[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008149803A - Method and device for sensing tire failure, and tire for sensing failure inside tire - Google Patents

Method and device for sensing tire failure, and tire for sensing failure inside tire Download PDF

Info

Publication number
JP2008149803A
JP2008149803A JP2006337942A JP2006337942A JP2008149803A JP 2008149803 A JP2008149803 A JP 2008149803A JP 2006337942 A JP2006337942 A JP 2006337942A JP 2006337942 A JP2006337942 A JP 2006337942A JP 2008149803 A JP2008149803 A JP 2008149803A
Authority
JP
Japan
Prior art keywords
tire
magnetic field
waveform
failure detection
rubber magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006337942A
Other languages
Japanese (ja)
Inventor
Yasumichi Wakao
泰通 若尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2006337942A priority Critical patent/JP2008149803A/en
Publication of JP2008149803A publication Critical patent/JP2008149803A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Tires In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To accurately sense breakage inside a tire without influences on behaviors of the tire. <P>SOLUTION: A rubber magnet 11 is embedded inside a tire such as a belt end, a ply folded end and a bead filler part of a tire 20, and magnetic field measuring means 12 is arranged near the rubber magnet 11 outside the tire 20, so as to detect a waveform of an elapsed time of a magnetic field H from a rolling tire. A waveform difference value K between the detected magnetic field waveform and a pre-found magnetic field waveform when crack does not occur inside the tire is calculated, so as to sense whether the inside of the tire is broken or not based on the waveform difference value K. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、タイヤの故障を検知する方法とその装置に関するもので、特に、タイヤ内部に発生する亀裂に起因するタイヤ故障の検知に関する。   The present invention relates to a method and an apparatus for detecting a tire failure, and more particularly to detection of a tire failure caused by a crack generated inside the tire.

タイヤでは、カーカスプライやベルトを貼り付けてこれを骨格部材としているが、タイヤの高速回転時には、上記ベルトの端部に大きな応力が作用するため、ベルト層とその周囲のゴムとの間に亀裂が発生しベルト端部が破壊してしまう場合がある。このようなベルト端部の破壊はベルト層の幅方向両端部のせり上がりを引き起こし、その結果、操縦安定性能が大幅に低下するので、大きな事故につながる恐れがある。また、高速回転時には、ビードコア周りを折り返すカーカスプライとビードコアとに挟まれたビードフィラー部のゴムにも大きな剪断力が作用して亀裂が発生して破壊する場合がある。したがって、このようなタイヤ内部に発生する亀裂に起因する故障を速やかに検知する必要がある。
一方、タイヤが故障すると故障箇所の発熱が多くなり、故障箇所近傍の温度が重唱することから、温度センサを用いて走行中のタイヤの温度を計測し、この温度からタイヤの故障を検知する方法が提案されている。
図6は従来のタイヤ故障検知装置の一構成例を示す図で、タイヤの温度を計測する温度センサ31とこの温度センサ31の検出信号を、送信アンテナ33を介して、車体側に送信する送信部32とを備えた温度センサユニット30を、図7に示すように、空気入りタイヤ50のベルト層51の端部51a近傍周辺やカーカス層52の端部52a近傍周辺、更には、タイヤトレッド53のショルダー部54に埋設して、上記各部の温度を計測して車体側に設けられた車両装着ユニット40に送信するとともに、車両装着ユニット40では、受信部42に設けられた受信アンテナ41で受信した各部分の温度データと予め設定された警戒温度とを処理部43にて比較し、上記計測された温度が上記警戒温度を超えた場合には、警報部44を動作させて運転者に警報を発するようにしている(例えば、特許文献1参照)。
特開2005−67447号公報
In a tire, a carcass ply or a belt is attached and used as a skeleton member, but when the tire rotates at a high speed, a large stress acts on the end of the belt, so a crack is generated between the belt layer and the surrounding rubber. May occur and the belt end may be destroyed. Such destruction of the belt end portion causes the both ends of the belt layer in the width direction to rise, and as a result, the steering stability performance is greatly reduced, which may lead to a serious accident. Further, during high-speed rotation, a large shearing force may act on the rubber in the bead filler portion sandwiched between the carcass ply and the bead core that wraps around the bead core, causing cracks to be generated and breaking. Therefore, it is necessary to promptly detect a failure due to such a crack generated in the tire.
On the other hand, when a tire breaks down, the heat at the failure point increases, and the temperature near the failure point resonates, so a method of measuring the temperature of the running tire using a temperature sensor and detecting the tire failure from this temperature Has been proposed.
FIG. 6 is a diagram showing an example of a configuration of a conventional tire failure detection device. A temperature sensor 31 that measures the temperature of a tire and a transmission signal that transmits a detection signal of the temperature sensor 31 to the vehicle body side via a transmission antenna 33. As shown in FIG. 7, the temperature sensor unit 30 including the portion 32 includes a vicinity of the end 51 a of the belt layer 51 of the pneumatic tire 50, a vicinity of the end 52 a of the carcass layer 52, and a tire tread 53. In the vehicle mounting unit 40, the temperature of each part is measured and transmitted to the vehicle mounting unit 40 provided on the vehicle body side, and the vehicle mounting unit 40 receives the signal with the receiving antenna 41 provided in the receiving unit 42. The processing unit 43 compares the temperature data of each part and the preset warning temperature. When the measured temperature exceeds the warning temperature, the warning unit 44 is activated. Te so that alert the driver (for example, see Patent Document 1).
JP 2005-67447 A

