JP2008032969A - Polarizing microscope equipped with polarizing imaging camera - Google Patents
Polarizing microscope equipped with polarizing imaging camera Download PDFInfo
- Publication number
- JP2008032969A JP2008032969A JP2006205753A JP2006205753A JP2008032969A JP 2008032969 A JP2008032969 A JP 2008032969A JP 2006205753 A JP2006205753 A JP 2006205753A JP 2006205753 A JP2006205753 A JP 2006205753A JP 2008032969 A JP2008032969 A JP 2008032969A
- Authority
- JP
- Japan
- Prior art keywords
- polarization
- image
- imaging camera
- optical microscope
- microscope system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Description
本発明は,従来の偏光顕微鏡よりも詳細に偏光情報を取得・解析することのできる光学顕微鏡に関する。 The present invention relates to an optical microscope that can acquire and analyze polarization information in more detail than a conventional polarizing microscope.
透明な物質で構成された観察対象、例えば生体細胞などを顕微鏡観察するなどの目的で、偏光顕微鏡が利用される。これは、観察対象の屈折率変化や複屈折性などを利用しており、生きたままの細胞などを無染色で観察したい場合などに用いられる。 A polarization microscope is used for the purpose of observing an observation object composed of a transparent substance, such as a living cell, under a microscope. This uses the refractive index change or birefringence of the object to be observed, and is used when it is desired to observe living cells without staining.
従来の偏光顕微鏡などで観察された像は観察対象の複屈折性などを反映したものではあっても、観察対象の光学特性の波長分散性など複数の要素の複雑な影響を受けた画像であった。従って、これを詳細な定量解析に用いることは困難であり、観察のみが目的とされる用途に限定されることが多かった。 Although the image observed with a conventional polarizing microscope or the like reflects the birefringence of the object to be observed, it is an image affected by multiple factors such as the wavelength dispersion of the optical characteristics of the object to be observed. It was. Therefore, it is difficult to use this for detailed quantitative analysis, and it is often limited to applications for which only observation is intended.
これを解決する手段として、従来液晶素子を用いた偏光顕微鏡システムがポルスコープPolScopeという商品名で米Cambridge Research & Instrumentation, Inc. (CRi) 社より商品化されている。しかしながら、本製品では画像の偏光情報を取得する為に液晶の配向を一回転させる操作が必要であり、そのために数秒時間を要していた。従って、例えば高速に移動する観察対象の偏光情報を取得することが極めて困難であった。 As a means for solving this problem, a polarization microscope system using a liquid crystal element has been commercialized by the company Cambridge Research & Instrumentation, Inc. (CRi) under the trade name Polscope PolScope. However, this product requires an operation to rotate the alignment of the liquid crystal once in order to acquire the polarization information of the image, and therefore it takes several seconds. Therefore, for example, it has been extremely difficult to acquire polarization information of an observation object that moves at high speed.
本発明は、従来の顕微鏡ユニットに偏光イメージングカメラを取り付けることにより、観察対象の光学異方性軸方位や位相変化量などの光学的特長を高速に観察及び定量評価することができることを特徴とする顕微鏡システムに関わる。 The present invention is characterized in that by attaching a polarization imaging camera to a conventional microscope unit, it is possible to observe and quantitatively evaluate optical features such as an optical anisotropy axis direction and a phase change amount of an observation object at high speed. Involved in microscope systems.
前記偏光イメージングカメラとは、方位を異とする自己クローニングフォトニック結晶や細線状または薄いリボン上の金属列を持つ偏光子(以下ワイヤーグリッド偏光子と称する)などにより作製された領域分割偏光子アレイもしくは波長板アレイのうち少なくても一つをCCDやCMOSなどの撮像素子の前段に配置することにより、撮影画像の偏光状態の面内分布を(非特許文献1の原理により)定量解析できることを特徴とするカメラである。または、プリズムなどのハーフミラーを用いて3つ以上の撮像素子で同時に撮影するタイプの撮像ユニットの各撮像素子の前段に偏光子を設置することにより、撮影画像から偏光情報の面内分布を取得できることを特徴とするカメラでも良い。 The polarization imaging camera is a region-dividing polarizer array produced by a self-cloning photonic crystal having a different orientation or a polarizer having a metal line on a thin line or thin ribbon (hereinafter referred to as a wire grid polarizer). Alternatively, it is possible to quantitatively analyze the in-plane distribution of the polarization state of a captured image (by the principle of Non-Patent Document 1) by disposing at least one of the wave plate arrays in front of an image sensor such as a CCD or CMOS. It is a featured camera. Alternatively, an in-plane distribution of polarization information can be obtained from the captured image by installing a polarizer in front of each image sensor of an imaging unit that captures simultaneously with three or more image sensors using a half mirror such as a prism. A camera characterized by being able to do so may be used.
