen gas from the hydrogen mixed gas with a high purity of 99.99% or more.
前記した、原料ガスから水素をうる方法として、例えば図9に天然ガスの場合を示すように、350℃の脱硫器aで脱硫したのち、改質用の水蒸気を導入する約800℃程度の高温での改質器b、400℃程度で行なう高温CO変成器c、250℃程度での低温CO変成器dをへて、100℃以下の温度のPSA(触媒吸着による水素精製装置)eで水素を生成して取り出す水素分離プロセスが用いられている。 As a method for obtaining hydrogen from the raw material gas as described above, for example, as shown in the case of natural gas in FIG. 9, after desulfurization in a desulfurizer a at 350 ° C., a high temperature of about 800 ° C. is introduced to introduce steam for reforming. Through a reformer b at 400 ° C, a high-temperature CO converter c performed at about 400 ° C, a low-temperature CO converter d at about 250 ° C, and hydrogen at a PSA (hydrogen purifier by catalyst adsorption) e at a temperature of 100 ° C or lower. A hydrogen separation process is used to produce and remove.
しかしながらこのPSAを用いるプロセスでは、改質反応が平衡反応で800℃程度の高温加熱となり、また装置自体の複雑化・大型化とともに、処理工程及び機器数が多くなる他、設備費も高額で装置メンテナンスにも困難を要する。しかも得られる水素ガスもその純度は満足できないなど、水素ガスの精製効率の面からも改善が望まれ、十分な普及は見られていない。 However, in the process using this PSA, the reforming reaction is an equilibrium reaction and is heated at a high temperature of about 800 ° C. The equipment itself is complicated and large, the number of processing steps and the number of equipment are increased, and the equipment cost is high. Maintenance is also difficult. Moreover, the purity of the hydrogen gas obtained is not satisfactory, and improvements are desired in terms of the purification efficiency of hydrogen gas.
こうした問題を改善するものとして、近年、図10に示すように、脱硫器aの下流で水蒸気による原料ガスの改質を行った後、水素分離膜によるメンブレンリアクターfで高純度水素ガスを得る方法が試みられている。このシステムは、各々触媒を用いまた非平衡反応であることから、改質温度も例えば550℃程度の低い温度にできる利点がある。例えば天然ガスを原料ガスに用いる場合は、CH4+2H2O→4H2+Co2の反応によって水素とオフガス(炭酸ガス)に分離し取り出すものである。 In order to improve such a problem, as shown in FIG. 10, in recent years, after reforming the raw material gas with water vapor downstream of the desulfurizer a, a method of obtaining high purity hydrogen gas with the membrane reactor f using a hydrogen separation membrane. Has been tried. Since this system uses a catalyst and is a non-equilibrium reaction, there is an advantage that the reforming temperature can be lowered to about 550 ° C., for example. For example, when natural gas is used as the raw material gas, it is separated and extracted into hydrogen and off-gas (carbon dioxide gas) by the reaction of CH 4 + 2H 2 O → 4H 2 + Co 2 .
従って、導入される原料ガスと水蒸気とから水素を2つの工程で精製分離でき、オフガスは取り出されて燃料ガス用に再利用できる利点がある他、その温度を活用することが可能である。またこのプロセスでは、メンブレンリアクターfを併用するとともに、処理温度も比較的低温での処理が可能なことから、従来型のプロセス装置に比して大幅に小型化、簡易化でき、家庭用、スタンド用などのオンサイトの装置として利用できる利点があり、燃料電池用の高純度水素発生装置としての利用も期待されている。 Accordingly, hydrogen can be purified and separated from the introduced source gas and water vapor in two steps, and the off-gas can be taken out and reused for fuel gas, and its temperature can be utilized. In this process, the membrane reactor f is used in combination and the processing temperature can be processed at a relatively low temperature. Therefore, the process can be greatly reduced in size and simplified as compared with a conventional process apparatus. There is an advantage that it can be used as an on-site device such as a fuel cell, and the use as a high-purity hydrogen generator for fuel cells is also expected.
このメンブレンリアチターfに用いる水素分離エレメントは、水素ガスを選択的に透過する金属として知られているPd又はその合金からなる薄膜状の水素透過膜を原料ガス側に向け配置し、多孔質の支持体(多孔性支持体)で支持するように構成したもので、水素透過膜で分離された水素ガスは、支持体を通り外部に取り出されるものである。したがって、前記支持体は水素透過膜にかかる供給ガスの圧力を支持して該膜の変形を防ぐとともに、分離後の水素ガスを良好に流下させるための流路部材として用いられている。 The hydrogen separation element used in the membrane rear titer f is a porous hydrogen permeable membrane made of Pd or an alloy thereof known as a metal that selectively permeates hydrogen gas, facing the raw material gas side. It is configured to be supported by a support (porous support), and the hydrogen gas separated by the hydrogen permeable membrane is taken out through the support. Therefore, the support is used as a flow path member for supporting the pressure of the supply gas applied to the hydrogen permeable membrane to prevent deformation of the membrane and for allowing the hydrogen gas after separation to flow down satisfactorily.
このような水素分離用膜部材について、多孔性支持体の表面に該支持体と固溶体を形成しない金属の薄膜を形成し、その膜上にPd合金による薄膜を設けることが提案されている(例えば特許文献1)。この薄膜の形成方法としては、めっき法や化学蒸着によるものとし、さらに前記中間層となる金属薄膜によって、水素分離膜への拡散による性能低下を防止するものとしている。また表面平坦度を有するシート状基材上にPd等の水素のみを選択的に透過するシート状の水素透過性膜を配置した複合体も提案されている(例えば特許文献2)。このものは水素透過膜を通気用の孔又は溝を持つベースプレートに金属多孔板を挟んで重ね、さらに枠状の金属板を当ててその上から溶接でシールしたことを示している。 For such a hydrogen separation membrane member, it has been proposed to form a metal thin film that does not form a solid solution with the support on the surface of the porous support, and to provide a thin film of Pd alloy on the film (for example, Patent Document 1). The thin film is formed by a plating method or chemical vapor deposition, and the metal thin film serving as the intermediate layer is used to prevent performance degradation due to diffusion into the hydrogen separation membrane. There has also been proposed a composite in which a sheet-like hydrogen permeable membrane that selectively permeates only hydrogen such as Pd is disposed on a sheet-like substrate having surface flatness (for example, Patent Document 2). This shows that the hydrogen permeable membrane is overlapped with a metal porous plate sandwiched between a base plate having vent holes or grooves for ventilation, and a frame-like metal plate is applied and sealed from above by welding.
さらには、レーザー法またはエッチングにより孔あけ加工した金属多孔質支持体の表面に、Pdを含有する薄膜を重ね合わせ、金属多孔質支持体とPdを含有する薄膜との問に薄層のバリア層を介在させた水素ガス分離膜が提案されている(例えば特許文献3)。さらに同文献はPd薄膜は前記孔あき多孔質支持体の間に挟んで構成されること、ガスもれを防止するために端部外周を溶接(ろう付け)すること、またその形状は平板状の他、円筒型にもできることなどを説明している。 Furthermore, a thin layer containing Pd is superimposed on the surface of a metal porous support that has been perforated by a laser method or etching, so that a thin barrier layer is used for the question of the metal porous support and the thin film containing Pd. There has been proposed a hydrogen gas separation membrane with intervening metal (for example, Patent Document 3). Furthermore, the same document states that the Pd thin film is sandwiched between the porous porous supports, the outer periphery of the end is welded (brazed) to prevent gas leakage, and the shape is flat. In addition, it explains what can be made cylindrical.
このように、前記各特許文献の発明はいずれも水素ガスを選択的に透過する水素透過膜を多孔性支持体で支持する水素分離膜部材を開示しているが、例えば特許文献1では該水素透過膜はメッキ法や蒸着法等の方法で形成するものである為、薄膜特性の均一性及び寿命の面から問題がある。すなわち、この方法で得られる薄膜は支持体の表面状態の影響を受けてメッキ厚さが変化したり、メッキ形成された組織内ではピンホールなどの欠陥が発生しやすい等の問題がある。さらにこれを使用する際にも、例えば使用の為の加熱や停止に伴う降温等の温度変化によって、薄膜の分離膜が膨張したり収縮する等の形状変化によって金属疲労破断するなどの点が懸念されており、疲労によるクラック発生や支持体との剥離によるピンホールの形成が大きな問題になっている。 As described above, all of the inventions of the above patent documents disclose hydrogen separation membrane members that support a hydrogen permeable membrane that selectively permeates hydrogen gas with a porous support. Since the permeable film is formed by a method such as a plating method or a vapor deposition method, there is a problem in terms of uniformity of thin film characteristics and life. That is, the thin film obtained by this method has problems such that the plating thickness changes due to the influence of the surface state of the support, and defects such as pinholes are likely to occur in the plated structure. Furthermore, when using this, there is a concern that metal fatigue fracture may occur due to a shape change such as expansion or contraction of the thin film separation membrane due to a temperature change such as heating for use or a temperature drop due to stopping. Therefore, the generation of cracks due to fatigue and the formation of pinholes due to peeling from the support have become major problems.
さらにこの方法による分離膜は、支持体等に直接又は間接的に密着したものである為、これを例えば廃棄する場合に高価なPd合金膜だけを分離回収してリサイクルすることが困難であり、省資源、環境面でも改善が望まれている。 Furthermore, since the separation membrane by this method is in direct or indirect contact with the support or the like, it is difficult to separate and recover only the expensive Pd alloy membrane when it is discarded, for example, Improvements are also desired in terms of resource conservation and the environment.
また特許文献2の発明では、前記Pd合金の薄膜材料としてメッキ法や蒸着法によるものの他、例えば素材金属を所定厚さに冷問圧延して製膜したものも開示されている。しかしその構造は、平板状のベースプレートと複数枚の補強板、及び前記水素透過性膜を重ね、さらに枠状金属板を用いてその上からレーザー溶接乃至シール溶接するものとしている。 In addition, the invention of Patent Document 2 discloses a thin film material of the Pd alloy that is formed by cold rolling a material metal to a predetermined thickness, for example, by a plating method or a vapor deposition method. However, the structure is such that a flat base plate, a plurality of reinforcing plates, and the hydrogen permeable membrane are stacked, and further, laser welding or seal welding is performed from above using a frame-shaped metal plate.
したがってこの方法による水素分離モジュールでは、特に高純度が求められる水素分離膜はこれと接する補強板や支持体と直接溶接されるものであり、しかもその溶接方向も枠状金属板の上から厚さ方向に行なうことから、過大電流で広範囲に加熱する必要があり、熱影響部が大きくなって、例えば水素分離膜はこれと接する支持体などと直接溶融したり拡散するなど異種合金相を形成することとなる。したがって、このように変化した熱影響部では本来の水素透過性能は得られ難く、結果的に有効透過面積を減少させたり、機械的特性や耐食性等の種々特性を低下させるなどの問題があり、使用に伴う寿命低下の原因になるものである。 Therefore, in the hydrogen separation module according to this method, the hydrogen separation membrane that is particularly required to have high purity is directly welded to the reinforcing plate and the support that are in contact with the membrane, and the welding direction also has a thickness from the top of the frame-shaped metal plate. It is necessary to heat in a wide range with an excessive current, and the heat-affected zone becomes large. For example, the hydrogen separation membrane forms a heterogeneous alloy phase such as directly melting or diffusing with a support in contact with this. It will be. Therefore, it is difficult to obtain the original hydrogen permeation performance in the heat-affected zone thus changed, resulting in problems such as reducing the effective permeation area and various characteristics such as mechanical characteristics and corrosion resistance. It will cause a decrease in the lifespan associated with use.
