JP2008038219A - Prehardened steel with excellent machinability and toughness - Google Patents
Prehardened steel with excellent machinability and toughness Download PDFInfo
- Publication number
- JP2008038219A JP2008038219A JP2006216543A JP2006216543A JP2008038219A JP 2008038219 A JP2008038219 A JP 2008038219A JP 2006216543 A JP2006216543 A JP 2006216543A JP 2006216543 A JP2006216543 A JP 2006216543A JP 2008038219 A JP2008038219 A JP 2008038219A
- Authority
- JP
- Japan
- Prior art keywords
- machinability
- steel
- toughness
- bainite
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、極めて優れた被削性を有し、さらに靭性と硬さを兼ね備えた新しいプリハードンタイプの、主としてプラスチック成形用金型に使用される工具用鋼に関するものである。 The present invention relates to a new pre-hardened type tool steel mainly used for plastic molding dies, which has excellent machinability and has both toughness and hardness.
主として、プラスチック成形用金型として使用されるプリハードン鋼は、金型等の製作期間の短縮と使用寿命の向上の観点から、被削性と同時に、強度、耐摩耗性に優れ適度の靭性が必要とされるものである。しかし、これらの要求特性は相反する性質であり、どの特性も十分に満足のいく鋼は得られているとは言えない。 Pre-hardened steel used mainly as a mold for plastic molding requires excellent strength and wear resistance as well as machinability, as well as appropriate toughness from the viewpoint of shortening the production period of molds and improving the service life. It is supposed to be. However, these required properties are contradictory properties, and it cannot be said that a steel satisfying all the properties has been obtained.
上記の要求に対しては、例えば、低C−Mn−Ni−Mo(W)−Cu−Al系合金に対して、結晶粒の大きさを粒度番号4〜6の範囲とすることによって被削性および靭性を兼ね備えるという提案がなされている(特許文献1を参照)。この鋼の組織は、主にCを低く規定することによって均一な上部ベイナイト組織に調整されており、この上部ベイナイト組織により被削性を確保するものである。一方で、本願出願人は、主にMn量を適正化し、均一な下部ベイナイト組織に調整することによって、被削性および靭性を兼ね備えた低C−Mn−Ni−Mo(W)−高Cu−Al系合金を提案している(特許文献2を参照)。
上述した提案はそれぞれ、プラスチック成形用プリハードン鋼の性能向上に貢献する一つの手段を提供しているものである。しかし、特許文献1の上部ベイナイト組織は被削性には優れているものの、靭性が十分であるとは言えない。一方、特許文献2の下部ベイナイト組織は靭性には優れているものの、被削性が若干劣っており、やはり十分とは言い難い。この通り、従来の金型用鋼材では、金型制作期間の短縮および使用寿命の向上の要求を十分満足することにおいては、特性の改善に余地のあるものであった。 Each of the above proposals provides a means for contributing to the improvement of the performance of pre-hardened steel for plastic molding. However, although the upper bainite structure of Patent Document 1 is excellent in machinability, it cannot be said that the toughness is sufficient. On the other hand, although the lower bainite structure of Patent Document 2 is excellent in toughness, the machinability is slightly inferior, and it is difficult to say that it is sufficient. As described above, the conventional steel for molds has room for improvement in characteristics in sufficiently satisfying the requirements for shortening the mold production period and improving the service life.
そこで、本発明の目的は、上述した要求に鑑み、金型の制作期間の短縮および使用寿命の向上を共に達成できることで、特にはプラスチック成形用金型に供して最適な、プリハードン鋼を提供することである。 In view of the above-described requirements, the object of the present invention is to provide a pre-hardened steel that is particularly suitable for use in a plastic molding die because it can achieve both shortening of the mold production period and improvement of the service life. That is.
本発明者は、低C−Mn−Ni−(Mo,W)−Cu−Al系合金や、低C−Mn−Ni−(Mo,W)−高Cu−Al系合金の組成および組織と、被削性および靭性との関係を詳細に検討したところ、まず、その基本組成は、低C−Mn−Ni−Cr−Mo−中Cu−Al系合金とすることが優れた被削性、および靭性の兼備において必須の要件であることを見出した。また、これらの一方では、上部ベイナイトと下部ベイナイトの混合組織は、上部ベイナイトの単相組織よりも優れた被削性、および下部ベイナイトの単相組織と同等の靭性を兼備できることを知見した。そして、これらの知見に従った最適な混合組織は、前提となる低C−Mn−Ni−Cr−Mo−中Cu−Al系の中でも限られた狭組成でなる合金とすることで、比較的管理が容易な熱処理条件においても達成できることを見出し、本発明に到達した。 The inventor has a composition and structure of a low C—Mn—Ni— (Mo, W) —Cu—Al based alloy and a low C—Mn—Ni— (Mo, W) —high Cu—Al based alloy, When the relationship between machinability and toughness was examined in detail, first, the basic composition was machinability excellent in being a low C—Mn—Ni—Cr—Mo—Cu—Al based alloy, and It has been found that it is an essential requirement for toughness. On the other hand, it has been found that the mixed structure of the upper bainite and the lower bainite can combine machinability superior to the single-phase structure of the upper bainite and toughness equivalent to the single-phase structure of the lower bainite. And the optimal mixed structure according to these findings is relatively low by using an alloy having a limited narrow composition among Cu-Al systems in the low C-Mn-Ni-Cr-Mo- The inventors have found that it can be achieved even under heat treatment conditions that are easy to manage, and have reached the present invention.
