[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008148022A - Method for driving solid-state image pickup device and imaging apparatus - Google Patents

Method for driving solid-state image pickup device and imaging apparatus Download PDF

Info

Publication number
JP2008148022A
JP2008148022A JP2006333182A JP2006333182A JP2008148022A JP 2008148022 A JP2008148022 A JP 2008148022A JP 2006333182 A JP2006333182 A JP 2006333182A JP 2006333182 A JP2006333182 A JP 2006333182A JP 2008148022 A JP2008148022 A JP 2008148022A
Authority
JP
Japan
Prior art keywords
pixels
charge transfer
signal
solid
odd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2006333182A
Other languages
Japanese (ja)
Inventor
Mamoru Yasaka
守 家坂
Kazunari Oi
一成 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006333182A priority Critical patent/JP2008148022A/en
Publication of JP2008148022A publication Critical patent/JP2008148022A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To position a segmenting area when electronic blurring correction is performed per line. <P>SOLUTION: This solid-state image pickup device of honeycomb pixel array is provided with a first driving mode for reading, transferring signal electric charges from pixels of even-numbered lines, to the adjacent electric charge transfer paths and reading the signal electric charges from pixels of odd-numbered lines to the adjacent electric charge transfer path when the signal electric charges are transferred to positions of the odd-numbered lines and a second driving mode for reading, transferring the signal electric charges from the pixels of the odd-numbered lines to the adjacent electric charge transfer path when the signal electric charges are transferred to positions of the even-numbered lines and both modes are switched based on predetermined conditions. Thus, positioning of the segmenting area becomes possible per line even in the case of the solid-state image pickup device of the honeycomb pixel array. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、奇数行の画素が偶数行の画素に対して1/2ピッチづつずらして形成された固体撮像素子の駆動方法並びにこの固体撮像素子を搭載した撮像装置に係り、特に、電子的手振れ補正を高精度に行うことが可能な固体撮像素子の駆動方法並びに撮像装置に関する。   The present invention relates to a driving method of a solid-state imaging device in which pixels in odd-numbered rows are shifted by 1/2 pitch with respect to pixels in even-numbered rows, and an imaging device equipped with the solid-state imaging device, and in particular, electronic camera shake. The present invention relates to a driving method of a solid-state imaging device and an imaging apparatus capable of performing correction with high accuracy.

図6は、CCD型の固体撮像素子を用いた撮像装置で行われている電子的手振れ補正の説明図である。この固体撮像素子の有効撮像領域1には、二次元的に配列形成された複数の画素(図示せず)及び各画素列に並列に設けられた複数の垂直電荷転送路(VCCD:図示せず)が設けられており、各画素が検出した信号電荷を垂直電荷転送路が水平電荷転送路2まで転送し、次にこれらの信号電荷を水平電荷転送路2に沿って出力アンプ3まで転送し、出力アンプ3が、各信号電荷量に応じた電圧値信号を撮像画像信号として出力する。   FIG. 6 is an explanatory diagram of electronic camera shake correction performed in an imaging apparatus using a CCD solid-state imaging device. In the effective imaging area 1 of the solid-state imaging device, a plurality of pixels (not shown) arranged in a two-dimensional array and a plurality of vertical charge transfer paths (VCCD: not shown) provided in parallel in each pixel column are arranged. ), The signal charges detected by each pixel are transferred to the horizontal charge transfer path 2 by the vertical charge transfer path, and then these signal charges are transferred to the output amplifier 3 along the horizontal charge transfer path 2. The output amplifier 3 outputs a voltage value signal corresponding to each signal charge amount as a captured image signal.

電子的手振れ補正を行う場合、有効撮像領域1を実際の撮像画面より大きめに作っておき、例えば動画撮像時に手振れが起こったとき、撮像画面を切り出す切出範囲を手振れ補正量に応じて移動させることが行われる。   When electronic camera shake correction is performed, the effective imaging area 1 is made larger than the actual imaging screen, and, for example, when camera shake occurs during moving image imaging, the cutout range for cutting out the imaging screen is moved according to the camera shake correction amount. Is done.

図示する例で、手振れが起き、あるフレームの第1撮像画像中の固定物画像5が次フレームの第2撮像画像中で固定物画像6として映っていると、第1撮像画像と第2撮像画像とを同一の切出範囲7で切り出すと、同じ固定物の画像が撮像画像中で「5→6」と移動してしまい、見づらい動画像になってしまう。   In the example shown in the figure, when a camera shake occurs and the fixed object image 5 in the first captured image of a certain frame appears as the fixed object image 6 in the second captured image of the next frame, the first captured image and the second captured image If the image is cut out with the same cutout range 7, the same fixed object image moves as “5 → 6” in the captured image, resulting in a moving image that is difficult to see.

そこで、第1撮像画像を切出範囲7で切り出し、次に、第2撮像画像を切り出すとき、手振れ量kを検出し、切出範囲7を手振れ量kだけ移動させた切出範囲8で第2撮像画像を切り出すことで、撮像画像中の固定物画像5,6が同一位置となり、手振れの無い動画像を得ることが可能となる。   Therefore, when the first captured image is cut out at the cutout range 7, and then the second picked up image is cut out, the camera shake amount k is detected, and the cutout range 7 is moved by the camera shake amount k, and the cutout range 8 is moved. By cutting out the two captured images, the fixed object images 5 and 6 in the captured image are in the same position, and a moving image without camera shake can be obtained.

この様な切出範囲の移動は、有効撮像領域1のフレーム毎の撮像画像信号を固体撮像素子外部のフレームメモリに一々読み出し、フレームメモリ中の撮像画像を切り出すことで行うよりも、固体撮像素子から撮像画像信号を読み出すときに夫々切出範囲を設定し、不要な範囲の信号読み出しを掃き捨てながら切出範囲(=読出範囲)の撮像画像信号を固体撮像素子から読み出す方が、フレームレートが向上し動画撮像のリアルタイム性が向上する。   Such a movement of the cutout range is performed rather than reading out the picked-up image signal for each frame of the effective image pickup region 1 to the frame memory outside the solid-state image pickup device and cutting out the picked-up image in the frame memory. When the captured image signal is read out from the solid-state image sensor, the frame rate is set to read out the captured image signal in the cut-out range (= reading range) while setting the cut-out range and sweeping out the unnecessary range of signal readout. This improves the real-time performance of moving image capturing.