顕微鏡においては照射光の偏光状態を任意に設定することが可能であることから、照射光を任意の偏光状態に規定しておき、観察像の面内偏光分布の定量評価と比較することにより、観察対象の複屈折軸方位や位相差量などの光学的特長を詳細に定量評価することが可能になる。 Since it is possible to arbitrarily set the polarization state of the irradiation light in the microscope, the irradiation light is defined in an arbitrary polarization state, and compared with the quantitative evaluation of the in-plane polarization distribution of the observation image, Optical features such as the birefringence axis orientation and the phase difference amount of the observation object can be quantitatively evaluated in detail.
前記偏光イメージングカメラを具備する光学顕微鏡を用いることで、観察対象の光学的特徴の面内分布を、撮像素子の撮像速度で取得することが可能になる。例えば一秒間に30枚の画像撮影が可能な撮像素子を用いれば、毎秒30フレームの偏光情報の動画を取得することが可能になり、また一秒間に1万枚の高速撮像素子を用いれば、毎秒1万フレームの偏光情報動画を取得することが可能になる。
従って、本発明の光学顕微鏡を用いることにより、光学的異方性を有する観察物が高速に運動している様子を観察することや、瞬時に完了する化学反応の進行を偏光情報の面内分布の時間変化から解析することなどが可能になる。
By using an optical microscope equipped with the polarization imaging camera, the in-plane distribution of the optical features to be observed can be acquired at the imaging speed of the imaging device. For example, if an image sensor capable of capturing 30 images per second is used, it is possible to acquire a moving image of polarization information at 30 frames per second, and if 10,000 high-speed image sensors are used per second, It is possible to obtain a polarization information moving image of 10,000 frames per second.
Therefore, by using the optical microscope of the present invention, it is possible to observe the state in which an observation object having optical anisotropy is moving at high speed, and the progress of a chemical reaction that is completed instantaneously is in-plane distribution of polarization information. It is possible to analyze from the time change of.
とくにこの機能は顕微鏡技術において重要である。前述のポルスコープは生体の微小な構造の観察において優れ、細胞分裂時の染色体のような微小構造の主軸・複屈折位相差を複屈折利用により生きたままの形で観察できるが即応性・同時性に書ける。本発明によってはじめて即応性のある微小複屈折の主軸・複屈折位相差計測が可能になり、例えばバイオサイエンスにおける研究手段として効果は絶大である。 This function is particularly important in microscope technology. The above-mentioned Polscope is excellent in observing the minute structure of a living body, and can observe the main axis and birefringence phase difference of the microstructure like a chromosome at the time of cell division in a living form by using birefringence, but it is responsive and simultaneous. You can write in sex. For the first time, the present invention makes it possible to measure the main axis and birefringence phase difference of micro birefringence that is responsive, and is extremely effective as a research tool in bioscience, for example.
以下、図面に従って、本発明を詳細に説明する。図1は偏光イメージングカメラを具備した光学顕微鏡の装置構成例である。図1の顕微鏡では,ランプハウス11において集光レンズ12にて集光され水平に出力された光が顕微鏡下部のミラー13により上方に曲げられ,偏光子14,1/4波長板15 を通過後、コンデンサレンズ16,観察試料17,対物レンズ18の順に通過する。そして,偏光イメージングカメラ19を介して,コンピュータ20のモニター画面上に偏光画像が得られる。 Hereinafter, the present invention will be described in detail with reference to the drawings. FIG. 1 shows an example of the configuration of an optical microscope equipped with a polarization imaging camera. In the microscope shown in FIG. 1, the light collected and horizontally output by the condenser lens 12 in the lamp house 11 is bent upward by a mirror 13 at the bottom of the microscope and passes through a polarizer 14 and a quarter-wave plate 15. Then, the condenser lens 16, the observation sample 17, and the objective lens 18 are passed in this order. Then, a polarization image is obtained on the monitor screen of the computer 20 via the polarization imaging camera 19.
