JP2008031393A - Laser ray transmitting colored resin composition and related art - Google Patents
Laser ray transmitting colored resin composition and related art Download PDFInfo
- Publication number
- JP2008031393A JP2008031393A JP2006216960A JP2006216960A JP2008031393A JP 2008031393 A JP2008031393 A JP 2008031393A JP 2006216960 A JP2006216960 A JP 2006216960A JP 2006216960 A JP2006216960 A JP 2006216960A JP 2008031393 A JP2008031393 A JP 2008031393A
- Authority
- JP
- Japan
- Prior art keywords
- laser light
- laser
- resin composition
- colored resin
- welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 0 CCC(C)CC1C=C*[C@]1CCC[C@@]1C=CC1C(C)CI Chemical compound CCC(C)CC1C=C*[C@]1CCC[C@@]1C=CC1C(C)CI 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1635—Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1654—Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1674—Laser beams characterised by the way of heating the interface making use of laser diodes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1677—Laser beams making use of an absorber or impact modifier
- B29C65/168—Laser beams making use of an absorber or impact modifier placed at the interface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1677—Laser beams making use of an absorber or impact modifier
- B29C65/1683—Laser beams making use of an absorber or impact modifier coated on the article
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/12—Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
- B29C66/128—Stepped joint cross-sections
- B29C66/1282—Stepped joint cross-sections comprising at least one overlap joint-segment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/12—Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
- B29C66/128—Stepped joint cross-sections
- B29C66/1284—Stepped joint cross-sections comprising at least one butt joint-segment
- B29C66/12841—Stepped joint cross-sections comprising at least one butt joint-segment comprising at least two butt joint-segments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/14—Particular design of joint configurations particular design of the joint cross-sections the joint having the same thickness as the thickness of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/43—Joining a relatively small portion of the surface of said articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/733—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence
- B29C66/7332—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the optical properties of the material of the parts to be joined, e.g. fluorescence, phosphorescence at least one of the parts to be joined being coloured
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/81—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
- B29C66/812—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
- B29C66/8126—General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
- B29C66/81266—Optical properties, e.g. transparency, reflectivity
- B29C66/81267—Transparent to electromagnetic radiation, e.g. to visible light
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1603—Laser beams characterised by the type of electromagnetic radiation
- B29C65/1612—Infrared [IR] radiation, e.g. by infrared lasers
- B29C65/1616—Near infrared radiation [NIR], e.g. by YAG lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1687—Laser beams making use of light guides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1696—Laser beams making use of masks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
- B29C66/73921—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2081/00—Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
- B29K2081/04—Polysulfides, e.g. PPS, i.e. polyphenylene sulfide or derivatives thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0018—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
- B29K2995/0022—Bright, glossy or shiny surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0018—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
- B29K2995/0026—Transparent
- B29K2995/0027—Transparent for light outside the visible spectrum
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、レーザー光透過性着色樹脂組成物及びその樹脂組成物からなるレーザー光透過性部材、レーザー光透過性部材形成用レーザー光透過性着色樹脂組成物、レーザー光透過性部材製造方法、レーザー溶着用レーザー光透過性部材、並びにレーザー溶着体の製造方法に関する。 The present invention relates to a laser light transmissive colored resin composition, a laser light transmissive member comprising the resin composition, a laser light transmissive colored resin composition for forming a laser light transmissive member, a method for producing a laser light transmissive member, and a laser. The present invention relates to a laser beam transmitting member for welding and a method for manufacturing a laser welded body.
熱可塑性合成樹脂からなる部材同士を接合する方法として、レーザー溶着による方法が知られている。このようなレーザー溶着は、例えば次のようにして行われる。レーザー光透過性を示す一方の部材と、レーザー光吸収性を示す他方の部材を当接させる。両部材の当接箇所に対しレーザー光透過性部材の側からレーザー光を照射すると、レーザー光透過性部材を透過したレーザー光がレーザー光吸収性部材に吸収されることにより、レーザー光吸収性部材が発熱する。この熱により、レーザー光を吸収した部分を中心としてレーザー光吸収性部材が溶融すると共に、その部分に当接しているレーザー光透過性部材が溶融し、両部材が当接箇所において融合する。温度低下により溶融樹脂が固化すると、レーザー光透過性部材とレーザー光吸収性部材が十分な溶着強度で接合される。 As a method for joining members made of thermoplastic synthetic resin, a method by laser welding is known. Such laser welding is performed as follows, for example. One member exhibiting laser light permeability is brought into contact with the other member exhibiting laser light absorption. When laser light is irradiated from the side of the laser light transmitting member to the contact portion of both members, the laser light absorbing member absorbs the laser light transmitted through the laser light transmitting member. Generates heat. With this heat, the laser light absorbing member is melted around the portion that has absorbed the laser light, and the laser light transmitting member that is in contact with the portion is melted, and both members are fused at the contact portion. When the molten resin is solidified due to the temperature drop, the laser light transmitting member and the laser light absorbing member are bonded with sufficient welding strength.
このレーザー溶着の特長としては、溶着すべき箇所にレーザー光発生部を接触させることなく溶着させることが可能であること、局所加熱であるため周辺部への熱影響がごく僅かであること、機械的振動のおそれがないこと、微細な部分や複雑な立体構造を有する部材同士の溶着が可能であること、再現性が高いこと、高い気密性を維持できること、溶着強度が高いこと、溶着部分の境目が目視で分かりにくいこと、粉塵等が発生しないこと等が挙げられる。また、簡単な操作により確実に溶着を行うことができる上、従来の樹脂部材の接合方法である締結用部品(ボルト、ビス、クリップ等)による締結、接着剤による接着、振動溶着、超音波溶着等の方法と同等以上の溶着強度が得られる。而も、振動や熱の影響が少ないので、省力化、生産性の改良、生産コストの低減等を実現することができる。 The features of this laser welding are that it can be welded without bringing the laser light generating part into contact with the part to be welded, and because it is a local heating, the thermal effect on the peripheral part is negligible. That there is no risk of mechanical vibration, that it is possible to weld members having fine parts and complex three-dimensional structures, that reproducibility is high, that high airtightness can be maintained, that the welding strength is high, For example, it is difficult to visually recognize the boundary, and dust is not generated. In addition, reliable welding can be performed with simple operations, and fastening with fastening parts (bolts, screws, clips, etc.), which is a conventional method for joining resin members, bonding with adhesives, vibration welding, ultrasonic welding A welding strength equal to or better than that of the above method can be obtained. However, since there is little influence of vibration and heat, it is possible to realize labor saving, improvement of productivity, reduction of production cost, and the like.
そのため、レーザー溶着は、例えば自動車産業や電気・電子産業等における、振動や熱の影響を回避すべき機能部品や電子部品等の接合に適すると共に、複雑な形状の樹脂部品の接合にも適切に使用することが可能である。 Therefore, laser welding is suitable for joining functional parts and electronic parts that should avoid the effects of vibration and heat, for example, in the automobile industry, electrical / electronic industry, etc., and also suitable for joining resin parts with complex shapes. It is possible to use.
レーザー溶着に関する技術として、例えば、特開平11−170371号公報(特許文献1)に記載されているような試みがある。これは、レーザー光を吸収する材料と熱可塑性合成樹脂からなる不透明部材と、レーザー光を透過させる熱可塑性合成樹脂からなる無色透明部材とが接する部分にレーザー光の焦点が合致するようにレーザー光を照射する工程を有するレーザー溶着方法である。しかしこの場合、レーザー光を透過させる部材が無色透明であるため、レーザー光透過部材側から見れば、溶着された部分は溶着されていない部分とは色や平滑性が異なるものとなり、見栄えが良いとは言えない。 As a technique related to laser welding, for example, there is an attempt as described in JP-A-11-170371 (Patent Document 1). This is because the laser beam is focused so that the opaque member made of a material that absorbs laser light and a thermoplastic synthetic resin and the colorless transparent member made of a thermoplastic synthetic resin that transmits the laser beam are in contact with each other. It is a laser welding method which has the process of irradiating. However, in this case, since the member that transmits the laser beam is colorless and transparent, when viewed from the laser beam transmitting member side, the welded portion is different in color and smoothness from the non-welded portion, and the appearance is good. It can not be said.
また、レーザー光透過性部材とレーザー光吸収性部材を当接させた部分をレーザー溶着により接合する場合、当接箇所に存在し得る間隙が十分に小さい範囲内となるよう管理することが極めて重要である。 In addition, when joining the part where the laser beam transmitting member and the laser beam absorbing member are in contact by laser welding, it is extremely important to manage the gap that can exist at the contact point within a sufficiently small range. It is.
そこで、実際の生産現場でレーザー溶着を接合手段として採用する場合、接合対象部材間に存在し得る隙間の対策として、エアクランプ等による加圧によって隙間を低減させた状態で溶着を行うのが主流である。このような加圧による隙間低減手段については、例えば、積層構造体の製造方法に関する特開昭63−118237号公報(特許文献2)、樹脂部材の溶着方法に関する特開2002−337236号公報(特許文献3)、レーザー溶着方法及びレーザー溶着装置に関する特開2004−66739号公報(特許文献4)等に記載がある。 Therefore, when laser welding is used as a joining means at an actual production site, as a countermeasure against gaps that may exist between members to be joined, welding is mainly performed with the gaps reduced by pressurization with an air clamp or the like. It is. As for such a gap reduction means by pressurization, for example, Japanese Patent Application Laid-Open No. 63-118237 (Patent Document 2) relating to a manufacturing method of a laminated structure, and Japanese Patent Application Laid-Open No. 2002-337236 (Patent Document 2) relating to a welding method of resin members. Document 3), Japanese Patent Application Laid-Open No. 2004-66739 (Patent Document 4) and the like related to a laser welding method and a laser welding apparatus.
しかし、加圧による隙間低減手段には、エアクランプ等の加圧設備導入費用及びレーザー溶着の対象部材を加圧設備にセットアップするために要する時間による、生産コストの増大及び生産性低下(例えばタクトタイムの延び等)の問題を随伴するという課題があった。
本発明は、従来技術に存した上記のような課題に鑑み行われたものであって、その目的とするところは、成形精度に優れ、成形物の外観及び光沢が良好であり、成形物をレーザー溶着に用いる場合に溶着対象部材との間の間隙を防ぎ又は効果的に低減させることができ、耐熱性及び堅牢性も良好な、レーザー光透過性着色樹脂組成物、寸法安定性及び形状安定性に優れ、レーザー溶着に用いた場合に溶着対象部材との間の間隙を防ぎ又は効果的に低減させることができるレーザー光透過性部材、その前記樹脂組成物を用いるレーザー光透過性部材製造方法、及び前記レーザー光透過性部材を用いるレーザー溶着体の製造方法を提供することにある。 The present invention has been made in view of the above-described problems existing in the prior art, and the object thereof is excellent in molding accuracy, good appearance and gloss of the molded product, When used for laser welding, the gap between the members to be welded can be prevented or effectively reduced, and the laser light-transmitting colored resin composition with good heat resistance and fastness, dimensional stability and shape stability Laser beam transmitting member capable of preventing or effectively reducing a gap between members to be welded when used for laser welding, and a method for producing a laser beam transmitting member using the resin composition Another object of the present invention is to provide a method for producing a laser welded body using the laser light transmitting member.
上記目的を達成する本発明のレーザー光透過性着色樹脂組成物は、
少なくともポリフェニレンサルファイド樹脂と着色剤とを含有するレーザー光透過性着色樹脂組成物であって、前記着色剤は、TG/DTA熱分析において200℃から300℃までの間に吸熱ピークを有するものであり、DSC熱分析における、前記レーザー光透過性着色樹脂組成物の結晶化点TCと、前記着色剤を含有しないこと以外は前記レーザー光透過性着色樹脂組成物と同一であるものの結晶化点TNとの差であるTC−TNが、0℃以上であることを特徴とする。
The laser light transmitting colored resin composition of the present invention that achieves the above-mentioned object is
A laser light transmitting colored resin composition containing at least a polyphenylene sulfide resin and a colorant, wherein the colorant has an endothermic peak between 200 ° C. and 300 ° C. in a TG / DTA thermal analysis. In the DSC thermal analysis, the crystallization point T C of the laser light transmitting colored resin composition is the same as the laser light transmitting colored resin composition except that it does not contain the colorant. is the difference between the N T C -T N, characterized in that at 0 ℃ or higher.
また、本発明のレーザー光透過性部材は、前記レーザー光透過性着色樹脂組成物からなり、DSC熱分析において発熱エネルギーのピークと吸熱エネルギーのピークとを各1つ有するものである。 The laser light transmitting member of the present invention is made of the laser light transmitting colored resin composition, and has one exothermic energy peak and one endothermic energy peak in DSC thermal analysis.