この様な電子的手振れ補正を行う場合、例えば下記特許文献1に記載されている様な、所謂、ハニカム画素配置の固体撮像素子では、高精度の電子的手振れ補正ができないという問題がある。これを次に説明する。   When such electronic camera shake correction is performed, for example, a so-called honeycomb pixel-arranged solid-state imaging device as described in Patent Document 1 below has a problem that high-precision electronic camera shake correction cannot be performed. This will be described next.

図7は、ハニカム画素配置すなわち奇数行の画素(光電変換素子)に対して偶数行の画素が1/2ピッチづつずらして形成された固体撮像素子の表面模式図である。図中のR,G,Bは、各画素上に積層されたカラーフィルタ(R=赤、G=緑、B=青)の色を示している。垂直方向に並ぶ画素列の隣に、蛇行する垂直電荷転送路(VCCD)11が設けられている。   FIG. 7 is a schematic view of the surface of a solid-state imaging device in which even-numbered pixels are shifted by ½ pitch with respect to honeycomb pixel arrangement, that is, odd-numbered pixels (photoelectric conversion elements). R, G, and B in the figure indicate colors of color filters (R = red, G = green, B = blue) stacked on each pixel. A meandering vertical charge transfer path (VCCD) 11 is provided next to the pixel columns arranged in the vertical direction.

垂直電荷転送路11は、半導体基板上に形成された埋め込みチャネル(図示せず)と、その上にゲート絶縁膜(図示せず)を介して積層された垂直転送電極膜12とで構成される。図示する例では、1画素当たり4枚の転送電極膜12が設けられ、4枚の転送電極膜12に、転送パルスVφ1,Vφ2,Vφ3,Vφ4が夫々印加される様になっている。   The vertical charge transfer path 11 is composed of a buried channel (not shown) formed on a semiconductor substrate and a vertical transfer electrode film 12 stacked thereon via a gate insulating film (not shown). . In the illustrated example, four transfer electrode films 12 are provided per pixel, and transfer pulses Vφ1, Vφ2, Vφ3, and Vφ4 are applied to the four transfer electrode films 12, respectively.

ハニカム画素配列の固体撮像素子では、通常、図示する様に、B画素/R画素が交互に設けられる画素列と、G画素のみの画素列とが交互に配置され、G画素がR画素/B画素に対して、転送電極膜2枚分だけ垂直方向側にずれた位置に設けられることになる。   In a solid-state imaging device having a honeycomb pixel arrangement, as shown in the drawing, a pixel column in which B pixels / R pixels are alternately provided and a pixel column having only G pixels are arranged alternately, and the G pixel is R pixel / B. The pixel is provided at a position shifted in the vertical direction by two transfer electrode films.

この様な固体撮像素子で各画素の信号電荷を読み出し、垂直方向に転送する場合には、先ず、読み出しパルスVφ1が印加され、G画素の信号電荷が隣接する垂直転送電極膜下の埋め込みチャネルに読み出される。そして、この信号電荷(G信号電荷という。)を垂直方向に2電極膜分だけ転送したとき、読み出しパルスVφ3を印加すると、R画素とB画素の各信号電荷が隣接する垂直転送電極膜下の埋め込みチャネルに読み出される。この結果、R―G―B―G―R―…と信号電荷が横一行に並び、あるいはB―G―R―G―B―…と信号電荷が横一行に並ぶ。以後、各行の信号電荷を一緒に垂直方向に転送することになる。   When the signal charge of each pixel is read and transferred in the vertical direction with such a solid-state imaging device, first, a read pulse Vφ1 is applied, and the signal charge of the G pixel is applied to the buried channel under the adjacent vertical transfer electrode film. Read out. When this signal charge (referred to as G signal charge) is transferred in the vertical direction by two electrode films, when a read pulse Vφ3 is applied, the signal charges of the R pixel and the B pixel are placed under the adjacent vertical transfer electrode film. Read to the embedded channel. As a result, R—G—B—G—R— and signal charges are arranged in a horizontal line, or B—G—R—G—B— and signal charges are arranged in a horizontal line. Thereafter, the signal charges of each row are transferred together in the vertical direction.

特開平10―136391号公報JP-A-10-136391

上述した様に、ハニカム画素配列の固体撮像素子では、G信号電荷を読み出した後に転送電極2枚分だけ垂直方向に転送しこのときR信号電荷とB信号電荷を読み出すため、図7に示すG画素行と次行のR/B画素行の2行分を一緒に転送することになる。   As described above, in the solid-state imaging device having the honeycomb pixel array, after reading out the G signal charge, only the two transfer electrodes are transferred in the vertical direction, and at this time, the R signal charge and the B signal charge are read out. Two rows of the pixel row and the next R / B pixel row are transferred together.

従って、図6に示す切出範囲を決める場合、その精度は、図8に示す様に、2行分が単位となり、2行以下の精度で切出範囲の位置決めができないという問題が生じる。   Therefore, when the cutout range shown in FIG. 6 is determined, as shown in FIG. 8, the accuracy is in units of two rows, and there is a problem that the cutout range cannot be positioned with an accuracy of two rows or less.

本発明の目的は、切出範囲の位置決めを1行単位に行うことができる固体撮像素子の駆動方法並びに撮像装置を提供することにある。   An object of the present invention is to provide a driving method of a solid-state imaging device and an imaging apparatus capable of positioning a cut-out range in units of one row.