すなわち本発明は、質量%で、C:0.10〜0.14%、Si:0.1〜0.5%、Mn:1.2〜1.6%、S:0.002〜0.005%、Ni:2.8〜3.2%、Cr:0.35〜0.85%、Mo:0.2〜0.4%、V:0.03%未満(0%を含む)、Cu:1.3〜1.8%、Al:0.8〜1.2%、N:0.01%未満、O:0.002%未満、残部Feおよび不可避的不純物よりなることを特徴とする被削性および靭性に優れたプリハードン鋼である。 That is, this invention is mass%, C: 0.10-0.14%, Si: 0.1-0.5%, Mn: 1.2-1.6%, S: 0.002-0. 005%, Ni: 2.8 to 3.2%, Cr: 0.35 to 0.85%, Mo: 0.2 to 0.4%, V: less than 0.03% (including 0%), Cu: 1.3-1.8%, Al: 0.8-1.2%, N: less than 0.01%, O: less than 0.002%, balance Fe and inevitable impurities Pre-hardened steel with excellent machinability and toughness.
好ましくは、上記鋼を基本組成として、質量%で、3.50≦1.2×Mn%+1.3×Cr%+Cu%≦4.16を満たすプリハードン鋼、さらに好ましくは、3.58≦1.2×Mn%+1.3×Cr%+Cu%≦4.08を満たすプリハードン鋼である。あるいはさらに、上記鋼に好ましくは、硬さが34〜45HRCのプリハードン鋼である。 Preferably, pre-hardened steel satisfying 3.50 ≦ 1.2 × Mn% + 1.3 × Cr% + Cu% ≦ 4.16 in terms of mass%, more preferably 3.58 ≦ 1 with the above steel as a basic composition. .2 × Mn% + 1.3 × Cr% + Cu% ≦ 4.08 pre-hardened steel. Alternatively, the steel is preferably prehardened steel having a hardness of 34 to 45 HRC.
本発明鋼は、従来のプリハードン鋼にはない高いレベルで、優れた被削性および靭性を兼備する。したがって、他の特性を大きく劣化させず、例えばプラスチック成形用の工具寿命の延長化が達成でき極めて有効である。また本発明鋼は靭性が高いため、金型などの加工に伴う熱応力によっても割れが発生しにくく、より精密な金型加工を行うのに特に適したものとなる。さらに、熱処理の際の管理条件が比較的容易であるため、製造の際にも時間、労力、コストを削減できるメリットもある。 The steel of the present invention has excellent machinability and toughness at a high level not found in conventional pre-hardened steel. Therefore, other characteristics are not greatly deteriorated, and, for example, extension of the tool life for plastic molding can be achieved, which is extremely effective. In addition, since the steel of the present invention has high toughness, it is less likely to crack due to thermal stress accompanying processing of a mold or the like, and is particularly suitable for performing more precise mold processing. Furthermore, since the management conditions during the heat treatment are relatively easy, there is also an advantage that time, labor, and cost can be reduced during manufacturing.
本発明の根幹をなす特徴の一つは、まず、その鋼の基本成分としては、低C−Mn−Ni−Cr−Mo−中Cu−Al系合金を採用しなければならないところである。すなわち、優れた被削性と靱性を兼備させるという課題に対しては、本発明は組織制御を重要とはするものの、この基本組成、特にCuといった根幹元素においては上記の基本系を外れると、いくら狙いとする組織制御が達成できたとしても、本特性の達成が困難となるのである。 One of the basic features of the present invention is that a low-C—Mn—Ni—Cr—Mo—Cu—Al-based alloy must be adopted as the basic component of the steel. That is, for the problem of combining excellent machinability and toughness, the present invention is important for the structure control, but in this basic composition, particularly in the basic element such as Cu, when the above basic system is deviated, Even if the targeted organization control can be achieved, it is difficult to achieve this characteristic.
そして、低C−Mn−Ni−Cr−Mo−中Cu−Al系合金とは言っても、その中には、比較的管理が容易な熱処理条件においても、被削性と靱性の両特性に特に優れる上部ベイナイトと下部ベイナイトの混合ミクロ組織に調整できる最適な狭組成域があるのであって、すなわち、本発明のもう一つの特徴は、この狭組成域をも具体的に特定したところにある。 And even though it is a low C—Mn—Ni—Cr—Mo—Cu—Al alloy, it has both machinability and toughness, even under heat treatment conditions that are relatively easy to manage. There is an optimum narrow composition region that can be adjusted to a particularly excellent mixed microstructure of upper bainite and lower bainite, that is, another feature of the present invention is that this narrow composition region is also specifically specified. .