また、本発明のレーザー光透過性部材形成用レーザー光透過性着色樹脂組成物は、前記レーザー光透過性着色樹脂組成物からなるものである。 The laser light transmitting colored resin composition for forming a laser light transmitting member of the present invention is composed of the laser light transmitting colored resin composition.
また、本発明のレーザー光透過性部材製造方法は、前記レーザー光透過性着色樹脂組成物を、DSC熱分析において発熱エネルギーのピークと吸熱エネルギーのピークとを各1つ有するように成形することからなる。 Further, the laser light transmissive member manufacturing method of the present invention is such that the laser light transmissive colored resin composition is molded so as to have one exothermic energy peak and one endothermic energy peak in DSC thermal analysis. Become.
また、本発明のレーザー溶着用レーザー光透過性部材は、前記レーザー光透過性着色樹脂組成物からなり、DSC熱分析において発熱エネルギーのピークと吸熱エネルギーのピークとを各1つ有するものである。 The laser welding member for laser welding of the present invention comprises the laser beam transmitting colored resin composition and has one each of exothermic energy peak and endothermic energy peak in DSC thermal analysis.
また、本発明のレーザー溶着体の製造方法は、前記レーザー光透過性部材とレーザー光吸収性部材が実質上当接した状態において、レーザー溶着用のレーザー光を、前記レーザー光透過性部材を透過して前記レーザー光吸収性部材が吸収するように照射することにより、前記両部材の当接箇所を溶着させるものである。
この製造方法においては、例えば、1つのレーザー光吸収性部材に対し、複数の方向からそれぞれ本発明のレーザー溶着用レーザー光透過性部材をレーザー溶着させることも可能である。
また、本発明の別のレーザー溶着体の製造方法は、
一方の部材と他方の部材を溶着させて溶着体を製造する方法であって、
前記一方の部材が上記レーザー光透過性部材であり、
前記一方の部材と他方の部材を、レーザー光吸収性薄層を介して実質上当接させた状態において、レーザー溶着用のレーザー光を、前記レーザー光透過性部材を透過して前記レーザー光吸収性薄層が吸収するように照射することにより、レーザー光吸収性薄層を介して前記両部材を溶着させるものである。
この場合のレーザー光吸収性薄層は、前記両部材から独立した部材により形成されるものであってもよく、前記両部材の一方上又は両方上に形成されているものであってもよい。
Further, in the method for producing a laser welded body of the present invention, in the state where the laser light transmitting member and the laser light absorbing member are substantially in contact with each other, the laser light for laser welding is transmitted through the laser light transmitting member. By irradiating the laser light absorbing member so as to be absorbed, the contact portion between the two members is welded.
In this manufacturing method, for example, it is possible to laser-weld the laser-welding member for laser welding of the present invention from a plurality of directions to one laser-absorbing member.
In addition, another method for producing a laser welded body of the present invention is as follows.
A method of manufacturing a welded body by welding one member and the other member,
The one member is the laser light transmitting member,
In a state where the one member and the other member are substantially brought into contact with each other via a laser light absorbing thin layer, the laser light absorbing laser beam is transmitted through the laser light transmitting member. By irradiating so that the thin layer absorbs, the two members are welded through the laser light absorbing thin layer.
In this case, the thin layer for absorbing laser light may be formed by a member independent of the two members, or may be formed on one or both of the two members.
本発明のレーザー光透過性着色樹脂組成物は、成形精度に優れ、成形物の外観及び光沢が良好なものとすることができ、成形物であるレーザー光透過性着色部材をレーザー溶着に用いる場合に、溶着対象部材との間の間隙を防ぎ又は効果的に低減させることができ、着色されていることにより、成形物であるレーザー光透過性部材の側からレーザー光吸収性部材とのレーザー溶着部を視認し難く、耐熱性及び堅牢性も良好である。 When the laser light transmitting colored resin composition of the present invention is excellent in molding accuracy, the appearance and gloss of the molded product can be good, and the laser light transmitting colored member which is the molded product is used for laser welding. In addition, the gap between the member to be welded can be prevented or effectively reduced, and by being colored, laser welding with the laser light absorbing member from the side of the laser light transmitting member that is a molded product It is difficult to visually recognize the part, and heat resistance and fastness are also good.
また、本発明のレーザー光透過性部材は、寸法安定性及び形状安定性に優れ、レーザー溶着に用いた場合に、溶着対象部材との間の間隙を防ぎ又は効果的に低減させることができるので、引張り強度の安定な良好な品質のレーザー溶着体を得ることが可能である。本発明のレーザー溶着体の製造方法によれば、本発明のレーザー光透過性部材を用いることにより、溶着対象部材との間の間隙を防ぎ又は効果的に低減させることができるので、溶着強度が安定で、良好な品質のレーザー溶着体を得ることが可能である。簡易なレーザー装置も用いることができる。 Further, the laser light transmissive member of the present invention is excellent in dimensional stability and shape stability, and when used for laser welding, can prevent or effectively reduce the gap between the member to be welded. It is possible to obtain a good quality laser welded body having a stable tensile strength. According to the laser welded body manufacturing method of the present invention, by using the laser light transmitting member of the present invention, the gap between the member to be welded can be prevented or effectively reduced. It is possible to obtain a stable and good quality laser welded body. A simple laser device can also be used.
本発明のレーザー光透過性着色樹脂組成物は、少なくともポリフェニレンサルファイド樹脂(以下の記述における「PPS樹脂」は、ポリフェニレンサルファイド樹脂を意味する。)と着色剤とを含有する。
本発明のレーザー光透過性着色樹脂組成物は、実質上PPS樹脂と着色剤からなるものとすることもできる。
The laser light transmitting colored resin composition of the present invention contains at least a polyphenylene sulfide resin (“PPS resin” in the following description means a polyphenylene sulfide resin) and a colorant.
The laser light transmitting colored resin composition of the present invention may be substantially composed of a PPS resin and a colorant.
本発明の樹脂組成物に用いる着色剤は、TG/DTA熱分析において、200℃から300℃までの間に吸熱ピークを有することが必要である。より特定するならば、30℃から550℃まで昇温させるTG/DTA熱分析において、200℃から300℃までの間にのみ実質的な吸熱ピークを有する着色剤である。 The colorant used in the resin composition of the present invention needs to have an endothermic peak between 200 ° C. and 300 ° C. in the TG / DTA thermal analysis. More specifically, it is a colorant having a substantial endothermic peak only between 200 ° C. and 300 ° C. in the TG / DTA thermal analysis in which the temperature is raised from 30 ° C. to 550 ° C.
この着色剤についてのTG/DTA熱分析においては、Air(空気)で200ml/分の雰囲気下、30℃から550℃まで10℃/分の速度で昇温させるという測定条件を採用することができる。また、TG/DTA測定器としては、セイコーインスツルメンツ社製のSII EXSTAR6000(商品名)を用いることができる。 In the TG / DTA thermal analysis for this colorant, it is possible to employ a measurement condition in which the temperature is raised from 30 ° C. to 550 ° C. at a rate of 10 ° C./min in an air (air) atmosphere of 200 ml / min. . Moreover, as a TG / DTA measuring device, SII EXSTAR6000 (brand name) by Seiko Instruments Inc. can be used.
また、本発明の樹脂組成物のDSC熱分析における結晶化点をTC、前記着色剤を含有しないこと以外は前記レーザー光透過性着色樹脂組成物と同一であるもの(樹脂又は樹脂組成物)のDSC熱分析における結晶化点をTNとした場合に、両者の差であるTC−TNが0℃以上であることが必要である。両結晶化点が同一条件での測定であるべきことは言うまでもない。 Further, the resin composition of the present invention is the same as the laser light transmitting colored resin composition except that the crystallization point in DSC thermal analysis is T C and does not contain the colorant (resin or resin composition). the crystallization point of the DSC thermal analysis in the case of the T N of, it is necessary that a difference between T C -T N is 0 ℃ or higher. Needless to say, both crystallization points should be measured under the same conditions.
このDSC熱分析においては、30℃から330℃まで10℃/分の速度で昇温させ、その後、330℃から30℃まで10℃/分の速度で降温させるという測定条件を採用することができる。また、DSC測定器としては、セイコーインスツルメンツ社製のSII EXSTAR6000(商品名)を用いることができる。 In this DSC thermal analysis, it is possible to employ a measurement condition in which the temperature is increased from 30 ° C. to 330 ° C. at a rate of 10 ° C./min, and then the temperature is decreased from 330 ° C. to 30 ° C. at a rate of 10 ° C./min. . Moreover, as a DSC measuring instrument, SII EXSTAR6000 (trade name) manufactured by Seiko Instruments Inc. can be used.
上記樹脂組成物がTC−TNが0℃以上であることを満たすことにより、その樹脂組成物からなる成形物(例えば、射出成形によって得られる成形物)に生じ得る湾曲変形(成形により得ようとする成形物を基準とした場合の、得られた成形物の湾曲変形)を効果的に抑えることができる。そのため、本発明の樹脂組成物からなるレーザー光透過性部材をレーザー光吸収性部材とのレーザー溶着に用いる場合に、両部材間の間隙を防ぎ又は効果的に低減させることができ、両部材からなるレーザー溶着体の溶着品質が安定する。
なお、TC−TNについては、好ましくは30℃≧TC−TN≧5℃、更に好ましくは20℃≧TC−TN≧10℃である。このことにより、成形精度の高いレーザー光透過性部材が得られる。
Obtained by satisfying the above-mentioned resin composition is T C -T N is 0 ℃ or more, molded articles made of the resin composition (e.g., molded product obtained by injection molding) by bending deformation (molding that can occur Curvature deformation of the obtained molded product when the molded product to be used as a reference can be effectively suppressed. Therefore, when using a laser beam transmitting member made of the resin composition of the present invention for laser welding with a laser beam absorbing member, the gap between the two members can be prevented or effectively reduced. The welding quality of the laser welded body becomes stable.
Note that the TC-TN, preferably 30 ℃ ≧ TC-TN ≧ 5 ℃, more preferably 20 ℃ ≧ T C -T N ≧ 10 ℃. As a result, a laser light transmissive member with high molding accuracy can be obtained.
本発明のレーザー光透過性部材は、前記レーザー光透過性着色樹脂組成物からなり、DSC熱分析において、発熱エネルギーのピークと吸熱エネルギーのピークとを各1つ有することが必要である。より特定するならば、30℃から330℃まで昇温させ、その後330℃から30℃まで降温させるDSC熱分析において、発熱エネルギーのピークと吸熱エネルギーのピークとを実質的に各1つのみ有することが必要である。 The laser light transmissive member of the present invention is composed of the laser light transmissive colored resin composition, and it is necessary to have one exothermic energy peak and one endothermic energy peak in DSC thermal analysis. More specifically, in DSC thermal analysis in which the temperature is raised from 30 ° C. to 330 ° C. and then lowered from 330 ° C. to 30 ° C., substantially only one peak of exothermic energy and one endothermic energy peak are included. is required.
このDSC熱分析においては、30℃から330℃まで10℃/分の速度で昇温させ、その後、330℃から30℃まで10℃/分の速度で降温させるという測定条件を採用することができる。また、DSC測定器としては、セイコーインスツルメンツ社製のSII EXSTAR6000(商品名)を用いることができる。 In this DSC thermal analysis, it is possible to employ a measurement condition in which the temperature is increased from 30 ° C. to 330 ° C. at a rate of 10 ° C./min, and then the temperature is decreased from 330 ° C. to 30 ° C. at a rate of 10 ° C./min. . Moreover, as a DSC measuring instrument, SII EXSTAR6000 (trade name) manufactured by Seiko Instruments Inc. can be used.
PPS樹脂は、エンジニアリングプラスチックの中でも結晶化速度が比較的遅い。そのため、金型を用いてPPS樹脂を成形する場合、樹脂の結晶化を完全なものとするために、金型温度を高く設定(通常は150℃である)するのが通常である。 PPS resin has a relatively low crystallization rate among engineering plastics. Therefore, when a PPS resin is molded using a mold, the mold temperature is usually set high (usually 150 ° C.) in order to complete crystallization of the resin.
もしPPS樹脂の成形において金型温度を低く設定すると、金型内の溶融樹脂が急冷されるため、得られる成形物には、結晶化が完全な部分と不完全な部分が存在することになり、成形品中で結晶化度にバラツキが生じる。このような成形物についてDSC測定を行うと、結晶化が不完全であった部分が測定過程において結晶化するので、再結晶化点という発熱エネルギーのピークが現れる。DSC測定における昇温時に、融点(吸熱エネルギーのピーク)に達する前に再結晶化点(発熱エネルギーのピーク)が現れる場合は、そのPPS樹脂成形物の結晶化状態が不安定であり、寸法安定性及び形状安定性が乏しいものと判断することができる。 If the mold temperature is set low in the molding of the PPS resin, the molten resin in the mold is rapidly cooled, so that the obtained molded product has a part where the crystallization is complete and a part where the crystallization is incomplete. In the molded product, the crystallinity varies. When DSC measurement is performed on such a molded product, a portion of incomplete crystallization is crystallized in the measurement process, and thus a peak of exothermic energy called a recrystallization point appears. When a recrystallization point (exothermic energy peak) appears before reaching the melting point (endothermic energy peak) at the time of temperature rise in DSC measurement, the crystallization state of the PPS resin molded product is unstable, and dimensional stability It can be judged that the property and shape stability are poor.