本発明の固体撮像素子の駆動方法は、複数の画素が二次元アレイ状に形成されると共に偶数行の画素と奇数行の画素とが1/2ピッチづつずらして形成され、各画素列に夫々隣接して設けられ当該画素列の画素から読み出された信号電荷を受け取り転送する電荷転送路が夫々形成された固体撮像素子の駆動方法において、
前記偶数行の画素から該画素の信号電荷を隣接する前記電荷転送路に読み出し該電荷転送路に沿って転送し、該電荷転送路上の前記信号電荷が前記奇数行の位置まで転送されてきたとき該奇数行の画素から該画素の信号電荷を隣接する前記電荷転送路に読み出し、各電荷転送路上の前記偶数行の画素の各信号電荷と前記奇数行の画素の各信号電荷とを同一水平位置に保ちながら電荷転送を行う第1駆動モードと、
前記奇数行の画素から該画素の信号電荷を隣接する前記電荷転送路に読み出し該電荷転送路に沿って転送し、該電荷転送路上の前記信号電荷が前記偶数行の位置まで転送されてきたとき該偶数行の画素から該画素の信号電荷を隣接する前記電荷転送路に読み出し、各電荷転送路上の前記偶数行の画素の各信号電荷と前記奇数行の画素の各信号電荷とを同一水平位置に保ちながら電荷転送を行う第2駆動モードと
を所定条件に基づいて切り替えることを特徴とする。
According to the solid-state imaging device driving method of the present invention, a plurality of pixels are formed in a two-dimensional array, and even-numbered pixels and odd-numbered rows of pixels are formed so as to be shifted by ½ pitch. In the driving method of the solid-state imaging device in which the charge transfer paths that are provided adjacent to each other and charge transfer paths for receiving and transferring the signal charges read from the pixels of the pixel column are formed, respectively.
When the signal charge of the pixel is read from the pixels in the even-numbered row to the adjacent charge transfer path and transferred along the charge transfer path, and the signal charge on the charge transfer path is transferred to the position of the odd-numbered row The signal charges of the pixels are read from the pixels of the odd rows to the adjacent charge transfer paths, and the signal charges of the even rows of pixels and the signal charges of the odd rows of pixels on the charge transfer paths are set to the same horizontal position. A first drive mode in which charge transfer is performed while maintaining
When the signal charge of the pixel is read from the odd row pixel to the adjacent charge transfer path and transferred along the charge transfer path, and the signal charge on the charge transfer path is transferred to the even row position The signal charges of the pixels are read from the pixels of the even rows to the adjacent charge transfer paths, and the signal charges of the pixels of the even rows and the signal charges of the pixels of the odd rows on each charge transfer path are in the same horizontal position. And switching to the second drive mode in which charge transfer is performed based on a predetermined condition.

本発明の固体撮像素子の駆動方法における前記所定条件は、前記二次元アレイ状に配列された画素が設けられる撮像領域の中から該撮像領域より狭い範囲を電子的手振れ補正を行うために切り出したときの該範囲の前記電荷転送方向境界線の位置であることを特徴とする。   The predetermined condition in the driving method of the solid-state imaging device of the present invention is that a range narrower than the imaging area is cut out from the imaging area in which the pixels arranged in the two-dimensional array are provided in order to perform electronic camera shake correction. It is the position of the charge transfer direction boundary line in the range at that time.

本発明の固体撮像素子の駆動方法における固体撮像素子では、前記偶数行と奇数行の一方の画素には緑色フィルタが搭載され、前記偶数行と奇数行の他方の画素には赤色フィルタと青色フィルタとが交互に搭載されていることを特徴とする。   In the solid-state image sensor in the solid-state image sensor driving method of the present invention, a green filter is mounted on one pixel of the even-numbered row and the odd-numbered row, and a red filter and a blue filter are mounted on the other pixels of the even-numbered row and the odd-numbered row. And are mounted alternately.

本発明の撮像装置は、複数の画素が二次元アレイ状に形成されると共に偶数行の画素と奇数行の画素とが1/2ピッチづつずらして形成され、各画素列に夫々隣接して設けられ当該画素列の画素から読み出された信号電荷を受け取り転送する電荷転送路が夫々形成された固体撮像素子を搭載する撮像装置において、上記のいずれかに記載の第1駆動モードと第2駆動モードの夫々の駆動パルスを生成し前記固体撮像素子に供給する撮像素子駆動部と、前記所定条件を判定し切替指示を前記撮像素子駆動部に出力する制御部とを備えることを特徴とする。   In the imaging device of the present invention, a plurality of pixels are formed in a two-dimensional array, and even-numbered pixels and odd-numbered rows of pixels are formed by being shifted by 1/2 pitch, and provided adjacent to each pixel column. In the imaging device including the solid-state imaging device in which the charge transfer paths for receiving and transferring the signal charges read from the pixels in the pixel column are formed, the first drive mode and the second drive described in any of the above An image sensor drive unit that generates and supplies drive pulses for each mode to the solid-state image sensor, and a control unit that determines the predetermined condition and outputs a switching instruction to the image sensor drive unit.