しかしながら、従来の方法では、ベルト端部に温度センサユニット30のような、剛性が大きな異物を埋設しているので、これが新たな亀裂の核となってタイヤ故障を誘発する恐れがある。特に、上記温度センサユニット30をタイヤの転動時に大きな応力が作用するベルト端部に配置した場合には、かえってベルト端部が破壊される可能性が大きい。   However, in the conventional method, a foreign matter having high rigidity such as the temperature sensor unit 30 is embedded at the belt end portion, which may cause a tire failure as a core of a new crack. In particular, when the temperature sensor unit 30 is disposed at the belt end where a large stress acts when the tire rolls, the belt end is likely to be broken.

本発明は、従来の問題点に鑑みてなされたもので、タイヤの挙動に影響を与えることなく、ベルト端部などのタイヤ内部の破壊を精度よく検知することを目的とする。   The present invention has been made in view of the conventional problems, and an object of the present invention is to accurately detect destruction inside the tire such as a belt end without affecting the behavior of the tire.

本発明者は鋭意検討の結果、ベルト端部などタイヤの内部にゴム磁石を埋設すれば、タイヤの挙動に影響を与えることがないだけでなく、タイヤ内部の上記ゴム磁石が埋設された箇所が破壊したときには、同時に上記ゴム磁石も破壊されることから、上記ゴム磁石の発生する磁場を計測すれば、その磁場変化からタイヤ内部の破壊を検知することができることを見出し本発明に到ったものである。
すなわち、本願の請求項1に記載の発明は、タイヤの故障を検知する方法であって、タイヤ内部にゴム磁石を配置するとともに、上記タイヤに近接して磁場計測手段を配置して転動中のタイヤからの磁場を計測し、この計測された磁場の大きさもしくは磁場波形に基づいて、タイヤ内部の破壊を検知することを特徴とするものである。
請求項2に記載の発明は、請求項1に記載のタイヤ故障検知方法であって、上記ゴム磁石をタイヤのベルト端部、プライ端部、プライ折り返し端部、及び、ビードフィラー部のいずれか1箇所または複数箇所または全部の箇所に配置したものである。
As a result of intensive studies, the inventors have not only affected the behavior of the tire if the rubber magnet is embedded in the tire, such as the belt end, but also the location where the rubber magnet is embedded in the tire. Since the rubber magnet is destroyed at the same time when it is destroyed, it is found that if the magnetic field generated by the rubber magnet is measured, the destruction inside the tire can be detected from the change in the magnetic field. It is.
That is, the invention according to claim 1 of the present application is a method for detecting a failure of a tire, in which a rubber magnet is disposed inside the tire and a magnetic field measuring means is disposed in proximity to the tire during rolling. A magnetic field from the tire is measured, and destruction inside the tire is detected based on the magnitude or magnetic field waveform of the measured magnetic field.
Invention of Claim 2 is the tire failure detection method of Claim 1, Comprising: The said rubber magnet is any one of the belt edge part of a tire, a ply edge part, a ply folding | turning edge part, and a bead filler part. It is arranged at one place, plural places or all places.