観察試料を照射する光は、偏光子14、1/4波長板15の順に通過することにより、円偏光もしくは円偏光に近い楕円偏光に変換される。従って、観察試料の複屈折性が小さい場合にも、偏光の主軸方位の違いによって複屈折の方位を検出することが容易になる。 Light that irradiates the observation sample passes through the polarizer 14 and the quarter-wave plate 15 in this order, and is converted into circularly polarized light or elliptically polarized light that is close to circularly polarized light. Accordingly, even when the birefringence of the observation sample is small, it becomes easy to detect the birefringence azimuth by the difference in the principal axis direction of the polarized light.
図2は本発明に用いられる偏光イメージングカメラの受光部の部品構成例である。撮像素子の一画素以上の領域に一様な透過軸方位を有する偏光子が配置され、複数の偏光子が配置されたアレイ状素子と撮像素子とが一体化した構成を有する。透過軸方位の一様な偏光子領域を少なくても3つ以上透過した光の強度を撮像素子にて取得し、これらを比較・演算することにより演算に用いた領域の平均的な偏光情報を得ることができる。 FIG. 2 shows an example of the component configuration of the light receiving unit of the polarization imaging camera used in the present invention. A polarizer having a uniform transmission axis azimuth is disposed in an area of one or more pixels of the image sensor, and an array element in which a plurality of polarizers are disposed and the image sensor are integrated. The intensity of light transmitted through at least three polarizer regions with uniform transmission axis orientation is acquired by the image sensor, and the average polarization information of the region used for the calculation is obtained by comparing and calculating these. Obtainable.
前記アレイ状偏光子は、自己クローニング型フォトニック結晶にて作製することができる。また、ワイヤーグリッド型偏光子をもちいて作製することができ、いずれの形態でもかまわない。 The arrayed polarizer can be produced from a self-cloning photonic crystal. Moreover, it can produce using a wire grid type | mold polarizer, and any form may be sufficient as it.
また、アレイ状偏光子に加えてアレイ状の波長板素子を有する構成や、アレイ状の波長板と一様な偏光子を有する構成により実現される偏光イメージングカメラのいずれでも良い。
Further, any of a configuration having an arrayed wave plate element in addition to the arrayed polarizer and a polarization imaging camera realized by a configuration having an arrayed wave plate and a uniform polarizer may be used.
1.偏光イメージングカメラ
本発明の光学顕微鏡ユニットを実施する為に、自己クローニングフォトニック結晶による偏光子アレイを有する偏光イメージングカメラを用いた。この偏光イメージングカメラは、100万画素のCCDの1画素に対応する領域に、4種類の透過軸方位の偏光子が敷き詰められた偏光子アレイを有し、隣接する4画素の輝度値を演算することにより、この4がその領域の平均偏光情報を取得することができる。またこの偏光イメージングカメラは、USBケーブル20を介してパーソナルコンピューターに接続されており、このモニター画面上に偏光情報を映し出したり計算したりすることができる。
1. Polarization Imaging Camera In order to implement the optical microscope unit of the present invention, a polarization imaging camera having a polarizer array with self-cloning photonic crystals was used. This polarization imaging camera has a polarizer array in which polarizers of four kinds of transmission axis directions are laid in a region corresponding to one pixel of a 1 million pixel CCD, and calculates the luminance value of four adjacent pixels. Thus, this 4 can obtain the average polarization information of the region. The polarization imaging camera is connected to a personal computer via a USB cable 20 and can display or calculate polarization information on the monitor screen.