本発明によれば、切出範囲の位置決めを一行単位で行っても、切出範囲内の撮像画像信号を読み出して撮像画像を生成することができ、電子的手振れ補正を高精度に行うことが可能となる。   According to the present invention, even if positioning of the cutout range is performed in units of one line, a picked-up image signal can be generated by reading out a picked-up image signal in the cutout range, and electronic camera shake correction can be performed with high accuracy. It becomes possible.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係るデジタルカメラの機能ブロック構成図である。このデジタルカメラは、撮像部21と、撮像部21から出力されるアナログの画像データを自動利得調整(AGC)や相関二重サンプリング処理等のアナログ処理するアナログ信号処理部22と、アナログ信号処理部22から出力されるアナログ画像データをデジタル画像データに変換するアナログデジタル変換部(A/D)23と、後述のシステム制御部(CPU)29からの指示によってA/D23,アナログ信号処理部22,撮像部21の駆動制御を行う駆動部(タイミングジェネレータTGを含む)24と、CPU29からの指示によって発光するフラッシュ25とを備える。   FIG. 1 is a functional block configuration diagram of a digital camera according to an embodiment of the present invention. The digital camera includes an imaging unit 21, an analog signal processing unit 22 that performs analog processing such as automatic gain adjustment (AGC) and correlated double sampling processing on analog image data output from the imaging unit 21, and an analog signal processing unit. An analog / digital conversion unit (A / D) 23 that converts analog image data output from the digital image data into digital image data, and an A / D 23, an analog signal processing unit 22, according to instructions from a system control unit (CPU) 29 described later, A driving unit (including a timing generator TG) 24 that controls driving of the imaging unit 21 and a flash 25 that emits light in response to an instruction from the CPU 29 are provided.

撮像部21は、被写界からの光を集光する光学レンズ系21aと、該光学レンズ系21aを通った光を絞る絞りやメカニカルシャッタ21bと、光学レンズ系21aによって集光され絞りによって絞られた光を受光し撮像画像データ(アナログ画像データ)を出力するCCD型固体撮像素子100とを備える。   The imaging unit 21 collects light from the object field, a diaphragm or a mechanical shutter 21b that condenses the light that has passed through the optical lens system 21a, and a diaphragm that is condensed by the optical lens system 21a. A CCD type solid-state imaging device 100 that receives the received light and outputs captured image data (analog image data).

本実施形態のデジタルカメラは更に、A/D23から出力されるデジタル画像データを取り込み補間処理やホワイトバランス補正,RGB/YC変換処理等を行うデジタル信号処理部26と、画像データをJPEG形式などの画像データに圧縮したり逆に伸長したりする圧縮/伸長処理部27と、メニューなどを表示したりスルー画像や撮像画像を表示する表示部28と、デジタルカメラ全体を統括制御するシステム制御部(CPU)29と、フレームメモリ等の内部メモリ30と、JPEG画像データ等を格納する記録メディア32との間のインタフェース処理を行うメディアインタフェース(I/F)部31と、これらを相互に接続するバス40とを備え、また、システム制御部29には、ユーザからの指示入力を行う操作部23が接続されている。   The digital camera according to the present embodiment further includes a digital signal processing unit 26 that takes in digital image data output from the A / D 23 and performs interpolation processing, white balance correction, RGB / YC conversion processing, and the like. A compression / expansion processing unit 27 that compresses or reversely compresses image data, a display unit 28 that displays menus, displays through images and captured images, and a system control unit that controls the entire digital camera ( CPU) 29, an internal memory 30 such as a frame memory, and a media interface (I / F) unit 31 that performs interface processing between a recording medium 32 that stores JPEG image data and the like, and a bus that interconnects them 40, and an operation unit 23 for inputting an instruction from the user is connected to the system control unit 29. It has been.

図2は、図1に示す固体撮像素子100の平面模式図である。図示する固体撮像素子100は、半導体基板上に多数のフォトダイオード(光電変換素子)101が二次元アレイ状に配列形成され、奇数行のフォトダイオード101に対して偶数行のフォトダイオード101が1/2ピッチづつずらして配置(所謂、ハニカム画素配列)されている。   FIG. 2 is a schematic plan view of the solid-state imaging device 100 shown in FIG. In the solid-state imaging device 100 shown in the figure, a large number of photodiodes (photoelectric conversion elements) 101 are arranged in a two-dimensional array on a semiconductor substrate. They are arranged shifted by two pitches (so-called honeycomb pixel arrangement).

各フォトダイオード101上に図示した「R」「G」「B」は各フォトダイオード上に積層されたカラーフィルタの色(赤=R,緑=G,青=B)を表しており、各フォトダイオード101は、3原色のうちの1色の受光量に応じた信号電荷を蓄積する。尚、原色系カラーフィルタを搭載した例を説明するが、補色系カラーフィルタを搭載することでも良い。   “R”, “G”, and “B” illustrated on each photodiode 101 represent the color of the color filter (red = R, green = G, blue = B) stacked on each photodiode. The diode 101 accumulates signal charges corresponding to the amount of received light of one of the three primary colors. Although an example in which a primary color filter is mounted will be described, a complementary color filter may be mounted.

半導体基板表面の水平方向には、各フォトダイオード101を避けるように蛇行して垂直転送電極が敷設されている。半導体基板には垂直方向に並ぶフォトダイオード列の側部に図示しない埋め込みチャネルが、フォトダイオード101を避けるように垂直方向に蛇行して形成されている。この埋め込みチャネルと、この上に設けられ垂直方向に蛇行して配置される垂直転送電極とで、垂直転送路(VCCD)102が形成される。   In the horizontal direction of the semiconductor substrate surface, vertical transfer electrodes are laid to meander to avoid each photodiode 101. In the semiconductor substrate, a buried channel (not shown) is formed to meander in the vertical direction so as to avoid the photodiode 101 at the side of the photodiode row arranged in the vertical direction. A vertical transfer path (VCCD) 102 is formed by the buried channel and a vertical transfer electrode provided on the buried channel and arranged in a meandering manner in the vertical direction.

半導体基板の下辺部には、水平転送路(HCCD)103が設けられている。この水平転送路103も、埋め込みチャネルとその上に設けられた水平転送電極とで構成され、この水平転送路103は、駆動部24から出力される転送パルスによって2相駆動される。水平転送路103の出力端部には、信号電荷量に応じた電圧値信号を撮像画像信号として出力するアンプ104が設けられている。   A horizontal transfer path (HCCD) 103 is provided on the lower side of the semiconductor substrate. The horizontal transfer path 103 is also composed of a buried channel and a horizontal transfer electrode provided thereon, and the horizontal transfer path 103 is driven in two phases by a transfer pulse output from the drive unit 24. At the output end of the horizontal transfer path 103, an amplifier 104 that outputs a voltage value signal corresponding to the signal charge amount as a captured image signal is provided.