また、請求項3に記載の発明は、タイヤの故障を検知するタイヤ故障検知装置であって、タイヤ内部に配置されたゴム磁石と、上記タイヤに近接して配置された磁場計測手段と、この磁場計測手段の出力に基づいて、上記タイヤ内部の破壊を検知する故障検知手段とを備えたことを特徴とするものである。
請求項4に記載の発明は、請求項3に記載のタイヤ故障検知装置において、上記ゴム磁石を、タイヤのベルト端部、プライ端部、プライ折り返し端部、及び、ビードフィラー部のいずれか1箇所または複数箇所または全部の箇所に配置したものである。
請求項5に記載の発明は、請求項3または請求項4に記載のタイヤ故障検知装置であって、上記故障検知手段を、予め求めておいたタイヤ内部に亀裂が発生していないときの磁場波形である標準磁場波形を記憶する記憶手段と、上記標準磁場波形と上記計測された磁場波形との差である波形差を演算する波形差演算手段と、上記波形差に基づいて、タイヤ内部が破壊しているかどうかを判定する判定手段とから構成したものである。
請求項6に記載の発明は、請求項3〜請求項5のいずれかに記載のタイヤ故障検知装置において、上記故障検知手段がタイヤ内部の破壊を検知した場合に警報を発する警報手段を更に設けたものである。
また、請求項7に記載の発明は、タイヤ内部に発生する亀裂に起因する故障が検知可能なタイヤであって、その内部にゴム磁石が配置されていることを特徴とするものである。
請求項8に記載の発明は、請求項7に記載のタイヤ内部故障検知用タイヤであって、上記ゴム磁石がタイヤのベルト端部、プライ端部、プライ折り返し端部、及び、ビードフィラー部のいずれか1箇所または複数箇所または全部の箇所に配置されていることを特徴とするものである。
The invention according to claim 3 is a tire failure detection device for detecting a failure of a tire, a rubber magnet disposed inside the tire, a magnetic field measuring means disposed in the vicinity of the tire, and this And a failure detection means for detecting destruction of the inside of the tire based on the output of the magnetic field measurement means.
According to a fourth aspect of the present invention, in the tire failure detection device according to the third aspect, the rubber magnet may be any one of a belt end portion, a ply end portion, a ply folded end portion, and a bead filler portion of the tire. It is arranged at a place, a plurality of places, or all places.
The invention according to claim 5 is the tire failure detection device according to claim 3 or claim 4, wherein the failure detection means is a magnetic field when no crack is generated inside the tire determined in advance. A storage means for storing a standard magnetic field waveform that is a waveform, a waveform difference calculating means for calculating a waveform difference that is a difference between the standard magnetic field waveform and the measured magnetic field waveform, and the inside of the tire based on the waveform difference, It is comprised from the determination means which determines whether it has destroyed.
According to a sixth aspect of the present invention, in the tire failure detection device according to any one of the third to fifth aspects, an alarm unit is further provided that issues an alarm when the failure detection unit detects a breakage inside the tire. It is a thing.
The invention according to claim 7 is a tire capable of detecting a failure caused by a crack generated inside the tire, and is characterized in that a rubber magnet is arranged inside the tire.
The invention according to claim 8 is the tire for detecting an internal failure of the tire according to claim 7, wherein the rubber magnet includes a belt end portion, a ply end portion, a ply folded end portion, and a bead filler portion of the tire. It is arranged at any one place, a plurality of places, or all places.

本発明によれば、タイヤトのベルト端部、プライ端部、プライ折り返し端部、及び、ビードフィラー部などの、大きな応力が作用した場合に破壊などの故障が懸念される箇所(タイヤ内部)にゴム磁石を配置するとともに、上記タイヤに近接して磁場計測手段を配置して転動中のタイヤからの磁場を計測し、この計測された磁場の大きさもしくは磁場波形に基づいて、上記タイヤ内部の破壊を検知するようにしたので、タイヤの挙動に影響を与えることなく、タイヤ内部の破壊を精度よく検知することができる。
このとき、タイヤ内部に亀裂が発生していないときの磁場波形である標準磁場波形を予め求めておき、この標準磁場波形と上記計測された磁場波形とを比較すれば、タイヤ内部が破壊しているかどうかを精度よく判定することができる。
また、タイヤ内部の破壊を検知した場合に警報を発する警報手段を設けるようにすれば、タイヤ内部の破壊が大きくならないうちにタイヤ交換するなどの対策ができるので、タイヤ故障による事故を未然に防ぐことができる。
According to the present invention, the belt end portion of the tire, the ply end portion, the ply turn-up end portion, and the bead filler portion, and the like (at the inside of the tire) where failure such as destruction is a concern when a large stress is applied. A rubber magnet is disposed, and a magnetic field measuring means is disposed in the vicinity of the tire to measure the magnetic field from the rolling tire. Based on the measured magnetic field magnitude or magnetic field waveform, the tire interior Since the destruction of the tire is detected, the destruction inside the tire can be accurately detected without affecting the behavior of the tire.
At this time, a standard magnetic field waveform that is a magnetic field waveform when no crack is generated inside the tire is obtained in advance, and if this standard magnetic field waveform is compared with the measured magnetic field waveform, the inside of the tire is destroyed. It can be accurately determined whether or not.
In addition, if an alarm means is provided to issue an alarm when the inside of the tire is detected, measures such as replacing the tire can be taken before the inside of the tire becomes large, preventing accidents due to tire failure. be able to.