また特許文献3の発明では、さらにその形状について筒型のエレメントにすることも開示しているが、前記特許文献2の場合と同様に、Pd薄膜は直接支持体などと溶接されるものであり、前記熱影響に伴う水素透過膜の透過性能の低下や構造複雑による生産作業性の低下、さらに軽量化しにくいなどの問題がある。したがってこの特許文献においても、製造容易で安定した水素透過性能を持つ分離膜製品は得られていない。 Further, the invention of Patent Document 3 further discloses that the shape of the element is a cylindrical element. However, as in Patent Document 2, the Pd thin film is directly welded to a support or the like. However, there are problems such as a decrease in permeation performance of the hydrogen permeable membrane due to the thermal influence, a decrease in production workability due to structural complexity, and a difficulty in weight reduction. Therefore, even in this patent document, a separation membrane product that is easy to manufacture and has stable hydrogen permeation performance has not been obtained.
他方、このような水素透過膜をロウ付法によって直接機械装置に結合する場合がある。しかしこのとき、ロウ材には可溶性を高める為に添加される例えばZnなどの添加元素が、Pd合金に影響して性能低下をもたらすなど、この方法によっても問題の解決は困難である。 On the other hand, there is a case where such a hydrogen permeable membrane is directly coupled to a mechanical device by a brazing method. However, at this time, it is difficult to solve the problem also by this method, for example, an additive element such as Zn added to the brazing material to increase the solubility affects the Pd alloy and causes a decrease in performance.
そこで本発明は、取り付け容易な分離膜として、微薄厚さの水素透過膜の外縁部に、親和性のある金属を用いた縁部材を付設し前記課題を解決しうる水素分離用複合膜、及びこれを用いた水素分離用モジュールの提供を課題としている。 Therefore, the present invention provides a hydrogen separation composite membrane that can solve the above-mentioned problems by attaching an edge member using an affinity metal to the outer edge of a thin hydrogen permeable membrane as an easy-to-attach separation membrane, and An object is to provide a hydrogen separation module using this.
すなわち本件請求項1に係る発明は、混合ガスから水素ガスを選択的に透過する金属からなる水素透過膜の外縁の少なくとも一辺に、前記水素透過膜の金属と親和性のある金属を用いた薄膜シート状の縁部材を、前記水素透過膜に透過面を残しかつ前記外縁からはみ出して重ね合わせ、その重なり部をリークを生ずることなく結合することによって、前記水素透過膜の外縁に、該外縁を超えて外方に延びる前記縁部材のはみ出しによるツバを一体に設けたことを特徴とする水素分離用複合膜である。 That is, the invention according to claim 1 is a thin film using a metal having affinity for the metal of the hydrogen permeable film on at least one side of the outer edge of the hydrogen permeable film made of a metal that selectively transmits hydrogen gas from a mixed gas. A sheet-like edge member is left on the hydrogen permeable membrane while leaving a permeation surface, and is overlapped and protrudes from the outer edge, and the overlapping portion is joined without causing leakage, whereby the outer edge is attached to the outer edge of the hydrogen permeable membrane. It is a composite membrane for hydrogen separation characterized in that a flange by protruding the edge member extending outward is integrally provided.
請求項2に係る発明は、前記縁部材が、前記水素透過膜の外縁よりも内側に内方縁を有する内孔と、その外方縁を前記水素透過膜の外縁より外側に設けた額縁状に中抜きされてなり、かつ該縁部材と水素透過膜の外縁との間の重なり部をリークを生ずることなく結合することによって、前記ツバを前記水素透過膜の外縁の全周に亘って形成したことを特徴としている。 The invention according to claim 2 is that the edge member has an inner hole having an inner edge inside the outer edge of the hydrogen permeable membrane, and a frame shape in which the outer edge is provided outside the outer edge of the hydrogen permeable membrane. The flange is formed over the entire circumference of the outer edge of the hydrogen permeable membrane by joining the overlapping portion between the edge member and the outer edge of the hydrogen permeable membrane without causing leakage. It is characterized by that.
請求項3に係る発明は、前記水素透過膜の前記金属が、Pd−Ag合金又はPd−Cu合金からなり、かつ厚さ30μm以下に冷間圧延された薄膜状をなすこと、請求項4に係る発明は、前記縁部材が、前記水素透過膜を構成する金属の構成元素のいずれかと同属関係の同属元素を含む金属の薄膜シート材により構成されたこと、請求項5に係る発明は、前記縁部材が、前記水素透過膜の前記外縁の部分の片面又はその両面を挟んで配置され、かつその重なり部に沿って連続的にシーム溶接されるものであること、請求項6に係る発明は、請求項1〜5のいずれかに記載の水素分離用複合膜と、少なくともそのいずれか一面側に配置されかつ原料ガス又は前記水素透過膜を透過した水素ガスが流通し得る多孔性部材を具え、かつこの多孔性部材は前記水素分離用複合膜の前記ツバを重置する保持部を有し、前記ツバと保持部との重なり部をリークを生ずることなく加熱結合してなる水素分離用モジュールを特徴としている。 According to a third aspect of the present invention, the metal of the hydrogen permeable membrane is made of a Pd—Ag alloy or a Pd—Cu alloy and is in the form of a thin film that is cold-rolled to a thickness of 30 μm or less. In the invention according to claim 5, the edge member is constituted by a metal thin film sheet material containing a congener element having the same generativity as any of the constituent elements of the metal constituting the hydrogen permeable membrane. The invention according to claim 6, wherein the edge member is disposed so as to sandwich one side or both sides of the outer edge portion of the hydrogen permeable membrane and continuously seam welded along the overlapping portion. A composite membrane for hydrogen separation according to any one of claims 1 to 5 and a porous member disposed on at least one side thereof and through which a raw material gas or a hydrogen gas that has permeated the hydrogen permeable membrane can flow. And this porous member Wherein the flange of the hydrogen separation composite membrane has a holding portion for heavy location, and the overlapped portion between the flange and the holding section features a hydrogen separation module formed by heating bonds without causing any leakage.
又請求項7に係る発明は、前記水素分離用複合膜は、その下面側を前記多孔性部材で支持するとともに、更に該複合膜の少なくとも前記ツバの上面側端部に止め具を配置して、該ツバと前記支持体の保持部及び止め具との重なり部を共付け溶接によって結合したことを特徴とする水素分離用モジュールである。 In the invention according to claim 7, the composite membrane for hydrogen separation is supported by the porous member on the lower surface side, and a stopper is disposed at least on the upper surface side end of the flange of the composite membrane. The hydrogen separation module is characterized in that an overlapping portion of the brim and the holding portion and the stopper of the support body are coupled by co-welding.
さらに請求項8に係る発明は、前記止め具がリング状をなし、筒状に形成された前記多孔性支持体と、該支持体の端部に外嵌した前記リング状の前記止め具との間で前記縁部材のツバを押圧する少なくとも一方の押圧面が、その軸方向に沿う角度(θ)でのテーパー付けによって、該ツバの押圧を圧密にしたこと、請求項9に係る発明は、前記多孔性支持体は筒状で前記水素透過膜を受ける基部と、その端部に配置され前記保持部をなす端金具でなり、前記基部と前記端金具とは溶接又は密嵌合によって一体化したこと、請求項10に係る発明は、前記多孔性部材が、前記水素透過膜と接する表面がセラミック溶射による仕上げ処理されたものであること、請求項11に係る発明は、前記水素分離用複合膜が、水素ガスの選択透過面積を増大するための軸方向に沿うヒダを、その全面に亘って形成したものであることをそれぞれ特徴とする。 Further, the invention according to claim 8 is characterized in that the stopper is formed in a ring shape, the porous support body formed in a cylindrical shape, and the ring-shaped stopper member fitted on an end portion of the support body. The invention according to claim 9, wherein at least one pressing surface that presses the flange of the edge member between them is tapered by an angle (θ) along the axial direction thereof, and the invention according to claim 9, The porous support is a cylindrical base that receives the hydrogen permeable membrane and an end fitting that is disposed at the end of the porous support and forms the holding portion. The base and the end fitting are integrated by welding or close fitting. The invention according to claim 10 is characterized in that the porous member has a surface in contact with the hydrogen permeable membrane subjected to a finish treatment by ceramic spraying, and the invention according to claim 11 provides the composite for hydrogen separation. Membrane increases hydrogen gas selective permeation area The folds along the axial direction of the order, respectively, characterized in that formed over the entire surface.
請求項1に係る発明においては、前記した構成を具えるため、水素分離用複合膜を、装置等、部材等に取り付け、例えば水素分離用モジュールを形成する場合にも、溶接等の結合を実質的に前記ツバで行なうことができ、水素透過膜自体の加熱による影響を減じて、水素透過性能の低下を抑制でき高品質で長寿命の装置をうることができる。 In the invention according to claim 1, in order to have the above-described configuration, the composite membrane for hydrogen separation is attached to a device or the like, for example, even when a hydrogen separation module is formed, for example, the connection such as welding is substantially performed. Therefore, it is possible to obtain a high-quality and long-life apparatus that can reduce the influence of heating of the hydrogen-permeable membrane itself and suppress the deterioration of the hydrogen-permeation performance.
また縁部材は、前記水素透過膜の金属と親和性のある金属による薄膜シート状体であって、またリークを生じることなく結合していることから、冶金学的に安定した強固な結合が可能となる。従って両者金属同士の結合を、溶接、拡散結合で行なう場合にも、その作業が容易となり加熱領域を低減でき、そのため組織的にも偏析、不純物の発生を抑え得るとともに、通常の薄膜材料と同様に取扱うことができ、プリーツ加工も容易に行うことができる。 In addition, the edge member is a thin-film sheet-like body made of a metal having an affinity for the metal of the hydrogen permeable membrane, and since it is bonded without causing leakage, metallurgically stable and strong bonding is possible. It becomes. Therefore, even when the two metals are bonded by welding or diffusion bonding, the work becomes easy and the heating area can be reduced, so that segregation and generation of impurities can be suppressed systematically, and the same as with a normal thin film material. Pleating can be easily performed.
また、請求項1の発明では前記縁部材は、取付けに必要な水素透過膜の外縁の少なくともその一辺に設けられた場合を含み、水素透過膜の面積の縁部材による減少を最小限に抑えることができ限られたスペースを有効に活用して取付けができることとなる。なお請求項2に係る発明のように、水素透過膜の全周に亘って縁部材を形成することにより、容易な取付けを可能とするとともに、水素透過膜の周囲の補強ともなり、水素透過膜への損傷を抑え、また保管、搬送等の取扱いを容易とし、汎用性を高める。 Further, in the invention of claim 1, the edge member includes a case where the edge member is provided on at least one side of the outer edge of the hydrogen permeable membrane necessary for attachment, and the reduction of the area of the hydrogen permeable membrane by the edge member is minimized. Therefore, the installation can be performed by effectively utilizing the limited space. In addition, as in the invention according to claim 2, by forming the edge member over the entire circumference of the hydrogen permeable membrane, it is possible to easily attach and also to reinforce the periphery of the hydrogen permeable membrane. In addition, it is easy to handle, store, transport, etc., and enhance versatility.
さらに、請求項6に係る発明は、請求項1〜5の水素分離用部材を使用するものであり、水素分離用複合膜を、その縁部材のツバを用いて多孔性支持体に加熱結合して一体化しており、しかも該加熱は水素透過膜への熱影響を減じて性能を安定化している。又請求項7に係る発明のように、止め具を用いることによりツバの気密な固定を容易とし、又止め具は水素分離用モジュールの取り扱う際の保護手段となる。 Furthermore, the invention according to claim 6 uses the hydrogen separation member according to claims 1 to 5, and the hydrogen separation composite membrane is heat-bonded to the porous support using the flange of the edge member. Moreover, the heating reduces the thermal influence on the hydrogen permeable membrane and stabilizes the performance. Further, as in the invention according to claim 7, by using a stopper, the collar can be easily hermetically fixed, and the stopper serves as a protective means when the hydrogen separation module is handled.