本実施形態に係る固体撮像素子の画素配列と転送電極膜との配置は、図7で説明したものと同じである。   The arrangement of the pixel array and the transfer electrode film of the solid-state imaging device according to this embodiment is the same as that described with reference to FIG.

尚、各垂直転送路102の転送端部と水平転送路103との間に、例えば特開2002―112119号公報に記載されている様なラインメモリを設ける場合もあるが、本実施形態では、ラインメモリを設ける場合、設けない場合のいずれにも適用可能である。   Note that a line memory as described in, for example, Japanese Patent Application Laid-Open No. 2002-112119 may be provided between the transfer end of each vertical transfer path 102 and the horizontal transfer path 103. In this embodiment, The present invention can be applied to the case where the line memory is provided or not provided.

また、「垂直」「水平」という用語を使用して説明しているが、これは、半導体基板表面に沿う「1方向」「この1方向に対して略直角の方向」という意味に過ぎない。   In addition, although the terms “vertical” and “horizontal” are used for explanation, this only means “one direction” along the surface of the semiconductor substrate and “a direction substantially perpendicular to the one direction”.

図3は、図1に示すシステム制御部29が電子的手振れ補正を行う場合の処理手順を示すフローチャートである。先ず、手振れ補正量を検出する(ステップS1)。この検出は、固体撮像素子100からスルー画像として読み出した撮像画像信号を画像処理することで求めても良く、また、撮像装置に別途設けた手振れ補正量検出器で求めても良く、その検出方法は問わない。   FIG. 3 is a flowchart showing a processing procedure when the system control unit 29 shown in FIG. 1 performs electronic camera shake correction. First, a camera shake correction amount is detected (step S1). This detection may be obtained by image processing of a picked-up image signal read out as a through image from the solid-state image pickup device 100, or may be obtained by a camera shake correction amount detector provided separately in the image pickup apparatus. Does not matter.

次のステップS2では、ステップS1で求めた手振れ補正量に基づき、図6で説明した切出範囲を決定する。例えば、図6に示す切出範囲8を決定する。次のステップS3では、この切出範囲8の下端線位置に従って、G信号電荷の先読みモードであるか否かを判定する。   In the next step S2, the cutout range described in FIG. 6 is determined based on the camera shake correction amount obtained in step S1. For example, the cutout range 8 shown in FIG. 6 is determined. In the next step S3, it is determined according to the position of the lower end line of the cut-out range 8 whether or not the G signal charge pre-reading mode is set.

G信号電荷の先読みモードであるか否かは、次の様にして判定する。図4(a)に破線で示す位置が切出範囲8の下端線位置であり、この破線の直ぐ下(水平転送路側)に並ぶ画素行がG画素行である場合には、G信号電荷の先読みモードであると判定する。図4(b)に破線で示す位置の直ぐ下に並ぶ画素行が、R画素/B画素の交互配置行である場合には、G信号電荷の先読みモードではなくRB信号電荷先読みモードであると判定する。   Whether or not it is the G signal charge pre-reading mode is determined as follows. When the position indicated by the broken line in FIG. 4A is the position of the lower end line of the cut-out range 8 and the pixel row arranged immediately below the broken line (on the horizontal transfer path side) is the G pixel row, It is determined that the pre-reading mode is set. When the pixel row arranged immediately below the position indicated by the broken line in FIG. 4B is an alternately arranged row of R pixels / B pixels, it is assumed that the RB signal charge prefetch mode is used instead of the G signal charge prefetch mode. judge.

G信号電荷の先読みモードの場合には、ステップS3からステップS4に進み、図1の駆動部24に対してG先読みモードを指示する。これにより、駆動部24は、図5(a)に示すG先読みモード用駆動パルスを生成し、固体撮像素子100に出力する。   In the case of the G signal charge pre-reading mode, the process proceeds from step S3 to step S4 to instruct the driving unit 24 of FIG. As a result, the drive unit 24 generates a G prefetch mode drive pulse shown in FIG. 5A and outputs it to the solid-state imaging device 100.

図5(a)に示す駆動パルスチャートによれば、図7で説明したように、読み出しパルスP1が電極膜Vφ1に印加されて先ずG信号電荷が垂直電荷転送路に読み出され、次に、電極膜Vφ2,Vφ3に転送パルスが印加されて2枚の電極膜分だけ垂直方向にG信号電荷が転送されたときに電極膜Vφ3に読み出しパルスP2が重畳されることで、R信号電荷,B信号電荷が垂直電荷転送路に読み出される。   According to the drive pulse chart shown in FIG. 5A, as described with reference to FIG. 7, the read pulse P1 is applied to the electrode film Vφ1, and first the G signal charge is read to the vertical charge transfer path, and then When the transfer pulse is applied to the electrode films Vφ2 and Vφ3 and the G signal charge is transferred in the vertical direction by two electrode films, the read pulse P2 is superimposed on the electrode film Vφ3, whereby the R signal charge, B The signal charge is read out to the vertical charge transfer path.

以下、図6に示す前掃き出し部分の信号電荷の高速掃き出し駆動が行われ、次に、切出範囲の信号電荷の出力が行われ、その後に後掃き出し部分の信号電荷の高速掃き出し駆動が行われる。これにより、図4(a)に折れ線で示す2行分の信号電荷毎に水平転送路103に転送され、アンプ104から撮像画像信号として図1のデジタル信号処理部(DSP)26に取り込まれる。   Thereafter, the signal charge in the pre-sweep portion shown in FIG. 6 is driven at high speed, and then the signal charge in the cut-out range is output, and then the signal charge in the post-sweep portion is driven at high speed. . As a result, every two rows of signal charges indicated by broken lines in FIG. 4A are transferred to the horizontal transfer path 103, and taken into the digital signal processor (DSP) 26 of FIG.