上述したように、従来の低C−Mn−Ni−(Mo,W)−Cu−Al系合金や低C−Mn−Ni−(Mo,W)−高Cu−Al系をプリハードン鋼として使用する場合には、その被削性を確保するために、上部ベイナイト組織や下部ベイナイト組織の単相組織を狙って調製されていた。しかし、上部ベイナイト組織は、被削性の優れた組織ではあるが、反面靭性の低い組織であり、また、下部ベイナイト組織は、逆に靭性の優れた組織ではあるが、被削性が若干劣る組織であった。 As described above, a conventional low C—Mn—Ni— (Mo, W) —Cu—Al alloy or a low C—Mn—Ni— (Mo, W) —high Cu—Al system is used as the prehardened steel. In some cases, in order to ensure the machinability, it was prepared aiming at a single phase structure of an upper bainite structure or a lower bainite structure. However, although the upper bainite structure is a structure with excellent machinability, it is a structure with low toughness, and the lower bainite structure is a structure with excellent toughness, but the machinability is slightly inferior. It was an organization.
そこで、本発明者は、組織と被削性および靭性の関係を詳細に調査したところ、被削性に優れた上部ベイナイト組織に異なった組織である下部ベイナイト組織を20〜80%混合し、切削時に適度に脆化させることによって、均一な上部ベイナイト組織よりも優れた被削性および靭性を得ることができることを見出した。さらに、被削性は下部ベイナイト組織が60〜70%の時に最も優れるとともに、下部ベイナイト組織相当の靭性が得られることをも見出した。そして、本発明鋼は、低C−Mn−Ni−Cr−Mo−中Cu−Al系合金とすることを必須要件として、その中でも狭組成域に制御することで、比較的管理が容易な熱処理条件において、安定して狙いである上部ベイナイトと下部ベイナイトの混合組織を得ることができ、金型の製作期間の短縮と使用寿命の向上を共に達成できることを見出したものである。 Therefore, the present inventor has investigated in detail the relationship between the structure and machinability and toughness. As a result, the upper bainite structure excellent in machinability is mixed with 20 to 80% of the lower bainite structure, which is a different structure. It has been found that, by occasionally embrittlement moderately, machinability and toughness superior to a uniform upper bainite structure can be obtained. Furthermore, it was also found that machinability is most excellent when the lower bainite structure is 60 to 70%, and that toughness equivalent to the lower bainite structure is obtained. The steel according to the present invention is a low C—Mn—Ni—Cr—Mo—in-Cu—Al alloy, which is an essential requirement. The present inventors have found that a mixed structure of the upper bainite and the lower bainite, which is a stable target, can be obtained under conditions, and that both the shortening of the mold manufacturing period and the improvement of the service life can be achieved.
なお、鋼組織におけるベイナイトとは、オーステナイトを冷却した時に生ずる変態生成物の一つであり、パーライト生成温度とマルテンサイト生成温度との中間の温度範囲で生ずるものを言う。そして、パーライト変態温度近くで生じたものは羽毛状(塊状)、マルテンサイト生成温度近くで生じたものは針状を示し、前者を上部ベイナイト、後者を下部ベイナイトと言う。 In addition, bainite in a steel structure is one of transformation products generated when austenite is cooled, and refers to that generated in a temperature range intermediate between the pearlite generation temperature and the martensite generation temperature. Those occurring near the pearlite transformation temperature are feather-like (lumpy), and those occurring near the martensite formation temperature are needle-like. The former is called upper bainite and the latter is called lower bainite.
また、所定の鋼組織、とりわけ本発明のような、上部ベイナイトと下部ベイナイトの混合組織は、鋼組成を決めるだけで得られるものではなく、通常、焼入れ時の冷却速度といった熱処理条件によっても大きく左右されるものである。しかしながら、本発明鋼は、特にMn、Cr、Cuの元素量を最適化することによって、その成分組成が十分な最適狭域に調整されているため、まず、成分変動による組織への影響度が、極力低く抑えられている。そして、もう一方の、熱処理条件による組織への影響度は、本発明の狙いである上部ベイナイトと下部ベイナイトの混合組織を達成するための熱処理条件を鑑みて、それが実に管理容易な条件となるよう、成分域を狭く設定しているのである。つまり、例えば、オーステナイト領域まで加熱した後、空冷(放冷)を行うことによっても、上部ベイナイトと下部ベイナイトの混合組織を安定して得ることができる。さらに、熱間加工後直ちに焼入れを行う直接焼入れの際の冷却速度が空冷(放冷)であっても、安定して上部ベイナイトと下部ベイナイトの混合組織を得ることができる。 In addition, a predetermined steel structure, particularly a mixed structure of upper bainite and lower bainite, as in the present invention, is not obtained simply by determining the steel composition, and usually depends greatly on heat treatment conditions such as the cooling rate during quenching. It is what is done. However, in the steel of the present invention, the component composition is adjusted to a sufficiently narrow range by optimizing the element amounts of Mn, Cr, Cu in particular. It is kept as low as possible. And, the degree of influence on the structure by the other heat treatment condition is a condition that is easy to manage in view of the heat treatment condition for achieving the mixed structure of the upper bainite and the lower bainite, which is the aim of the present invention. Thus, the component area is set narrow. That is, for example, a mixed structure of upper bainite and lower bainite can be stably obtained by heating to the austenite region and then performing air cooling (cooling). Furthermore, even if the cooling rate during direct quenching in which quenching is performed immediately after hot working is air cooling (cooling), a mixed structure of upper bainite and lower bainite can be obtained stably.