以下、本発明の最良の形態について、図面に基づき説明する。
図1は、本最良の形態に係るタイヤ故障検知装置10の構成を示す図で、図2は本発明によるベルト端故障検知用タイヤ20の要部断面図である。各図において、11はベルト端故障検知用タイヤ(以下、タイヤという)20のトレッド21とカーカスプライ22との間に設けられたベルト23の端部23aに埋設されたゴム磁石、12は上記タイヤ20の外側で上記ベルト端部23aに近接して配置される、上記ゴム磁石11が埋設されたタイヤ20からの磁場を計測する磁場計測手段、13は上記タイヤの回転速度を検出する車輪速センサ、14はこの磁場計測手段12の出力から、転動中のタイヤの磁場波形を検出する磁場波形検出手段、15は上記車輪速センサの出力に基づいて上記検出された磁場波形を後述する標準波形計測時の車速に対応する車速の波形に変換する磁場波形変換手段、16は上記変換された磁場波形と、記憶手段17に記憶されている、予め求めておいたベルト端部に亀裂が発生していないときの磁場波形である標準磁場波形との差である波形差を演算する波形差演算手段、18は上記演算された波形差の大きさからベルト端部が破壊されたかどうかを判定する故障判定手段、19は上記故障判定手段18の結果に基づいて、運転者にベルト端部の破壊を警報する警報手段である。
Hereinafter, the best mode of the present invention will be described with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a tire failure detection device 10 according to the best mode, and FIG. 2 is a cross-sectional view of a main part of a belt end failure detection tire 20 according to the present invention. In each figure, 11 is a rubber magnet embedded in an end portion 23a of a belt 23 provided between a tread 21 and a carcass ply 22 of a belt end failure detection tire (hereinafter referred to as a tire) 20, and 12 is the tire described above. Magnetic field measuring means for measuring the magnetic field from the tire 20 in which the rubber magnet 11 is embedded, which is disposed outside the belt end portion 23a on the outer side of the belt 20, and 13 is a wheel speed sensor for detecting the rotational speed of the tire. , 14 is a magnetic field waveform detecting means for detecting the magnetic field waveform of the rolling tire from the output of the magnetic field measuring means 12, and 15 is a standard waveform to be described later on the detected magnetic field waveform based on the output of the wheel speed sensor. Magnetic field waveform converting means 16 for converting to a vehicle speed waveform corresponding to the vehicle speed at the time of measurement, 16 is the previously calculated bell that is stored in the converted magnetic field waveform and storage means 17. Waveform difference calculating means 18 for calculating a waveform difference that is a difference from a standard magnetic field waveform that is a magnetic field waveform when no crack is generated at the end, 18 is a belt end breakage from the magnitude of the calculated waveform difference The failure determination means 19 for determining whether or not the failure has occurred is an alarm means for warning the driver of the belt end breakage based on the result of the failure determination means 18.

本例では、上記ゴム磁石11の磁化方向が、上記ゴム磁石11がタイヤ20の接地面とは反対側に来たときに垂直方向となるように磁化するとともに、上記磁場計測手段12を上記タイヤ20の外側で、上記ゴム磁石11に近接して配置するようにしているが、上記ゴム磁石11の磁化方向や上記磁場計測手段12の配置位置については、上記ゴム磁石11からの磁場が十分に検出できる配置であれば、特に限定はない。例えば、直径が700mm程度のタイヤであれば、トレッド21と磁場計測手段12との距離は50mm以下とすることが好ましく、15mm程度とすることが特に好ましい。
また、本例では、上記磁場計測手段12として磁気抵抗素子を用いた磁気センサを用いているが、ホール素子を用いた磁気センサなど他の磁気センサを用いても良い。
In this example, the magnetizing direction of the rubber magnet 11 is magnetized so that the rubber magnet 11 becomes a vertical direction when the rubber magnet 11 comes to the opposite side of the ground contact surface of the tire 20, and the magnetic field measuring means 12 is set to the tire. However, with respect to the magnetization direction of the rubber magnet 11 and the position where the magnetic field measuring means 12 is arranged, the magnetic field from the rubber magnet 11 is sufficient. There is no particular limitation as long as it can be detected. For example, in the case of a tire having a diameter of about 700 mm, the distance between the tread 21 and the magnetic field measuring means 12 is preferably 50 mm or less, and particularly preferably about 15 mm.
In this example, a magnetic sensor using a magnetoresistive element is used as the magnetic field measuring means 12, but other magnetic sensors such as a magnetic sensor using a Hall element may be used.

