[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008140972A - Molded goods having conductive circuit, and manufacturing method thereof - Google Patents

Molded goods having conductive circuit, and manufacturing method thereof Download PDF

Info

Publication number
JP2008140972A
JP2008140972A JP2006325463A JP2006325463A JP2008140972A JP 2008140972 A JP2008140972 A JP 2008140972A JP 2006325463 A JP2006325463 A JP 2006325463A JP 2006325463 A JP2006325463 A JP 2006325463A JP 2008140972 A JP2008140972 A JP 2008140972A
Authority
JP
Japan
Prior art keywords
conductive circuit
molded body
conductive
molded
laser light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006325463A
Other languages
Japanese (ja)
Inventor
Takahiro Sunaga
隆弘 須永
Kingo Furukawa
欣吾 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Wiring Systems Ltd
AutoNetworks Technologies Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Wiring Systems Ltd, AutoNetworks Technologies Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Wiring Systems Ltd
Priority to JP2006325463A priority Critical patent/JP2008140972A/en
Publication of JP2008140972A publication Critical patent/JP2008140972A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide molded goods having conductive circuits and a manufacturing method thereof whereby the molded goods having conductive circuits are obtained surely and the conductive circuits can be formed further more effectively. <P>SOLUTION: Polybuthylene terephthalate having added glass fibers and the compound having added CuCr<SB>2</SB>O<SB>4</SB>are so mixed with each other by a biaxial molding machine as to pelletize the resultant object and then mold it in the form of a sheet by an injection molding machine. Thereafter, a laser beam is so irradiated on the obtained molded body in the direction (arrow direction R) orthogonal to the orientating direction of the glass fibers 2 and an electroless copper plating is so performed to the obtained molded body as to form conductive circuits 3 in the region irradiated by the laser beam. Thereby, the molded body 1 having conductive circuits is obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、表面に導電性の回路が形成された導電回路を有する成形品及びその製造方法に関するものである。   The present invention relates to a molded article having a conductive circuit having a conductive circuit formed on its surface and a method for manufacturing the same.

従来、導電回路を有する成形品として、例えば樹脂基板等の成形品の表面に導電回路を形成した回路基板が広く用いられている。この回路基板を効率よく形成する方法として、例えば、ポリブチレンテレフタレート、パイロジェン珪酸および銅を含有するスピネルをベースとする複合酸化物からなる配合物を射出成形したケーシングに、Nd:YAGレーザーからレーザー光を照射した後、ケーシングに化学的還元性銅メッキを行うことで、レーザー光を照射した部分に回路を形成する方法が提案されている(特許文献1参照)。   Conventionally, as a molded article having a conductive circuit, for example, a circuit board having a conductive circuit formed on the surface of a molded article such as a resin substrate has been widely used. As a method for efficiently forming this circuit board, for example, a casing made by injection-molding a compound composed of a composite oxide based on spinel containing polybutylene terephthalate, pyrogenic silicic acid and copper is irradiated with laser light from an Nd: YAG laser. A method of forming a circuit in a portion irradiated with laser light has been proposed (see Patent Document 1) by performing chemical reducing copper plating on the casing after irradiation.

特表2004−534408号公報(実施例1)JP-T-2004-534408 (Example 1)

しかしながら、上記特許文献1に記載の方法は、具体的な製造条件が不明であり、常に導電回路が形成されるのではなく、製造条件によっては回路が形成されないこともあった。また、成形品の製造コストを削減する為には、回路を確実に形成できると共に、更に効率よく回路を形成することが要望されている。   However, in the method described in Patent Document 1, specific manufacturing conditions are unknown, and a conductive circuit is not always formed, and a circuit may not be formed depending on manufacturing conditions. Moreover, in order to reduce the manufacturing cost of a molded product, while being able to form a circuit reliably, forming a circuit more efficiently is desired.

本発明が解決しようとする課題は、導電回路を有する成形品が確実に得られ、導電回路を更に効率良く形成することが可能な導電回路を有する成形品及びその製造方法を提供することにある。   The problem to be solved by the present invention is to provide a molded article having a conductive circuit capable of reliably forming a molded article having a conductive circuit and forming the conductive circuit more efficiently, and a method for manufacturing the same. .