2.顕微鏡構成
図3は実施した偏光イメージングカメラを具備した光学顕微鏡の装置構成である。図3の顕微鏡では,ランプハウス11において集光レンズ12にて集光され水平に出力された光は波長500nmから560nmの範囲の光を透過するバンドパスフィルター22を通過後に顕微鏡下部のミラー13により上方に曲げられ,偏光子14,1/4波長板15 を通過後、コンデンサレンズ16,観察試料17,対物レンズ18の順に通過する。そして,自己クローニング型フォトニック結晶による偏光子アレイ23とCCD24を有する偏光イメージングカメラ19を介して,コンピュータ21のモニター画面上に偏光画像が得られる。
2. Microscope Configuration FIG. 3 shows the configuration of an optical microscope equipped with the polarization imaging camera implemented. In the microscope of FIG. 3, the light collected and horizontally output by the condenser lens 12 in the lamp house 11 passes through a bandpass filter 22 that transmits light having a wavelength in the range of 500 nm to 560 nm, and then is reflected by the mirror 13 below the microscope. It is bent upward, passes through the polarizer 14 and the quarter-wave plate 15, and then passes through the condenser lens 16, the observation sample 17, and the objective lens 18 in this order. Then, a polarization image is obtained on the monitor screen of the computer 21 through the polarization imaging camera 19 having the polarizer array 23 and the CCD 24 by the self-cloning photonic crystal.
3.偏光情報解析
観察試料を照射する光は、偏光子14、1/4波長板15の順に通過することにより、円偏光もしくは円偏光に近い楕円偏光に変換される。従って、観察試料の複屈折性が小さい場合にも、偏光の主軸方位の違いによって複屈折の方位を検出することが容易になる。
3. Polarization Information Analysis Light that irradiates the observation sample passes through the polarizer 14 and the quarter-wave plate 15 in this order, and is converted into circularly polarized light or elliptically polarized light that is close to circularly polarized light. Accordingly, even when the birefringence of the observation sample is small, it becomes easy to detect the birefringence azimuth by the difference in the principal axis direction of the polarized light.
例えば照射光が円偏光であった場合、観察画像中の隣接する4種類の向きに透過軸を有する偏光子領域を透過した光を受けるCCDの4画素の輝度情報をフーリエ変換して得た、前記4画素領域の平均的な偏光状態のうち、楕円偏光の主軸方位は観察試料の複屈折軸方向から45度回転した方位を指し、楕円率は複屈折の強さを指す。 For example, when the irradiation light is circularly polarized light, the luminance information of the four pixels of the CCD that receives the light transmitted through the polarizer region having the transmission axis in four adjacent directions in the observation image is obtained by Fourier transform. Among the average polarization states of the four pixel regions, the principal axis direction of elliptically polarized light indicates the direction rotated 45 degrees from the birefringence axis direction of the observation sample, and the ellipticity indicates the strength of birefringence.
また、観察画像全体に複屈折性が分布している場合、観察画像全体の平均が円偏光に近くなるような観察試料照射光の偏光状態にすると、偏光状態の前記平均値からの変化が主軸方位として高感度に検出することが出来て好適である。 In addition, when birefringence is distributed over the entire observation image, when the polarization state of the observation sample irradiation light is such that the average of the entire observation image is close to circularly polarized light, the change from the average value of the polarization state is the main axis. It is suitable because it can be detected with high sensitivity as the direction.
本発明の光学顕微鏡システムで取得したデンプンの偏光情報を用いて、偏光の主軸方位によって色分けすることが可能であり、図4に画像の一例をモノクロ表示した画像である。比較の為、輝度情報のみの画像を図5に示す。照射光は円偏光であり、取得画像の中で円偏光に近いほど輝度が低くなるような処理を施している。図4の偏光解析画像の色と、観察試料の複屈折軸の方向との対応を示したもののモノクロ画像を、図6に示す。 Using the polarization information of starch obtained by the optical microscope system of the present invention, it is possible to color-code according to the principal axis direction of polarized light, and FIG. For comparison, an image with only luminance information is shown in FIG. Irradiation light is circularly polarized light, and a process is performed such that the luminance is lower as it is closer to circularly polarized light in the acquired image. A monochrome image showing the correspondence between the color of the ellipsometric image of FIG. 4 and the direction of the birefringence axis of the observation sample is shown in FIG.