次に、本発明によるタイヤ故障検知装置10の動作について説明する。
まず、磁場計測手段12により、タイヤ20からの磁場を連続的に検出する。図3は上記磁場計測手段12で計測し、磁場波形検出手段14で検出した動転中のタイヤ20からの磁場Hの時間変化の波形(磁場波形)を示す図で、細い方の実線(太い実線と大部分で重なっているが)で示したものが予め求めておいたベルト端部に亀裂が発生していないときの磁場波形(標準磁場波形)で、太い方の実線で示したものが、上記標準磁場波形計測時と同じ車輪速度にて計測した、ベルト端部が破壊したときの磁場波形である。タイヤ20には上記ゴム磁石11以外にも、ベルト23やビード部24などの磁化している部材があるので、磁場波形は、同図に示すように、回転に伴う周期的な波形となる。
なお、上記磁場波形検出手段14で検出した動転中のタイヤ20からの磁場磁場波形と標準磁場波形との差である波形差値Kを求める際には、車輪速を揃える必要がある。そこで本例では、磁場波形変換手段15を設けて、上記車輪速センサ13の出力に基づいて上記検出された磁場波形を標準波形計測時の車速に対応する車速の波形に変換し、この変換された磁場波形を波形差演算手段16に送り、上記標準磁場波形との波形差を演算するようにしている。
図4は磁場波形検出手段14で検出した磁場波形と上記標準磁場波形との差(ΔH)の時間変化を示す図で、この差ΔHもまた周期的な波形となる。
すなわち、ベルト端部に発生した亀裂が進展してベルト端部が破壊されたときには、上記ゴム磁石11にも亀裂が入り、そのため、上記ゴム磁石11の発生する磁場は小さくなるが、他の箇所からの磁界は変化しない。そこで、波形差演算手段16にて、磁場波形検出手段14で検出し、上記磁場波形変換手段15にて変換された磁場波形と記憶手段17に記憶されている標準磁場波形との差であるΔHのピーク値の大きさを抽出し、これを波形差値Kとして故障判定手段18に送り、故障判定手段18にて、上記波形差値Kと予め設定しておいた閾値とを比較し、上記波形差値Kが上記閾値を超えた場合には、ベルト端部が破壊されたと判定する。
警報手段19は上記故障判定手段18がベルト端部が破壊したと判定した場合には、ランプを点灯させるなどして、運転者に警報を発する。これにより、ベルト端部の破壊が大きくならないうちにタイヤ交換するなどの対策ができるので、タイヤ故障による事故を未然に防ぐことができる。
Next, operation | movement of the tire failure detection apparatus 10 by this invention is demonstrated.
First, the magnetic field from the tire 20 is continuously detected by the magnetic field measuring means 12. FIG. 3 is a diagram showing a time-change waveform (magnetic field waveform) of the magnetic field H from the moving tire 20 measured by the magnetic field measuring means 12 and detected by the magnetic field waveform detecting means 14. The thin solid line (thick solid line) Is the magnetic field waveform (standard magnetic field waveform) when there is no crack at the end of the belt obtained in advance, and the one shown by the thick solid line is It is a magnetic field waveform when the belt end portion is broken, which is measured at the same wheel speed as that during the standard magnetic field waveform measurement. Since the tire 20 includes magnetized members such as the belt 23 and the bead portion 24 in addition to the rubber magnet 11, the magnetic field waveform is a periodic waveform accompanying rotation as shown in FIG.
When obtaining the waveform difference value K, which is the difference between the magnetic field magnetic field waveform from the rotating tire 20 detected by the magnetic field waveform detecting means 14 and the standard magnetic field waveform, it is necessary to align the wheel speeds. Therefore, in this example, magnetic field waveform conversion means 15 is provided to convert the detected magnetic field waveform into a vehicle speed waveform corresponding to the vehicle speed at the time of standard waveform measurement based on the output of the wheel speed sensor 13, and this conversion is performed. The measured magnetic field waveform is sent to the waveform difference calculating means 16 to calculate the waveform difference from the standard magnetic field waveform.
FIG. 4 is a diagram showing the time change of the difference (ΔH) between the magnetic field waveform detected by the magnetic field waveform detecting means 14 and the standard magnetic field waveform, and this difference ΔH is also a periodic waveform.
That is, when the crack generated in the belt end portion is developed and the belt end portion is broken, the rubber magnet 11 is also cracked. Therefore, the magnetic field generated by the rubber magnet 11 is reduced. The magnetic field from does not change. Therefore, ΔH which is the difference between the magnetic field waveform detected by the magnetic field waveform detecting means 14 and converted by the magnetic field waveform converting means 15 and the standard magnetic field waveform stored in the storage means 17 by the waveform difference calculating means 16. The peak value is extracted and sent as a waveform difference value K to the failure determination means 18. The failure determination means 18 compares the waveform difference value K with a preset threshold value. When the waveform difference value K exceeds the threshold value, it is determined that the belt end is broken.
When the failure determination means 18 determines that the belt end portion is broken, the alarm means 19 issues an alarm to the driver by turning on a lamp or the like. As a result, measures such as tire replacement can be taken before the end of the belt breaks down, so accidents due to tire failures can be prevented.