上記課題を解決するために本発明の導電回路を有する成形品は、熱可塑性樹脂に非導電性無機繊維及び銅含有複合酸化物材料が添加された配合物から成形された成形体の表面に、レーザー光が照射された領域に無電解めっきによる導電回路が形成されている成形体であって、前記導電回路が非導電性無機繊維の配向方向と交差する方向に形成されていることを要旨とするものである。   In order to solve the above problems, a molded article having a conductive circuit of the present invention is formed on the surface of a molded article formed from a blend in which a non-conductive inorganic fiber and a copper-containing composite oxide material are added to a thermoplastic resin. It is a molded body in which a conductive circuit is formed by electroless plating in a region irradiated with laser light, and the conductive circuit is formed in a direction crossing the orientation direction of the non-conductive inorganic fiber. To do.

上記成形体の熱可塑性樹脂としては、射出成形などの成形が可能な樹脂であれば利用可能であるが、例えばポリブチレンテレフタレートが汎用性があり安価であって、成形性が良好である等の点から好ましい。上記銅含有複合酸化物材料は、スピネル型のCuCrの黒色顔料を用いるのが好ましい。上記非導電性無機繊維は、ガラス繊維が好ましい。また、上記成形体には、導電回路形成を阻害しない範囲で、その他の添加物を配合してもよい。 As the thermoplastic resin of the molded body, any resin that can be molded such as injection molding can be used. For example, polybutylene terephthalate is versatile and inexpensive, and has good moldability. It is preferable from the point. The copper-containing composite oxide material is preferably a spinel-type CuCr 2 O 4 black pigment. The non-conductive inorganic fiber is preferably a glass fiber. Moreover, you may mix | blend another additive with the said molded object in the range which does not inhibit electrically conductive circuit formation.

また上記成形体において、導電回路は、成形体の非導電性無機繊維の配向方向と直交する方向に形成されていることが好ましい。   Moreover, in the said molded object, it is preferable that the conductive circuit is formed in the direction orthogonal to the orientation direction of the nonelectroconductive inorganic fiber of a molded object.

また本発明の導電回路を有する成形体の製造方法は、熱可塑性樹脂に非導電性無機繊維及び銅含有複合酸化物材料を添加した配合物を射出成形し、得られた成形体の表面に非導電性無機繊維の配向方向と交差する方向にレーザー光を照射した後、成形体に無電解めっきを行い、レーザー光照射領域に無電解めっきによる導電回路を形成してなることを要旨とするものである。   The method for producing a molded article having a conductive circuit according to the present invention includes injection molding a compound obtained by adding a non-conductive inorganic fiber and a copper-containing composite oxide material to a thermoplastic resin, and forming a non-coated surface on the resulting molded article. The gist is that after irradiating laser light in the direction intersecting the orientation direction of the conductive inorganic fiber, the molded body is subjected to electroless plating, and a conductive circuit is formed by electroless plating in the laser light irradiation area. It is.

上記成形体の製造方法において、レーザー光の照射を、平均レーザー出力が1.3W以上であり、単位面積当たり付与エネルギーが0.35J以上で行うことが、めっき層からなる導電回路がより確実に得られることから好ましい。   In the manufacturing method of the molded body, the conductive circuit composed of the plating layer can be more reliably performed by irradiating the laser beam with an average laser output of 1.3 W or more and an applied energy per unit area of 0.35 J or more. Since it is obtained, it is preferable.

上記本発明導電回路を有する成形体によれば、導電回路が非導電性無機繊維の配向方向と交差する方向に形成されているので、レーザー光照射領域に確実に導電回路が形成されている成形体が得られる。   According to the molded body having the conductive circuit of the present invention, since the conductive circuit is formed in a direction crossing the orientation direction of the non-conductive inorganic fibers, the conductive circuit is reliably formed in the laser light irradiation region. The body is obtained.

また上記本発明導電回路を有する成形体の製造方法によれば、導電回路を有する成形品が確実に得られると共に、導電回路を更に効率良く形成可能であり、レーザー光照射工程におけるスキャン速度を上げることで生産性が向上し、製造コストを低減することができる。   In addition, according to the method for producing a molded article having a conductive circuit of the present invention, a molded article having a conductive circuit can be obtained reliably, the conductive circuit can be formed more efficiently, and the scanning speed in the laser light irradiation process is increased. As a result, productivity can be improved and manufacturing costs can be reduced.