本試作で用いたフレームレート1/30秒のCCDの1ショットの偏光画像による、前記デンプンの偏光情報の定量解析した結果を図8に示す。図8のグラフの横軸は、図7に示した画像中の太い矢印の位置を表し、縦軸1は偏光の主軸方位の変化を、縦軸2は偏光の強さを表す。また、図7中の細い矢印は、解析により明らかになった前記デンプン中の複屈折軸方位分布を示す。このように、従来取得することが困難であった偏光の様々な情報が、定量的に、且つ高速に取得することが可能になった。 FIG. 8 shows the result of quantitative analysis of the polarization information of the starch, based on a one-shot polarization image of a CCD with a frame rate of 1/30 second used in this prototype. The horizontal axis of the graph of FIG. 8 represents the position of the thick arrow in the image shown in FIG. 7, the vertical axis 1 represents the change in the principal axis direction of the polarization, and the vertical axis 2 represents the intensity of the polarization. Moreover, the thin arrow in FIG. 7 shows the birefringence axis orientation distribution in the starch which became clear by the analysis. As described above, various information on polarized light, which has been difficult to obtain in the past, can be obtained quantitatively and at high speed.
本発明の光学顕微鏡システムは、観察対象の偏光情報や構造を検出・観察することを目的とするあらゆる顕微鏡にて利用されうる。特に生体観察や液晶材料の観察など、観察対象の偏光特性の時間変化を詳細に解析する目的に利用されうる。 The optical microscope system of the present invention can be used in any microscope for the purpose of detecting and observing polarization information and structure of an observation target. In particular, it can be used for the purpose of analyzing in detail the temporal change in the polarization characteristics of the observation object, such as observation of living organisms and liquid crystal materials.
11 ランプハウス
12 集光レンズ
13 ミラー
14 偏光子
15 1/4波長板
16 コンデンサレンズ
17 観察試料
18 対物レンズ
19 偏光イメージングカメラ
20 接続ケーブル
21 コンピューター
22 バンドパスフィルタ
23 偏光子アレイ
24 撮像素子
DESCRIPTION OF SYMBOLS 11 Lamp house 12 Condensing lens 13 Mirror 14 Polarizer 15 1/4 wavelength plate 16 Condenser lens 17 Observation sample 18 Objective lens 19 Polarization imaging camera 20 Connection cable 21 Computer 22 Band pass filter 23 Polarizer array 24 Image sensor
Claims (5)
At least one of a region-dividing polarizer and a region-dividing wavelength plate that is divided into regions having different transmission axis orientations and regions having different anisotropy axes made of self-cloning photonic crystals is used as a CCD or CMOS. The in-plane distribution of polarization information from the captured image is analyzed from the acquired image of one frame by installing each of the regions in association with one or a plurality of pixels of the image sensor in front of the image sensor such as An optical microscope system equipped with a polarization imaging camera.
An in-plane distribution of polarization information from the captured image can be obtained by installing an area-dividing polarizer having thin line or thin ribbon metal rows divided into areas with different transmission axis orientations in front of an image sensor such as a CCD or CMOS. An optical microscope system comprising a polarization imaging camera, which can be analyzed from an acquired image of one frame.
A polarization imaging camera of a type using a plurality of image pickup devices, in which a light path is divided into three or more by a half mirror such as a prism, and a polarizer and an image pickup device having different transmission axis directions are sequentially arranged for each of them. An optical microscope system characterized by that.