このように、本最良の形態によれば、タイヤ20のベルト端部23aにゴム磁石11を埋設するとともに、上記タイヤ20の外側で上記ゴム磁石11に近接して磁場計測手段12を配置して、転動するタイヤからの磁場Hの時間変化の波形を検出し、この検出された磁場波形と、予め求めておいたベルト端部に亀裂が発生していないときの磁場波形である標準磁場波形との差である波形差値Kを演算し、この波形差値Kに基づいて、ベルト端部が破壊されたかどうかを検知して運転者に警報を発するようにしたので、ベルト端部の破壊が大きくならないうちにタイヤ交換するなどの対策ができ、タイヤ故障による事故を未然に防ぐことができる。   Thus, according to this best mode, the rubber magnet 11 is embedded in the belt end portion 23a of the tire 20, and the magnetic field measuring means 12 is disposed outside the tire 20 in the vicinity of the rubber magnet 11. A time-dependent waveform of the magnetic field H from the rolling tire is detected, and the detected magnetic field waveform and a standard magnetic field waveform that is a magnetic field waveform obtained when a crack is not generated in the belt end portion obtained in advance. The waveform difference value K, which is the difference between the two, is calculated, and based on this waveform difference value K, it is detected whether the belt end has been destroyed and an alarm is issued to the driver. It is possible to take measures such as exchanging tires before the tire becomes large, and to prevent accidents caused by tire failures.

なお、上記最良の形態では、ゴム磁石11をタイヤ20のベルト端部23aに配置した場合について説明したが、プライ折り返し端部やビードフィラー部なども、高速回転時には大きな応力が作用して破壊などの故障が懸念されるので、図5に示すように、カーカスプライ22の折り返し端部22aやビード部24のビードコア24cと上記折り返されたカーカスプライ22とに挟まれた補強用ゴム部材であるビードフィラー部25などにもゴム磁石11を配置し、当該箇所の亀裂や破壊を検知するようにすることが好ましい。なお、上記ゴム磁石11は、タイヤ全周に亘って複数個配置しても良いし、任意の箇所に部分的に配置しても良い。   In the above-described best mode, the case where the rubber magnet 11 is disposed on the belt end portion 23a of the tire 20 has been described. However, the ply folded end portion, the bead filler portion, and the like are also damaged due to large stress during high-speed rotation. Therefore, as shown in FIG. 5, the bead is a reinforcing rubber member sandwiched between the folded end portion 22a of the carcass ply 22 and the bead core 24c of the bead portion 24 and the folded carcass ply 22. It is preferable to place the rubber magnet 11 on the filler portion 25 and the like so as to detect cracks and breakage of the portion. Note that a plurality of the rubber magnets 11 may be disposed over the entire circumference of the tire, or may be partially disposed at an arbitrary location.

また、上記例では、上記磁場波形検出手段14で検出した動転中のタイヤ20からの磁場磁場波形を標準波形計測時の車速に対応する車速の波形に変換してから、標準磁場波形との波形差を演算するようにしたが、磁場波形は周期的なので、上記横軸が時間である磁場波形を、横軸がタイヤ位置である磁場波形に変換すれば、車輪速に関係なく、波形差を演算することができる。
また、上記例では、波形差ΔHのピーク値を波形差値Kとしたが、波形差値Kはこれに限るものではなく、ΔHの積分値を演算してこれを波形差値としたりするなど、波形差ΔHの波形から求められる他の量を波形差値としてもよい。
また、ベルト端部23aなどのタイヤ内部の破壊を検知するには磁場波形の波形差を必ずしも求める必要はなく、単に、磁場波形のピーク値に閾値を設定し、検出された磁場波形のピーク値が所定の閾値以下であった場合にタイヤ故障であると判定しても良い。但し、タイヤ内部に複数のゴム磁石11を埋設して複数箇所のタイヤ故障を並列して検知する場合には、ピーク値の位置と閾値とをそれぞれ設定する必要があるので、本例のように、波形差を用いる方が望ましい。
In the above example, the magnetic field magnetic field waveform from the moving tire 20 detected by the magnetic field waveform detecting means 14 is converted into a vehicle speed waveform corresponding to the vehicle speed at the time of standard waveform measurement, and then the waveform with the standard magnetic field waveform. The difference is calculated, but the magnetic field waveform is periodic, so if you convert the magnetic field waveform with time on the horizontal axis into a magnetic field waveform with the tire position on the horizontal axis, the waveform difference will be calculated regardless of the wheel speed. It can be calculated.
In the above example, the peak value of the waveform difference ΔH is the waveform difference value K. However, the waveform difference value K is not limited to this, and an integrated value of ΔH is calculated and used as the waveform difference value. Another amount obtained from the waveform of the waveform difference ΔH may be used as the waveform difference value.
In addition, it is not always necessary to obtain the waveform difference of the magnetic field waveform in order to detect the destruction of the inside of the tire such as the belt end portion 23a, simply by setting a threshold value to the peak value of the magnetic field waveform and detecting the peak value of the detected magnetic field waveform. It may be determined that the tire is malfunctioning when is below a predetermined threshold. However, when a plurality of rubber magnets 11 are embedded in the tire and a plurality of tire failures are detected in parallel, it is necessary to set a peak value position and a threshold value, as in this example. It is preferable to use the waveform difference.