以下、本発明の実施形態を図面を参照して詳細に説明する。図1(a)は本発明導電回路を有する成形品の一例として回路基板を示す平面図である。図1の回路基板1は、熱可塑性樹脂としてポリブチレンテレフタレート(以下、PBTと言うこともある)を用い、非導電性無機繊維としてガラス繊維、及び銅含有複合酸化物材料としてスピネル型のCuCrの黒色顔料を添加した配合物が射出成形されてシート状に形成された成形体である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Fig.1 (a) is a top view which shows a circuit board as an example of the molded article which has this invention conductive circuit. 1 uses polybutylene terephthalate (hereinafter sometimes referred to as PBT) as a thermoplastic resin, glass fibers as non-conductive inorganic fibers, and spinel-type CuCr 2 as a copper-containing composite oxide material. It is a molded body formed by injection molding a compound to which a black pigment of O 4 is added and formed into a sheet shape.

図1の回路基板1は、前記ガラス繊維2が図中上下方向に配向するように成形されている。そして回路基板1の表面には、ガラス繊維2の配向方向(図中矢印Dで示す)と直交する方向(図中矢印Rで示す)に導電回路3が形成されている。尚、図1において、ガラス繊維2は、配向方向を説明するために、模式的に示した。   The circuit board 1 in FIG. 1 is formed such that the glass fibers 2 are oriented in the vertical direction in the figure. A conductive circuit 3 is formed on the surface of the circuit board 1 in a direction (indicated by an arrow R in the figure) orthogonal to the orientation direction of the glass fibers 2 (indicated by an arrow D in the figure). In FIG. 1, the glass fiber 2 is schematically shown in order to explain the orientation direction.

図1(b)は同図(a)の回路基板の導電回路を示す拡大図である。回路基板1の導電回路3は、成形体の表面のガラス繊維2の配向方向と直交する方向となる矢印RL方向にレーザー光Lがスキャンされて照射された領域に、無電解銅めっきによる導電性金属層である、金属銅からなる回路が連続的に形成されているものである。   FIG. 1B is an enlarged view showing a conductive circuit of the circuit board of FIG. The conductive circuit 3 of the circuit board 1 has a conductive property by electroless copper plating in the region irradiated with the laser beam L in the direction of the arrow RL, which is a direction orthogonal to the orientation direction of the glass fiber 2 on the surface of the molded body. A circuit made of metallic copper, which is a metal layer, is continuously formed.

以下、上記成形体の製造方法について説明する。PBT、ガラス繊維及びスピネル型のCuCrの黒色顔料を添加した配合物を混練しペレット状に押出成型する。このペレット射出成形機を用いてシート状に成型して基板を得る。次いで、この基板の表面にレーザー光を照射する。レーザー光の照射は、基板のガラス繊維の配向方向と交差する方向に照射する。 Hereinafter, the manufacturing method of the said molded object is demonstrated. A blend of PBT, glass fiber and spinel-type CuCr 2 O 4 black pigment is kneaded and extruded into a pellet. A substrate is obtained by molding into a sheet using this pellet injection molding machine. Next, the surface of the substrate is irradiated with laser light. Laser light is irradiated in a direction that intersects with the orientation direction of the glass fibers of the substrate.

基板表面のレーザー光が照射された成形体に、洗浄等の前処理を行った後、無電解銅めっきを施す。基板表面にレーザー光が照射された領域に、無電解銅めっきによる金属銅の層が連続的に形成される。スピネル型のCuCr等の銅含有複合酸化物材料を含む成形体は、レーザー光が照射されると、その熱エネルギーによって照射部のみがめっきに適した状態になると考えられる。そして、レーザー光を照射した成形体に無電解めっきを行うと、成形体のレーザー光照射部分にのみ、めっき皮膜が形成される。 After the pre-treatment such as washing is performed on the molded body irradiated with the laser beam on the substrate surface, electroless copper plating is performed. In the region where the laser beam is irradiated on the substrate surface, a metal copper layer is formed continuously by electroless copper plating. When a molded body containing a copper-containing composite oxide material such as spinel-type CuCr 2 O 4 is irradiated with laser light, only the irradiated portion is considered to be in a state suitable for plating due to its thermal energy. When electroless plating is performed on the molded body irradiated with laser light, a plating film is formed only on the laser light irradiated portion of the molded body.