以下、本発明で規定する鋼組成の規定理由について述べる。
Cは、低C−Mn−Ni−Cr−Mo−中Cu−Al系のプリハードン鋼の焼入れ組織をベイナイト組織に保ち、かつ焼戻しにおけるCu−Fe固溶体、Ni−Al金属間化合物やMo炭化物の析出に基づく析出硬化をもたらすための基質を与える基本的添加元素である。多すぎると基地をマルテンサイト組織化して被削性を減じ、また過度の炭化物を形成して被削性、および鏡面加工性を低下させる。そのため本発明においては0.10〜0.14%に規定した。
Hereinafter, the reasons for defining the steel composition defined in the present invention will be described.
C keeps the quenched structure of Cu-Al pre-hardened steel in low C-Mn-Ni-Cr-Mo- in a bainite structure and precipitates Cu-Fe solid solution, Ni-Al intermetallic compound and Mo carbide in tempering Is a basic additive element that provides a substrate for effecting precipitation hardening based on. If the amount is too large, the base is martensite-organized to reduce the machinability, and excessive carbides are formed to reduce the machinability and mirror finish. Therefore, in the present invention, it was specified to be 0.10 to 0.14%.
Siは、鋼製品として使用時の雰囲気に対する耐食性を高める元素である。しかし、多すぎるとフェライトの生成をまねき、また被削性を低下させるので0.1〜0.5%とする。Siを低減すると機械的性質の異方性が低減され、また縞状偏析が低減され、優れた鏡面加工性が得られるため、好ましくは0.4%以下である。 Si is an element that enhances the corrosion resistance to the atmosphere during use as a steel product. However, if the amount is too large, ferrite is generated and machinability is lowered. When Si is reduced, the anisotropy of mechanical properties is reduced, stripe segregation is reduced, and excellent mirror surface workability is obtained. Therefore, the Si content is preferably 0.4% or less.
Mnは、靭性の高い混合組織のプリハードン鋼にとって、最も重要な元素のうちの一つである。Mnは基本的には基地の靭性を高める元素であり、フェライトの生成を抑制し、適度の焼入れ焼戻し(時効)硬さを与えるという効果がある。さらに、Mnはベイナイト焼入れ性を高め、本発明の望ましい組織の特徴である上部/下部ベイナイト混合組織を比較的容易な熱処理で得やすくする元素である。しかしながら、Mnは多すぎると靭性が高くなりすぎ、優れた被削性を保つことができなくなる。以上より、Mnは1.2〜1.6%に規定する。 Mn is one of the most important elements for prehardened steel having a high toughness mixed structure. Mn is an element that basically increases the toughness of the matrix, and has the effect of suppressing the formation of ferrite and imparting appropriate quenching and tempering (aging) hardness. Further, Mn is an element that enhances the bainite hardenability and makes it easier to obtain an upper / lower bainite mixed structure, which is a desirable structural feature of the present invention, by relatively easy heat treatment. However, if there is too much Mn, the toughness becomes too high and excellent machinability cannot be maintained. From the above, Mn is specified to be 1.2 to 1.6%.
Sは、非金属介在物MnSを形成させることで、被削性の向上には極めて有効であるが、多すぎると鏡面加工性が劣化する。微量添加でも十分被削性向上の効果が得られるため、0.002〜0.005%とする。 S is very effective for improving machinability by forming non-metallic inclusions MnS. However, when the amount is too large, mirror surface workability is deteriorated. Even if it is added in a small amount, the effect of sufficiently improving machinability can be obtained, so 0.002 to 0.005% is set.
Niは、ベイナイト焼入性を高め、またフェライトの生成を抑制し、さらに焼戻し(時効)の際、Ni−Al金属間化合物を析出させ、所要の硬さを得るとともに延性を適度に低下させ、被削性の向上を得るために添加される。低すぎると左記添加の効果が得られないので2.8%以上とするが、多すぎるとベイナイト変態温度を低下させ、ベイナイト組織を過度に微細化させ、さらにマルテンサイト変態化に働き、また基地の粘さを上げて被削性を低下させるので3.2%以下とする。 Ni enhances the bainite hardenability, suppresses the formation of ferrite, further precipitates a Ni-Al intermetallic compound during tempering (aging), obtains the required hardness and moderately reduces ductility, Added to improve machinability. If it is too low, the effect of the addition shown on the left cannot be obtained, so it is 2.8% or more. However, if it is too high, the bainite transformation temperature is lowered, the bainite structure is excessively refined, and further martensitic transformation is performed. Since the machinability is lowered by increasing the viscosity of the steel, it is set to 3.2% or less.