本発明のレーザー光透過性部材は、前記本発明のレーザー光透過性着色樹脂組成物を、DSC熱分析において発熱エネルギーのピークと吸熱エネルギーのピークとを各1つ有するように成形することにより得られる。 The laser light transmitting member of the present invention is obtained by molding the laser light transmitting colored resin composition of the present invention so as to have one each of an exothermic energy peak and an endothermic energy peak in DSC thermal analysis. It is done.
着色剤を含有しないPPS樹脂を射出成形して得られる成形物は、成形用の金型温度が130℃であっても再結晶化点が認められる。着色剤を含有しないPPS樹脂を射出成形して再結晶化点が存在しない成形物を得るための金型温度の設定は150℃付近が望ましい。しかし、本発明の樹脂組成物は、前記着色剤を含有することにより、130℃の金型温度で射出成形しても再結晶化点が存在しない成形物が得られる。すなわち、金型温度を低く設定して生産コストを低減させつつ、寸法安定性及び形状安定性の良好な着色成形物を得ることができる。 A molded product obtained by injection molding a PPS resin not containing a colorant has a recrystallization point even when the molding die temperature is 130 ° C. The setting of the mold temperature for obtaining a molded product having no recrystallization point by injection molding a PPS resin not containing a colorant is preferably around 150 ° C. However, since the resin composition of the present invention contains the colorant, a molded product having no recrystallization point can be obtained even when injection molding is performed at a mold temperature of 130 ° C. That is, it is possible to obtain a colored molded article having good dimensional stability and shape stability while setting the mold temperature low to reduce the production cost.
本発明のレーザー光透過性部材は、より特定するならば、そり量が0.5mm以下、より好ましくは0.2mm以下である。本明細書中にいう「そり量」とは、縦80mm×横50mm×厚さ1mmの直方体形状のキャビティを備えた金型で成形を行って、成形物を得て、その得られた成形物の表裏両面をそれぞれ水平面上に載置して各角を100gの分銅で押さえた場合に、その対角が前記水平面から浮く高さのうち最大値を言う。 More specifically, the laser light transmitting member of the present invention has a warp amount of 0.5 mm or less, more preferably 0.2 mm or less. The term “the amount of warp” in the present specification refers to molding with a mold having a rectangular parallelepiped shape with a length of 80 mm × width of 50 mm × thickness of 1 mm, and a molded product is obtained. When the front and back surfaces of each are placed on a horizontal plane and each corner is pressed with a weight of 100 g, the maximum value of the height at which the diagonal rises from the horizontal plane.
本発明のレーザー光透過性部材は、成形精度が優れていて、得られた部材の外観、表面光沢が良好である。この点において本発明のレーザー光透過性部材をより特定するならば、光束60度の測定条件での光沢度が100以上であるものとすることが好ましい。レーザー光透過性部材の光束60度の測定条件での光沢度が100以上である場合、表面平滑度が高いため、レーザー溶着を行う上でレーザー光吸収部材と重ね合わせた際に、両者間に間隙が生じるとしてもその間隙がレーザー溶着に及ぼす影響が少なくなり、溶着品質をより安定化させることができる。 The laser light transmitting member of the present invention has excellent molding accuracy, and the appearance and surface gloss of the obtained member are good. In this respect, if the laser light transmitting member of the present invention is further specified, it is preferable that the glossiness is 100 or more under the measurement condition of a luminous flux of 60 degrees. When the glossiness of the laser light transmitting member under the measurement condition of the light flux of 60 degrees is 100 or more, the surface smoothness is high. Therefore, when the laser light transmitting member is overlapped with the laser light absorbing member, Even if a gap occurs, the influence of the gap on laser welding is reduced, and the welding quality can be further stabilized.
上記のTG/DTA熱分析において200℃から300℃までの間に吸熱ピークを有する着色剤としては、レーザー光の波長域(800nm乃至1600nmの波長)に透過性を有する染料を1種又は2種以上(可視光線吸収範囲が重複するものでも重複しないものでもよい)混合して用いることができる。200℃から300℃までの間に吸熱ピークを有する着色剤とPPS樹脂を含有する着色樹脂組成物の場合、PPS樹脂の融点(DSC測定における融点)付近の温度において着色剤が樹脂中に均一に分散する。そのため、そのような着色剤とPPS樹脂を含有する着色樹脂組成物を成形する場合、金型温度が130℃乃至150℃であれば、着色樹脂成形物は比較的均一状をなす。
一方、200℃以下に吸熱ピークを有する着色剤は、着色剤の分解物が様々であることが多い。そのような着色剤とPPS樹脂を含有する着色樹脂組成物の射出成形を行うと、金型温度が150℃であっても、結晶化が部分的に早く進んだり、遅れたりする。そのため、得られた着色樹脂成形物には、結晶化が不完全な部分ができ、DSC測定で再結晶化点が現れる。結晶の大きさも不均一なものとなる。
レーザー溶着に用いる1種又は2種以上の特定波長のレーザー光に対する透過性を有する着色剤であれば、その構造は特に限定がない。具体的には、アゾ系、アゾ含金系、アゾメチン系、アントラキノン系、キナクリドン系、ジオキサジン系、ジケトピロロピロール系、アントラピリドン系、イソインドリノン系、インダンスロン系、ペリノン系、ペリレン系、インジゴ系、チオインジゴ系、キノフタロン系、キノリン系、トリフェニルメタン系の各種有機染顔料が挙げられる。PPS樹脂に対する相溶性において、有機染料が好ましい。
As the colorant having an endothermic peak between 200 ° C. and 300 ° C. in the above TG / DTA thermal analysis, one or two dyes having transparency in the wavelength range of laser light (wavelength of 800 nm to 1600 nm) are used. A mixture of the above (which may or may not overlap the visible light absorption range) can be used in combination. In the case of a colored resin composition containing a colorant having an endothermic peak between 200 ° C. and 300 ° C. and a PPS resin, the colorant is uniformly present in the resin at a temperature near the melting point of the PPS resin (melting point in DSC measurement). scatter. Therefore, when molding a colored resin composition containing such a colorant and a PPS resin, if the mold temperature is 130 ° C. to 150 ° C., the colored resin molded product is relatively uniform.
On the other hand, colorants having an endothermic peak at 200 ° C. or lower often have various colorant decomposition products. When injection molding of a colored resin composition containing such a colorant and a PPS resin is performed, even if the mold temperature is 150 ° C., crystallization proceeds partially early or delayed. Therefore, the obtained colored resin molded product has an incompletely crystallized portion, and a recrystallization point appears by DSC measurement. The crystal size is also non-uniform.
The structure is not particularly limited as long as it is a colorant having transparency to one or two or more kinds of laser beams having a specific wavelength used for laser welding. Specifically, azo, azo metal-containing, azomethine, anthraquinone, quinacridone, dioxazine, diketopyrrolopyrrole, anthrapyridone, isoindolinone, indanthrone, perinone, perylene And various organic dyes such as indigo, thioindigo, quinophthalone, quinoline, and triphenylmethane. An organic dye is preferable in terms of compatibility with the PPS resin.
2種以上の着色剤を混合した着色剤の例としては、青色、紫色、緑色の各アントラキノン系染料と、黄色および/または赤色の着色剤とを組み合わせることにより、緑色(例えば青色+黄色の組合せ)、紫色(例えば青色+赤色の組合せ)、黒色(例えば、青色+黄色+赤色の組合せ、又は紫色+黄色の組合せ)等の種々の色相を示すものを挙げることができる。工業的な用途において重要な黒色着色剤の例としては、アントラキノン系青色染料と、他の構造の赤色着色剤と黄色着色剤を組み合わせた黒色着色剤、アントラキノン系緑色染料と他の構造の赤色着色剤を組み合わせた黒色着色剤を挙げることができる。これらの例において好ましい赤色着色剤としては、アゾ系赤色染料、ペリノン系赤色染料、アントラピリドン系赤色染料を例示することができる。
このような着色剤の市販品として、オリヱント化学工業社製のレーザー光透過性着色剤 商品名「eBIND LTW−8400C」(”eBIND”及び”LTW”は、それぞれ登録商標である。)等が挙げられる。
As an example of a colorant in which two or more kinds of colorants are mixed, green (for example, a combination of blue and yellow) can be obtained by combining blue, purple, and green anthraquinone dyes with yellow and / or red colorants. ), Purple (for example, a combination of blue + red), black (for example, a combination of blue + yellow + red, or a combination of purple + yellow) and the like showing various hues. Examples of black colorants that are important in industrial applications include anthraquinone blue dyes, black colorants that combine red and yellow colorants of other structures, and anthraquinone green dyes and red colors of other structures. A black colorant combined with an agent can be mentioned. Preferred red colorants in these examples include azo red dyes, perinone red dyes, and anthrapyridone red dyes.
As a commercial product of such a colorant, a laser light transmitting colorant trade name “eBIND LTW-8400C” (“eBIND” and “LTW” are registered trademarks) manufactured by Orient Chemical Co., Ltd. It is done.
本発明のレーザー光透過性着色樹脂組成物中の着色剤の含有量は、PPS樹脂に対し、0.01乃至10重量%であることが好ましい。より好ましくは0.03乃至5重量%、更に好ましくは0.05乃至1重量%である。 The content of the colorant in the laser light transmitting colored resin composition of the present invention is preferably 0.01 to 10% by weight with respect to the PPS resin. More preferably, it is 0.03 to 5% by weight, and still more preferably 0.05 to 1% by weight.
本発明に用いられるレーザー光の光源としては、例えば、固体レーザー(Nd−YAG,YVO4,RUBY)、半導体レーザー、チューナブルレーザー、チタンサファイヤレーザーが挙げられる。好適に使用できるのは、これらのうち、可視光よりも長波長域である800乃至1600nmに発振波長を有するレーザーである。より好ましくは800乃至1100nmに発振波長を有するレーザーである。その他、波長が700nm以上の赤外線を発生するハロゲンランプやキセノンランプを光源として用いてもよい。 Examples of the laser light source used in the present invention include a solid-state laser (Nd-YAG, YVO 4 , RUBY), a semiconductor laser, a tunable laser, and a titanium sapphire laser. Among these, a laser having an oscillation wavelength in the range of 800 to 1600 nm, which is longer than visible light, can be preferably used. A laser having an oscillation wavelength of 800 to 1100 nm is more preferable. In addition, a halogen lamp or a xenon lamp that generates infrared rays having a wavelength of 700 nm or more may be used as the light source.
本発明のレーザー光透過性着色樹脂組成物における波長940nmのレーザー光の透過率であるT着色樹脂と、着色剤を含有しないこと以外は前記レーザー光透過性着色樹脂組成物と同一であるものにおける波長940nmのレーザー光の透過率であるT非着色樹脂との比であるT着色樹脂/T非着色樹脂は、0.5以上であることが好ましい。より好ましくは0.7乃至1.1、更に好ましくは0.8乃至1.1である。 In the laser light-transmitting colored resin composition of the present invention, the T- color resin that is the transmittance of laser light having a wavelength of 940 nm and the same as the laser light-transmitting colored resin composition except that it does not contain a colorant T colored resin / T non-colored resin, which is the ratio of the T uncolored resin is a transmittance of laser light having a wavelength of 940nm is preferably 0.5 or more. More preferably, it is 0.7 to 1.1, and still more preferably 0.8 to 1.1.