デジタル信号処理部26は、固体撮像素子100から取り込んだ撮像画像信号の…R―G―B―G―R―…のデータ列のうち、G画像信号がR画像信号やB画像信号よりも垂直方向の上側に来る(図4(a)の状態)ことを知ることができれば、撮像画像を再生することができる。   The digital signal processing unit 26 has a G image signal perpendicular to the R image signal and the B image signal in the data sequence of R—G—B—G—R— of the captured image signal captured from the solid-state image sensor 100. If it can be known that it is in the upper side of the direction (the state of FIG. 4A), the captured image can be reproduced.

そこで、システム制御部29は、ステップS4の後のステップS5で、デジタル信号処理部26に対して、G先読みモードである旨の通知を行い、この処理を終了する。これにより、デジタル信号処理部26は、この通知に従って固体撮像素子100から読み出されるデータ列を画像処理し、撮像画像を再生する。   Therefore, the system control unit 29 notifies the digital signal processing unit 26 of the G prefetching mode in step S5 after step S4, and ends this processing. Thereby, the digital signal processing unit 26 performs image processing on the data string read from the solid-state imaging device 100 in accordance with this notification, and reproduces the captured image.

ステップS3での判定の結果、G先読みモードで無かった場合には、ステップS3からステップS6に進む。このステップS6では、図1の駆動部24に対してRB先読みモードを指示する。これにより、駆動部24は、図5(b)に示すG先読みモード用駆動パルスを生成し、固体撮像素子100に出力する。   If the result of determination in step S3 is that there is no G look-ahead mode, processing proceeds from step S3 to step S6. In step S6, the RB prefetch mode is instructed to the drive unit 24 of FIG. As a result, the drive unit 24 generates a G prefetch mode drive pulse shown in FIG. 5B and outputs it to the solid-state imaging device 100.

図5(b)に示す駆動パルスチャートによれば、読み出しパルスP3が電極膜Vφ3に印加されて先ずR信号電荷とB信号電荷とが垂直電荷転送路に読み出され、次に、電極膜Vφ4,Vφ1に転送パルスが印加されて2枚の垂直電極膜分だけ垂直方向にR信号電荷とB信号電荷とが転送されたときに電極膜Vφ1に読み出しパルスP4が重畳されることで、G信号電荷が垂直電荷転送路に読み出される。   According to the drive pulse chart shown in FIG. 5B, the read pulse P3 is applied to the electrode film Vφ3, and first, the R signal charge and the B signal charge are read to the vertical charge transfer path, and then the electrode film Vφ4. , Vφ1 and the transfer pulse is applied to the electrode film Vφ1 when the R signal charge and the B signal charge are transferred in the vertical direction by two vertical electrode films, so that the G signal Charge is read out to the vertical charge transfer path.

以下、図6に示す前掃き出し部分の信号電荷の高速掃き出し駆動が行われ、次に、切出範囲の信号電荷の出力が行われ、その後に後掃き出し部分の信号電荷の高速掃き出し駆動が行われる。これにより、図4(b)に折れ線で示す2行分の信号電荷毎に水平転送路103に転送され、アンプ104から撮像画像信号として図1のデジタル信号処理部(DSP)26に取り込まれる。   Thereafter, the signal charge in the pre-sweep portion shown in FIG. 6 is driven at high speed, and then the signal charge in the cut-out range is output, and then the signal charge in the post-sweep portion is driven at high speed. . As a result, every two rows of signal charges indicated by broken lines in FIG. 4B are transferred to the horizontal transfer path 103 and taken into the digital signal processor (DSP) 26 of FIG.

デジタル信号処理部26は、固体撮像素子100から取り込んだ撮像画像信号の…R―G―B―G―R―…のデータ列のうち、G画像信号がR画像信号やB画像信号よりも垂直方向の下側に来る(図4(b)の状態)ことを知ることができれば、撮像画像を再生することができる。   The digital signal processing unit 26 has a G image signal perpendicular to the R image signal and the B image signal in the data sequence of R—G—B—G—R— of the captured image signal captured from the solid-state image sensor 100. If it can be known that it is below the direction (state of FIG. 4B), the captured image can be reproduced.

そこで、システム制御部29は、ステップS6の後のステップS7で、デジタル信号処理部26に対して、RB先読みモードである旨の通知を行い、この処理を終了する。これにより、デジタル信号処理部26は、この通知に従って固体撮像素子100から読み出されるデータ列を画像処理し、撮像画像を再生する。   Therefore, the system control unit 29 notifies the digital signal processing unit 26 of the RB prefetching mode in step S7 after step S6, and ends this processing. Thereby, the digital signal processing unit 26 performs image processing on the data string read from the solid-state imaging device 100 in accordance with this notification, and reproduces the captured image.

以上述べた様に、本実施形態によれば、図4(a)(b)に示す様に、切出範囲の精度を1画素行単位に制御することができるため、高精度の手振れ補正を行うことが可能となる。   As described above, according to the present embodiment, as shown in FIGS. 4A and 4B, the accuracy of the cutout range can be controlled in units of one pixel row, so that high-precision camera shake correction is performed. Can be done.

本発明に係る固体撮像素子の駆動方法は、電子的手振れ補正を高精度に行うことができるため、デジタルカメラ等に適用すると有用である。   The method for driving a solid-state imaging device according to the present invention is useful when applied to a digital camera or the like because electronic camera shake correction can be performed with high accuracy.