Crは、上部ベイナイトと下部ベイナイトの混合組織を得るために最も重要な元素のうちの一つである。つまり、焼入れの熱処理工程時における条件管理が比較的容易な冷却速度範囲であっても、適度にベイナイト組織を微細化させる効果がある。また、耐食性を高め、窒化する場合の硬さを高め、さらに研磨加工時あるいは製品保管時の発錆を抑制する効果もある。しかし、多すぎるとベイナイト組織を過度に微細化し、さらにマルテンサイト変態化にも働いて被削性を劣化するため、0.35〜0.85%とする。 Cr is one of the most important elements for obtaining a mixed structure of upper bainite and lower bainite. That is, there is an effect of appropriately miniaturizing the bainite structure even in the cooling rate range in which the condition management during the heat treatment process of quenching is relatively easy. It also has the effect of enhancing corrosion resistance, increasing the hardness when nitriding, and suppressing rusting during polishing or product storage. However, if the amount is too large, the bainite structure is excessively refined and further the martensitic transformation is performed to deteriorate the machinability. Therefore, the content is made 0.35 to 0.85%.
Moは、本発明鋼の焼戻し(時効)処理、特には500℃を越える高温焼戻し(時効)処理において、微細炭化物を析出し、析出(時効)硬化をもたらし、また製品使用時の雰囲気に対する耐食性を高める作用を有する元素である。本発明の場合、多量の添加は必要なく、多すぎると被削性の低下をまねくので、0.2〜0.4%とする。なお、WはMoと同様の効果があると知られているが、WはMoに比べて拡散速度が遅いので焼入れ処理時や熱間加工時に未固溶炭化物が残留する可能性が高くなるため、本発明鋼はMoのみを用いている。 Mo precipitates fine carbides in the tempering (aging) treatment of the steel of the present invention, particularly high temperature tempering (aging) treatment exceeding 500 ° C., thereby causing precipitation (aging) hardening and corrosion resistance to the atmosphere during product use. It is an element that has an enhancing effect. In the case of the present invention, it is not necessary to add a large amount, and if it is too much, the machinability is lowered, so the content is made 0.2 to 0.4%. Although W is known to have the same effect as Mo, W has a lower diffusion rate than Mo, and therefore there is a high possibility that undissolved carbides remain during quenching and hot working. The present invention steel uses only Mo.
Vは、焼戻し軟化抵抗を高めると共に、結晶粒の粗大化を抑制する効果があるが、多すぎると硬質炭化物によって鏡面加工性や被削性に悪影響を及ぼすため、0.03%未満とする(0%を含む)。より好ましくは、0.02%未満である。 V has the effect of increasing the temper softening resistance and suppressing the coarsening of the crystal grains, but if it is too much, the hard carbide adversely affects the mirror surface workability and machinability, so it is made less than 0.03% ( 0% included). More preferably, it is less than 0.02%.
Cuは、上記Crと同様に、上部ベイナイトと下部ベイナイトの混合組織を得るために最も重要な元素のうちの一つであり、やはり、焼入れの熱処理工程時における条件管理が比較的容易な冷却速度範囲であっても、適度にベイナイトを微細化させる効果がある。また、焼戻し(時効)処理において、Fe−Cu固溶体の微細析出による析出(時効)硬化をもたらし、本発明鋼の基本的な被削性と靭性を付与するための、また所要の硬さを得るための元素であり、さらに、優れた耐食性をもたらすものである。しかし、多すぎると熱間加工性を低下させ、またベイナイトを過度に微細化させ、さらにマルテンサイト変態化にも働いて、かえって被削性を低下させるので、1.3〜1.8%以下とする。 Cu, like Cr, is one of the most important elements for obtaining a mixed structure of upper bainite and lower bainite. Again, the cooling rate is relatively easy to manage the conditions during the heat treatment process of quenching. Even if it is within the range, there is an effect of appropriately miniaturizing bainite. Moreover, in the tempering (aging) treatment, precipitation (aging) hardening by fine precipitation of the Fe—Cu solid solution is brought about, and the required machinability and toughness of the steel of the present invention are imparted and the required hardness is obtained. In addition, it provides excellent corrosion resistance. However, if the amount is too large, the hot workability is lowered, the bainite is excessively refined, and further, it works in the martensitic transformation. And
Alは、焼戻し(時効)処理においてNi−Al金属間化合物の微細析出による析出(時効)硬化をもたらし、本発明の優れた被削性を形成させる重要な元素の一つである。またAlは、所要硬さを得るための添加元素でもあり、窒化を行うとなればその時の窒化硬さを上昇させる効果をもたらすものである。多すぎるとアルミナ系介在物の生成量が増加し、鏡面加工性を低下させ、また耐孔食性を低下させ、さらに延性の過度の低下をまねくので1.2%以下とし、低すぎると上記効果が得られないため0.8%以上とする。好ましくは、被削性をより高めるため0.95%以上とする。 Al is one of the important elements that brings about precipitation (aging) hardening by fine precipitation of Ni—Al intermetallic compounds in the tempering (aging) treatment and forms the excellent machinability of the present invention. Al is also an additive element for obtaining the required hardness. If nitriding is performed, the effect of increasing the nitriding hardness at that time is brought about. If the amount is too high, the amount of alumina inclusions increases, the mirror surface workability is lowered, the pitting corrosion resistance is lowered, and the ductility is excessively lowered. Is 0.8% or more. Preferably, it is 0.95% or more in order to further improve machinability.