PPS樹脂とは、(−φ−S−)[φは置換基を有する又は非置換のフェニレン基]で表わされるチオフェニレン基からなる繰り返し単位を主とする重合体である。この樹脂は、パラジクロルベンゼンと硫化アルカリとを高温、高圧下で反応させて合成したモノマーを重合させることにより得ることができる。この樹脂は、重合助剤を用いた重合工程だけで目的の重合度にさせた直鎖型のものと、低分子の重合体を酸素存在下で熱架橋させた架橋型のものとの二タイプに大まかに分類される。特に直鎖型のものが、レーザー光透過性が優れている点で、本発明に好適である。本発明におけるPPS樹脂としては、ポリマーアロイを用いることができる。その例としては、PPS/ポリオレフィン系アロイ、PPS/ポリアミド系アロイ、PPS/ポリエステル系アロイ、PPS/ポリカーボネイト系アロイ、PPS/ポリフェニレンエーテル系アロイ、PPS/液晶ポリマー系アロイ、PPS/ポリイミド系アロイ、PPS/ポリサルホン系アロイが挙げられる。また、PPS樹脂の溶融粘度は、溶融混練が可能であれば特に制限はないが、通常5乃至2000Pa・sの範囲のものを使用することができ、100乃至600Pa・sの範囲ものもがより好ましい。以上のようなPPS樹脂は電子部品や自動車部品等の用途に適した特性を有している。 The PPS resin is a polymer mainly composed of a repeating unit composed of a thiophenylene group represented by (-φ-S-) [φ is a substituted or unsubstituted phenylene group]. This resin can be obtained by polymerizing a monomer synthesized by reacting paradichlorobenzene and alkali sulfide under high temperature and high pressure. This resin is of two types: a linear type that has a desired degree of polymerization only by a polymerization step using a polymerization aid, and a crosslinked type that is obtained by thermally crosslinking a low molecular weight polymer in the presence of oxygen. Roughly classified. In particular, a straight-chain type is suitable for the present invention because it is excellent in laser light transmittance. A polymer alloy can be used as the PPS resin in the present invention. Examples include PPS / polyolefin alloys, PPS / polyamide alloys, PPS / polyester alloys, PPS / polycarbonate alloys, PPS / polyphenylene ether alloys, PPS / liquid crystal polymer alloys, PPS / polyimide alloys, PPS. / Polysulfone-based alloys. Further, the melt viscosity of the PPS resin is not particularly limited as long as it can be melt kneaded. However, a melt viscosity in the range of 5 to 2000 Pa · s can usually be used, and a melt viscosity in the range of 100 to 600 Pa · s can be used. preferable. The PPS resin as described above has characteristics suitable for applications such as electronic parts and automobile parts.
本発明の着色樹脂組成物は、用途及び目的に応じ、各種の補強材を適量含有するものとすることができる。この補強材としては、通常の合成樹脂の補強に用い得るものを使用することができ、特に限定されない。 The colored resin composition of the present invention may contain appropriate amounts of various reinforcing materials depending on the application and purpose. As this reinforcing material, what can be used for the reinforcement | strengthening of a normal synthetic resin can be used, and it does not specifically limit.
上記補強材の好ましい例としては、ガラス繊維、炭素繊維、その他の無機繊維、及び有機繊維(アラミド、ナイロン、ポリエステル及び液晶ポリマー等)等を挙げることができる。レーザー光透過性を要求される本発明の着色樹脂組成物の補強にはガラス繊維が好ましい。好適に用いることができるガラス繊維の繊維長は2乃至15mmであり繊維径は1乃至20μmである。ガラス繊維の形態については特に制限はなく、例えばロービング、ミルドファイバー等、何れであってもよい。これらのガラス繊維は、一種類を単独で用いるほか、二種以上を組み合わせて用いることもできる。その含有量は、PPS樹脂100重量部に対し5乃至120重量部とすることが好ましい。5重量部未満の場合、十分なガラス繊維補強効果が得られ難く、120重量部を超えると成形性が低下することとなり易い。また、レーザー溶着での接合を目的とした場合、原理的には樹脂同士が溶融接合するものであるため、ガラス繊維の含有量が少ない方が溶着強度は高くなる。この点を考慮したガラス繊維の含有量として好ましいのは、10乃至60重量部、特に好ましくは20乃至50重量部である。 Preferred examples of the reinforcing material include glass fibers, carbon fibers, other inorganic fibers, and organic fibers (such as aramid, nylon, polyester, and liquid crystal polymer). Glass fiber is preferable for reinforcing the colored resin composition of the present invention, which requires laser light transmission. The fiber length of the glass fiber that can be suitably used is 2 to 15 mm, and the fiber diameter is 1 to 20 μm. There is no restriction | limiting in particular about the form of glass fiber, For example, any, such as roving and a milled fiber, may be sufficient. These glass fibers can be used alone or in combination of two or more. The content is preferably 5 to 120 parts by weight with respect to 100 parts by weight of the PPS resin. When the amount is less than 5 parts by weight, it is difficult to obtain a sufficient glass fiber reinforcing effect. When the amount exceeds 120 parts by weight, the formability tends to be lowered. Further, when the purpose is joining by laser welding, in principle, the resins are melt-bonded to each other, so that the welding strength is higher when the glass fiber content is smaller. The glass fiber content considering this point is preferably 10 to 60 parts by weight, particularly preferably 20 to 50 parts by weight.
またその他の補強材としては、マイカ、セリサイト、ガラスフレーク等の板状充填材、タルク、カオリン、クレー、ウォラストナイト、ベントナイト、アルミナシリケート等の珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン等の金属酸化物、炭酸カルシウム、炭酸マグネシウム、ドロマイト等の炭酸塩、硫酸カルシウム、硫酸バリウム等の硫酸塩、ガラスビーズ、セラミックビ−ズ、窒化ホウ素、炭化珪素等の粒子状充填材等を添加することができる。 Other reinforcing materials include platy fillers such as mica, sericite, and glass flake, silicates such as talc, kaolin, clay, wollastonite, bentonite, and alumina silicate, alumina, silicon oxide, magnesium oxide, and oxide. Particulate packing of metal oxides such as zirconium and titanium oxide, carbonates such as calcium carbonate, magnesium carbonate and dolomite, sulfates such as calcium sulfate and barium sulfate, glass beads, ceramic beads, boron nitride and silicon carbide Materials etc. can be added.
本発明の着色樹脂組成物は、必要に応じ種々の添加剤を配合することも可能である。このような添加剤としては、例えば助色剤、分散剤、安定剤、可塑剤、改質剤、紫外線吸収剤又は光安定剤、酸化防止剤、帯電防止剤、潤滑剤、離型剤、結晶促進剤、結晶核剤、難燃剤、及び耐衝撃性改良用のエラストマー等が挙げられる。 The colored resin composition of the present invention can contain various additives as required. Examples of such additives include auxiliary colorants, dispersants, stabilizers, plasticizers, modifiers, ultraviolet absorbers or light stabilizers, antioxidants, antistatic agents, lubricants, mold release agents, crystals. Examples thereof include accelerators, crystal nucleating agents, flame retardants, and elastomers for improving impact resistance.
本発明の着色樹脂組成物は、原材料を任意の配合方法で配合することにより得られる。これらの配合成分は、通常、できるだけ均質化させることが好ましい。具体的には例えば、全ての原材料をブレンダー、ニーダー、バンバリーミキサー、ロール、押出機等の混合機で混合して均質化させて、得ることができる。また例えば、一部の原材料を混合機で混合した後、残りの成分を加えて更に混合して均質化させて得ることができる。また例えば、予めドライブレンドされた原材料を、加熱した押出機で溶融混練して均質化した後、針金状に押出し、次いで所望の長さに切断して着色粒状をなす着色ペレットとして得ることもできる。 The colored resin composition of the present invention can be obtained by blending raw materials by any blending method. These blending components are usually preferably homogenized as much as possible. Specifically, for example, all raw materials can be obtained by mixing and homogenizing with a mixer such as a blender, kneader, Banbury mixer, roll, or extruder. For example, after mixing a part of raw materials with a mixer, it can be obtained by adding the remaining components and further mixing and homogenizing. Alternatively, for example, a raw material that has been dry blended in advance can be melt-kneaded with a heated extruder, homogenized, extruded into a wire shape, and then cut into a desired length to obtain colored pellets that form colored granules. .
本発明の着色樹脂組成物は、PPS樹脂中に前記着色剤を高濃度に含有するマスターバッチを、更にPPS樹脂を用い希釈することより調製することもできる。マスターバッチを用いることにより、良好に着色剤が分散した着色樹脂組成物が得られる。前記のマスターバッチは任意の方法により得られる。例えば、マスターバッチのベースとなる樹脂の粉末又はペレットと着色剤をタンブラーやスーパーミキサー等の混合機で混合した後、押出機、バッチ式混練機又はロール式混練機等により加熱溶融してペレット化又は粗粒子化することにより得ることができる。また例えば、合成後未だ溶液状態にあるマスターバッチ用樹脂に着色剤を添加した後、溶媒を除いてマスターバッチを得ることもできる。 The colored resin composition of the present invention can also be prepared by further diluting a master batch containing the colorant at a high concentration in the PPS resin with the PPS resin. By using the master batch, a colored resin composition in which the colorant is favorably dispersed can be obtained. The master batch can be obtained by any method. For example, after mixing the powder or pellets of resin as the base of the masterbatch and the colorant with a mixer such as a tumbler or super mixer, the mixture is heated and melted into pellets by an extruder, batch kneader or roll kneader. Alternatively, it can be obtained by coarsening. For example, after adding a coloring agent to the resin for master batches which is still in a solution state after synthesis, a master batch can be obtained by removing the solvent.
本発明の着色樹脂組成物の成形は、通常行われる種々の手順により行い得る。例えば、本発明の着色樹脂組成物からなる着色樹脂ペレットを用いて、押出機、射出成形機、ロールミル等の加工機により成形することにより行うことができる。また、PPS樹脂のペレット又は粉末、粉砕された着色剤、及び必要に応じ各種の添加物を、適当なミキサー中で混合し、この混合物を、加工機を用いて成形することにより行うこともできる。また例えば、適当な重合触媒を含有するモノマーに着色剤を加え、この混合物を重合により所望のPPS樹脂とし、これを適当な方法で成形することもできる。成形方法としては、例えば射出成形、押出成形、圧縮成形、発泡成形、ブロー成形、真空成形、インジェクションブロー成形、回転成形、カレンダー成形、溶液流延等、一般に行われる何れの成形方法を採用することもできる。このような成形により、種々の形状のレーザー光透過部材を得ることができる。 Molding of the colored resin composition of the present invention can be performed by various commonly performed procedures. For example, it can carry out by shape | molding with processing machines, such as an extruder, an injection molding machine, and a roll mill, using the colored resin pellet which consists of a colored resin composition of this invention. Further, PPS resin pellets or powder, pulverized colorant, and various additives as necessary may be mixed in a suitable mixer, and the mixture may be molded using a processing machine. . Further, for example, a colorant may be added to a monomer containing an appropriate polymerization catalyst, and this mixture may be polymerized to obtain a desired PPS resin, which may be molded by an appropriate method. As a molding method, for example, any generally used molding method such as injection molding, extrusion molding, compression molding, foam molding, blow molding, vacuum molding, injection blow molding, rotational molding, calendar molding, solution casting, etc. should be adopted. You can also. By such molding, laser light transmitting members having various shapes can be obtained.
一般的にレーザー溶着方法の長所は、3次元溶着が可能となるため、金型形状の自由度が上がること、振動溶着と異なり溶着面のバリがなくなることによる意匠性の向上、振動や摩耗粉が発生しないこと、電子部品等への適用が容易であること等である。短所としては、レーザー溶着装置に要する先行投資、樹脂材料の成形後のヒケによる溶着部材間の隙間の発生等が挙げられる。特にこの隙間の問題については、レーザー溶着装置を操作して溶着を実行する際の最大の問題点である。そのため、溶着部材の形状に合わせて独自に押さえ冶具を作成し、エアクランプ等により溶着対象を押圧して隙間を解消又は低減させた状態で溶着を行っているのが実情である。
これに対し本発明のレーザー光透過性部材は、成形精度が高くそり量が少ない。そのため、本発明のレーザー光透過性部材を用いたレーザー溶着においては、レーザー光透過性部材とレーザー光吸収性部材の当接箇所における両部材の間隙がそりによって大きくなることが防がれるので、エアクランブ等による隙間低減等の必要性が少なく、比較的簡単な装置でレーザー溶着が行うことができる。前記両部材の間隙としては0乃至0.05mmであることが好ましい。
In general, the advantages of laser welding methods are that three-dimensional welding is possible, so that the degree of freedom in the shape of the mold is increased, and, unlike vibration welding, there is no burrs on the welding surface, and vibration and wear powder are improved. Is not generated, and is easily applied to electronic parts. Disadvantages include upfront investment required for laser welding equipment, generation of gaps between welding members due to sink marks after molding of the resin material, and the like. In particular, this gap problem is the biggest problem when performing welding by operating a laser welding apparatus. Therefore, the actual situation is that a pressing jig is uniquely created according to the shape of the welding member, and welding is performed in a state in which the object to be welded is pressed by an air clamp or the like to eliminate or reduce the gap.
In contrast, the laser light transmitting member of the present invention has high molding accuracy and a small amount of warpage. Therefore, in laser welding using the laser light transmissive member of the present invention, it is prevented that the gap between the two members at the contact point between the laser light transmissive member and the laser light absorbent member is increased by warpage, Laser welding can be performed with a relatively simple apparatus with little need for clearance reduction by an air clam or the like. The gap between the two members is preferably 0 to 0.05 mm.