以下、図面とともに本発明の好ましい1つの形態を説明する。図1(A)は、本発明に係わる水素分離用複合膜1を例示する平面図、図1(B)はその端面図であり、図1(C)にその分解図を示す。なおこの水素分離用複合膜1はそれを単独で用い得る他、例えば図6、7に例示する水素分離用モジュール3を形成するのに用いられる。本形態では、水素分離用複合膜1は、図1(B)、(C)に示すように、例えば矩形の薄膜シート状の水素透過膜2と、この水素透過膜2の外縁の少なくとも一辺、本形態では外縁全周に亘って配され一体に結合された2枚の中抜き状の縁部材5、5とを具えている。 Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings. 1A is a plan view illustrating a composite membrane 1 for hydrogen separation according to the present invention, FIG. 1B is an end view thereof, and FIG. 1C is an exploded view thereof. The hydrogen separation composite membrane 1 can be used alone, or used to form the hydrogen separation module 3 illustrated in FIGS. 6 and 7, for example. In this embodiment, as shown in FIGS. 1B and 1C, the hydrogen separation composite membrane 1 includes, for example, a rectangular thin film sheet-like hydrogen permeable membrane 2 and at least one side of the outer edge of the hydrogen permeable membrane 2, In this embodiment, there are two hollow edge members 5 and 5 which are arranged over the entire outer edge and are integrally coupled.
前記水素透過膜2は、水素ガスを選択的に透過する金属の膜状体であって、水素のみを選択的に透過する原理は、例えば「機能材料」(2003年No.4,P76〜87)等に、Pd合金の場合を例にして、原料ガス中の水素分子がPd膜に接触すると、その瞬間に水素原子に解離してイオン化し、プロトンとなってPd膜中を通過し、裏面に到達した時点でエレクトロンと結合することで水素分子になるものと説明されている。 The hydrogen permeable membrane 2 is a metal film that selectively transmits hydrogen gas, and the principle of selectively transmitting only hydrogen is, for example, “functional material” (2003 No. 4, P76 to 87). ) Etc., for example, in the case of a Pd alloy, when hydrogen molecules in the source gas come into contact with the Pd film, at that moment, they dissociate into hydrogen atoms and ionize, and pass through the Pd film as protons. It is explained that when it reaches, it becomes a hydrogen molecule by combining with electrons.
こうした、水素の透過性能、耐久性、あるいは加工性などの特性を向上するものとして、例えばPd金属に加えて、例えば10質量%以上(好ましくは20%〜50%)のCu,Ag、Auのいずれか1種以上を含有するPd−Ag合金、Pd−Cu合金などのPd合金がある。さらにV、V−Ni系金属等を合金化しうるとともに、アモルファスをもちいることをできる。更に他の目的の為に微量の第三元素を併用して添加することもできる。この場合の第三元素としては、例えばPt,Rh,Ru,In,Fe,Ni,CoなどのVIII族元素や、Mo等のVIa族元素から選択されるいずれか1種以上で、その分量は好ましくは5質量%以下とする。なお前記Pd−Ag合金でAgを20〜45質量%含有するものでは水素透過性能がより向上し、またPd−Cu合金でCuを35〜45質量%含有する膜材料では水素透過性能とともに耐久性を高めることができる。望ましい「水素透過性能」とするために、予め金属組成の種類、分量、組成が調整され、しかも単体では膜形状が維持困難な厚さ30μm以下程度に薄膜化した膜状体が用いられる。ここで「水素透過性能」とは、水素ガスのみを選択し透過する性質をいい、例えば透過したガスの水素純度をマスフローメーターで測定することで確認される。本発明が係る水素ガスの純度は通常99.99%以上であることが望ましい。 In order to improve such characteristics as hydrogen permeation performance, durability, or workability, for example, in addition to Pd metal, for example, 10 mass% or more (preferably 20% to 50%) of Cu, Ag, or Au is used. There are Pd alloys such as Pd—Ag alloy and Pd—Cu alloy containing any one or more of them. Furthermore, V and V—Ni based metals can be alloyed and amorphous can be used. Further, for other purposes, a trace amount of a third element can be added in combination. As the third element in this case, for example, one or more selected from group VIII elements such as Pt, Rh, Ru, In, Fe, Ni and Co, and group VIa elements such as Mo, the amount of which is Preferably it is 5 mass% or less. The Pd—Ag alloy containing 20 to 45% by mass of Ag improves the hydrogen permeation performance, and the Pd—Cu alloy containing 35 to 45% by mass of Cu has durability along with the hydrogen permeation performance. Can be increased. In order to obtain desirable “hydrogen permeation performance”, the type, amount, and composition of the metal composition are adjusted in advance, and a film-like body having a thickness of about 30 μm or less, which is difficult to maintain the film shape by itself, is used. Here, “hydrogen permeation performance” refers to the property of selecting and permeating only hydrogen gas. For example, it is confirmed by measuring the hydrogen purity of the permeated gas with a mass flow meter. The purity of the hydrogen gas according to the present invention is usually desirably 99.99% or more.
水素を透過しうる水素透過性能はその膜厚さと関係し、可能な範囲内で薄くすることで透過時間の短縮を図ることができ、通常30μm以下の厚さのものが用いられる。すなわち、その厚さが30μmを越えるものではその膜内を水素プロトンが通過するのに長時間を要して水素透過効率が低下する。また薄膜化により高価なPd合金の使用量を減じうる。一方、その厚さが過度に薄い薄膜材料では、その取扱いが困難、破損などが生じやすく、また微視的な偏析、ピンホールなどの内部欠陥の影響を受け易くなって分離精度、寿命に影響することから、通常は2μm以上の厚さに設定される。より好ましくは5〜25μm程度の厚さとする。 The hydrogen permeation performance capable of permeating hydrogen is related to the film thickness, and the permeation time can be shortened by making it as thin as possible, and a thickness of 30 μm or less is usually used. That is, when the thickness exceeds 30 μm, it takes a long time for hydrogen protons to pass through the membrane, and the hydrogen permeation efficiency decreases. Further, the amount of expensive Pd alloy used can be reduced by thinning the film. On the other hand, thin film materials with excessively thin thickness are difficult to handle, easily damaged, and susceptible to microscopic segregation and internal defects such as pinholes, affecting separation accuracy and life. Therefore, the thickness is usually set to 2 μm or more. More preferably, the thickness is about 5 to 25 μm.
前記Pd合金は比較的加工性に富むことから例えば圧延により薄膜化した圧延膜が用いられる。圧延加工は例えば通常の室温環境で行なう冷間加工、予め所定温度に加温した状態で行なう温問加工が採用できるが、通常、冷間加工で行われる。こうした圧延加工によって内部欠陥を大幅に軽減乃至微細化でき、しかも靭性を向上することから長寿命化を図るとともに、種々の形態にも応用できる。また金属の溶解は、偏析、非金属介在物、種々化合物などの有害物を発生せずかつ不可避不純物を抑制するため、例えばコールドクルーシブルを用いた真空溶解、ダブルメルト法などの高純度溶解法が採用される。 Since the Pd alloy is relatively rich in workability, for example, a rolled film formed into a thin film by rolling is used. For example, a cold working performed in a normal room temperature environment or a warm working performed in a state preliminarily heated to a predetermined temperature can be employed as the rolling process, but the cold working is usually performed. By such rolling, internal defects can be greatly reduced or refined, and the toughness is improved, so that the service life can be extended and the present invention can be applied to various forms. In addition, metal dissolution does not generate segregation, non-metallic inclusions, various compounds, and other inevitable impurities, and high purity dissolution methods such as vacuum melting using a cold crucible, double melt method, etc. Adopted.
図2は、前記圧延膜の品質を確認するため(組織を観察するためにこのテストを行う)一例として、前記Pd−Ag合金(主組成としてPd:77%,Ag:23%)を圧延加工と熱処理を繰り返し行い厚さ20μmに冷間加工し、さらに800℃で熱処理された水素透過膜の断面を1000倍に拡大した顕微鏡組織写真である。圧延成形膜は、組織的に安定してピンホールなどの発生もなく、しかも弾性、靭性等の機械的特性を改善し、良好な水素透過性能を備えている。 FIG. 2 shows a rolling process of the Pd—Ag alloy (the main composition is Pd: 77%, Ag: 23%) as an example for confirming the quality of the rolled film (perform this test to observe the structure). Is a micrograph of the microstructure of a hydrogen-permeable membrane that has been subjected to heat treatment repeatedly and cold-worked to a thickness of 20 μm and further heat-treated at 800 ° C., magnified 1000 times. The roll-formed film is structurally stable and free of pinholes, improves mechanical properties such as elasticity and toughness, and has good hydrogen permeation performance.
水素透過膜2は前記のごとく例えば矩形状をなし、ゆえに水素分離用複合膜1も本例では矩形形状に形成される。 As described above, the hydrogen permeable membrane 2 has, for example, a rectangular shape. Therefore, the hydrogen separation composite membrane 1 is also formed in a rectangular shape in this example.
前記縁部材5は、水素透過膜2の外縁の少なくとも一辺s、本形態では全外縁2a〜2d、即ち全周辺に亘って配されている。そのため縁部材5は図1(B)に示すように、前記水素透過膜2の外縁2a〜2dに沿いかつ該外縁2a〜2dの全周形状よりも小さな内孔6が設けられ、ゆえに縁部材5は、内向きの内方縁5a〜5dを有する額縁状に中抜きされた薄肉シート体をなす。又縁部材5は、その外方縁5e〜5hを、前記外縁2a〜2dよりも外にはみ出す位置までのびる幅w5Bを有する。 The edge member 5 is arranged over at least one side s of the outer edge of the hydrogen permeable membrane 2, in this embodiment, all the outer edges 2 a to 2 d, that is, the entire periphery. Therefore, as shown in FIG. 1B, the edge member 5 is provided with an inner hole 6 along the outer edges 2a to 2d of the hydrogen permeable membrane 2 and smaller than the entire peripheral shape of the outer edges 2a to 2d. Reference numeral 5 denotes a thin sheet body that is hollowed out in a frame shape having inwardly facing inner edges 5a to 5d. The edge member 5 has a width w5B extending from the outer edges 5e to 5h to a position where the outer edges 5e to 5h protrude beyond the outer edges 2a to 2d.