Nは、鋼中において窒化物を形成する元素である。窒化物は過多に形成されると、金型の靭性、被削性、鏡面加工性を著しく劣化させるため、Nは0.01%未満に規制する。好ましくは、0.008%未満である。 N is an element that forms nitrides in steel. If the nitride is excessively formed, the toughness, machinability and mirror surface workability of the mold are remarkably deteriorated, so N is restricted to less than 0.01%. Preferably, it is less than 0.008%.
Oは、鋼中において酸化物を形成する元素である。酸化物は、冷間塑性加工性、鏡面加工性を著しく劣化させるため、Oは0.002%未満に規制する。好ましくは、0.001%未満である。 O is an element that forms an oxide in steel. Oxides significantly reduce cold plastic workability and mirror surface workability, so O is restricted to less than 0.002%. Preferably, it is less than 0.001%.
このような成分範囲を満たす本発明鋼において、より好ましくは、3.50≦1.2×Mn%+1.3×Cr%+Cu%≦4.16を満たすことが更に望ましい。すなわち、ベイナイト混合組織への調整を作用効果の根幹とする本発明鋼にとっては、Mn、Cr、Cuの含有量の調整が重要であることは上述の通りであるが、更にはこれら元素間の組織への影響度差をも考慮して、最適な成分組成に調整することが望ましい。そして、このための関係式として、本発明者は「1.2×Mn%+1.3×Cr%+Cu%」による指数管理が有効であることを見出した。そして、上記式が3.50未満であると、若干上部ベイナイト組織が多くなり、靭性が若干劣る可能性があり、逆に4.16を超えると若干下部ベイナイト組織が多くなり、被削性が若干劣る可能性がある。さらに好ましくは、3.58≦1.2×Mn%+1.3×Cr%+Cu%≦4.08を満たすとよい。 In the steel of the present invention satisfying such a component range, it is more desirable to satisfy 3.50 ≦ 1.2 × Mn% + 1.3 × Cr% + Cu% ≦ 4.16. That is, as described above, it is important for the steel of the present invention that the adjustment to the bainite mixed structure is the basis of the action and effect to adjust the contents of Mn, Cr, and Cu. It is desirable to adjust to the optimal component composition in consideration of the difference in the degree of influence on the tissue. As a relational expression for this purpose, the present inventor has found that index management by “1.2 × Mn% + 1.3 × Cr% + Cu%” is effective. If the above formula is less than 3.50, the upper bainite structure is slightly increased and the toughness may be slightly inferior. Conversely, if it exceeds 4.16, the lower bainite structure is slightly increased and the machinability is increased. It may be slightly inferior. More preferably, 3.58 ≦ 1.2 × Mn% + 1.3 × Cr% + Cu% ≦ 4.08 is satisfied.
本発明鋼は、例えば34〜45HRCの硬さのプリハードン状態で供給され、そのまま製品形状に加工、金型であれば型彫加工の後、研磨加工、さらに高度な鏡面仕上げやシボ加工等を施して使用されるものである。34HRC未満であると使用時(金型としての成形時)に摩耗等の損傷の問題が起こり、また、45HRCを超えると被削性に悪影響を及ぼすため、望ましい硬さは34〜45HRCとした。しかし、本発明鋼は、34HRC未満の低い硬さとすることで、さらに優れた被削性と靭性を達成するのであって、よって本程度の低硬さでの使用が許されるのであれば、当然にそれを除外するものではない。 The steel of the present invention is supplied in a pre-hardened state with a hardness of 34 to 45 HRC, for example, and processed into a product shape as it is. If it is a die, it is engraved and then subjected to polishing, advanced mirror finishing and embossing, etc. Used. When it is less than 34 HRC, problems such as wear occur during use (during molding as a mold), and when it exceeds 45 HRC, the machinability is adversely affected. Therefore, the desired hardness is set to 34 to 45 HRC. However, the steel according to the present invention achieves further excellent machinability and toughness by setting it to a low hardness of less than 34 HRC. Therefore, if the use with such a low hardness is allowed, naturally It does not exclude it.
(実施例1)
表1に示す化学成分の残部Feおよび不可避的不純物からなる試料1〜5を熱間圧延した後、880℃のオーステナイト領域まで加熱後、空冷(放冷)を行い、500〜590℃の温度範囲で焼戻しを行った。そして、これを供試材として用い、被削性および靭性の評価を行った。
(Example 1)
After hot-rolling samples 1 to 5 consisting of the remaining Fe and unavoidable impurities of the chemical components shown in Table 1, the sample is heated to an austenite region of 880 ° C., then air-cooled (cooled), and a temperature range of 500 to 590 ° C. And tempered. And this was used as a test material, and machinability and toughness were evaluated.