レーザー溶着装置としては、レーザー光照射部が動く走査タイプ、溶着部材が動くマスキングタイプ、多方面から溶着部材に対してレーザー光を同時照射させるタイプ等が挙げられるが、自動車業界が注目している方法は走査タイプであり、現状では、その走査速度として例えば5m/分という数値を生産タクトタイムの基準としている。 Examples of the laser welding apparatus include a scanning type in which the laser beam irradiation unit moves, a masking type in which the welding member moves, a type in which laser beam is simultaneously irradiated onto the welding member from various directions, and the automobile industry is paying attention. The method is a scanning type, and at present, a numerical value of, for example, 5 m / min is used as the reference for the production tact time as the scanning speed.
レーザー溶着は、原理的に、レーザーという光のエネルギーから熱エネルギーへの変換を利用しているため、溶着条件によって溶着性能が著しく左右される。一般に、照射したレーザー光が吸収部材表面上で受ける熱量は次式で算出が可能である。 In principle, laser welding uses conversion of laser light energy to thermal energy, so that the welding performance is significantly affected by the welding conditions. In general, the amount of heat that the irradiated laser beam receives on the surface of the absorbing member can be calculated by the following equation.
吸収部材の表面熱量(J/mm2)=(レーザー光の出力(W)×レーザー光透過性部材の透過率(%)×1/100)/(レーザー光のスポット径(mm)×レーザー光の走査速度(mm/sec))・・・(I) Surface heat quantity of absorbing member (J / mm 2 ) = (Laser beam output (W) × Laser beam transmissivity (%) × 1/100) / (Laser beam spot diameter (mm) × Laser beam) Scanning speed (mm / sec)) ... (I)
(I)式よりうかがえるように、レーザー溶着において生産効率を上げるためには、高出力タイプのレーザー溶着装置を用いると共に走査速度を上げることが求められる。ポリアミド樹脂から得られるレーザー光透過性に優れる材料の場合、このような手段による生産効率の向上が図られる。
しかし、PPS樹脂を用いたレーザー溶着においては、樹脂の用途上部品自体の大きさもそれほど大きくないため、必ずしも高出力、高速の溶着条件が望ましいとは言いきれず、むしろ低出力、低速の方が、溶着品質が安定し易く、望ましいという傾向にある。
またPPS樹脂の場合、樹脂自体のレーザー光透過性が高くないため、レーザー光がレーザー光吸収性部材表面に到達するまでにレーザー光透過性部材中で吸収される率が比較的高いため、高出力でレーザー溶着を行うとレーザー光透過性部材の表面で発火する等の不具合が生じ易い。よって、PPS樹脂のレーザー溶着においては、このような不具合に対しては、例えば、レーザー光透過性部材の上にガラス板を置いて、レーザー光透過性部材が発する熱をそのガラス板に吸収させる等の対策を講じることが重要である。
As can be seen from equation (I), in order to increase production efficiency in laser welding, it is required to use a high-power type laser welding apparatus and increase the scanning speed. In the case of a material excellent in laser light transmission obtained from a polyamide resin, the production efficiency can be improved by such means.
However, in laser welding using PPS resin, the size of the part itself is not so large for the purpose of the resin, so it can not be said that high power and high speed welding conditions are desirable, rather low power and low speed are more desirable. The welding quality tends to be stable and tends to be desirable.
In the case of PPS resin, since the laser light permeability of the resin itself is not high, the rate at which the laser light is absorbed in the laser light transmitting member before reaching the surface of the laser light absorbing member is relatively high. When laser welding is performed at the output, problems such as ignition on the surface of the laser light transmitting member are likely to occur. Therefore, in laser welding of the PPS resin, for example, a glass plate is placed on the laser light transmissive member, and the heat generated by the laser light transmissive member is absorbed by the glass plate. It is important to take such measures.
一般に、溶着強度を上げるには、レーザー光吸収性部材にある程度の表面熱量を発生させることが必要である。そのためには、対象とするレーザー光吸収性部材及びレーザー光透過性部材の性質に応じてレーザー出力を上げる、走査速度を下げる、スポット径を小さくする等の種々の条件を検討する必要がある。 Generally, in order to increase the welding strength, it is necessary to generate a certain amount of surface heat in the laser light absorbing member. For this purpose, it is necessary to examine various conditions such as increasing the laser output, decreasing the scanning speed, and reducing the spot diameter according to the properties of the target laser light absorbing member and laser light transmitting member.
本発明の着色樹脂組成物の成形部材は、波長が700nm以上の赤外線を発生するハロゲンランプを使用しても非接触で溶着することができる。この場合のランプ形状としては、帯状にランプを配したものが多い。照射態様としては、例えば、ランプ照射部が動く走査タイプ、溶着部材が動くマスキングタイプ、多方面から溶着部材に対してランプを同時照射させるタイプ等が挙げられる。また照射は、適宜、赤外線の照射幅、照射時間、照射エネルギー等を調整して行うことができる。
しかし、ハロゲンランプは近赤外域を中心にエネルギー分布を持っているため、そのエネルギー分布の短波長側、すなわち可視領域においてエネルギーが存在することがある。このような場合、部材表面に溶着痕を生じることもあるため、カットフィルター等を用いて可視領域のエネルギーを遮断することもできる。
PPS樹脂の成形物は、電気、電子部品などの小型の物が多いため、その接合には、溶着条件を様々に設定して細かく制御できるレーザー溶着が適している。
The molded member of the colored resin composition of the present invention can be welded in a non-contact manner even when a halogen lamp that generates infrared rays having a wavelength of 700 nm or more is used. In many cases, the lamp shape in this case is a band-like lamp. Examples of the irradiation mode include a scanning type in which the lamp irradiation unit moves, a masking type in which the welding member moves, and a type in which the lamp is simultaneously irradiated onto the welding member from various directions. Irradiation can be performed by appropriately adjusting the irradiation width of infrared rays, irradiation time, irradiation energy, and the like.
However, since the halogen lamp has an energy distribution centering on the near infrared region, energy may exist in the short wavelength side of the energy distribution, that is, in the visible region. In such a case, since welding marks may be formed on the surface of the member, the energy in the visible region can be blocked using a cut filter or the like.
Since many PPS resin moldings are small, such as electric and electronic parts, laser welding that can be finely controlled by setting various welding conditions is suitable for joining.
レーザー溶着には、レーザー光透過性部材として、レーザー溶着に用いる可視光よりも長波長域(800乃至1600nm)のレーザー光を少なくとも15%透過させるものを用いることが望ましい。また、半導体レーザーの808nm、840nm、940nmの
波長、及びYAGレーザーの1064nmの波長のうち1つ又は2つ以上の波長の赤外線透過率が、少なくとも20%であるレーザー光透過性部材を用いることが更に好適である。これより透過率が低い場合、これらの波長のレーザー光が十分に透過できないため、上述のような不具合が発生して溶着品質の低下を招くおそれが生じる。
For laser welding, it is desirable to use a laser light transmitting member that transmits at least 15% of laser light in a longer wavelength region (800 to 1600 nm) than visible light used for laser welding. In addition, a laser light transmitting member having an infrared transmittance of at least 20% of one or two or more of the wavelengths of 808 nm, 840 nm, and 940 nm of the semiconductor laser and 1064 nm of the YAG laser is used. Further preferred. If the transmittance is lower than this, the laser light of these wavelengths cannot be sufficiently transmitted, so that the above-described problems may occur and the welding quality may be deteriorated.
レーザー光吸収性部材は、レーザー光吸収剤兼黒色着色剤として少なくともカーボンブラックを用いたレーザー光吸収性着色樹脂組成物(好ましくは熱可塑性樹脂組成物)からなるものであることが好ましい。この場合のカーボンブラックは、1次粒子径が18乃至30nmのものを用いるのが好ましい。このようなカーボンブラックを用いることにより、レーザー光を高吸収率で吸収する、高分散されたレーザー光吸収部材を得ることができる。
また、レーザー光吸収剤兼黒色着色剤としてカーボンブラックと共にニグロシン染料を用いることができる。ニグロシン染料を用いることにより、レーザー光吸収率を良好に調節できる。ニグロシン染料としてはC.I.ソルベントブラック7に属するニグロシン染料が好ましい。また、レーザー光吸収剤兼黒色着色剤として、カーボンブラックを用いずに他のレーザー光吸収剤(例えば、フタロシアニン系、シアニン系、金属錯体など)を用いた(又は他のレーザー光吸収剤兼着色剤[例えばアニリンブラック]を用いた)レーザー光吸収性着色樹脂組成物によりレーザー光吸収性部材を得ることもできる。
The laser light absorbing member is preferably composed of a laser light absorbing colored resin composition (preferably a thermoplastic resin composition) using at least carbon black as a laser light absorber and black colorant. In this case, carbon black having a primary particle diameter of 18 to 30 nm is preferably used. By using such carbon black, a highly dispersed laser light absorbing member that absorbs laser light at a high absorption rate can be obtained.
Moreover, a nigrosine dye can be used with carbon black as a laser beam absorber and black colorant. By using the nigrosine dye, the laser light absorption rate can be adjusted well. Examples of nigrosine dyes include C.I. I. Nigrosine dye belonging to Solvent Black 7 is preferred. Also, as the laser light absorber and black colorant, other laser light absorbers (for example, phthalocyanine-based, cyanine-based, metal complexes, etc.) are used without using carbon black (or other laser light absorber-colored. A laser light absorbing member can also be obtained from a laser light absorbing colored resin composition (using an agent [for example, aniline black]).
また、レーザー光吸収性部材は、カーボンブラック以外の着色剤と、フタロシアニン系、シアニン系、金属錯体等で例示されるレーザー光吸収剤(又は他のレーザー光吸収剤兼着色剤を用いた)とを含有する非黒色のレーザー光吸収性着色樹脂組成物で形成されていてもよい。カーボンブラック以外のレーザー光吸収剤兼着色剤を含有するレーザー光吸収性着色樹脂組成物で形成されていてもよい。 The laser light absorbing member includes a colorant other than carbon black, a laser light absorber exemplified by a phthalocyanine-based, cyanine-based, metal complex, and the like (or other laser light absorber / colorant used). It may be formed of a non-black laser-absorbing colored resin composition containing You may form with the laser beam absorptive colored resin composition containing laser beam absorbers and coloring agents other than carbon black.
レーザー光吸収性部材の作製は、レーザー光透過性部材と同様にしてレーザー光吸収性着色樹脂組成物を成形することにより行うことができる。レーザー光吸収性着色樹脂組成物には、レーザー光透過性部材の作製の際に用い得る前述の各種着色剤、各種染顔料等の有機染顔料や添加剤等を更に含有させることも可能である。レーザー光吸収性部材の作製に用いる材料は、レーザー光透過性部材に用いる材料に比べて、レーザー光透過性という制限がないために幅広く選択できる。レーザー光吸収性着色樹脂組成物における着色剤の使用量は、樹脂(好ましくは熱可塑性樹脂)に対し、例えば0.01乃至10重量%とすることができ、好ましくは0.05乃至5重量%である。
レーザー光吸収性薄層は、例えばレーザー光吸収性部材を薄く形成したもの(例えばフィルム状物)であってもよく、或いは、レーザー溶着の対象となる両部材の一方上又は両方上に形成するものであってもよい。後者の場合、例えば、上記レーザー光吸収性部材に用いる着色剤を含有することによりレーザー光吸収性を有するインキまたは塗料を対象面上に塗布(又は印刷等)して固化させることにより形成することができる。
このようなレーザー光吸収性インキの例としては、レーザー光吸収剤を有機溶剤に溶解または分散したインキを挙げることができる。PPS樹脂に塗布する好ましいインキの組成としては、アルコールまたはグリコール溶剤、その溶剤に溶解するレーザー光吸収剤、前記溶剤に溶解する樹脂で少なくとも構成されるインキが挙げられる。このようなレーザー光吸収性インキは、pH調節剤、粘度調節剤、防腐剤、酸化防止剤、光安定剤などの添加剤を含むことができる。有機溶剤に溶解するレーザー光吸収剤としては、ニグロシンが好ましい。
The laser light absorbing member can be produced by molding a laser light absorbing colored resin composition in the same manner as the laser light transmitting member. The laser light-absorbing colored resin composition may further contain organic dyes and additives such as the above-mentioned various colorants and various dyes that can be used in the production of the laser light-transmissive member. . The material used for manufacturing the laser light absorbing member can be selected from a wide range because there is no restriction of laser light transmission compared to the material used for the laser light transmitting member. The amount of the colorant used in the laser light absorbing colored resin composition can be, for example, 0.01 to 10% by weight, preferably 0.05 to 5% by weight, based on the resin (preferably thermoplastic resin). It is.