ゆえに水素透過膜2の外縁2a〜2dに前記縁部材5の内方縁5a〜5dを平行に沿わせて、この縁部材5を水素透過膜2に重ね合わせて一体に結合する。本形態では水素透過膜2の上下両面に縁部材5を配置する。その結果、縁部材5の内方縁5a〜5dと水素透過膜2の前記外縁2a〜2dとの間で両者が重なる重なり部5Aをその全周で形成しする。又この重ね合わせにより水素透過膜2の外縁2a〜2dと縁部材5の外方縁5e〜5hとの間に、前記外縁2a〜2dの外方にはみ出し部からなるツバ5Bが全周に生成されている。なお、全周において、重なり部5Aの幅w5A、ツバ5Bの幅w5Bをともに同じくすることも、異ならせることもできる。なお重なり部5Aの幅w5Aは、通常2〜50mm、好ましくは3〜15mm、ツバ5Bの幅w5Bは通常3〜50m、好ましくは3〜15mmとし、重なり部5Aの幅w5Aと、ツバ5Bの幅w5Bの合計幅である額縁の短冊幅w5は4〜100mm程度、好ましくは5〜40mm程度とする。又厚さは本形態のように、水素透過膜2の両面に付ける場合にはその一枚の厚さを0.5〜20μm、好ましくは1〜15μm、片側にのみ配するときには1〜100μm、好ましくは2〜60μm程度であって、その厚さ(複数枚のとき合計厚さ)を前記水素透過膜2の厚さよりも1.1〜2.2倍程度として補強効果を高めるのがよい。このような設定により、前記水素透過膜2の有効透過面積の実質的な減少が抑制でき、またその外方には該水素透過膜2を隔離するツバ5Bが形成される。この縁部材5のツバ5Bは、前記水素透過膜2を水素分離装置等の装置など、その部材などに取り付けする際に水素透過膜2を強度的に保護する保護手段として、又溶接、ロウ付けなどによる加熱時に、加熱が直接水素透過膜2に影響することを防止する熱保護手段として、水素透過膜2を保護、補強して水素透過膜2の取扱い性を高める。 Therefore, the inner edges 5a to 5d of the edge member 5 are parallel to the outer edges 2a to 2d of the hydrogen permeable membrane 2, and the edge member 5 is overlapped with the hydrogen permeable membrane 2 and joined together. In this embodiment, the edge members 5 are arranged on both the upper and lower surfaces of the hydrogen permeable membrane 2. As a result, an overlapping portion 5A is formed over the entire circumference between the inner edges 5a to 5d of the edge member 5 and the outer edges 2a to 2d of the hydrogen permeable membrane 2. Further, by this superposition, a flange 5B consisting of a protruding portion is formed on the outer periphery of the outer edges 2a to 2d between the outer edges 2a to 2d of the hydrogen permeable membrane 2 and the outer edges 5e to 5h of the edge member 5. Has been. Note that the width w5A of the overlapping portion 5A and the width w5B of the flange 5B can be the same or different over the entire circumference. The width w5A of the overlapping portion 5A is usually 2 to 50 mm, preferably 3 to 15 mm, and the width w5B of the flange 5B is usually 3 to 50 m, preferably 3 to 15 mm. The width w5A of the overlapping portion 5A and the width of the flange 5B The strip width w5 of the frame, which is the total width of w5B, is about 4 to 100 mm, preferably about 5 to 40 mm. Also, as in the present embodiment, the thickness is 0.5 to 20 μm, preferably 1 to 15 μm when the film is attached to both surfaces of the hydrogen permeable membrane 2, and 1 to 100 μm when disposed only on one side, Preferably, it is about 2 to 60 μm, and the thickness (total thickness when there are a plurality of sheets) is about 1.1 to 2.2 times the thickness of the hydrogen permeable membrane 2 to enhance the reinforcing effect. By such setting, a substantial decrease in the effective permeation area of the hydrogen permeable membrane 2 can be suppressed, and a flange 5B for isolating the hydrogen permeable membrane 2 is formed on the outside thereof. The flange 5B of the edge member 5 is used as a protective means for protecting the hydrogen permeable membrane 2 in strength when the hydrogen permeable membrane 2 is attached to a member such as an apparatus such as a hydrogen separator, and is welded or brazed. As a thermal protection means for preventing the heating from directly affecting the hydrogen permeable membrane 2 during heating by, for example, the hydrogen permeable membrane 2 is protected and reinforced to enhance the handling of the hydrogen permeable membrane 2.
この重なり部5Aはリークを生じることなく結合される。ここで「リークを生じることなく」とは、水素透過膜2の縁部材5が取り付く各辺sにおいて連続して水素洩れなく確実に結合される連続した結合部7を形成することをいい、かつ隣合う辺sに交わる結合部7があるときには、隣合う各辺sに亘り連続してリークのないことをいう。なお前記結合部などのリーク有無の確認はより浸透性のHeが用いられ、そのレベルが1×10−10P am3/sec以下であるか否かで判定される。 The overlapping portion 5A is coupled without causing a leak. Here, “without leaking” refers to forming a continuous coupling portion 7 that is continuously and reliably coupled without hydrogen leakage at each side s to which the edge member 5 of the hydrogen permeable membrane 2 is attached, and When there is a connecting portion 7 that intersects the adjacent side s, it means that there is no leak continuously over the adjacent sides s. It should be noted that the presence or absence of leakage at the joint or the like is determined by whether more permeable He is used and the level is 1 × 10 −10 P am 3 / sec or less.
またこの結合方法としては、例えば拡散接合、圧接、溶接などの加熱結合法を用いうる。特にシーム溶接では結合部7の幅を減じ、熱影響部を狭くできるとともに、強固で均一かつ安定した結合状態を生産性よく連続的に得られる。またこの方法によれば例えば加熱部近傍の水素透過膜2、縁部材5が孔明き、貫通等の破損を減じかつ剥離するなどの損傷を低減できる。 As this bonding method, for example, a heat bonding method such as diffusion bonding, pressure welding, or welding can be used. In particular, in seam welding, the width of the joint portion 7 can be reduced to narrow the heat affected zone, and a strong, uniform and stable joint state can be continuously obtained with high productivity. Further, according to this method, for example, the hydrogen permeable membrane 2 and the edge member 5 in the vicinity of the heating portion are perforated, and damage such as penetration and reduction can be reduced.
ここで、水素透過膜2と安定してリークのない結合をするため、縁部材5は水素透過膜2と親和する金属を用いて形成される。ここで「親和する金属」とは、異種の金属同士ではあるが冶金学に安定、かつ炭化物、金属間化合物などの異相を創製することなく強固に加熱結合し得る金属をいう。その一例として、水素透過膜2を構成する構成元素のいずれかの元素、若しくはその元素と同属関係にある同属元素を含む金属又は合金で構成したもの、又はその両者が共に同じ結晶構造となる金属材料が選択できる。前者の、構成元素のいずれかの元素、若しくはその元素と同属関係にある同属元素を含む金属又は合金の場合は、その元素の分量が例えば5質量%以上のものを対象とする。 Here, the edge member 5 is formed using a metal that is compatible with the hydrogen permeable membrane 2 in order to stably bond with the hydrogen permeable membrane 2 without leaks. Here, the “affinity metal” refers to a metal that is dissimilar to other metals, but is stable in metallurgy, and can be strongly heat-bonded without creating a different phase such as a carbide or an intermetallic compound. As an example, one of the constituent elements constituting the hydrogen permeable membrane 2, or a metal or alloy containing the same group element having the same group relationship with the element, or a metal having both the same crystal structure Material can be selected. In the former case, in the case of a metal or an alloy containing any one of the constituent elements, or a congener element that has the same genera as a related element, the amount of the element is, for example, 5% by mass or more.
又縁部材5としては、前記水素透過膜2の金属がPd合金の場合、これら金属(合金)を構成するPd、Ag,Cu等のいずれか金属元素からなるもの、またはこれら金属元素と冶金学的に安定してかつ強い親和力で結合できる、例えばCuやNi,Agなどの同属元素が選択される。これら金属は前記水素透過膜2の各構成元素と同様に面心立方構造で、原子間結合状態が近似し、また加熱結合による前記したような異相欠陥の発生もなく、性能や品質低下が防止できるとともに確実な結合状態を得ることができる。さらに対象ガススが水素であることから水素脆性を生じない例えばJISH2123に示すような酸素0.001%以下の無酸素銅材を用いることも好ましい。またAgは展延性にすぐれ、ヒダを絞り成形する場合に好ましい。なお縁部材5については、前記水素透過膜との熱膨張率が近似するものを選択することで、両者金属間に熱歪が生じないようにすることが好ましく、必要に応じて前記選択されたCuやNi、Agに各々他の元素を加えた合金材料も利用できる。 As the edge member 5, when the metal of the hydrogen permeable membrane 2 is a Pd alloy, the edge member 5 is made of any metal element such as Pd, Ag, or Cu constituting the metal (alloy), or these metal elements and metallurgy For example, a congener element such as Cu, Ni, or Ag that can be bonded with a stable and strong affinity is selected. These metals have a face-centered cubic structure similar to the constituent elements of the hydrogen permeable membrane 2, and the interatomic bonding state approximates, and the occurrence of heterogeneous defects as described above due to heat bonding does not occur, preventing performance and quality deterioration. In addition, it is possible to obtain a reliable coupling state. Furthermore, since the target gas is hydrogen, it is also preferable to use an oxygen-free copper material having oxygen of 0.001% or less as shown in, for example, JISH2123, which does not cause hydrogen embrittlement. Ag is excellent in spreadability and is preferable when the crease is drawn. As for the edge member 5, it is preferable that the thermal expansion coefficient between the hydrogen permeable membrane and the hydrogen permeable membrane be selected so that thermal distortion does not occur between the two metals. Alloy materials obtained by adding other elements to Cu, Ni, and Ag can also be used.
又縁部材5は、図1のように、水素透過膜2の全辺sを囲曉するようにその外縁2a〜2d全体に亙って設ける他、例えば図4(A)に示すように、水素透過膜2の外縁の向き合う2つの外縁2a、2bの2辺sなど、取付け状態に応じて3つの辺sに形成するなど、種々形態で実施できる。このような直線帯状の縁部材5を図4(B)に示すように、他の隣合う辺sに連なる場合においては、予め縁部材5をその形状に切り抜いておくこともできる。なお直線帯状の縁部材5を用いるときにも、各コーナ部で結合部7を連続させる。 Further, the edge member 5 is provided over the entire outer edges 2a to 2d so as to surround the entire side s of the hydrogen permeable membrane 2, as shown in FIG. 1, for example, as shown in FIG. For example, two sides s of the two outer edges 2a and 2b of the hydrogen permeable membrane 2 facing each other may be formed on three sides s depending on the attachment state. As shown in FIG. 4B, when the straight belt-like edge member 5 is connected to another adjacent side s, the edge member 5 can be cut into the shape in advance. In addition, also when using the linear strip | belt-shaped edge member 5, the connection part 7 is made to continue in each corner part.
また、縁部材5は、図3(A)に示したように折曲げて前記水素透過膜2の前記外縁部分の両面を挟んで配置することも、図3(B)に示すように、水素透過膜2の片面にのみ配置することもできる。図3(A)の挟んだ構造(サンドイッチ構造)では、曲げ加工する場合の曲げ度合を軽減でき、層剥離やクラック等の発生を抑える。またこれらの場合において、水素透過膜2の片面と、縁部材5の片面とを揃えて面一な平坦面とでき、これにより平坦面を有する部材への取付けを容易とする。 Further, the edge member 5 may be bent as shown in FIG. 3A and disposed on both sides of the outer edge portion of the hydrogen permeable membrane 2 as shown in FIG. 3B. It can also be arranged only on one side of the permeable membrane 2. In the sandwiched structure in FIG. 3A (sandwich structure), the degree of bending in bending can be reduced, and the occurrence of delamination, cracks, and the like is suppressed. In these cases, one surface of the hydrogen permeable membrane 2 and one surface of the edge member 5 are aligned to form a flat surface, which facilitates attachment to a member having a flat surface.
図6(A)は、前記した水素分離用複合膜1を用いた水素分離モジュール3の一形態を示し、本形態では水素分離用モジュール3は断面円形かつ軸方向に伸びる筒状品として形成している。なお上半分を断面図で示す。水素分離用モジュール3は、水素分離用複合膜1を、本例では外から内に水素ガスが通る、その下流側で支持する多孔性支持体11を具えるとともに、この多孔性支持体11には、前記水素分離用複合膜1の前記縁部材5の少なくとも前記ツバ5Bを重置してリークを生じることなく固定する保持部15を有する。 FIG. 6A shows one form of the hydrogen separation module 3 using the above-described composite membrane 1 for hydrogen separation. In this embodiment, the hydrogen separation module 3 is formed as a cylindrical product having a circular cross section and extending in the axial direction. ing. The upper half is shown in cross section. The hydrogen separation module 3 includes a porous support 11 that supports the hydrogen separation composite membrane 1 on the downstream side in which hydrogen gas passes from the outside to the inside in this example, and the porous support 11 includes Has a holding portion 15 that fixes at least the flange 5B of the edge member 5 of the composite membrane 1 for hydrogen separation without causing leakage.