レーザー光を照射した後で無電解めっきにを行った際、レーザー光照射領域にめっき層が形成されるかどうかは、レーザー光の照射条件(例えば、単位面積当たりの付与エネルギー、平均出力、スキャン速度等)に依存する。本発明では、成形体表面の導電回路を形成しようとする領域にレーザー光の照射を行う場合、成形体からなる基板に含まれるガラス繊維等の非導電性無機繊維の配向方向と直交方向等の交差方向にレーザー光を照射することで、レーザー光の単位面積当たりの付与エネルギーを小さくしたり、スキャン速度を速くすることができる。   When electroless plating is performed after laser light irradiation, whether or not a plating layer is formed in the laser light irradiation area depends on the laser light irradiation conditions (for example, applied energy per unit area, average output, scan) Speed). In the present invention, when irradiating a region on the surface of the molded body where a conductive circuit is to be formed with laser light, the orientation direction of the non-conductive inorganic fibers such as glass fibers contained in the substrate made of the molded body is orthogonal to the orientation direction. By irradiating the laser beam in the intersecting direction, the applied energy per unit area of the laser beam can be reduced or the scanning speed can be increased.

導電回路形成のために好ましいレーザー光の照射パワーと、単位面積当たりの付与エネルギー範囲は、以下の通りである。レーザー光の照射装置は、少なくともレーザー出力が1.3W以上、単位面積当たりの付与エネルギーが0.35J程度以上であることが好ましい。またレーザー光の波長は、248nm、308nm、355nm、532nm、1064nm、10600nm等が用いられる。またレーザー照射装置は、YVO4レーザーパターニング装置を用いることが好ましい。また無電解めっきは、市販の無電解銅めっき液などを用いて、めっきを行うことができる。   The irradiation power of laser light and the range of applied energy per unit area that are preferable for forming a conductive circuit are as follows. It is preferable that the laser beam irradiation apparatus has at least a laser output of 1.3 W or more and an applied energy per unit area of about 0.35 J or more. The wavelength of the laser light is 248 nm, 308 nm, 355 nm, 532 nm, 1064 nm, 10600 nm, or the like. The laser irradiation device is preferably a YVO4 laser patterning device. Electroless plating can be performed using a commercially available electroless copper plating solution or the like.

図2は本発明の導電回路を有する成形体の他の例を示す斜視図である。図2に示す成形体は、補聴器等の内部立体回路基板である。同図に示すように、この回路基板1は、図中矢印G1及び矢印G2(図中、この方向を互いに直交するX、Y、Z軸のうちX軸方向とする)位置に射出成形のゲートを設けて、ガラス繊維入りのPBT及びスピネル型のCuCr黒色顔料配合物を射出成形して形成したものである。この回路基板は、上記ゲート位置の成形装置により成形されているので、矢印G1及びG2と同じ図中X軸方向にガラス繊維が配向している。更に回路基板の表面には、ガラス繊維の配向方向と直交する方向(Y軸方向)に導電回路3が形成されている。本発明の成形体及び製造方法では、このようにゲートの配置等を適宜選択して成形を行うことで、導電回路を形成したい方向と直交するように成形体のガラス繊維を配向させることができる。 FIG. 2 is a perspective view showing another example of a molded body having a conductive circuit of the present invention. 2 is an internal three-dimensional circuit board such as a hearing aid. As shown in the figure, this circuit board 1 is formed by injection molding at the position of arrows G1 and G2 (in the figure, the direction is the X-axis direction among X, Y, and Z axes orthogonal to each other). Are formed by injection molding of a PBT containing glass fiber and a spinel-type CuCr 2 O 4 black pigment compound. Since this circuit board is formed by the forming device at the gate position, the glass fibers are oriented in the X-axis direction in the same drawing as the arrows G1 and G2. Furthermore, a conductive circuit 3 is formed on the surface of the circuit board in a direction (Y-axis direction) orthogonal to the glass fiber orientation direction. In the molded body and the manufacturing method of the present invention, the glass fibers of the molded body can be oriented so as to be orthogonal to the direction in which the conductive circuit is to be formed by appropriately selecting the gate arrangement and the like in this way. .

以下、本発明の実施例、比較例を示す。
実施例
ガラス繊維が30質量%添加されたポリブチレンテレフタレート樹脂(BASF社製:Ultradur B4300G6)を95質量%に銅含有複合酸化物材料としてCuCr(フェロージャパン社製:PK3095)を5質量%添加した配合物を2軸成形機で混合し温度250℃程度でペレット化した。該ペレットを射出成形機でシートを成形した。
Examples of the present invention and comparative examples are shown below.
Example 5 mass of CuCr 2 O 4 (manufactured by Fellow Japan: PK3095) as a copper-containing composite oxide material with 95 mass% of polybutylene terephthalate resin (BASF: Ultradur B4300G6) added with 30 mass% of glass fiber. % Of the blended product was mixed with a biaxial molding machine and pelletized at a temperature of about 250 ° C. The pellet was formed into a sheet by an injection molding machine.