このように、本発明によれば、タイヤの挙動に影響を与えることなく、タイヤ内部の破壊を精度よく検知することができるので、タイヤの故障を事前に検出することができ、車両の安全性を向上させることができる。   As described above, according to the present invention, it is possible to accurately detect the destruction inside the tire without affecting the behavior of the tire, so it is possible to detect the failure of the tire in advance, and the safety of the vehicle. Can be improved.

本発明の最良の形態に係るタイヤ故障検知装置の構成を示す図である。It is a figure which shows the structure of the tire failure detection apparatus which concerns on the best form of this invention. 本発明によるベルト端故障検知用タイヤの構成を示す断面図である。It is sectional drawing which shows the structure of the tire for belt end failure detection by this invention. 磁場波形の一例を示す図である。It is a figure which shows an example of a magnetic field waveform. ベルト端部の正常時の磁場波形と破壊時の磁場波形との差の波形である。It is a waveform of the difference of the magnetic field waveform at the time of normal of a belt edge part, and the magnetic field waveform at the time of destruction. ゴム磁石の他の配置例を示す断面図である。It is sectional drawing which shows the other example of arrangement | positioning of a rubber magnet. 従来のタイヤ故障検知装置の一構成例を示す図である。It is a figure which shows one structural example of the conventional tire failure detection apparatus. 従来のタイヤ故障検知装置に用いられる温度センサユニットの埋設箇所を示す図である。It is a figure which shows the embedding location of the temperature sensor unit used for the conventional tire failure detection apparatus.

符号の説明Explanation of symbols

10 タイヤ故障検知装置、11 ゴム磁石、12 磁場計測手段、
13 車輪速センサ、14 磁場波形検出手段、15 磁場波形変換手段、
16 波形差演算手段、17 記憶手段、18 故障判定手段、19 警報手段、
20 ベルト端故障検知用タイヤ、21 トレッド、22 カーカスプライ、
22a カーカスプライの折り返し端部、23 ベルト、23a ベルト端部、
24 ビード部、24c ビードコア、25 ビードフィラー部。
10 tire failure detection device, 11 rubber magnet, 12 magnetic field measuring means,
13 wheel speed sensor, 14 magnetic field waveform detecting means, 15 magnetic field waveform converting means,
16 waveform difference calculation means, 17 storage means, 18 failure determination means, 19 alarm means,
20 Belt end failure detection tire, 21 tread, 22 carcass ply,
22a Folding end of carcass ply, 23 belt, 23a belt end,
24 bead parts, 24c bead core, 25 bead filler parts.

Claims (8)

タイヤ内部にゴム磁石を配置するとともに、上記タイヤに近接して磁場計測手段を配置して転動中のタイヤからの磁場を計測し、この計測された磁場の大きさもしくは磁場波形に基づいて、タイヤ内部の破壊を検知することを特徴とするタイヤ故障検知方法。   A rubber magnet is arranged inside the tire, and a magnetic field measuring means is arranged in the vicinity of the tire to measure the magnetic field from the rolling tire. Based on the measured magnetic field magnitude or magnetic field waveform, A tire failure detection method, comprising detecting destruction inside a tire. 上記ゴム磁石をタイヤのベルト端部、プライ端部、プライ折り返し端部、及び、ビードフィラー部のいずれか1箇所または複数箇所または全部の箇所に配置したことを特徴とする請求項1に記載のタイヤ故障検知方法。   2. The rubber magnet according to claim 1, wherein the rubber magnet is disposed at any one, plural, or all of a belt end portion, a ply end portion, a ply folded end portion, and a bead filler portion of the tire. Tire failure detection method. タイヤ内部に配置されたゴム磁石と、上記タイヤに近接して配置された磁場計測手段と、この磁場計測手段の出力に基づいて、上記タイヤ内部の破壊を検知する故障検知手段とを備えたことを特徴とするタイヤ故障検知装置。   A rubber magnet arranged inside the tire, a magnetic field measuring means arranged close to the tire, and a failure detecting means for detecting destruction inside the tire based on the output of the magnetic field measuring means A tire failure detection device. 上記ゴム磁石は、タイヤのベルト端部、プライ端部、プライ折り返し端部、及び、ビードフィラー部のいずれか1箇所または複数箇所または全部の箇所に配置されていることを特徴とする請求項3に記載のタイヤ故障検知装置。   4. The rubber magnet is disposed at any one, a plurality of, or all of a belt end portion, a ply end portion, a ply folded end portion, and a bead filler portion of a tire. The tire failure detection device described in 1. 上記故障検知手段は、予め求めておいたタイヤ内部に亀裂が発生していないときの磁場波形である標準磁場波形を記憶する記憶手段と、上記標準磁場波形と上記計測された磁場波形との差である波形差を演算する波形差演算手段と、上記波形差に基づいて、タイヤ内部が破壊しているかどうかを判定する判定手段とを備えていることを特徴とする請求項3または請求項4に記載のタイヤ故障検知装置。   The failure detection means includes a storage means for storing a standard magnetic field waveform which is a magnetic field waveform when no crack is generated in the tire, and a difference between the standard magnetic field waveform and the measured magnetic field waveform. 5. A waveform difference calculating means for calculating the waveform difference, and a determining means for determining whether or not the inside of the tire is destroyed based on the waveform difference. The tire failure detection device described in 1. 上記故障検知手段がタイヤ内部の破壊を検知した場合に警報を発する警報手段を更に設けたことを特徴とする請求項3〜請求項5のいずれかに記載のタイヤ故障検知装置。   6. The tire failure detection device according to claim 3, further comprising alarm means for issuing an alarm when the failure detection means detects destruction inside the tire. その内部にゴム磁石が配置されていることを特徴とするタイヤ内部故障検知用タイヤ。   A tire for detecting an internal failure of a tire, characterized in that a rubber magnet is disposed therein. 上記ゴム磁石は、タイヤのベルト端部、プライ端部、プライ折り返し端部、及び、ビードフィラー部のいずれか1箇所または複数箇所または全部の箇所に配置されていることを特徴とする請求項7に記載のタイヤ内部故障検知用タイヤ。   The said rubber magnet is arrange | positioned in the belt edge part of a tire, a ply edge part, a ply folding | turning edge part, and one place, multiple places, or all the places of a bead filler part. The tire for tire internal failure detection described in 1.
JP2006337942A 2006-12-15 2006-12-15 Method and device for sensing tire failure, and tire for sensing failure inside tire Pending JP2008149803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006337942A JP2008149803A (en) 2006-12-15 2006-12-15 Method and device for sensing tire failure, and tire for sensing failure inside tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006337942A JP2008149803A (en) 2006-12-15 2006-12-15 Method and device for sensing tire failure, and tire for sensing failure inside tire