図6(A)では、前記多孔性支持体11は、多孔性かつ前記水素透過膜2を受ける基部14と、水素ガス取出し側の一端部に配され通孔18を有し前記保持部15を形成する一方の端金具16Aと、本形態では前記基部14の他端部を閉じるエンドキャップ状の端金具16Bとからなり、これらはインロー嵌合されかつ適宜溶接などの固定手段により一体化されている。端金具16A,16Bの外周面は本形態では水素分離用複合膜2を取付ける前記保持部15を構成する。 In FIG. 6A, the porous support 11 has a base 14 that is porous and receives the hydrogen permeable membrane 2, and a through hole 18 that is disposed at one end on the hydrogen gas extraction side. One end fitting 16A to be formed and an end cap-like end fitting 16B which closes the other end of the base portion 14 in this embodiment, which are fitted with a spigot and integrated by fixing means such as welding as appropriate. Yes. In this embodiment, the outer peripheral surfaces of the end fittings 16A and 16B constitute the holding portion 15 to which the hydrogen separation composite membrane 2 is attached.
なお前記端金具16Aは、前記基部14と同径の外周面を有する短筒部16Aaに、六角状の掛止部16Abを介してネジ部16Acを設け、かつ前記通孔18が開口している。また端金具16Bは、前記基部14と同径の前記外周面を有する短筒部16Baの内部を覆部16Bbにより閉じている。 The end fitting 16A is provided with a threaded portion 16Ac on a short cylindrical portion 16Aa having an outer peripheral surface having the same diameter as the base portion 14 via a hexagonal latching portion 16Ab, and the through hole 18 is opened. . Further, the end fitting 16B closes the inside of the short cylinder portion 16Ba having the outer peripheral surface having the same diameter as the base portion 14 by a cover portion 16Bb.
基部14は、本形態ではその全面に亘って多数の開口14aを設けた例えば孔開きの多孔板を筒状に形成した多孔性筒体であり、例えば厚さ0.1〜2mm程度の多孔板を用いる他、金網、エキスパンジョンメッシュ、粉末焼結体などからなるものなど、種々の多孔体を用いうる。 In the present embodiment, the base portion 14 is a porous cylindrical body in which a large number of openings 14a are provided over the entire surface, for example, a perforated porous plate formed into a cylindrical shape, for example, a porous plate having a thickness of about 0.1 to 2 mm. In addition to the above, various porous materials such as a wire mesh, an expansion mesh, a powder sintered body, and the like can be used.
またその表面上に配置される前記水素透過膜2との接触界面での原子拡散を防ぐ為、少なくとも前記水素透過膜2との接触領域にバリア層を形成しておくことも好ましい。このバリア層には、例えばTiNやセラミック、あるいは金属酸化物などが採用され、特にマグネシア安定化ジルコニア(OZMともいい、例えばZrO2−MgO(24%))からなるセラミックを被覆したものでは、被覆される前記多孔板などベース金属(例えばステンレス鋼など)との熱膨張係数が近似することから、その使用過程での加熱降温に伴う熱変化の程度の差が小さく、バリア層自体の割れや剥離などの問題が解消できる。なお成形される該バリア層の厚さとしては、例えば0.5〜100μm程度とする。厚さ0.5μm未満の薄膜ではその目的が達成できず、一方100μmを越える程厚くしたものでは、その製膜の処理コストの上昇、あるいは層剥離の危険性を高めることとなる。好ましくは5〜50μm、より好ましくは15〜45μmとする。 It is also preferable to form a barrier layer at least in the contact area with the hydrogen permeable film 2 in order to prevent atomic diffusion at the contact interface with the hydrogen permeable film 2 disposed on the surface. For this barrier layer, for example, TiN, ceramic, or metal oxide is adopted. In particular, in the case where a ceramic made of magnesia stabilized zirconia (also referred to as OZM, for example, ZrO 2 -MgO (24%)) is coated, Since the coefficient of thermal expansion is close to that of the base metal such as the perforated plate (for example, stainless steel), the difference in the degree of thermal change due to heating and cooling during the use process is small, and the barrier layer itself is cracked or peeled off. Can solve such problems. In addition, as thickness of this barrier layer shape | molded, it shall be about 0.5-100 micrometers, for example. The purpose cannot be achieved with a thin film having a thickness of less than 0.5 μm. On the other hand, a thin film with a thickness exceeding 100 μm increases the processing cost of the film or increases the risk of delamination. Preferably it is 5-50 micrometers, More preferably, it is 15-45 micrometers.
またこのバリア層の形成方法としては、例えば前記多孔体のベース上に前記セラミック粒子(例えば粒子径0.01〜20μm)を懸濁してゲル状化した懸濁液を塗布して焼成する方法、あるいは該セラミック粒子を溶射する方法などが比較的容易に採用できる。例えば後者の溶射法の一例として、前記ベースの金属多孔体を予備洗浄した後、減圧プラズマ溶射装置で超高温加熱してパウダースプレーする方法の他、該被膜がTiN被膜にあっては、例えば熱CVD法が採用できる。それら技術の種類、処理条件の選択は、被覆される支持体自体の材料、形状、寸法、形成膜厚さなどを考慮して任意に設定できる。 Moreover, as a method of forming this barrier layer, for example, a method in which the ceramic particles (for example, a particle diameter of 0.01 to 20 μm) are suspended on the base of the porous body and a gelled suspension is applied and fired, Alternatively, a method of spraying the ceramic particles can be employed relatively easily. For example, as an example of the latter thermal spraying method, in addition to a method of pre-cleaning the porous metal body of the base, followed by powder spraying by heating at a high temperature with a low pressure plasma spraying apparatus, the coating film is a TiN coating film, for example, A CVD method can be employed. Selection of the type of the technology and the processing conditions can be arbitrarily set in consideration of the material, shape, dimensions, formed film thickness, and the like of the support itself to be coated.
なおこのような微細粒子を溶射法で形成する場合、その外表面は微視的には微粒子が堆積したような微小凹凸が形成でき、その表面上に載置される水素透過膜との接触が局部的な点接触となることから、両者の接触界面には透過した水素ガスが流通する微小流路を形成することができる。したがって、従来のような無被覆の支持体を用いる場合に見られていた、例えば支持体の開口部以外の平滑部では透過膜と密着して、実質的にデッドスペースになって有効透過面積を減少させていた問題を解消できる。したがって水素ガスの透過効率を大きく高めることができる。また図6Aに示すように、前記多孔性支持部材5を前記基部14と端金具16との密嵌によって組立てされる場合は、該基部14を金属以外のセラミックなど非金属材料で構成することもできる。 When such fine particles are formed by thermal spraying, the outer surface can be microscopically formed with fine irregularities such as fine particles deposited, and contact with the hydrogen permeable film placed on the surface is not possible. Since this is a local point contact, a micro flow channel through which permeated hydrogen gas flows can be formed at the contact interface between the two. Therefore, when using an uncoated support as in the prior art, for example, in a smooth portion other than the opening of the support, it is in close contact with the permeable membrane, resulting in a substantially dead space and an effective transmission area. The problem that was reduced can be solved. Therefore, the hydrogen gas transmission efficiency can be greatly increased. Further, as shown in FIG. 6A, when the porous support member 5 is assembled by close fitting of the base portion 14 and the end fitting 16, the base portion 14 may be made of a non-metallic material such as ceramic other than metal. it can.
このような水素分離モジュール3は、多孔性支持体11の前記基部14に、水素分離用複合膜1、好ましくは水素透過膜2の部分を、前記端金具16の保持部15に縁部材5(ツバ5Bのみでもよい)を位置させてそれぞれ巻回し、その合わせ部を溶接して筒状にしている。また前記保持部15には、前記縁部材5を介して、広幅リング状の止め具21を外嵌し、この止め具21を、前記縁部材5のツバ5B、端金具16にとともに、共付け溶接によりリークを生じることなく結合できる。なお場合により止め具21を省略できる。なお共付け溶接に先立ち、前記止め具21の内面と、保持部15との間で生じがちな、水素透過膜2と縁部材15との厚さ変化による空隙Yを、適宜の共付け溶接Wなどの封止手段Sにより埋設することができる。又止め具21,保持部15の外径を、厚さ変動に応じて段差などを形成するのもよい。 Such a hydrogen separation module 3 includes the base 14 of the porous support 11, the hydrogen separation composite membrane 1, preferably the hydrogen permeable membrane 2, and the edge member 5 ( The collar 5B alone may be positioned) and wound, and the mating portions are welded into a cylindrical shape. Further, a wide ring-shaped stopper 21 is externally fitted to the holding portion 15 via the edge member 5, and the stopper 21 is attached together with the flange 5 </ b> B and the end fitting 16 of the edge member 5. Can be joined without causing leakage by welding. In some cases, the stopper 21 can be omitted. Prior to the co-welding, the gap Y due to the thickness change between the hydrogen permeable membrane 2 and the edge member 15, which tends to occur between the inner surface of the stopper 21 and the holding portion 15, is appropriately combined with the co-welding W. It can embed by sealing means S, such as. Further, the outer diameters of the stopper 21 and the holding portion 15 may be formed with steps or the like according to the thickness variation.
なお、水素分離用部材1は長さ方向には、例えば図6(A)に示す一点鎖線で示すように溶接ラインXで長さ方向にのびかつ向き合うツバ5B,5Bを結合した結合部26により結合させる。この場合、該水素透過膜2同士を直接重ね合わせて結合してもよい。このような前記水素分離用モジュール3は、例えば外径10〜200mm,長さ50〜1000mm程度の筒状品として示している。 The hydrogen separating member 1 is connected in the length direction by, for example, a coupling portion 26 that couples flanges 5B and 5B that extend in the length direction and face each other along the welding line X as shown by a one-dot chain line shown in FIG. Combine. In this case, the hydrogen permeable membranes 2 may be directly overlapped and bonded. The hydrogen separation module 3 is shown as a cylindrical product having an outer diameter of 10 to 200 mm and a length of about 50 to 1000 mm, for example.
このように、水素分離用モジュール3においては、水素分離用複合膜1は水素透過膜2から外方に隔てる縁部材5のツバ5Bによって、多孔性支持体11に、間接的に取り付けられ、かつその取り付け時の溶接熱は該縁部材5で隔離されることから、水素透過膜2の性能低下などを減じうる。こうした構成によって供給される原料ガスは、同図6(A)の矢印方向に示すように、前記水素透過膜3に外から流れて水素分離され、その水素ガスは前記多孔性支持体11の端金具16Aの前記通孔18から取り出され次工程に搬出されるが、供給圧力が大きい場合は、支持体14に押圧され、開口14aに沿って変形し破損の原因になる場合があることから、ガスの供給方向を逆向にすることもできる。 Thus, in the hydrogen separation module 3, the hydrogen separation composite membrane 1 is indirectly attached to the porous support 11 by the flange 5B of the edge member 5 that is separated outward from the hydrogen permeable membrane 2, and Since the welding heat at the time of attachment is isolated by the edge member 5, it is possible to reduce degradation of the performance of the hydrogen permeable membrane 2. As shown by the arrow direction in FIG. 6A, the raw material gas supplied by such a configuration flows from the outside to the hydrogen permeable membrane 3 to be separated into hydrogen, and the hydrogen gas is supplied to the end of the porous support 11. Although it is taken out from the through hole 18 of the metal fitting 16A and carried out to the next process, when the supply pressure is large, it is pressed by the support 14 and may be deformed along the opening 14a to cause damage. The gas supply direction can also be reversed.
なお他方の端金具16Bとしては、本形態では、前記エンドキャップとして一端を封止するものを例示したが、図7に示すように、他の水素分離用モジュール3のネジ口と接続するためのネジ穴を設けた端金具16B1とすることもでき、適宜個数を連結した大容量型の水素分離用メンブレンリフォーマーを構成することもできる。 In the present embodiment, the other end fitting 16B is exemplified by the end cap that seals one end. However, as shown in FIG. 7, the other end fitting 16B is connected to a screw port of another hydrogen separation module 3. An end fitting 16B1 provided with a screw hole can also be used, and a large-capacity hydrogen separation membrane reformer in which a suitable number of pieces are connected can also be configured.