The laser light absorbing thin layer may be, for example, a thin laser light absorbing member (for example, a film-like material), or may be formed on one or both of both members to be laser welded. It may be a thing. In the latter case, for example, it is formed by applying (or printing, etc.) and solidifying an ink or paint having laser light absorption by containing a colorant used for the laser light absorbing member. Can do.
Examples of such laser light absorbing inks include inks in which a laser light absorber is dissolved or dispersed in an organic solvent. A preferable ink composition applied to the PPS resin includes an alcohol or glycol solvent, a laser light absorbent dissolved in the solvent, and an ink composed of at least a resin dissolved in the solvent. Such laser light absorbing ink may contain additives such as a pH adjusting agent, a viscosity adjusting agent, a preservative, an antioxidant, and a light stabilizer. Nigrosine is preferred as the laser light absorber that dissolves in the organic solvent.
次に、本発明のレーザー光透過性着色樹脂組成物からなるレーザー光透過性部材とレーザー光吸収性組成物からなるレーザー光吸収性部材とのレーザー溶着体、又はレーザー光吸収性薄層を介してレーザー光透過性部材同士を溶着して得られるレーザー溶着体の製造方法について説明する。 Next, through a laser welded body of a laser light transmitting member made of the laser light transmitting colored resin composition of the present invention and a laser light absorbing member made of a laser light absorbing composition, or a laser light absorbing thin layer A method for manufacturing a laser welded body obtained by welding laser light transmitting members together will be described.
本発明の製造方法によるレーザー溶着体は、1回のレーザー溶着で得られるものの他、複数回レーザー溶着するものも含まれる。複数回レーザー溶着するものの例としては、レーザー光透過性部材同士の間にレーザー光吸収性部材又はレーザー光吸収性薄層を挟んでレーザー溶着する例を挙げることができる。レーザー光吸収性部材の厚さが十分に薄いレーザー光吸収性薄層を用いた場合、一方のレーザー光透過性部材からのレーザー光の照射で溶着可能(両方のレーザー光透過性部材からそれぞれレーザー光を照射することも可)であるが、比較的厚いレーザー光吸収性部材の場合は、そのレーザー光吸収性部材を挟む両方のレーザー光透過性部材からそれぞれレーザー光を照射(同時でも順次でも可能)してレーザー溶着を行うことが必要である。 The laser welded body produced by the production method of the present invention includes those obtained by laser welding once, as well as those obtained by laser welding a plurality of times. As an example of what is laser-welded a plurality of times, an example in which laser welding is performed with a laser light-absorbing member or a laser light-absorbing thin layer sandwiched between laser light-transmitting members can be given. When a laser light absorbing thin layer with a sufficiently thin laser light absorbing member is used, it can be welded by laser light irradiation from one of the laser light transmitting members. However, in the case of a relatively thick laser light absorbing member, laser light is irradiated from both laser light transmitting members sandwiching the laser light absorbing member (either simultaneously or sequentially). Possible) and laser welding.
レーザー溶着体製造工程例1(図1)
(A)本発明のレーザー光透過性着色樹脂組成物を用いたレーザー光透過性部材1を成形する。
(B)PPS樹脂組成物製のレーザー光吸収性部材2と前記レーザー光透過性部材1の溶着対象箇所同士を当接させる。
(C)次に、レーザー光3が前記レーザー光透過性部材1を透過して前記レーザー光吸収性部材2に吸収されるように、そのレーザー光3を適宜調節しながら照射する。照射は、必要箇所を走査させつつ行なう。
(D)照射したレーザー光3が、レーザー光透過性部材1を透過してレーザー光吸収性部材2に到達し、レーザー光吸収剤等の作用によりレーザー光吸収性部材2に吸収されて発熱を起こし、両部材1、2を熱溶融により融合させる。
(E)両部材1、2の融合部位が冷却固化することにより、前記レーザー光透過性部材1とレーザー光吸収性部材2の溶着対象箇所同士が接合する。
Laser welding production process example 1 (FIG. 1)
(A) The laser
(B) The welding target portions of the laser
(C) Next, the
(D) The irradiated
(E) The fusion site of both
レーザー溶着体製造工程例2(図2、図3)
(F)本発明のレーザー光透過性着色樹脂組成物を用いたレーザー光透過性部材1を複数個成形する。
(G)前記の複数個のレーザー光透過性部材1の溶着対象箇所同士の間に、レーザー光吸収性薄層4(例えばPPS樹脂組成物製のレーザー光吸収性フィルム)を介在させる。
或いは、前記の複数個のレーザー光透過性部材1の互いに溶着する両面のうち一方(又は両方)に、レーザー光吸収性薄層5を形成する。このレーザー光吸収性薄層5は、例えばレーザー光吸収性を有する樹脂インキを対象面上に塗布(又は印刷等)して固化させることにより形成することができる。
(H)次に、複数方向(一方のレーザー光透過性部材1の側及び他方のレーザー光透過性部材1の側)より、レーザー光3がそれぞれレーザー光透過性部材1を透過して前記レーザー光吸収性薄層4(5)に吸収されるように、各レーザー光3を適宜調節しながら照射する。照射は、必要箇所を走査させつつ行なう。
(I)複数方向より照射した各レーザー光3が、それぞれレーザー光透過性部材1を透過してレーザー光吸収性薄層4(又は5)に到達し、レーザー光吸収剤等の作用によりレーザー光吸収性薄層4(又は5)に吸収されて発熱を起こし、両レーザー光透過性部材1と、レーザー光吸収剤含有層を構成するレーザー光吸収性薄層4(又は5)とを熱溶融により融合させる。なお、一方のレーザー光透過性部材1の側からレーザー光3を照射することによりレーザー光吸収性薄層4(又は5)を発熱させて、両レーザー光透過性部材1とレーザー光吸収剤含有層を構成するレーザー光吸収性薄層4(又は5)とをそれぞれ熱溶融させ、それらを融合させることも可能である。
(J)両レーザー光透過性部材1とレーザー光吸収性部材4(又は5)の融合部位が冷却固化することにより、両レーザー光透過性部材1の溶着対象箇所同士が、レーザー光吸収性部材4(又は5)を介して接合する。
本発明のレーザー溶着体の製造方法においては、レーザー光透過性部材の成形精度が高いため、レーザー光吸収性部材の当接箇所における両部材の間隙が大きくなることが防がれるので、比較的簡単な装置でレーザー溶着を行うことができる。本発明のレーザー溶着体の製造方法における前記両部材の間隙は0乃至0.05mmであることが好ましい。
Laser welded body manufacturing process example 2 (FIGS. 2 and 3)
(F) A plurality of laser
(G) A laser light-absorbing thin layer 4 (for example, a laser light-absorbing film made of a PPS resin composition) is interposed between welding target portions of the plurality of laser light-
Alternatively, the laser light absorbing
(H) Next, the
(I) Each
(J) When the fusion site of both laser
In the method for producing a laser welded body according to the present invention, since the molding accuracy of the laser light transmitting member is high, it is possible to prevent the gap between the two members at the contact portion of the laser light absorbing member from becoming large. Laser welding can be performed with a simple apparatus. In the method for producing a laser welded body of the present invention, the gap between the two members is preferably 0 to 0.05 mm.
本発明の製造方法により得られるレーザー溶着体は、耐熱性や耐光性等の堅牢性が高く、また耐移行性や耐薬品性等が良好で、而も鮮明な色相を示すものである。 The laser welded body obtained by the production method of the present invention has high fastness such as heat resistance and light resistance, good migration resistance, chemical resistance, etc., and exhibits a vivid hue.
本発明のレーザー光透過性着色樹脂組成物、レーザー光透過性部材、及び本発明の製造方法により得られるレーザー溶着体の主な用途として、例えば、OA機器、プリント基板、自動車部品を挙げることができる。より具体的には、例えば内装におけるインストルメントパネル、エンジンルーム内におけるレゾネター(消音器)を挙げることができる。熱可塑性樹脂製部品を接合する際、従来はその表面未処理では接着剤の使用が困難なため、表面に前処理を施す等の工夫が必要であった。それに対し、レーザー溶着は、前処理や樹脂のアロイ化等の面倒な工程の必要がないうえ、接着剤を使用した場合に比べ、強度面やリサイクル面で優れている。 Examples of main applications of the laser light-transmitting colored resin composition, the laser light-transmitting member, and the laser welded body obtained by the manufacturing method of the present invention include OA equipment, printed circuit boards, and automobile parts. it can. More specifically, for example, an instrument panel in the interior and a resonator (silencer) in the engine room can be mentioned. When joining parts made of thermoplastic resin, conventionally, since it is difficult to use an adhesive if the surface is untreated, it has been necessary to devise methods such as pretreatment of the surface. On the other hand, laser welding does not require a troublesome process such as pretreatment or alloying of the resin, and is superior in strength and recycling compared to the case where an adhesive is used.
次に実施例を挙げて本発明を具体的に説明するが、勿論本発明はこれらのみに限定されるものではない。
(実施例1)
EXAMPLES Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
(Example 1)
eBIND LTW−8400C(オリヱント化学工業社製のPPS樹脂用レーザー光透過性着色剤["eBIND"及び"LTW"は何れも登録商標])をフォートロン1130A6(ポリプラスチックス社製のガラス繊維30重量%含有PPS樹脂[商品名])で25倍に希釈するように両者を計量して混合し、得られた混合物を、射出成形機(東洋機械金属社製 商品名:Si−50)を用いて、縦80mm×横50mm×厚さ1mmの直方体形状のキャビティを備えた金型により、シリンダー温度320℃、金型温度130℃で通常の方法で射出成形したところ、外観及び表面光沢が良好で色むらがない均一な黒色のレーザー光透過性試験片(図4)が得られた。
(実施例2)
eBIND LTW-8400C (Laser light transmissive colorant for PPS resin manufactured by Orient Chemical Industry Co., Ltd. ["eBIND" and "LTW" are both registered trademarks]) fortron 1130A6 (polyplastics glass fiber 30 weight) % Containing PPS resin [trade name]) and weighed and mixed them so that they were diluted 25 times, and the resulting mixture was used with an injection molding machine (trade name: Si-50, manufactured by Toyo Machine Metal Co., Ltd.). When injection molding is performed by a normal method at a cylinder temperature of 320 ° C. and a mold temperature of 130 ° C. using a mold having a rectangular parallelepiped shape of 80 mm in length, 50 mm in width, and 1 mm in thickness, the appearance and surface gloss are good and color A uniform black laser light-transmitting test piece (FIG. 4) with no unevenness was obtained.
(Example 2)
eBIND LTW−8400Cをフォートロン1130A6で25倍に希釈するように両者を計量して混合し、得られた混合物を、射出成形機(東洋機械金属社製 商品名:Si−50)を用いて、縦80mm×横50mm×厚さ1mmの直方体形状のキャビティを備えた金型により、シリンダー温度320℃、金型温度140℃で通常の方法で射出成形したところ、外観及び表面光沢が良好で色むらがない均一な黒色のレーザー光透過性試験片(図4)が得られた。
(実施例3)
Both of eBIND LTW-8400C were weighed and mixed so as to be diluted 25-fold with Fortron 1130A6, and the resulting mixture was used with an injection molding machine (trade name: Si-50, manufactured by Toyo Kikai Co., Ltd.) When a mold having a rectangular parallelepiped cavity with a length of 80 mm x width 50 mm x
(Example 3)
eBIND LTW−8400Cをフォートロン1130A6で25倍に希釈するように両者を計量して混合し、得られた混合物を、射出成形機(東洋機械金属社製 商品名:Si−50)を用いて、縦80mm×横50mm×厚さ1mmの直方体形状のキャビティを備えた金型により、シリンダー温度320℃、金型温度150℃で通常の方法で射出成形したところ、外観及び表面光沢が良好で色むらがない均一な黒色のレーザー光透過性試験片(図4)が得られた。
(実施例4)
Both of eBIND LTW-8400C were weighed and mixed so as to be diluted 25-fold with Fortron 1130A6, and the resulting mixture was used with an injection molding machine (trade name: Si-50, manufactured by Toyo Machine Metal Co., Ltd.) When injection molding is performed by a normal method at a cylinder temperature of 320 ° C. and a mold temperature of 150 ° C., using a mold having a rectangular parallelepiped shape of 80 mm long × 50 mm wide × 1 mm thick, the appearance and surface gloss are good and the color unevenness A uniform black laser light-transmitting test piece (FIG. 4) was obtained.