4. The optical microscope system according to claim 1, wherein the polarization state of the irradiation light of the observation sample is uniformly defined.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006205753A JP2008032969A (en) | 2006-07-28 | 2006-07-28 | Polarizing microscope equipped with polarizing imaging camera |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006205753A JP2008032969A (en) | 2006-07-28 | 2006-07-28 | Polarizing microscope equipped with polarizing imaging camera |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008032969A true JP2008032969A (en) | 2008-02-14 |
Family
ID=39122470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006205753A Pending JP2008032969A (en) | 2006-07-28 | 2006-07-28 | Polarizing microscope equipped with polarizing imaging camera |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008032969A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009139133A1 (en) * | 2008-05-10 | 2009-11-19 | 株式会社フォトニックラティス | Optical distortion measurement apparatus |
JP2010025915A (en) * | 2008-06-18 | 2010-02-04 | Ricoh Co Ltd | Imaging apparatus and road surface state discrimination method |
US8786755B2 (en) | 2010-06-29 | 2014-07-22 | National University Corporation Kyoto Institute Of Technology | Method and apparatus for polarization imaging |
CN104122261A (en) * | 2014-08-04 | 2014-10-29 | 苏州大学 | System and method for visualizing cell structure |
JP2018036314A (en) * | 2016-08-29 | 2018-03-08 | 富士フイルム株式会社 | Polarization image sensor and polarization image sensor fabrication method |
-
2006
- 2006-07-28 JP JP2006205753A patent/JP2008032969A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009139133A1 (en) * | 2008-05-10 | 2009-11-19 | 株式会社フォトニックラティス | Optical distortion measurement apparatus |
JP5254323B2 (en) * | 2008-05-10 | 2013-08-07 | 株式会社フォトニックラティス | Optical strain measurement device |
JP2010025915A (en) * | 2008-06-18 | 2010-02-04 | Ricoh Co Ltd | Imaging apparatus and road surface state discrimination method |
US8786755B2 (en) | 2010-06-29 | 2014-07-22 | National University Corporation Kyoto Institute Of Technology | Method and apparatus for polarization imaging |
CN104122261A (en) * | 2014-08-04 | 2014-10-29 | 苏州大学 | System and method for visualizing cell structure |
JP2018036314A (en) * | 2016-08-29 | 2018-03-08 | 富士フイルム株式会社 | Polarization image sensor and polarization image sensor fabrication method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qi et al. | Real time complete Stokes polarimetric imager based on a linear polarizer array camera for tissue polarimetric imaging | |
Chang et al. | Division of focal plane polarimeter-based 3× 4 Mueller matrix microscope: a potential tool for quick diagnosis of human carcinoma tissues | |
Vitkin et al. | Tissue polarimetry | |
Mehta et al. | Polarized light imaging of birefringence and diattenuation at high resolution and high sensitivity | |
Wang et al. | Real-time measurement of the growth rates of individual crystal facets using imaging and image analysis: a feasibility study on needle-shaped crystals of L-glutamic acid | |
York et al. | Real-time high-resolution measurement of collagen alignment in dynamically loaded soft tissue | |
JP2016109676A (en) | Liquid crystal fourier transform imaging spectrometer | |
Farlow et al. | Imaging polarimeter development and applications | |
JP2008032969A (en) | Polarizing microscope equipped with polarizing imaging camera | |
JP2014035257A (en) | Mueller matrix microscopic ellipsometer | |
JP5254323B2 (en) | Optical strain measurement device | |
CN113092386A (en) | Self-capacitance type Mueller matrix measuring method and device | |
CN113218876A (en) | Method and device for quickly measuring Mueller matrix of suspended particulate matters | |
Zaffar et al. | Spatial autocorrelation analysis on two‐dimensional images of Mueller matrix for diagnosis and differentiation of cervical precancer | |
US11415791B1 (en) | Snapshot polarization imaging with a micro-camera array microscope | |
JP2019200405A (en) | Tri-spectroscopic optical module and optical device utilizing the same | |
Chang et al. | DofP polarimeter based polarization microscope for biomedical applications | |
JPH07261092A (en) | Polarization microscope system | |
US20220113671A1 (en) | Portable uv holographic microscope for high-contrast protein crystal imaging | |
US20110085163A1 (en) | Method and apparatus of measuring relative phase of bio-cells | |
Canabal-Carbia et al. | Biological tissue-enhanced visualization through polarimetric observables | |
CN110132853A (en) | Rotatory dispersive measuring system and method based on pixel polarization camera | |
CA2572390A1 (en) | Spectroscopic methods for component particle analysis | |
Arteaga et al. | Mueller Matrix Imaging | |
Romo-Uribe et al. | A small-angle light scattering instrument to study soft condensed matter |