上記の成形シートに対し、レーザー照射装置(キーエンス社製:レーザーマーカーMD−V9620)を用いて、ガラス繊維の配向方向に対し直交する方向にレーザー光(波長1064nm)を照射した。レーザー光の照射条件を種々の条件として種々の試料を作成した(このレーザ光の照射条件は後述する)。レーザー光を照射した成形シートを、イオン交換水(50℃)で5分間超音波洗浄した後、無電解銅めっき液(Enthone社製:Enplate Cu872)を用いて、ビーカーを空気攪拌しながらヒーターで温度保持をして、43℃で40分間処理して無電解めっきを行った。成形体のレーザー光の照射条件とめっき層の形成状態を観察した。その結果を図3のグラフに示す。   Laser light (wavelength 1064 nm) was irradiated to the above-mentioned molded sheet in a direction orthogonal to the orientation direction of the glass fiber using a laser irradiation device (manufactured by Keyence Corporation: Laser Marker MD-V9620). Various samples were prepared under various laser light irradiation conditions (the laser light irradiation conditions will be described later). The molded sheet irradiated with laser light is ultrasonically cleaned with ion-exchanged water (50 ° C.) for 5 minutes, and then an electroless copper plating solution (Enthone: Enplate Cu872) is used with a heater while stirring the beaker with air. The temperature was maintained, and electroless plating was performed by treating at 43 ° C. for 40 minutes. The laser beam irradiation conditions of the molded body and the formation state of the plating layer were observed. The result is shown in the graph of FIG.

比較例
図4に示すように、上記成形シートのガラス繊維2の配向方向と同じ方向DLにレーザー光Lを照射した以外は上記実施例と同様に行って、成形体のレーザー光の照射条件とめっき層の形成状態を観察した。その結果を図5のグラフに示す。
Comparative Example As shown in FIG. 4, except that the laser beam L was irradiated in the same direction DL as the orientation direction of the glass fiber 2 of the molded sheet, the same as in the above example, The formation state of the plating layer was observed. The results are shown in the graph of FIG.

図3及び図5は、レーザー照射装置の平均出力と単位面積当たりの付与エネルギーの関係を示すグラフである。このグラフにおいて、めっき反応が起こったのは、図中点線の右側で且つ点線の上側となる範囲であった。この点線で示した点が、導電回路が形成されるレーザー光の照射エネルギーの閾値と言える。すなわち単位面積当たりの付与エネルギー或いはレーザー平均出力が、この閾値以上であれば、レーザー光を照射領域には、無電解めっきを行った際に導電回路が連続的に確実に形成されることを意味する。   3 and 5 are graphs showing the relationship between the average output of the laser irradiation apparatus and the applied energy per unit area. In this graph, the plating reaction occurred in the range on the right side of the dotted line and the upper side of the dotted line in the figure. It can be said that the point indicated by the dotted line is the threshold value of the irradiation energy of the laser beam for forming the conductive circuit. That is, if the applied energy per unit area or the laser average output is equal to or greater than this threshold value, it means that a conductive circuit is continuously and reliably formed in the region irradiated with laser light when electroless plating is performed. To do.

図3の実施例のグラフでは、めっき層が形成される閾値が、平均レーザ出力が1.3W以上、単位面積(1mm)あたり付与エネルギーが0.096J以上である。そして、レーザー光照射のスキャン速度が、最高50mm/sまでめっき層形成可能という結果が得られた。これに対し比較例は、図5のグラフに示すように、めっき層が形成される閾値は、平均レーザ出力が1.3W以上、単位面積(1mm)あたり付与エネルギーが0.35J以上である。そして、めっき層形成可能なレーザー光照射のスキャン速度は、10mm/s以下であった。 In the graph of the example of FIG. 3, the threshold for forming the plating layer is that the average laser output is 1.3 W or more, and the applied energy per unit area (1 mm 2 ) is 0.096 J or more. As a result, it was possible to form a plating layer up to a scanning speed of laser light irradiation of 50 mm / s at the maximum. In contrast, in the comparative example, as shown in the graph of FIG. 5, the threshold for forming the plating layer is that the average laser output is 1.3 W or more and the applied energy per unit area (1 mm 2 ) is 0.35 J or more. . And the scanning speed of the laser beam irradiation which can form a plating layer was 10 mm / s or less.