Example 4
eBIND LTW−8400Cをフォートロン1140A6(ポリプラスチックス社製のガラス繊維40重量%含有PPS樹脂[商品名])で10倍に希釈するように両者を計量して混合し、得られた混合物を、射出成形機(東洋機械金属社製 商品名:Si−50)を用いて、縦80mm×横50mm×厚さ1mmの直方体形状のキャビティを備えた金型により、シリンダー温度320℃、金型温度150℃で通常の方法で射出成形したところ、外観及び表面光沢が良好で色むらがない均一な黒色のレーザー光透過性試験片(図4)が得られた。
(実施例5)
eBIND LTW-8400C was weighed and mixed so as to be diluted 10-fold with Fortron 1140A6 (PPS resin containing 40% by weight of glass fiber manufactured by Polyplastics Co., Ltd. [trade name]), and the resulting mixture was Using an injection molding machine (trade name: Si-50, manufactured by Toyo Kikai Metals Co., Ltd.), a cylinder having a rectangular parallelepiped shape of 80 mm in length, 50 mm in width, and 1 mm in thickness is used. When injection molding was carried out at ordinary temperature at 0 ° C., a uniform black laser light-transmitting test piece (FIG. 4) having good appearance and surface gloss and no color unevenness was obtained.
(Example 5)
eBIND LTW−8400Cをフォートロン1140A6で25倍に希釈するように両者を計量して混合し、得られた混合物を、射出成形機(東洋機械金属社製 商品名:Si−50)を用いて、縦80mm×横50mm×厚さ1mmの直方体形状のキャビティを備えた金型により、シリンダー温度320℃、金型温度150℃で通常の方法で射出成形したところ、外観及び表面光沢が良好で色むらがない均一な黒色のレーザー光透過性試験片(図4)が得られた。
(実施例6)
Both of eBIND LTW-8400C were weighed and mixed so as to be diluted 25-fold with Fortron 1140A6, and the resulting mixture was used with an injection molding machine (trade name: Si-50, manufactured by Toyo Kikai Co., Ltd.) When injection molding is performed by a normal method at a cylinder temperature of 320 ° C. and a mold temperature of 150 ° C., using a mold having a rectangular parallelepiped shape of 80 mm long × 50 mm wide × 1 mm thick, the appearance and surface gloss are good and the color unevenness A uniform black laser light-transmitting test piece (FIG. 4) was obtained.
(Example 6)
eBIND LTW−8400Cをフォートロン1140A6で50倍に希釈するように両者を計量して混合し、得られた混合物を、射出成形機(東洋機械金属社製 商品名:Si−50)を用いて、縦80mm×横50mm×厚さ1mmの直方体形状のキャビティを備えた金型により、シリンダー温度320℃、金型温度150℃で通常の方法で射出成形したところ、外観及び表面光沢が良好で色むらがない均一な黒色のレーザー光透過性試験片(図4)が得られた。
(実施例7)
Both of eBIND LTW-8400C were weighed and mixed so as to be diluted 50 times with Fortron 1140A6, and the resulting mixture was used with an injection molding machine (trade name: Si-50, manufactured by Toyo Kikai Co., Ltd.) When injection molding is performed by a normal method at a cylinder temperature of 320 ° C. and a mold temperature of 150 ° C., using a mold having a rectangular parallelepiped shape of 80 mm long × 50 mm wide × 1 mm thick, the appearance and surface gloss are good and the color unevenness A uniform black laser light-transmitting test piece (FIG. 4) was obtained.
(Example 7)
eBIND LTW−8400CをトレリナA604(東レ社製のガラス繊維40重量%含有PPS樹脂[商品名])で25倍に希釈するように両者を計量して混合し、得られた混合物を、射出成形機(東洋機械金属社製 商品名:Si−50)を用いて、縦80mm×横50mm×厚さ1mmの直方体形状のキャビティを備えた金型により、シリンダー温度320℃、金型温度150℃で通常の方法で射出成形したところ、外観及び表面光沢が良好で色むらがない均一な黒色のレーザー光透過性試験片(図4)が得られた。
(比較例1)
Both of eBIND LTW-8400C were weighed and mixed so as to be diluted 25 times with TORELINA A604 (PPS resin [trade name] containing 40% by weight of glass fiber manufactured by Toray Industries, Inc.), and the resulting mixture was injected into an injection molding machine. (Product name: Si-50, manufactured by Toyo Machine Metal Co., Ltd.), with a mold having a rectangular parallelepiped shape of 80 mm long x 50 mm wide x 1 mm thick, usually at a cylinder temperature of 320 ° C and a mold temperature of 150 ° C As a result of injection molding, a uniform black laser light-transmitting test piece (FIG. 4) having good appearance and surface gloss and no color unevenness was obtained.
(Comparative Example 1)
C.I.Solvent Violet 13の紫色染料とC.I.Solvent Yellow 114の黄色染料とを配合した混合着色剤(配合重量比5:1)を、フォートロン1130A6に対して0.2重量%添加になるように計量して混合し、得られた混合物を、射出成形機(東洋機械金属社製 商品名:Si−50)を用いて、縦80mm×横50mm×厚さ1mmの直方体形状のキャビティを備えた金型により、シリンダー温度320℃、金型温度120℃で通常の方法で射出成形したところ、外観及び表面光沢が鈍い黒色のレーザー光透過性試験片(図4)が得られた。
(比較例2)
C. I. Solvent Violet 13 purple dye and C.I. I. A mixed colorant blended with a yellow dye of Solvent Yellow 114 (blending weight ratio 5: 1) was weighed and mixed so that 0.2 wt% was added to Fortron 1130A6, and the resulting mixture was mixed. Using an injection molding machine (trade name: Si-50, manufactured by Toyo Machine Metal Co., Ltd.), a cylinder temperature of 320 ° C. and a mold temperature of a mold having a rectangular parallelepiped cavity of 80 mm long × 50 mm wide × 1 mm thick When injection molding was carried out at 120 ° C. by a usual method, a black laser light transmission test piece (FIG. 4) having a dull appearance and surface gloss was obtained.
(Comparative Example 2)
C.I.Solvent Violet 13の紫色染料とC.I.Solvent Yellow 114の黄色染料とを配合した混合着色剤(配合重量比5:1)を、フォートロン1140A6に対して0.2重量%添加になるように計量して混合し、得られた混合物を射出成形機(東洋機械金属社製 商品名:Si−50)を用いて、縦80mm×横50mm×厚さ1mmの直方体形状のキャビティを備えた金型により、シリンダー温度320℃、金型温度90℃で通常の方法で射出成形したところ、外観及び表面光沢が鈍い黒色のレーザー光透過性試験片(図4)が得られた。
(比較例3)
C. I. Solvent Violet 13 purple dye and C.I. I. A mixed colorant blended with a yellow dye of Solvent Yellow 114 (blending weight ratio 5: 1) was weighed and mixed so that 0.2 wt% was added to Fortron 1140A6, and the resulting mixture was mixed. Using an injection molding machine (trade name: Si-50, manufactured by Toyo Machine Metal Co., Ltd.), a cylinder temperature of 320 ° C. and a mold temperature of 90 ° C. are provided by a mold having a rectangular parallelepiped shape of 80 mm long × 50 mm wide × 1 mm thick. When injection molding was carried out at ordinary temperature at 0 ° C., a black laser light-transmitting test piece (FIG. 4) having a dull appearance and surface gloss was obtained.
(Comparative Example 3)
C.I.Pigment Violet 37の紫色顔料をフォートロン1140A6に対して0.2重量%添加になるように計量して混合し、得られた混合物を、射出成形機(東洋機械金属社製 商品名:Si−50)を用いて、縦80mm×横50mm×厚さ1mmの直方体形状のキャビティを備えた金型により、シリンダー温度320℃、金型温度150℃で通常の方法で射出成形したところ、外観及び表面光沢が鈍い紫色のレーザー光透過性試験片(図4)が得られた。
(比較例4)
C. I. Pigment Violet 37 purple pigment was weighed and mixed so that 0.2 wt% was added to Fortron 1140A6, and the resulting mixture was injected into an injection molding machine (trade name: Si-50, manufactured by Toyo Machine Metal Co., Ltd.). ), And injection molding by a normal method at a cylinder temperature of 320 ° C. and a mold temperature of 150 ° C. using a die having a rectangular parallelepiped shape of 80 mm long × 50 mm wide × 1 mm thick. A dull purple laser light transmission test piece (FIG. 4) was obtained.
(Comparative Example 4)
フォートロン1130A6を、射出成形機(東洋機械金属社製 商品名:Si−50)を用いて、縦80mm×横50mm×厚さ1mmの直方体形状のキャビティを備えた金型により、シリンダー温度320℃、金型温度150℃で通常の方法で射出成形したところ、黄白色系のレーザー光透過性試験片(図4)が得られた。 Fortron 1130A6 was molded using a mold having a rectangular parallelepiped shape of 80 mm long, 50 mm wide and 1 mm thick using an injection molding machine (trade name: Si-50, manufactured by Toyo Kikai Co., Ltd.), and the cylinder temperature was 320 ° C. Then, when injection molding was performed at a mold temperature of 150 ° C. by a normal method, a yellowish white laser light transmission test piece (FIG. 4) was obtained.
(物性評価) (Evaluation of the physical properties)
実施例1乃至7及び比較例1乃至4におけるレーザー光透過性着色樹脂組成物及びレーザー光透過性試験片について、下記のように物性評価を行った。その結果を表1及び表2に示す。
(1)DSC測定
The physical properties of the laser light transmitting colored resin compositions and laser light transmitting test pieces in Examples 1 to 7 and Comparative Examples 1 to 4 were evaluated as follows. The results are shown in Tables 1 and 2.
(1) DSC measurement
レーザー光透過性試験片10のAの部位(図4に示すように、ゲート位置Gに対し対角付近)をニッパーで切り取って小片とし、それをDSC測定器(セイコーインスツルメンツ社製 商品番号:SII EXSTAR6000)を用いて、30℃から330℃まで10℃/分の速度で昇温させ、その後、330℃から30℃まで10℃/分の速度で降温させて、再結晶化点、融点及び結晶化点の確認を行った。
実施例3、実施例4、実施例5、実施例6及び比較例2についてのDSC曲線を、それぞれ図7、図8、図9、図10、図11に示す。
(2)TG/DTA測定
The portion A of the laser light transmitting test piece 10 (near the diagonal with respect to the gate position G as shown in FIG. 4) is cut out with a nipper to make a small piece, which is a DSC measuring instrument (manufactured by Seiko Instruments Inc., product number: SII). Using EXSTAR 6000), the temperature is increased from 30 ° C. to 330 ° C. at a rate of 10 ° C./min, and then the temperature is decreased from 330 ° C. to 30 ° C. at a rate of 10 ° C./min. The turning point was confirmed.
The DSC curves for Example 3, Example 4, Example 5, Example 6, and Comparative Example 2 are shown in FIGS. 7, 8, 9, 10, and 11, respectively.
(2) TG / DTA measurement
各実施例及び比較例の着色剤粉体サンプルをTG/DTA測定器(セイコーインスツルメンツ社製 商品名:SII EXSTAR6000)を用い、Air(空気)で200ml/分の雰囲気下、30℃から550℃まで10℃/分の速度で昇温させて測定を行い、200℃から300℃までの間に吸熱ピークを含んでいるか確認を行った。
eBIND LTW−8400CについてのTG/DTA曲線を図12に示す。
(3)光沢度測定
Using the TG / DTA measuring device (trade name: SII EXSTAR6000, manufactured by Seiko Instruments Inc.) for each colorant powder sample of each example and comparative example, from 30 ° C. to 550 ° C. in an air (air) atmosphere of 200 ml / min. The temperature was raised at a rate of 10 ° C./min, and measurement was performed, and it was confirmed whether an endothermic peak was included between 200 ° C. and 300 ° C.
The TG / DTA curve for eBIND LTW-8400C is shown in FIG.
(3) Glossiness measurement
光沢度計(スガ試験機社製 商品名:HG−268型)を用いて、角度60度の光束における各レーザー光透過性試験片の光沢度を測定した。
測定値が高いほど光沢度が高いと判断される。
(4)そり量
Using a gloss meter (trade name: HG-268, manufactured by Suga Test Instruments Co., Ltd.), the glossiness of each laser light transmissive test piece in a light beam with an angle of 60 degrees was measured.
The higher the measurement value, the higher the glossiness.