被削性の評価は、ドリル加工、Φ125mmの正面フライス加工を実施した。ドリル加工の評価は、高速度鋼製のΦ2mmドリルで、切削速度が15m/min、送り速度が120mm/min、加工深さが20mmの加工条件において、50個の孔を加工した後での、工具摩耗量を測定した。正面フライス加工の評価は、サーメット製の切削チップを用い、切削速度が150m/min、送り速度が0.13mm/刃、切りこみが2(深さ)×100(幅)mm、切刃数が1枚の加工条件において、49.7分間切削した時の工具摩耗量を測定した。 The machinability was evaluated by drilling and face milling with a diameter of 125 mm. Evaluation of drilling was performed after machining 50 holes with a Φ2 mm drill made of high-speed steel under a machining condition of a cutting speed of 15 m / min, a feed rate of 120 mm / min, and a machining depth of 20 mm. The amount of tool wear was measured. The face milling was evaluated using a cermet cutting tip with a cutting speed of 150 m / min, a feed rate of 0.13 mm / tooth, a notch of 2 (depth) x 100 (width) mm, and a number of cutting edges of 1. The amount of tool wear when cutting for 49.7 minutes under the processing conditions of the sheet was measured.
靭性の評価は、2mmUノッチ試験片(JIS3号試験片)を用いてシャルピー試験を実施し、室温でのシャルピー衝撃値を測定した。以上の結果を表2に示す。 Evaluation of toughness was carried out by conducting a Charpy test using a 2 mm U notch test piece (JIS No. 3 test piece) and measuring a Charpy impact value at room temperature. The results are shown in Table 2.
表4より、本発明鋼である試料1は、オーステナイト領域からの冷却速度が比較的管理が容易な空冷であっても、上部ベイナイトと下部ベイナイトの混合組織(被顕面において比率30:70)を得られたことから、工具摩耗量が少なく、高い衝撃値が得られ、被削性と靭性を兼備していることが分かる。しかし、比較鋼の試料2は、組織としては理想のベイナイト混合組織こそ呈しており、被削性は本発明鋼より若干劣る程度であるが、前提かつ重要となる基本組成系においてCuが1%と少なく、靭性が低い。試料3、4はCrが多い、あるいはCuが多いことから、若干下部ベイナイト主体となり、靭性には優れるが、被削性が劣る結果であった。試料5は、CrやCu、Niが低く、上部ベイナイトが支配する組織となっているが、焼戻し時の硬さが低いため、被削性および靭性は比較的良好である。しかし、上記に加えては、Ni、Al量が低いことから、32.0HRCの最高硬さまでしか得られず、摩耗等の損傷が起こりやすい使用環境の場合は、その使用が困難である。 From Table 4, Sample 1 which is the steel of the present invention has a mixed structure of upper bainite and lower bainite (ratio 30:70 on the surface to be examined) even when the cooling rate from the austenite region is relatively easy to manage. Thus, it can be seen that the amount of tool wear is small, a high impact value is obtained, and both machinability and toughness are provided. However, the sample 2 of the comparative steel exhibits an ideal bainite mixed structure as the structure, and the machinability is slightly inferior to that of the steel of the present invention. Less toughness. Samples 3 and 4 were mainly composed of lower bainite due to a large amount of Cr or a large amount of Cu, and were excellent in toughness but inferior in machinability. Sample 5 has a structure in which Cr, Cu, and Ni are low and is controlled by upper bainite. However, since the hardness at the time of tempering is low, machinability and toughness are relatively good. However, in addition to the above, since the amounts of Ni and Al are low, only a maximum hardness of 32.0 HRC can be obtained, and it is difficult to use in a use environment where damage such as wear easily occurs.
(実施例2)
表3に示す化学成分の残部Feおよび不可避的不純物からなる試料6、7を熱間圧延した後、冷却速度が空冷(放冷)の直接焼入れを行い、500〜590℃の温度範囲で焼戻しを行った。そして、これを供試材として用い、被削性および靭性の評価を行った。
(Example 2)
After hot-rolling samples 6 and 7 consisting of the remainder of the chemical components shown in Table 3 and inevitable impurities, direct quenching was performed at a cooling rate of air cooling (cooling), and tempering was performed at a temperature range of 500 to 590 ° C. went. And this was used as a test material, and machinability and toughness were evaluated.
被削性の評価は、2種類のドリル加工、およびΦ100mmの正面フライス加工を実施した。ドリル加工の評価は、高速度鋼製のΦ5mmドリルで、切削速度が20m/min、送り速度が63.35mm/min、加工深さが25mmの加工条件において、100個の孔を加工した後での、工具摩耗量を測定した。また、卓上ボール盤を用い、高速度鋼製のΦ4mmドリルで、切削速度が17.6m/min、送り速度は手送り、加工深さが20mmの加工条件において、継続切削不可までの加工穴数においても評価した。正面フライス加工の評価は、サーメット製の切削チップを用い、切削速度が150m/min、送り速度が0.13mm/刃、切りこみが2(深さ)×80(幅)mm、切刃数が1枚の加工条件において、29分間切削した時の工具摩耗量を測定した。靭性の評価は、実施例1と同様に行った。以上の結果を表4に示す。 The machinability was evaluated by performing two types of drilling and face milling of Φ100 mm. Evaluation of drilling was performed with a Φ5 mm drill made of high-speed steel, after machining 100 holes under machining conditions of a cutting speed of 20 m / min, a feed rate of 63.35 mm / min, and a machining depth of 25 mm. The amount of tool wear was measured. Also, using a tabletop drilling machine, a high-speed steel Φ4mm drill, cutting speed of 17.6m / min, feed rate of manual feed, machining depth of 20mm, in the number of machining holes until continuous cutting is impossible Was also evaluated. The face milling was evaluated using a cutting tip made of cermet, the cutting speed was 150 m / min, the feed speed was 0.13 mm / blade, the notch was 2 (depth) x 80 (width) mm, and the number of cutting edges was 1. The amount of tool wear when cutting for 29 minutes under the sheet processing conditions was measured. The toughness was evaluated in the same manner as in Example 1. The results are shown in Table 4.