つまり実施例では、レーザー光の照射の際のスキャン速度が、比較例の10mm/sの5倍の50mm/sでもめっき層が形成されたのである。これは、成形シートのガラス繊維の配向方向と直交する方向にレーザー光を照射することで、単位面積当たりの付与エネルギーが比較例の1/5の場合でも、連続的にめっき層が形成されることを意味するものである。この実施例の結果は、本来めっき反応が起こりにくい条件であっても、本願発明によれば、めっき反応を促進させる効果があることを裏付けるものである。   That is, in the example, the plating layer was formed even when the scanning speed at the time of laser light irradiation was 50 mm / s, which is 5 times the 10 mm / s of the comparative example. By irradiating laser light in a direction orthogonal to the orientation direction of the glass fibers of the molded sheet, a plating layer is continuously formed even when the applied energy per unit area is 1/5 of the comparative example. It means that. The result of this example confirms that there is an effect of promoting the plating reaction according to the present invention even under conditions where the plating reaction hardly occurs.

本発明の導電回路を有する成形体の一例を示し、(a)は平面図であり、(b)は(a)の導電回路の説明図である。An example of the molded object which has the electrically conductive circuit of this invention is shown, (a) is a top view, (b) is explanatory drawing of the electrically conductive circuit of (a). 本発明の導電回路を有する成形体の他の例を示す斜視図である。。It is a perspective view which shows the other example of the molded object which has the electrically conductive circuit of this invention. . 実施例のレーザー光の照射条件の閾値を示すグラフである。It is a graph which shows the threshold value of the irradiation condition of the laser beam of an Example. 比較例の成形体表面の説明図である。It is explanatory drawing of the molded object surface of a comparative example. 比較例のレーザー光の照射条件の閾値を示すグラフである。It is a graph which shows the threshold value of the irradiation condition of the laser beam of a comparative example.

符号の説明Explanation of symbols

1 回路基板
2 ガラス繊維
3 導電回路
L レーザー光
R ガラス繊維の配向方向と直交する方向
DESCRIPTION OF SYMBOLS 1 Circuit board 2 Glass fiber 3 Conductive circuit L Laser beam R The direction orthogonal to the orientation direction of glass fiber

Claims (7)

熱可塑性樹脂に非導電性無機繊維及び銅含有複合酸化物材料が添加された配合物から成形された成形体の表面に、レーザー光が照射された領域に無電解めっきによる導電回路が形成されている成形体であって、前記導電回路が非導電性無機繊維の配向方向と交差する方向に形成されていることを特徴とする導電回路を有する成形体。   A conductive circuit is formed by electroless plating in the region irradiated with laser light on the surface of a molded body formed from a mixture in which a non-conductive inorganic fiber and a copper-containing composite oxide material are added to a thermoplastic resin. A molded body having a conductive circuit, wherein the conductive circuit is formed in a direction crossing an orientation direction of the non-conductive inorganic fiber. 熱可塑性樹脂がポリブチレンテレフタレートであることを特徴とする請求項1記載の導電回路を有する成形体。   The molded article having a conductive circuit according to claim 1, wherein the thermoplastic resin is polybutylene terephthalate. 非導電性無機繊維がガラス繊維であることを特徴とする請求項1又は2記載の導電回路を有する成形体。   The molded body having a conductive circuit according to claim 1 or 2, wherein the non-conductive inorganic fiber is a glass fiber. 銅含有複合酸化物材料がスピネル型のCuCrであること特徴とする請求項1〜3のいずれかに記載の導電回路を有する成形体。 The molded body having a conductive circuit according to any one of claims 1 to 3, wherein the copper-containing composite oxide material is spinel type CuCr 2 O 4 . 導電回路が成形体の非導電性無機繊維の配向方向と直交する方向に形成されていることを特徴とする請求項1〜4のいずれかに記載の導電回路を有する成形体。   The molded body having a conductive circuit according to any one of claims 1 to 4, wherein the conductive circuit is formed in a direction orthogonal to the orientation direction of the non-conductive inorganic fibers of the molded body. 熱可塑性樹脂に非導電性無機繊維及び銅含有複合酸化物材料を添加した配合物を射出成形し、得られた成形体の表面に非導電性無機繊維の配向方向と交差する方向にレーザー光を照射した後、成形体に無電解めっきを行い、レーザー光照射領域に無電解めっきによる導電回路を形成してなることを特徴とする導電回路を有する成形体の製造方法。   A compound in which a non-conductive inorganic fiber and a copper-containing composite oxide material are added to a thermoplastic resin is injection-molded, and a laser beam is applied to the surface of the resulting molded body in a direction crossing the orientation direction of the non-conductive inorganic fiber. A method for producing a molded body having a conductive circuit, wherein the molded body is subjected to electroless plating after irradiation and a conductive circuit is formed by electroless plating in a laser light irradiation region. レーザー光の照射を、平均レーザー出力が1.3W以上であり、単位面積当たり付与エネルギーが0.35J以上で行うことを特徴とする請求項6記載の導電回路を有する成形体の製造方法。   The method for producing a molded body having a conductive circuit according to claim 6, wherein the laser beam irradiation is performed with an average laser output of 1.3 W or more and an applied energy per unit area of 0.35 J or more.
JP2006325463A 2006-12-01 2006-12-01 Molded goods having conductive circuit, and manufacturing method thereof Pending JP2008140972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006325463A JP2008140972A (en) 2006-12-01 2006-12-01 Molded goods having conductive circuit, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006325463A JP2008140972A (en) 2006-12-01 2006-12-01 Molded goods having conductive circuit, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2008140972A true JP2008140972A (en) 2008-06-19