(4) Sled amount
各レーザー光透過性試験片10を図5のように水平面12上に置き、各レーザー光透過性試験片10のゲート位置G付近の角を100gの分銅Wで押さた場合に、その対角が水平面12に対して浮く高さhをノギスにて測定してそり量とした。
(5)レーザー溶着試験
When each laser light
(5) Laser welding test
各実施例及び比較例において用いたガラス繊維含有樹脂にカーボンブラック0.5部を添加し、各実施例及び比較例と同様にしてレーザー光吸収性試験片14を作製した。
0.5 parts of carbon black was added to the glass fiber-containing resin used in each Example and Comparative Example, and a laser light absorbing
次に、図6に示すように、レーザー光透過性試験片10とレーザー光吸収性試験片14を、治具Jを用いて重ね合わせ、その上にガラス板Pを載置した上でエアクランプCにより圧力(0、0.2MPa、0.4MPa)をかけてセットした。ガラス板の上方からダイオード・レーザー溶着機L[波長:940nm 連続的](ファインデバイス社製)により、レーザー光R(出力25W、走査速度5mm/sec、スポット径0.6mm)を図6における奥行き方向に30mmにわたり走査させながら照射した。
(6)引張強度試験
Next, as shown in FIG. 6, the laser light transmitting
(6) Tensile strength test
(5)で得られた溶着体に対し、JISK7113−1995に準じ、引張試験機(島津製作所社製 商品名:AG−50kNE)にて、溶着体の長手方向(溶着部を引離す方向)に試験速度10mm/minで引張試験を行って、引張溶着強度を測定した。 For the welded body obtained in (5), according to JISK7113-1995, the tensile tester (trade name: AG-50kNE, manufactured by Shimadzu Corporation) is used in the longitudinal direction of the welded body (direction in which the welded part is pulled away). A tensile test was conducted at a test speed of 10 mm / min to measure the tensile weld strength.
表1中、*1は、C.I.Solvent Violet 13とC.I.Solvent Yellow 114の混合着色剤(配合重量比5:1)を示す。 In Table 1, * 1 indicates C.I. I. Solvent Violet 13 and C.I. I. The mixed colorant of Solvent Yellow 114 (blending weight ratio 5: 1) is shown.
表2に示されるように、レーザー光透過性試験片のそり量が0.5mm以下である場合、クランプ圧を0とし、載荷圧をガラス板Pの自重によるもののみとしても、レーザー光吸収性試験片との間で実用的に十分な溶着強度を確保することができた。これに対しレーザー光透過性試験片のそり量が0.5mmを超える場合には、クランプ圧を調整しても、レーザー光吸収性試験片との間の間隙によって、十分な溶着強度が得られなかった。 As shown in Table 2, when the amount of warpage of the laser light transmitting test piece is 0.5 mm or less, the laser light absorbency can be obtained even when the clamping pressure is 0 and the loading pressure is only due to the weight of the glass plate P. Practically sufficient welding strength could be secured with the test piece. On the other hand, when the amount of warpage of the laser light transmitting test piece exceeds 0.5 mm, sufficient welding strength can be obtained by the gap between the laser light absorbing test piece even if the clamp pressure is adjusted. There wasn't.
10 レーザー光透過性試験片
12 水平面
14 レーザー光吸収性試験片
C エアクランプ
G ゲート位置
J 治具
L ダイオード・レーザー溶着機
P ガラス板
R レーザー光
W 分銅
h 高さ
10 Laser light
Claims (11)
前記一方の部材が請求項3、4又は5記載のレーザー光透過性部材であり、
前記一方の部材と他方の部材を、レーザー光吸収性薄層を介して実質上当接させた状態において、レーザー溶着用のレーザー光を、前記レーザー光透過性部材を透過して前記レーザー光吸収性薄層が吸収するように照射することにより、レーザー光吸収性薄層を介して前記両部材を溶着させるレーザー溶着体の製造方法。
A method of manufacturing a welded body by welding one member and the other member,
The one member is a laser light transmitting member according to claim 3, 4 or 5,
In a state where the one member and the other member are substantially brought into contact with each other via a laser light absorbing thin layer, the laser light absorbing laser beam is transmitted through the laser light transmitting member. A method for producing a laser welded body in which the two members are welded via a laser light absorbing thin layer by irradiating the thin layer so as to absorb.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006216960A JP2008031393A (en) | 2005-09-01 | 2006-08-09 | Laser ray transmitting colored resin composition and related art |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005253963 | 2005-09-01 | ||
JP2006177882 | 2006-06-28 | ||
JP2006216960A JP2008031393A (en) | 2005-09-01 | 2006-08-09 | Laser ray transmitting colored resin composition and related art |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008031393A true JP2008031393A (en) | 2008-02-14 |
Family
ID=39121166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006216960A Pending JP2008031393A (en) | 2005-09-01 | 2006-08-09 | Laser ray transmitting colored resin composition and related art |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008031393A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010194908A (en) * | 2009-02-26 | 2010-09-09 | Okayama Prefecture | Intermediate member for laser joining, and joining method using the same |
JP2013180526A (en) * | 2012-03-02 | 2013-09-12 | Hayakawa Rubber Co Ltd | Joining method using laser beam |
JP2014024225A (en) * | 2012-07-25 | 2014-02-06 | Asahi Kasei Chemicals Corp | Composite material and method of producing the same |
JP2015134503A (en) * | 2015-03-09 | 2015-07-27 | 早川ゴム株式会社 | Bonding method using laser beam |
JP2015143026A (en) * | 2015-03-09 | 2015-08-06 | 早川ゴム株式会社 | Bonding method using laser beam |
WO2016117504A1 (en) * | 2015-01-22 | 2016-07-28 | オムロン株式会社 | Method for producing junction structure, and junction structure |
JP2019147369A (en) * | 2017-11-30 | 2019-09-05 | ザ・ボーイング・カンパニーThe Boeing Company | Addition production method of sheet base and system thereof |
CN115084571A (en) * | 2021-03-12 | 2022-09-20 | 丰田自动车株式会社 | Method for manufacturing fuel cell |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05140451A (en) * | 1991-11-18 | 1993-06-08 | Polyplastics Co | Polyarylene sulfide resin composition |
JPH05194851A (en) * | 1991-10-01 | 1993-08-03 | Tosoh Corp | Composite polyarylene sulfide material and its production |
JPH08176436A (en) * | 1994-12-22 | 1996-07-09 | Polyplastics Co | Polyarylene sulfide resin composition |
JPH08245806A (en) * | 1995-03-09 | 1996-09-24 | Dainippon Ink & Chem Inc | Production of polyarylene sulfide resin molding |
JPH08337653A (en) * | 1995-06-13 | 1996-12-24 | Idemitsu Petrochem Co Ltd | Production of polyarylene sulfide copolymer, copolymer obtained thereby, and its resin composition |
JP2004155888A (en) * | 2002-11-06 | 2004-06-03 | Orient Chem Ind Ltd | Laser beam transmitting colored thermoplastic resin composition and laser welding method |
JP2004168997A (en) * | 2002-11-06 | 2004-06-17 | Orient Chem Ind Ltd | Laser beam transmitting colored thermoplastic resin composition and laser welding method |
JP2005015792A (en) * | 2003-06-05 | 2005-01-20 | Toray Ind Inc | Polyphenylene sulfide resin composition for laser welding, and composite molded product using it |
WO2005021245A1 (en) * | 2003-08-27 | 2005-03-10 | Orient Chemical Industries, Ltd. | Method for laser welding |
WO2005021244A1 (en) * | 2003-08-27 | 2005-03-10 | Orient Chemical Industries, Ltd. | Laser light transmitting resin composition and method for laser welding using the same |
JP2005139445A (en) * | 2003-10-15 | 2005-06-02 | Orient Chem Ind Ltd | Laserbeam-permeable colored resin composition and laser welding method using it |
WO2006009200A1 (en) * | 2004-07-22 | 2006-01-26 | Daicel Polymer, Ltd. | Label for laser welding and composite molding |
JP2006058869A (en) * | 2004-07-22 | 2006-03-02 | Daicel Polymer Ltd | Label for laser welding and composite molding |
-
2006
- 2006-08-09 JP JP2006216960A patent/JP2008031393A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05194851A (en) * | 1991-10-01 | 1993-08-03 | Tosoh Corp | Composite polyarylene sulfide material and its production |
JPH05140451A (en) * | 1991-11-18 | 1993-06-08 | Polyplastics Co | Polyarylene sulfide resin composition |
JPH08176436A (en) * | 1994-12-22 | 1996-07-09 | Polyplastics Co | Polyarylene sulfide resin composition |
JPH08245806A (en) * | 1995-03-09 | 1996-09-24 | Dainippon Ink & Chem Inc | Production of polyarylene sulfide resin molding |
JPH08337653A (en) * | 1995-06-13 | 1996-12-24 | Idemitsu Petrochem Co Ltd | Production of polyarylene sulfide copolymer, copolymer obtained thereby, and its resin composition |
JP2004168997A (en) * | 2002-11-06 | 2004-06-17 | Orient Chem Ind Ltd | Laser beam transmitting colored thermoplastic resin composition and laser welding method |
JP2004155888A (en) * | 2002-11-06 | 2004-06-03 | Orient Chem Ind Ltd | Laser beam transmitting colored thermoplastic resin composition and laser welding method |
JP2005015792A (en) * | 2003-06-05 | 2005-01-20 | Toray Ind Inc | Polyphenylene sulfide resin composition for laser welding, and composite molded product using it |
WO2005021245A1 (en) * | 2003-08-27 | 2005-03-10 | Orient Chemical Industries, Ltd. | Method for laser welding |
WO2005021244A1 (en) * | 2003-08-27 | 2005-03-10 | Orient Chemical Industries, Ltd. | Laser light transmitting resin composition and method for laser welding using the same |
JP2005139445A (en) * | 2003-10-15 | 2005-06-02 | Orient Chem Ind Ltd | Laserbeam-permeable colored resin composition and laser welding method using it |
WO2006009200A1 (en) * | 2004-07-22 | 2006-01-26 | Daicel Polymer, Ltd. | Label for laser welding and composite molding |
JP2006058869A (en) * | 2004-07-22 | 2006-03-02 | Daicel Polymer Ltd | Label for laser welding and composite molding |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010194908A (en) * | 2009-02-26 | 2010-09-09 | Okayama Prefecture | Intermediate member for laser joining, and joining method using the same |
JP2013180526A (en) * | 2012-03-02 | 2013-09-12 | Hayakawa Rubber Co Ltd | Joining method using laser beam |
JP2014024225A (en) * | 2012-07-25 | 2014-02-06 | Asahi Kasei Chemicals Corp | Composite material and method of producing the same |
WO2016117504A1 (en) * | 2015-01-22 | 2016-07-28 | オムロン株式会社 | Method for producing junction structure, and junction structure |
JP2015134503A (en) * | 2015-03-09 | 2015-07-27 | 早川ゴム株式会社 | Bonding method using laser beam |
JP2015143026A (en) * | 2015-03-09 | 2015-08-06 | 早川ゴム株式会社 | Bonding method using laser beam |
JP2019147369A (en) * | 2017-11-30 | 2019-09-05 | ザ・ボーイング・カンパニーThe Boeing Company | Addition production method of sheet base and system thereof |
JP7249763B2 (en) | 2017-11-30 | 2023-03-31 | ザ・ボーイング・カンパニー | Sheet-based additive manufacturing method and system |
CN115084571A (en) * | 2021-03-12 | 2022-09-20 | 丰田自动车株式会社 | Method for manufacturing fuel cell |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20070044907A1 (en) | Laser ray transmitting colored resin composition and related art | |
KR101277190B1 (en) | Laser welded material | |
JP3928734B2 (en) | Laser welded body of laser light transmitting member containing alkaline earth metal salt of anthraquinone acid dye | |
JP3928735B2 (en) | Laser welded body of laser light transmitting member containing alkaline earth metal salt of anthrapyridone acid dye | |
JP4446706B2 (en) | Laser light transmitting colored thermoplastic resin composition and laser welding method | |
JP2008031393A (en) | Laser ray transmitting colored resin composition and related art | |
JP7089280B2 (en) | Manufacturing method of laser welded body | |
KR100677890B1 (en) | Laser-transmissible colored resin composition and method for laser welding | |
JP4639148B2 (en) | Colored polyolefin resin composition and laser welding method using the same | |
US20050003301A1 (en) | Laser ray transmitting colored thermoplastic resin composition and method of laser welding | |
JP2004155888A (en) | Laser beam transmitting colored thermoplastic resin composition and laser welding method | |
JP4720149B2 (en) | Laser-welded colored resin composition and composite molded body using the same | |
JP2008105430A (en) | Laser welded body | |
JP3887629B2 (en) | Laser light transmitting colored thermoplastic resin composition and related technology | |
WO2004067619A1 (en) | Laser transmitting colored thermoplastic resin composition and method of laser welding | |
JP5042459B2 (en) | Laser light transmitting composition and laser welding method | |
JP3857989B2 (en) | Laser light transmitting colored polypropylene resin composition and related technology | |
JP2007296857A (en) | Laser welded body | |
JP2005139445A (en) | Laserbeam-permeable colored resin composition and laser welding method using it |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090113 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110726 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20111122 |