Publications (1)

Publication Number Publication Date
JP2008149803A true JP2008149803A (en) 2008-07-03

Family

ID=39652480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006337942A Pending JP2008149803A (en) 2006-12-15 2006-12-15 Method and device for sensing tire failure, and tire for sensing failure inside tire

Country Status (1)

Country Link
JP (1) JP2008149803A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101992122B1 (en) * 2018-12-04 2019-06-24 최종운 System for detecting state of construction
CN110134110A (en) * 2019-05-15 2019-08-16 哈尔滨工业大学 Rotor crack fault detection method based on range restraint strategy
WO2020082204A1 (en) * 2018-10-22 2020-04-30 深圳市柔宇科技有限公司 Flexible electronic apparatus and bending speed detection device therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020082204A1 (en) * 2018-10-22 2020-04-30 深圳市柔宇科技有限公司 Flexible electronic apparatus and bending speed detection device therefor
CN112689765A (en) * 2018-10-22 2021-04-20 深圳市柔宇科技股份有限公司 Flexible electronic equipment and bending speed detection device thereof
KR101992122B1 (en) * 2018-12-04 2019-06-24 최종운 System for detecting state of construction
CN110134110A (en) * 2019-05-15 2019-08-16 哈尔滨工业大学 Rotor crack fault detection method based on range restraint strategy

Similar Documents

Publication Publication Date Title
CN101932458B (en) Method for determining the profile depth of a vehicle tyre
WO2011161844A1 (en) Tire internal failure determination method
CN104185781B (en) Method and device for tyre pressure testing
JP5651357B2 (en) Disc brake system
WO2006001255A1 (en) Tire wear detection system and pneumatic tire
US6963273B2 (en) Thermal monitoring system for a tire
JP2006151057A (en) Wheel status monitoring device and its method
JP2008149803A (en) Method and device for sensing tire failure, and tire for sensing failure inside tire
JP4964328B2 (en) Tire pressure drop detection device, method and program
KR101907689B1 (en) Intelligent tire life prediction and notification method.
US9994082B2 (en) Tire monitoring based on inductive sensing
JP2005145170A (en) Tire alarm device and pneumatic tire
JP4939210B2 (en) Tire longitudinal force detection method and pneumatic tire used therefor
JP4833196B2 (en) Sensor abnormality determination device and sensor abnormality determination method
JP4466831B2 (en) Green tire surface inspection equipment
US20030201880A1 (en) Automobile flat tires/blowout alert system
JP5441658B2 (en) Tire internal failure judgment method
JP5721312B2 (en) Tire internal failure determination method and tire internal failure determination device
JP6721134B2 (en) Tire assembly and tire deformation state determination system
JP2019537028A (en) Tire puncture feedback system
US9278585B2 (en) System and method for using a lightweight spare tire
JP2004069462A (en) Method of detecting abnormality of tire and method of detecting abnormal rolling of wheel
JP2009126460A (en) Failure detection method for tire
KR20070110573A (en) Piezometer with an automatic sensing device for tire blowout
KR20110058444A (en) Apparatus for detecting traveling condition of tire and thereof method