Family

ID=39602139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006325463A Pending JP2008140972A (en) 2006-12-01 2006-12-01 Molded goods having conductive circuit, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2008140972A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229410A (en) * 2009-03-27 2010-10-14 Lanxess Deutschland Gmbh Glow wire resistant polyester
JP2013144767A (en) * 2011-03-18 2013-07-25 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition, resin molding, and process for producing resin molding having plating layer attached thereto
JP2014043549A (en) * 2012-08-28 2014-03-13 Ems-Patent Ag Polyamide molding material and use thereof
WO2015147561A1 (en) * 2014-03-26 2015-10-01 전자부품연구원 Composite material with which conductor pattern can easily be formed, method for manufacturing the composite material, copper nitride seed material of the composite material and method for synthesising the copper nitride
KR20150111766A (en) * 2014-03-26 2015-10-06 전자부품연구원 Composite material forming a conductor pattern easily, and method for manufacturing the composite material
WO2015160209A1 (en) * 2014-04-16 2015-10-22 주식회사 엘지화학 Composition for forming conductive pattern, method for forming conductive pattern by using same, and resin structure having conductive pattern
WO2016064192A1 (en) * 2014-10-23 2016-04-28 주식회사 엘지화학 Composition for forming conductive pattern by electromagnetic wave radiation, method for forming conductive pattern using same, and resin structure having conductive pattern
JP2016521453A (en) * 2013-04-26 2016-07-21 エルジー・ケム・リミテッド Composition for forming conductive pattern, method for forming conductive pattern using the same, and resin structure having conductive pattern
JP2017535023A (en) * 2014-09-11 2017-11-24 エルジー・ケム・リミテッド Conductive pattern forming composition, conductive pattern forming method using the same, and resin structure having conductive pattern