本発明の一実施形態に係るデジタルカメラの機能ブロック構成図である。It is a functional block block diagram of the digital camera which concerns on one Embodiment of this invention. 図1に示すハニカム画素配置の固体撮像素子の表面模式図である。It is a surface schematic diagram of the solid-state image sensor of honeycomb pixel arrangement | positioning shown in FIG. 図1に示すシステム制御部が行う電子的手振れ補正時の処理手順を示すフローチャートである。It is a flowchart which shows the process sequence at the time of the electronic camera shake correction | amendment which the system control part shown in FIG. 1 performs. 電子的手振れ補正を行うときの1画素行単位での切出範囲の決定と撮像信号の読み出し順を示す図である。It is a figure which shows the determination of the extraction range in the unit of 1 pixel row, and the reading order of an imaging signal when performing electronic camera shake correction. G先読みモード駆動パルス(a)とRB先読みモード駆動パルス(b)のタイミングチャートである。It is a timing chart of G prefetch mode drive pulse (a) and RB prefetch mode drive pulse (b). 電子的手振れ補正の説明図である。It is explanatory drawing of electronic camera-shake correction. ハニカム画素配列における画素の信号電荷読み出し及び転送の説明図である。It is explanatory drawing of the signal charge read-out and transfer of the pixel in a honey-comb pixel arrangement | sequence. ハニカム画素配列の固体撮像素子を用いたときの電子的手振れ補正時の不具合説明図である。FIG. 6 is a diagram for explaining a problem during electronic camera shake correction when a solid-state imaging device having a honeycomb pixel array is used.

符号の説明Explanation of symbols

21 撮像部
24 駆動部
26 デジタル信号処理部(DSP)
29 システム制御部(CPU)
100 固体撮像素子
101 画素(光電変換素子)
102 垂直電荷転送路(VCCD)
103 水平電荷転送路
104 出力アンプ
P1,P4 G信号電荷の読み出しパルス
P2,P3 RG信号電荷の読み出しパルス
21 Imaging unit 24 Drive unit 26 Digital signal processing unit (DSP)
29 System Controller (CPU)
100 solid-state imaging device 101 pixel (photoelectric conversion device)
102 Vertical charge transfer path (VCCD)
103 horizontal charge transfer path 104 output amplifier P1, P4 G signal charge read pulse P2, P3 RG signal charge read pulse

Claims (4)

複数の画素が二次元アレイ状に形成されると共に偶数行の画素と奇数行の画素とが1/2ピッチづつずらして形成され、各画素列に夫々隣接して設けられ当該画素列の画素から読み出された信号電荷を受け取り転送する電荷転送路が夫々形成された固体撮像素子の駆動方法において、
前記偶数行の画素から該画素の信号電荷を隣接する前記電荷転送路に読み出し該電荷転送路に沿って転送し、該電荷転送路上の前記信号電荷が前記奇数行の位置まで転送されてきたとき該奇数行の画素から該画素の信号電荷を隣接する前記電荷転送路に読み出し、各電荷転送路上の前記偶数行の画素の各信号電荷と前記奇数行の画素の各信号電荷とを同一水平位置に保ちながら電荷転送を行う第1駆動モードと、
前記奇数行の画素から該画素の信号電荷を隣接する前記電荷転送路に読み出し該電荷転送路に沿って転送し、該電荷転送路上の前記信号電荷が前記偶数行の位置まで転送されてきたとき該偶数行の画素から該画素の信号電荷を隣接する前記電荷転送路に読み出し、各電荷転送路上の前記偶数行の画素の各信号電荷と前記奇数行の画素の各信号電荷とを同一水平位置に保ちながら電荷転送を行う第2駆動モードと
を所定条件に基づいて切り替えることを特徴とする固体撮像素子の駆動方法。
A plurality of pixels are formed in a two-dimensional array, and even-numbered pixels and odd-numbered rows of pixels are formed by being shifted by ½ pitch, and are provided adjacent to each pixel column, respectively. In the solid-state imaging device driving method in which the charge transfer paths for receiving and transferring the read signal charges are respectively formed,
When the signal charge of the pixel is read from the pixels in the even row to the adjacent charge transfer path and transferred along the charge transfer path, and the signal charge on the charge transfer path is transferred to the position of the odd row The signal charges of the pixels are read from the pixels of the odd rows to the adjacent charge transfer paths, and the signal charges of the even rows of pixels and the signal charges of the odd rows of pixels on the charge transfer paths are set to the same horizontal position. A first drive mode in which charge transfer is performed while maintaining
When the signal charge of the pixel is read from the odd-numbered row pixel to the adjacent charge transfer path and transferred along the charge transfer path, and the signal charge on the charge transfer path is transferred to the even-numbered row position The signal charges of the pixels are read from the pixels of the even rows to the adjacent charge transfer paths, and the signal charges of the pixels of the even rows and the signal charges of the pixels of the odd rows on each charge transfer path are in the same horizontal position. The solid-state imaging device driving method, wherein the second driving mode in which charge transfer is performed while maintaining the switching state based on a predetermined condition.
前記所定条件は、前記二次元アレイ状に配列された画素が設けられる撮像領域の中から該撮像領域より狭い範囲を電子的手振れ補正を行うために切り出したときの該範囲の前記電荷転送方向境界線の位置であることを特徴とする請求項1に記載の固体撮像素子の駆動方法。   The predetermined condition is that the boundary in the charge transfer direction of the range when the range narrower than the imaging region is cut out from the imaging region in which the pixels arranged in the two-dimensional array are provided to perform electronic camera shake correction The solid-state imaging device driving method according to claim 1, wherein the driving method is a line position. 前記偶数行と前記奇数行の一方の画素には緑色フィルタが搭載され、前記偶数行と奇数行の他方の画素には赤色フィルタと青色フィルタとが交互に搭載されていることを特徴とする請求項1または請求項2に記載の固体撮像素子の駆動方法。   The green filter is mounted on one pixel of the even and odd rows, and the red filter and the blue filter are alternately mounted on the other pixel of the even and odd rows. The method for driving a solid-state imaging device according to claim 1 or 2. 複数の画素が二次元アレイ状に形成されると共に偶数行の画素と奇数行の画素とが1/2ピッチづつずらして形成され、各画素列に夫々隣接して設けられ当該画素列の画素から読み出された信号電荷を受け取り転送する電荷転送路が夫々形成された固体撮像素子を搭載する撮像装置において、請求項1乃至請求項3のいずれかに記載の第1駆動モードと第2駆動モードの夫々の駆動パルスを生成し前記固体撮像素子に供給する撮像素子駆動部と、前記所定条件を判定し切替指示を前記撮像素子駆動部に出力する制御部とを備えることを特徴とする撮像装置。   A plurality of pixels are formed in a two-dimensional array, and even-numbered pixels and odd-numbered rows of pixels are formed by being shifted by ½ pitch, and are provided adjacent to each pixel column, respectively. 4. The first drive mode and the second drive mode according to claim 1, wherein the first drive mode and the second drive mode are mounted in a solid-state image pickup device in which a charge transfer path for receiving and transferring the read signal charge is formed. An imaging device comprising: an imaging element driving unit that generates and supplies the driving pulses to the solid-state imaging element; and a control unit that determines the predetermined condition and outputs a switching instruction to the imaging element driving unit. .
JP2006333182A 2006-12-11 2006-12-11 Method for driving solid-state image pickup device and imaging apparatus Abandoned JP2008148022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006333182A JP2008148022A (en) 2006-12-11 2006-12-11 Method for driving solid-state image pickup device and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006333182A JP2008148022A (en) 2006-12-11 2006-12-11 Method for driving solid-state image pickup device and imaging apparatus