他方、前記止め具21は、前記水素分離用複合膜1の結合を強固にし、また仮止め乃至表面保護用として用いられる。例えば水素分離用モジュール1が前記筒体の場合はこれに嵌合可能な径を持つ広幅リング状とする。なお止め具21は、図6(A)に示すように水素透過する場合のデッドスペースとなることから、好ましくは、前記縁部材5の幅w5と同等程度以下にする。これにより水素透過膜2自体の有効透過面積を減じることを抑制しうる。こうした面から、例えば巾1〜10mm,厚さ0.5〜2mm程度で、耐熱性、耐食性を有する例えばステンレス製のリングが止め具21として用いられる。 On the other hand, the stopper 21 strengthens the bond of the hydrogen separation composite membrane 1 and is used for temporary fixing or surface protection. For example, when the hydrogen separation module 1 is the cylindrical body, it is formed in a wide ring shape having a diameter that can be fitted to the cylindrical body. In addition, since the stopper 21 becomes a dead space in the case of hydrogen permeation as shown in FIG. 6A, it is preferably set to be equal to or less than the width w5 of the edge member 5. Thereby, it can suppress that the effective permeable area of hydrogen permeable membrane 2 itself is reduced. From such a surface, for example, a stainless steel ring having a width of about 1 to 10 mm and a thickness of about 0.5 to 2 mm and having heat resistance and corrosion resistance is used as the stopper 21.
また止め具21に関し、多孔性支持体11は、図6(B)に示すように、分離用モジュール1の軸方向内側への押し込みにより、前記縁部材5(前記ツバ5B、乃至水素透過膜2自体を含む)を、多孔性支持体11(端金具16を含む)の外周面に押圧して強固、気密に固定するために、軸方向内側に向かって径を増す向きのテーパー付けされた押圧面を、該多孔性支持体11の外周面と、前記止め具21の内周面との少なくとも一方、好ましくは双方に形成することができる。なおテーパ角θは好ましくは10〜40゜程度とする。 Further, as shown in FIG. 6 (B), the porous support 11 is connected to the edge member 5 (the flange 5B or the hydrogen permeable membrane 2) by pushing the separation module 1 inward in the axial direction. In order to press firmly on the outer peripheral surface of the porous support 11 (including the end fitting 16) and fix it firmly and airtightly, the taper is pressed so as to increase in diameter toward the inner side in the axial direction. The surface can be formed on at least one of the outer peripheral surface of the porous support 11 and the inner peripheral surface of the stopper 21, preferably both. The taper angle θ is preferably about 10 to 40 °.
また止め具21は、前記水素分離用複合膜1と、多孔性支持体11との結合強度が大であるときには省略でき、また水素分離用モジュール1が例えば平板状に形成されるものでは、例えばその形状に応じて枠状に成形されたフレーム枠にすることもできる。 Further, the stopper 21 can be omitted when the bonding strength between the hydrogen separation composite membrane 1 and the porous support 11 is high, and when the hydrogen separation module 1 is formed in a flat plate shape, for example, It can also be made into the frame shape shape | molded in frame shape according to the shape.
さらに水素分離用モジュール3として、例えば図8に示すように、図5(A)に示したヒダ付けした水素分離用複合膜1を環状に成形したものを用いることもできる。図5(A)、(B)は、水素分離用複合膜1をヒダ付け状に形成した場合を例示している。水素透過膜2は所定角度ピッチ(α)でヒダ付けされたるとともに、水素透過膜2の内面に沿って、メッシュ9を重ねている。これにより厚さの薄い水素透過膜2のヒダ形状を維持できる。しかも両者は結合されていない為、使用時での加熱や冷却操作に伴なう膨張乃至収縮する形状変化にも,追随し、熱疲労によるクラック、ピンホール発生などの問題が改善できる。又ヒダ付けすることにより、水素透過膜2の合計面積を増し水素の有効透過面積を増大する。又ヒダ状の水素透過膜2の端部には、前記縁部材5が配される。この縁部材5は、本形態では、水素透過膜2の外周面に接して湾曲し、リークなく結合されるとともに、水素透過膜1の一辺sからのはみ出し部は前記ツバ5Bを形成し、例えば部材Cへのビームによる隅溶接などに用いうる。 Further, as the hydrogen separation module 3, for example, as shown in FIG. 8, an annularly formed hydrogen separation composite membrane 1 shown in FIG. 5A and 5B illustrate a case where the hydrogen separation composite membrane 1 is formed in a pleated shape. The hydrogen permeable membrane 2 is creased at a predetermined angular pitch (α), and a mesh 9 is overlapped along the inner surface of the hydrogen permeable membrane 2. Thereby, the fold shape of the thin hydrogen permeable membrane 2 can be maintained. And since both are not couple | bonded, the shape change which expand | swells or shrinks | contracts accompanying the heating and cooling operation at the time of use can be followed, and problems, such as a crack by heat fatigue and pinhole generation | occurrence | production, can be improved. In addition, the total area of the hydrogen permeable membrane 2 is increased and the effective hydrogen permeable area is increased. The edge member 5 is disposed at the end of the fold-like hydrogen permeable membrane 2. In this embodiment, the edge member 5 is curved in contact with the outer peripheral surface of the hydrogen permeable membrane 2 and joined without leakage, and the protruding portion from one side s of the hydrogen permeable membrane 1 forms the flange 5B. It can be used for corner welding by beam to member C.
なお前記メッシュ9は、前記水素透過膜2より高い融点、例えば1800℃以上、好ましくは2000℃以上の高融点金属を用いた線材Wを製織したもので、例えば線径0.05〜0.6mm程度の細線を30〜100#程度に平織り乃至綾織した網材が用いられる。またそれ以外にも例えばメリヤス編み、エキスパンドメッシュなどを用いることもできる。 The mesh 9 is made by weaving a wire W using a refractory metal having a melting point higher than that of the hydrogen permeable membrane 2, for example, 1800 ° C. or more, preferably 2000 ° C. or more. A net material obtained by plain weaving or twill weaving of fine wires of about 30 to 100 # is used. In addition, for example, knitted knitted fabrics and expanded meshes can be used.
高融点金属には、例えばモリブデン,バナジュウム、ニオブ、タンタルなどの他、これらに他の第三元素を添加した前記融点を持つものが好適する。これら金属によって、水素透過膜2と接触する場合も拡散を防ぎ、かつ前記耐圧性と形状維持をもたらす。特に前記モリブデン線材による成形メッシュでは、融点が2600℃程度と非常に高く、融点の差も1000度以上大きいことから、両者の相互拡散を防止するとともに、その機械的特性も、例えば軟質状態でも250,000〜350,000N/mm2程度の高い弾性係数と、400〜600N/mm2程度の降伏強さを有しており、前記ヒダ付け成形する時にはスプリングバックが少なく容易に形付けできる利点もある。したがって、より細い線材を用い得るなど好ましい。 As the refractory metal, for example, molybdenum, vanadium, niobium, tantalum and the like, and those having the above-described melting point obtained by adding other third elements to these are suitable. These metals prevent diffusion even when in contact with the hydrogen permeable membrane 2, and provide the pressure resistance and shape maintenance. In particular, the molded mesh made of the molybdenum wire has a very high melting point of about 2600 ° C., and the difference between the melting points is 1000 ° C. or more, thereby preventing mutual diffusion of the two, and its mechanical properties are, for example, 250 even in the soft state. , a high modulus of elasticity of about 000~350,000N / mm 2, has a 400~600N / mm 2 approximately yield strength, another advantage of the spring-back can be reduced easily shaping when shaping the creasing is there. Therefore, it is preferable that a thinner wire can be used.
なお図8の形態においては、その内面とともに、外面にも前記メッシュ9,9を配置している。このメッシュ保護のヒダ付け水素分離用部材1の半径方向内側に、前記多孔性支持体11を配置するとともに、半径方向外側に、該水素分離用部材1の外方端から離れて、該水素分離用部材1を囲む多孔性外筒27を配置している。 In addition, in the form of FIG. 8, the meshes 9 and 9 are arranged on the outer surface as well as the inner surface. The porous support 11 is disposed on the radially inner side of the mesh-protecting pleated hydrogen separating member 1, and the hydrogen separating member 1 is separated from the outer end of the hydrogen separating member 1 on the radially outer side. A porous outer cylinder 27 surrounding the member 1 is arranged.
また前記水素分離用部材1と多孔性外筒27との間の隙間S1内に水素の分離性能を高める触媒粉末Gを充填している。触媒Gは、用いる原料ガスの種類や処理条件などによって任意に選定される。例えば原料ガスが炭化水素ではCH4+2H2O→4H2+CO2に、またメタノールでは、CH3OH+H2O→4H2+CO2に反応することから、例えばFe,Co,Ni,Ru,Rh,Ptなどの第皿族金属を含有するもの、Nioなどが選択され、通常は、例えば数百μmから数mm程度の粒径を有する。 In addition, a catalyst powder G that enhances hydrogen separation performance is filled in a gap S1 between the hydrogen separation member 1 and the porous outer cylinder 27. The catalyst G is arbitrarily selected depending on the type of raw material gas used, processing conditions, and the like. For example, since the raw material gas reacts with CH 4 + 2H 2 O → 4H 2 + CO 2 in the case of hydrocarbons and CH 3 OH + H 2 O → 4H 2 + CO 2 with methanol, for example, Fe, Co, Ni, Ru, Rh, Those containing a first group metal such as Pt, Nio, etc. are selected, and usually have a particle size of, for example, about several hundred μm to several mm.
また前記水素分離用複合膜1の内側と、前記多孔性支持体11との間で生じる隙間S2には、該隙間S2を保形するために、該水素分離用複合膜1の水素透過膜2の機能を損なうことのない素材を用いた粒子状の充填材を装填することもできる。図7はこのようにヒダ付けした分離用複合膜1を用いてなるモジュール3を部分断面図で示したものである。 Further, in the gap S2 formed between the inside of the hydrogen separation composite membrane 1 and the porous support 11, the hydrogen permeable membrane 2 of the hydrogen separation composite membrane 1 is formed in order to keep the gap S2. It is also possible to load a particulate filler using a material that does not impair the function. FIG. 7 is a partial cross-sectional view of the module 3 using the separation composite membrane 1 creased in this way.
なお水素分離用モジュール3は、前記筒状以外にも例えば、2枚の水素分離用複合膜1、1をその間に隙間を有して重ね合わせ、かつその周辺部の前記隙間に、原料ガスの注入用又は水素ガスの取出し用の通孔を備えた枠体を配置し、かつ密に閉じて一体に結合することにより、外側に精製水素ガスを取り出す平板状中空モジュールとして形成することもできる。この場合も、水素分離用部材1の周囲の縁部材のツバを用いて、前記枠体の内外面に溶接等によって取り付けすることから、水素透過膜2への直接的な熱影響を減じることができ、高品質で長寿命の製品を可能にする。したがって、小型かつ簡易型の高純度水素発生装置として、例えば燃料電池や半導体産業、あるいは光ファイバー製造などの広範分野において種々利用できるものである。 In addition to the cylindrical shape, for example, the hydrogen separation module 3 includes, for example, two hydrogen separation composite membranes 1 and 1 with a gap therebetween, and the raw material gas is placed in the gap around the periphery. It is also possible to form a flat hollow module for taking out purified hydrogen gas to the outside by disposing a frame body provided with through holes for injection or hydrogen gas extraction, and tightly closing and integrally bonding. Also in this case, since the flange of the edge member around the hydrogen separation member 1 is attached to the inner and outer surfaces of the frame body by welding or the like, the direct thermal influence on the hydrogen permeable membrane 2 can be reduced. High quality and long life products are possible. Accordingly, the present invention can be variously used as a small and simple high-purity hydrogen generator, for example, in a wide range of fields such as the fuel cell, semiconductor industry, and optical fiber manufacturing.