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010229410A (en) * 2009-03-27 2010-10-14 Lanxess Deutschland Gmbh Glow wire resistant polyester
JP2013144767A (en) * 2011-03-18 2013-07-25 Mitsubishi Engineering Plastics Corp Thermoplastic resin composition, resin molding, and process for producing resin molding having plating layer attached thereto
JP2014043549A (en) * 2012-08-28 2014-03-13 Ems-Patent Ag Polyamide molding material and use thereof
KR101534539B1 (en) * 2012-08-28 2015-07-07 이엠에스-패턴트 에이지 Polyamide moulding composition and use thereof
JP2016521453A (en) * 2013-04-26 2016-07-21 エルジー・ケム・リミテッド Composition for forming conductive pattern, method for forming conductive pattern using the same, and resin structure having conductive pattern
US9967974B2 (en) 2013-04-26 2018-05-08 Lg Chem, Ltd. Composition and method for forming conductive pattern, and resin structure having conductive pattern thereon
WO2015147561A1 (en) * 2014-03-26 2015-10-01 전자부품연구원 Composite material with which conductor pattern can easily be formed, method for manufacturing the composite material, copper nitride seed material of the composite material and method for synthesising the copper nitride
KR20150111766A (en) * 2014-03-26 2015-10-06 전자부품연구원 Composite material forming a conductor pattern easily, and method for manufacturing the composite material
KR101595295B1 (en) 2014-03-26 2016-02-18 전자부품연구원 Composite material forming a conductor pattern easily, and method for manufacturing the composite material
WO2015160209A1 (en) * 2014-04-16 2015-10-22 주식회사 엘지화학 Composition for forming conductive pattern, method for forming conductive pattern by using same, and resin structure having conductive pattern
US9992864B2 (en) 2014-04-16 2018-06-05 Lg Chem, Ltd. Composition for forming conductive pattern, method for forming conductive pattern using the same, and resin components having conductive pattern thereon
JP2017535023A (en) * 2014-09-11 2017-11-24 エルジー・ケム・リミテッド Conductive pattern forming composition, conductive pattern forming method using the same, and resin structure having conductive pattern
WO2016064192A1 (en) * 2014-10-23 2016-04-28 주식회사 엘지화학 Composition for forming conductive pattern by electromagnetic wave radiation, method for forming conductive pattern using same, and resin structure having conductive pattern
CN107075239A (en) * 2014-10-23 2017-08-18 株式会社Lg化学 Pass through the composition of electromagenetic wave radiation formation conductive pattern, the method for formation conductive pattern and the resin structure with conductive pattern
KR101722744B1 (en) 2014-10-23 2017-04-03 주식회사 엘지화학 Composition for forming conductive pattern by irradiation of electromagnetic wave
KR20160047931A (en) * 2014-10-23 2016-05-03 주식회사 엘지화학 Composition for forming conductive pattern by irradiation of electromagnetic wave
CN107075239B (en) * 2014-10-23 2019-07-05 株式会社Lg化学 The composition of conductive pattern is formed by electromagenetic wave radiation, forms the method for conductive pattern and with the resin structure of conductive pattern
US10837114B2 (en) 2014-10-23 2020-11-17 Lg Chem., Ltd. Composition for forming conductive pattern by irradiation of electromagnetic waves, method for forming conductive pattern using same, and resin structure having conductive pattern

Similar Documents

Publication Publication Date Title
JP2008140972A (en) Molded goods having conductive circuit, and manufacturing method thereof
CN111108153B (en) Thermoplastic resin composition, resin molded article, method for producing resin molded article with plating layer, and method for producing portable electronic device component
KR102473439B1 (en) Polyphenylene sulfide resin composition, method for preparing the same and injection molded article prepared therefrom
KR102335716B1 (en) Plastic-metal joint and manufacturing method thereof
KR102319221B1 (en) Method for Forming Electrically-Conductive Traces on a Polymer Article Surface
US10827658B2 (en) Electronic device housing, method for manufacturing electronic device housing, development plan-shaped metal resin joint plate, and electronic apparatus
US10161045B2 (en) Method for metalizing polymer substrate and polymer article prepared thereof
CN103774123B (en) Selective metallization method for surface of polymer substrate, and polymer substrate with metallized patterns on surface obtained by same
TW201302423A (en) Shaped aluminum object for manufacturing integrally injection-molded aluminum/resin article, integrally injection-molded aluminum/resin article using same, and method for manufacturing shaped aluminum object and article
JP2022099719A (en) Polypropylene resin composition, polypropylene resin object to be plated, polypropylene resin product having metal layer, method for manufacturing the same, polypropylene resin wiring base material and method for manufacturing the same
JP5628496B2 (en) Manufacturing method of three-dimensional molded circuit components
Akagündüz et al. Optimization of laser direct structuring process parameters for material extrusion of polycarbonate
KR20210068009A (en) Overmolded printed electronic component and method for manufacturing same
JP7224978B2 (en) Method for manufacturing plated parts and mold used for molding base material
Sharif et al. A study on thermoforming process of stretchable circuit and its performance in manufacturing of automotive lighting
Ratautas Laser-assisted formation of electro-conductive circuit traces on dielectric materials by electroless metal plating technique
KR101595295B1 (en) Composite material forming a conductor pattern easily, and method for manufacturing the composite material
JP6559960B2 (en) Plating parts manufacturing method and plated parts
WO2021049624A1 (en) Molded circuit component and electronic device
KR101737566B1 (en) Composition and method for forming conductive pattern, and resin structure having conductive pattern thereon
JP2011099157A (en) Formed circuit component
JP2008120978A (en) Thermotropic liquid crystal polymer resin composition for molding
JP4803420B2 (en) Injection molded circuit components and manufacturing method thereof
JP2023001133A (en) electronic device
JP2006346980A (en) Injection-molded circuit component and its production method