Publications (1)

Publication Number Publication Date
JP2008148022A true JP2008148022A (en) 2008-06-26

Family

ID=39607701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006333182A Abandoned JP2008148022A (en) 2006-12-11 2006-12-11 Method for driving solid-state image pickup device and imaging apparatus

Country Status (1)

Country Link
JP (1) JP2008148022A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9083883B2 (en) 2011-01-26 2015-07-14 Kabushiki Kaisha Toshiba Camera module, electronic apparatus, and photographing method for image stabilization and increasing resolution
CN107295277A (en) * 2016-04-13 2017-10-24 合肥芯福传感器技术有限公司 Increase honeycomb pixel array, imaging sensor and the acquisition method of picture based on dislocation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441017A (en) * 1977-09-08 1979-03-31 Sony Corp Solid color image pickup device
JPS58209271A (en) * 1982-05-31 1983-12-06 Toshiba Corp Two-dimensional solid-state image pickup device
JPH05260490A (en) * 1992-03-11 1993-10-08 Sony Corp Solid-state image pickup device
JP2006081148A (en) * 2004-08-13 2006-03-23 Fuji Film Microdevices Co Ltd Solid-state imaging apparatus and method for driving the same
JP2006254144A (en) * 2005-03-11 2006-09-21 Fuji Photo Film Co Ltd Solid-state imaging device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5441017A (en) * 1977-09-08 1979-03-31 Sony Corp Solid color image pickup device
JPS58209271A (en) * 1982-05-31 1983-12-06 Toshiba Corp Two-dimensional solid-state image pickup device
JPH05260490A (en) * 1992-03-11 1993-10-08 Sony Corp Solid-state image pickup device
JP2006081148A (en) * 2004-08-13 2006-03-23 Fuji Film Microdevices Co Ltd Solid-state imaging apparatus and method for driving the same
JP2006254144A (en) * 2005-03-11 2006-09-21 Fuji Photo Film Co Ltd Solid-state imaging device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9083883B2 (en) 2011-01-26 2015-07-14 Kabushiki Kaisha Toshiba Camera module, electronic apparatus, and photographing method for image stabilization and increasing resolution
CN107295277A (en) * 2016-04-13 2017-10-24 合肥芯福传感器技术有限公司 Increase honeycomb pixel array, imaging sensor and the acquisition method of picture based on dislocation

Similar Documents

Publication Publication Date Title
JP4951440B2 (en) Imaging apparatus and solid-state imaging device driving method
JP2008104013A (en) Driving method of solid-state imaging element and imaging apparatus
US20110216228A1 (en) Solid-state image sensing element, method for driving solid-state image sensing element and image pickup device
JP2007288131A (en) Solid-state imaging element, solid-state imaging device and its driving method
JP2009065478A (en) Driving method of solid-state image sensor, and imaging apparatus
JP2009017459A (en) Ccd solid-state imaging element, driving method thereof, and imaging apparatus
JP2009021985A (en) Imaging apparatus, and driving method of imaging apparatus
JP2009055321A (en) Imaging device and method of driving ccd solid image sensor
JP2008148022A (en) Method for driving solid-state image pickup device and imaging apparatus
JP4774348B2 (en) Digital camera and solid-state image sensor
JP2007235888A (en) Single-ccd color solid-state imaging element and imaging apparatus
JP4579072B2 (en) Solid-state imaging device driving method and solid-state imaging device
JP2010011008A (en) Ccd solid-state imaging element, imaging apparatus, and black level detection method therein
JP2007325181A (en) Driving method of ccd type solid state imaging element, and solid state imaging apparatus
JP2007201800A (en) Ccd solid-state image pick-up element, its driving method, and digital camera
JP2009303020A (en) Image capturing apparatus and defective pixel correcting method
JP2007201712A (en) Imaging apparatus, ccd type solid-state imaging element mounted on the imaging apparatus, and drive method thereof
JP2008301328A (en) Ccd solid-state imaging element and driving method thereof, and imaging element
JP2009141404A (en) Drive control method for ccd solid-state imaging sensor and imaging apparatus
JP2009049504A (en) Imaging device and imaging unit
JP5256084B2 (en) Imaging device and driving method of imaging device
JP2009049523A (en) Solid-state image sensor, imaging apparatus, and method for driving solid-state image sensor
JP2007159024A (en) Driving system of ccd type solid-state imaging device and the ccd type solid-state imaging device
JP2009044620A (en) Pixel mixed reading method of solid-state imaging element and imaging apparatus
JP2007201711A (en) Imaging apparatus and charge transfer method of ccd type solid-state imaging element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20110926