(実施例1)
《水素透過膜》:Pd−23質量%Ag合金を真空溶解して得たインゴットを原材料とし、これを圧延と熱処理を繰り返し行いながら厚さ15μmのシート状に薄膜化した。最終の圧延加工は圧延機により、圧下率15%で行い水素透過膜とした。ここで用いた水素透過膜は、幅100mm×長さ200mmの大きさを有する。このPd−Ag金属は真空溶解によって純度99.99%を有するものであった。
《縁部材》:厚さ30μm、幅15mmのCu製のシート材料でなり、その純度は99.8%のものを用いた。前記Cuは前記透過膜の構成元素Agと同属関係にある。
(Example 1)
<< Hydrogen permeable membrane >>: An ingot obtained by vacuum melting a Pd-23 mass% Ag alloy was used as a raw material, and this was thinned into a sheet having a thickness of 15 μm while being repeatedly rolled and heat-treated. The final rolling process was performed with a rolling mill at a reduction rate of 15% to obtain a hydrogen permeable membrane. The hydrogen permeable membrane used here has a size of width 100 mm × length 200 mm. This Pd—Ag metal had a purity of 99.99% by vacuum melting.
<< Edge member >>: A Cu sheet material having a thickness of 30 μm and a width of 15 mm, and having a purity of 99.8%. The Cu is in the same genera as the constituent element Ag of the permeable membrane.
そして、前記水素透過膜の長さ方向に沿う両端部の一面側に各々前記縁部材を重ね合わせ、その重なり部をシーム溶接して複合膜を形成した。なおシーム溶接は、溶接幅2mm、溶接電流40A,溶接速度0.6m/minの条件で行なったものであり、また該縁部材は、前記水素透過膜の端部の一部だけが重なり合うように位置合わせした。それによって、縁部材の外方には該水素透過膜が存在しない約10mm幅のツバを形成している。なお、この溶接部の結合強度を見る為に剥離試験を行なったが、両金属同士は強固に結合し剥離などは生じなかった。またその溶接状態も全体的に均一で、リークなどは見られなかった。 And the said edge member was overlap | superposed on the one surface side of the both ends along the length direction of the said hydrogen permeable film, respectively, and the overlap part was seam-welded and the composite film was formed. The seam welding was performed under the conditions of a welding width of 2 mm, a welding current of 40 A, and a welding speed of 0.6 m / min, and the edge member was such that only a part of the end of the hydrogen permeable membrane overlapped. Aligned. As a result, a flange having a width of about 10 mm where the hydrogen permeable membrane does not exist is formed outside the edge member. In addition, although the peeling test was done in order to see the joint strength of this weld part, both metals were firmly joined and peeling etc. did not arise. Moreover, the welding state was uniform as a whole and no leaks were observed.
つぎに、この複合膜を筒状にする為に、その短辺同時を重ね合わせて直径32mmになるように重ねて、その重ね部を前記と同様にシーム溶接して筒状の水素分離用複合膜を得た。この構成において、前記縁部材はその両端周長部に配置されている。 Next, in order to make this composite membrane into a cylindrical shape, the short sides are simultaneously overlapped so as to have a diameter of 32 mm, and the overlapped portion is seam-welded in the same manner as described above to form a cylindrical composite for hydrogen separation. A membrane was obtained. In this configuration, the edge member is disposed at the circumferential length at both ends.
一方、多孔性支持体として幅100mmでその全面にわたって直径1mmの開口を約1.5mm間隔で設けた厚さは0.9mmのステンレス鋼製パンチングプレートを外径32mmの筒体に成形し、その合わせ部を突き合せ溶接したものを用いた、そして、その表面にバリア層として厚さ25μmの前記OZM層をプラズマ溶射装置によって形成し、ほぼ一様に強固なセラミック層が形成された。 On the other hand, a stainless steel punching plate having a thickness of 100 mm and an opening having a diameter of 1 mm over the entire surface provided at intervals of about 1.5 mm as a porous support is formed into a cylindrical body having an outer diameter of 32 mm. The OZM layer having a thickness of 25 μm was formed as a barrier layer on the surface thereof by using a plasma spraying apparatus, and a firm ceramic layer was formed almost uniformly.
こうして得られた筒体の両端に、図6(A)に示すように予め作成したエンドキャップを嵌合して組合した多孔質支持体とし、この支持体上に前記複合膜の筒体を挿入するとともに、その両端部を各々絞りなが更に別製のリング状端金具を嵌め入れてその端面を共付け溶接によって、一体化したモジュールを得た。なおこの溶接は、前記縁部材のツバを介して行なったが、このツバは実質的に前記端金具の高さ程度のものであり、透過面積についての減少はほとんど見られなかった。 As shown in FIG. 6 (A), the end cap prepared in advance as shown in FIG. 6 (A) is fitted to both ends of the cylindrical body so as to form a porous support body, and the composite membrane cylinder body is inserted on the support body. At the same time, a module in which both end portions were respectively squeezed but a separate ring-shaped end fitting was fitted and the end surfaces thereof were co-welded to obtain an integrated module. Although this welding was performed through the flange of the edge member, this flange was substantially the same as the height of the end fitting, and the transmission area was hardly reduced.
《実施例2》
前記実施例1で得たのと同様の水素透過膜(幅100mm×長さ200mm、厚さ20μm)の外縁全体に沿って、全幅20mmでかつツバ幅が10mmになるように額縁状に中抜きされた厚さ30μmの無酸素銅(O:0.0005%以下)のシート材料でなる2枚の縁部材でサンドイッチし、その重ね合わせ部を実施例1と同様にシーム溶接して複合膜を製作した。
この結合部の厚さ方向の断面写真(100倍)と、その厚さ方向に対応して測定した線分析(蛍光X線分析法に基づく)の結果を図11(A)(B)に各々示している。この結果に見られるように、両者金属同士の境界部での拡散幅は非常に狭い領域に限られ、良好な結合状態が得られた。
Example 2
The same hydrogen permeation membrane as obtained in Example 1 (width 100 mm × length 200 mm, thickness 20 μm) is hollowed out in a frame shape so that the overall width is 20 mm and the flange width is 10 mm. Sandwiched between two edge members made of an oxygen-free copper (O: 0.0005% or less) sheet material having a thickness of 30 μm, and the overlapped portion is seam welded in the same manner as in Example 1 to form a composite film. Produced.
FIGS. 11 (A) and 11 (B) show the cross-sectional photograph (100 times) in the thickness direction of the joint and the results of line analysis (based on X-ray fluorescence analysis) measured corresponding to the thickness direction. Show. As can be seen from this result, the diffusion width at the boundary between the two metals was limited to a very narrow region, and a good bonding state was obtained.
こうして作製した複合膜を用いて実施例1と同様に作成したバリア層付きの多孔性支持体表面上に巻回してその突合わせ部を溶接するとともに、更にその両端部にリング状の保持金具を嵌め入れて、前記支持体と複合膜のツバおよび保持金具を一体にTIG溶接で共付け結合し、リークのない水素分離用モジュールを得た。この一体結合による水素透過膜への熱影響は前記ツバによって抑制でき、熱歪などのシワや変形は防止できた。 The composite membrane thus produced was wound on the surface of the porous support with a barrier layer produced in the same manner as in Example 1, and the butt portion was welded. Further, ring-shaped holding metal fittings were provided at both ends thereof. Then, the support, the flange of the composite membrane, and the holding metal fitting were integrally attached and joined together by TIG welding to obtain a hydrogen separation module without leakage. The effect of heat on the hydrogen permeable membrane due to this integral bonding can be suppressed by the collar, and wrinkles and deformation such as thermal strain can be prevented.
《実施例3》
また他の透過膜合金での結合性能を見る為に、水素透過膜としてPd−35%Cu合金及びV−Ni系合金を用い、一方、縁部材に前記と同様の無酸素銅のシート材料を用いてシーム溶接した場合の結合状態と拡散状態を見る線分析を各々行なったが、いずれもリークなく良好に結合していることが確認された。
Example 3
In order to see the bonding performance with other permeable membrane alloys, Pd-35% Cu alloy and V-Ni alloy are used as the hydrogen permeable membrane, while the edge member is made of the same oxygen-free copper sheet material as described above. Using line analysis to see the bonding state and the diffusion state when seam welding was used, it was confirmed that both were well bonded without leakage.
《実施例4》
実施例1で用いたのと同様の厚さ20μmのPd−23質量%Ag合金でなる、幅100mm×長さ500mmの水素透過膜の外縁部に、その外縁部全周にわたってオーバーラップして重なり合うように額縁状に中抜きされた、厚さ20μmの前記実施例2で用いたのと同じ無酸素銅でなる2枚の縁部材をサンドイッチ状に重ね合わせてその重なり部を前記と同様にシーム溶接して複合膜を形成した。なお、用いた縁部材は全幅15mmで、かつツバが幅5mmになるように寸法取りした額縁状のもので、結合状態は良好であった。
Example 4
The outer periphery of a hydrogen permeable membrane having a width of 100 mm and a length of 500 mm made of a Pd-23 mass% Ag alloy having a thickness of 20 μm similar to that used in Example 1 overlaps the entire periphery of the outer edge. The two edge members made of the same oxygen-free copper as used in Example 2 having a thickness of 20 μm, which are hollowed out in a frame shape as described above, are stacked in a sandwich shape, and the overlapping portion is seamed in the same manner as described above. The composite film was formed by welding. In addition, the used edge member was a frame-shaped thing dimensioned so that the width | variety might be set to 15 mm in width 15mm, and the joint state was favorable.
そしてこの複合膜の両面に、別途作成した線径0.2mmのモリブデン金属の細線でなる同程度の大きさにした保形メッシュ(#100)2枚を各々配置してサンドイッチし、この3枚の積層品をヒダ折り加工機に供給しながら、山高さ20mmかつピッチ6.5mmに波付けした成形積層膜を得た。 And on both sides of this composite film, two shape-keeping meshes (# 100) made of molybdenum metal thin wires with a wire diameter of 0.2 mm and having the same size are arranged and sandwiched. While the laminated product was supplied to a crease-folding machine, a molded laminated film corrugated at a peak height of 20 mm and a pitch of 6.5 mm was obtained.
この状態で、前記水素透過膜と保形メッシュとは非結合状態ではあるもののよく密着しており、しかもスプリングバックなどの戻りは少なく、ヒダ形状の付与は容易に行うことができた。またこの状態で、膜材料は全体的に弾性を持ち、水素透過膜だけでは得られなかったヒダ形状の付与が可能となり、しかも水素透過膜表面に前記メッシュの織目などが転写したり、前記シーム溶接部でのクラック発生等の問題は見られなかった。 In this state, the hydrogen permeable membrane and the shape retaining mesh were in close contact with each other, but were in close contact with each other, and there was little return of spring back and the like, and a pleated shape could be easily imparted. Further, in this state, the membrane material has elasticity as a whole, and it becomes possible to impart a pleat shape that cannot be obtained only by the hydrogen permeable membrane, and the mesh texture of the mesh is transferred to the surface of the hydrogen permeable membrane, There were no problems such as cracks in the seam weld.