表4より、本発明鋼と比較鋼を比較すると、ドリル加工の工具摩耗量は変わらないが、フライス加工の工具摩耗量およびドリル加工可能穴数では、本発明鋼の方が明らかに優れている。また、衝撃値においても比較鋼の約2倍の値である。従って、本発明鋼は優れた被削性と靭性を兼備していることが分かる。 From Table 4, when the steel of the present invention is compared with the comparative steel, the amount of tool wear in drilling does not change, but the steel of the present invention is clearly superior in the amount of tool wear in milling and the number of drillable holes. . The impact value is about twice that of the comparative steel. Therefore, it turns out that this invention steel has the outstanding machinability and toughness.
被削性および靭性に優れた本発明のプリハードン鋼は、例えばプラスチック成形に使用される金型用鋼に最適である他には、射出成形機用スクリュ等、硬さが必要で切削性も重視される機械部品等にも適用が可能である。 The pre-hardened steel of the present invention, which excels in machinability and toughness, is optimal for mold steels used for plastic molding, for example, and it requires hardness, such as screws for injection molding machines, and emphasizes machinability. It can also be applied to machine parts and the like.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006216543A JP2008038219A (en) | 2006-08-09 | 2006-08-09 | Prehardened steel with excellent machinability and toughness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006216543A JP2008038219A (en) | 2006-08-09 | 2006-08-09 | Prehardened steel with excellent machinability and toughness |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008038219A true JP2008038219A (en) | 2008-02-21 |
Family
ID=39173590
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006216543A Pending JP2008038219A (en) | 2006-08-09 | 2006-08-09 | Prehardened steel with excellent machinability and toughness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008038219A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108342658A (en) * | 2018-04-03 | 2018-07-31 | 东北大学 | A kind of axis class and gear steel and its heat treatment method |
EP3392354A1 (en) | 2017-04-19 | 2018-10-24 | Daido Steel Co.,Ltd. | Prehardened steel material, mold, and mold component |
-
2006
- 2006-08-09 JP JP2006216543A patent/JP2008038219A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3392354A1 (en) | 2017-04-19 | 2018-10-24 | Daido Steel Co.,Ltd. | Prehardened steel material, mold, and mold component |
KR20180117563A (en) | 2017-04-19 | 2018-10-29 | 다이도 토쿠슈코 카부시키가이샤 | Prehardened steel material, mold, and mold component |
US11091825B2 (en) | 2017-04-19 | 2021-08-17 | Daido Steel Co., Ltd. | Prehardened steel material, mold, and mold component |
CN108342658A (en) * | 2018-04-03 | 2018-07-31 | 东北大学 | A kind of axis class and gear steel and its heat treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100908624B1 (en) | Pre-hardened steel with improved machinability and toughness and manufacturing method | |
EP3135777B1 (en) | Steel for mold and mold | |
JP5276330B2 (en) | Cold mold steel and cold press mold | |
JP5843173B2 (en) | Manufacturing method of cold working mold | |
JP5412851B2 (en) | Steel for plastic molds and plastic molds | |
CN100451158C (en) | Die steel | |
JP2009013439A (en) | High toughness high-speed tool steel | |
JP4269293B2 (en) | Steel for mold | |
JP4984321B2 (en) | Pre-hardened steel excellent in machinability and toughness and method for producing the same | |
WO2016075951A1 (en) | Hot work tool steel | |
JP4984319B2 (en) | Method for producing pre-hardened steel with excellent machinability and toughness | |
JP2005336553A (en) | Hot tool steel | |
JP4159009B2 (en) | Steel sheet for punched parts with excellent fatigue characteristics | |
JP2008038219A (en) | Prehardened steel with excellent machinability and toughness | |
JP5597999B2 (en) | Cold work tool steel with excellent machinability | |
JP3360926B2 (en) | Prehardened steel for plastic molding and method for producing the same | |
JP6416624B2 (en) | Method for cutting cold tool steel and method for producing cold mold material | |
JPH04154936A (en) | Precipitation hardening nitriding steel | |
JPWO2012043228A1 (en) | High hardness pre-hardened cold tool steel for surface PVD treatment, method for producing the same, and surface PVD treatment method therefor | |
JP2002088450A (en) | Hot work tool steel | |
JP2001220646A (en) | Prehardened steel for plastic molding die | |
JP2000192195A (en) | Free cutting cold working tool steel | |
KR101312822B1 (en) | Die steel and manufacturing method using the same | |
JP5776959B2 (en) | Die steel with excellent hot workability | |
KR101463312B1 (en) | Precipitation hardening typed die steel with excellent toughness and cutting charateristic and manufacturing method thereof |