そこでこのヒダ折りされた複合膜の先端ツバ同士を突き合わせ溶接してジャバラ状の筒体にし、これを別途作成した、外径32mm、長さ100mm,厚さ0.9mmの孔開き多孔板(パンチングプレート:SUS316ステンレス鋼製)でなる内装用筒状支持体に嵌め入れ、更にその外側にも同様の外装用筒状多孔体を同心に配置して、その両端に配置した端金具16と組合わせ、図7及び8に示すモジュールを製作した。 なお、この形態では、前記内・外装用の多孔体11,27と前記保形メッシュ9との間の隙間S1,S2内には改質促進用の触媒粉末を充填したものであって、前記端金具16と透過膜との結合は縁部材5のツバ5Bを介して溶接し、外界とリークしないよう遮断したものである。 Therefore, the tip flanges of the folded composite film are butted and welded to form a bellows-like cylindrical body, and this is a perforated perforated plate (punching) having an outer diameter of 32 mm, a length of 100 mm, and a thickness of 0.9 mm. Plate: made of SUS316 stainless steel) is fitted into an interior cylindrical support body, and a similar exterior cylindrical porous body is concentrically arranged on the outside, and combined with end fittings 16 disposed at both ends thereof. 7 and 8 were produced. In this embodiment, the gaps S1, S2 between the inner and outer porous bodies 11, 27 and the shape retaining mesh 9 are filled with catalyst powder for promoting reforming, The connection between the end fitting 16 and the permeable membrane is performed by welding through the flange 5B of the edge member 5 so as not to leak from the outside.
《試験1》水素透過・熱サイクル試験
そこで、前記実施例2で得られた水素透過モジュールの性能を評価する為に、各々所定のハウジング容器内に装着して全体を温度600℃に加熱するとともに、水素混合した原料ガスを差圧0.1MPaの条件で供給して水素透過を1Hr行った後、N2ガスに置換して冷却する処理を合計100回繰り返すことで、水素ガスの透過性能と温度の昇降に伴う亀裂発生の有無を調査した。この試験では、透過した水素ガスは純度99.99%以上で、しかも前記支持体の表面に付与した前記バリア層は、その表面上に微小凹凸が形成されたもので、水素透過膜との接触が実質的に点状の小面積で可能であることから、その界面には複雑な微細流路が形成でき、透過膜の全面を有効に活用した良好な水素ガスの排出が可能となった。また透過膜の亀裂やN2ガスのリークも全く見らなかった。
<< Test 1 >> Hydrogen Permeation / Thermal Cycle Test Therefore, in order to evaluate the performance of the hydrogen permeation module obtained in Example 2, each was mounted in a predetermined housing container and heated to a temperature of 600 ° C. The hydrogen gas permeation performance and temperature are repeated 100 times in total after the hydrogen mixed raw material gas is supplied under the condition of a differential pressure of 0.1 MPa and hydrogen permeation is performed for 1 Hr, and then replaced with N 2 gas and cooled. The presence or absence of cracks associated with the raising and lowering of the steel was investigated. In this test, the permeated hydrogen gas had a purity of 99.99% or more, and the barrier layer applied to the surface of the support had fine irregularities formed on the surface, and was in contact with the hydrogen permeable membrane. However, it is possible to form a complicated fine channel at the interface, and it is possible to discharge the hydrogen gas effectively using the entire surface of the permeable membrane. Further, neither cracks in the permeable membrane nor leakage of N2 gas was observed.
《試験2》拡散発生の確認試験
更に前記熱サイクル試験に伴う拡散有無を見る為に、該モジュールを分解して水素透過膜を含む複合膜を切除して厚さ方向における各金属元素のオージェ分析を行なった。その結果、透過膜はその下流側の支持体に施したバリア層によって有効に隔離でき、他の金属元素の侵入や縁部材との結合部及び水素脆化に伴う組織的欠陥はなかった。また、前記縁部材と水素透過膜との結合部についても、図11Aの断面写真に見られるように、大きな組織的異常は見られておらず、さらに図11Aの2本の横線内をマクロ的に定性分析した線分析の結果を対応して同図Bに示しているが、PdとCuのピークが明確で、境界幅も非常に狭く良好であった。
<< Test 2 >> Confirmation Test for Diffusion Occurrence Further, in order to see the presence or absence of diffusion in the thermal cycle test, Auger analysis of each metal element in the thickness direction by disassembling the module and cutting out the composite film including the hydrogen permeable film Was done. As a result, the permeable membrane could be effectively isolated by the barrier layer applied to the downstream support, and there were no systematic defects associated with intrusion of other metal elements, joints with edge members, and hydrogen embrittlement. In addition, as shown in the cross-sectional photograph of FIG. 11A, no significant systematic abnormality was observed at the joint between the edge member and the hydrogen permeable membrane, and the two horizontal lines in FIG. The line analysis results obtained by qualitative analysis are shown in FIG. 5B. The peaks of Pd and Cu are clear and the boundary width is very narrow and good.
《試験3》
次に、前記実施例4のモジュールについても、前記各試験と同様に水素透過・熱サイクル試験と、拡散等の組織的欠陥の確認試験を行なった。
この試験では、使用モジュールは透過膜をジャバラ状にして透過面積を高めたことから、水素透過量は11L/min.と大幅なアップを図ることができ、しかも透過膜の両面に配置した保形メッシュとして融点が2600℃程度の高融点を持つモリブデン金属を採用したことから、これと接する内・外装用の前記多孔体がステンレス製であるにもかかわらず、水素透過膜や縁部材との拡散が防止できた。
<< Test 3 >>
Next, the module of Example 4 was also subjected to a hydrogen permeation / thermal cycle test and a confirmation test for systematic defects such as diffusion, similar to the above tests.
In this test, the module used was made bellows to increase the permeation area, so that the hydrogen permeation amount was 11 L / min. Since molybdenum metal having a high melting point of about 2600 ° C. is used as a shape-retaining mesh arranged on both sides of the permeable membrane, the above-mentioned porous for internal / exterior contact with this is used. Despite being made of stainless steel, diffusion with the hydrogen permeable membrane and the edge member could be prevented.
1 水素分離用複合膜
2 水素透過膜
2a〜2d 外縁
3 水素分離用モジュール
5 縁部材
5A 重なり部
5B ツバ
5a〜5d 内方縁
5e〜5h 外方縁
7 結合部
9 メッシュ
11 多孔性支持体
14 基部
16、16A,16B 端金具
21 止め具
18 通孔
W 結合部
DESCRIPTION OF SYMBOLS 1 Hydrogen separation composite membrane 2 Hydrogen permeable membrane 2a-2d Outer edge 3 Hydrogen separation module 5 Edge member 5A Overlapping part 5B Overhead 5a-5d Inner edge 5e-5h Outer edge 7 Joint part 9 Mesh 11 Porous support body 14 Base 16, 16A, 16B End fitting 21 Stopper 18 Through hole W Joint
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006346308A JP2008155118A (en) | 2006-12-22 | 2006-12-22 | Composite membrane for separating hydrogen and module for separating hydrogen using this hydrogen permeable membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006346308A JP2008155118A (en) | 2006-12-22 | 2006-12-22 | Composite membrane for separating hydrogen and module for separating hydrogen using this hydrogen permeable membrane |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008155118A true JP2008155118A (en) | 2008-07-10 |
Family
ID=39656621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006346308A Pending JP2008155118A (en) | 2006-12-22 | 2006-12-22 | Composite membrane for separating hydrogen and module for separating hydrogen using this hydrogen permeable membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008155118A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101038527B1 (en) * | 2010-10-20 | 2011-06-02 | (주)일진에너지 | Method and apparatus for seperating hydrogen gas from monosilane gas using membrane member |
JP2016043295A (en) * | 2014-08-21 | 2016-04-04 | 日本碍子株式会社 | Ceramic filter manufacturing method |
JP2016043294A (en) * | 2014-08-21 | 2016-04-04 | 日本碍子株式会社 | Ceramic filter, and manufacturing method therefor |
JP2016068084A (en) * | 2014-09-30 | 2016-05-09 | 三菱化学株式会社 | Hydrogen separator and hydrogen separation method |
EP3228380A1 (en) | 2016-04-06 | 2017-10-11 | Horiba Stec, Co., Ltd. | Hydrogen purification device and hydrogen purification system using hydrogen purification device |
JP2019025416A (en) * | 2017-07-31 | 2019-02-21 | 日本精線株式会社 | Hydrogen separation membrane module and manufacturing method of the same |
JP2019084473A (en) * | 2017-11-02 | 2019-06-06 | 日本精線株式会社 | Hydrogen separation membrane module and hydrogen generation device |
-
2006
- 2006-12-22 JP JP2006346308A patent/JP2008155118A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101038527B1 (en) * | 2010-10-20 | 2011-06-02 | (주)일진에너지 | Method and apparatus for seperating hydrogen gas from monosilane gas using membrane member |
JP2016043295A (en) * | 2014-08-21 | 2016-04-04 | 日本碍子株式会社 | Ceramic filter manufacturing method |
JP2016043294A (en) * | 2014-08-21 | 2016-04-04 | 日本碍子株式会社 | Ceramic filter, and manufacturing method therefor |
JP2016068084A (en) * | 2014-09-30 | 2016-05-09 | 三菱化学株式会社 | Hydrogen separator and hydrogen separation method |
JP2020006372A (en) * | 2014-09-30 | 2020-01-16 | 三菱ケミカル株式会社 | Hydrogen separator and hydrogen separation method |
EP3228380A1 (en) | 2016-04-06 | 2017-10-11 | Horiba Stec, Co., Ltd. | Hydrogen purification device and hydrogen purification system using hydrogen purification device |
US10105641B2 (en) | 2016-04-06 | 2018-10-23 | Horiba Stec, Co., Ltd. | Hydrogen purification device and hydrogen purification system using hydrogen purification device |
JP2019025416A (en) * | 2017-07-31 | 2019-02-21 | 日本精線株式会社 | Hydrogen separation membrane module and manufacturing method of the same |
JP2019084473A (en) * | 2017-11-02 | 2019-06-06 | 日本精線株式会社 | Hydrogen separation membrane module and hydrogen generation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5395322B2 (en) | Hydrogen separation element | |
JP2008155118A (en) | Composite membrane for separating hydrogen and module for separating hydrogen using this hydrogen permeable membrane | |
US7022165B2 (en) | Tubular hydrogen permeable metal foil membrane and method of fabrication | |
US8110022B2 (en) | Hydrogen purifier module and method for forming the same | |
JP2002529220A5 (en) | ||
JP4944656B2 (en) | Membrane support for hydrogen separation and module for hydrogen separation using this support | |
RU2591867C2 (en) | Article with flange, method of making said article and method of making product containing element with flange | |
US7353982B2 (en) | Diffusion bonding for metallic membrane joining with metallic module | |
US8753433B2 (en) | Membrane tube and reactor having a membrane tube | |
US8226750B2 (en) | Hydrogen purifier module with membrane support | |
JP2007007565A (en) | Reinforcing structure for hydrogen-permeable film, and its manufacturing method | |
JP2006272420A (en) | Diffusion welding method for metallic foil | |
JP2018538140A (en) | Membrane device having a bonding layer | |
JPH11276867A (en) | Joining of hydrogen-permeable membrane | |
JP2008080234A (en) | Hydrogen permeable membrane of composite multi-layer structure and its manufacturing method | |
JP2007090295A (en) | Hydrogen separation member and its manufacturing method | |
JP4045489B2 (en) | Hydrogen permeable membrane unit and manufacturing method thereof | |
JP2020500703A (en) | Membrane tube | |
JP4792598B2 (en) | Hydrogen permeation module and method of use thereof | |
Ryi et al. | Low temperature diffusion bonding of Pd-based composite membranes with metallic module for hydrogen separation | |
JP2000296316A (en) | Pressure-resistant hydrogen permeable membrane and its production | |
JP2007245123A (en) | Hydrogen permeable membrane of composite multi-layer structure and its manufacturing method | |
JP2008023496A (en) | Manufacturing method of hydrogen separation membrane cell | |
JP5243690B2 (en) | Hydrogen separation component | |
JP2007144404A (en) | Hydrogen separating membrane module, method for manufacturing the same and hydrogen manufacturing apparatus |