[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008030379A - Hydraulic circuit for injection apparatus and back pressure controlling method - Google Patents

Hydraulic circuit for injection apparatus and back pressure controlling method Download PDF

Info

Publication number
JP2008030379A
JP2008030379A JP2006208186A JP2006208186A JP2008030379A JP 2008030379 A JP2008030379 A JP 2008030379A JP 2006208186 A JP2006208186 A JP 2006208186A JP 2006208186 A JP2006208186 A JP 2006208186A JP 2008030379 A JP2008030379 A JP 2008030379A
Authority
JP
Japan
Prior art keywords
hydraulic
path
back pressure
oil
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006208186A
Other languages
Japanese (ja)
Other versions
JP4837477B2 (en
Inventor
Sentaro Kobayashi
泉太郎 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aoki Technical Laboratory Inc
Original Assignee
Aoki Technical Laboratory Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aoki Technical Laboratory Inc filed Critical Aoki Technical Laboratory Inc
Priority to JP2006208186A priority Critical patent/JP4837477B2/en
Publication of JP2008030379A publication Critical patent/JP2008030379A/en
Application granted granted Critical
Publication of JP4837477B2 publication Critical patent/JP4837477B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/82Hydraulic or pneumatic circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/47Means for plasticising or homogenising the moulding material or forcing it into the mould using screws
    • B29C45/50Axially movable screw
    • B29C45/5008Drive means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/82Hydraulic or pneumatic circuits
    • B29C2045/828Bidirectional pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To control the back pressure in the neighborhood of non-back pressure (OMPa) in an injection apparatus by adopting a hydraulic motor for controlling the back pressure and adopting a bi-directional hydraulic pump for pressure-conveying and feeding a pressure oil to an injection cylinder. <P>SOLUTION: A hydraulic path of a front room side of the injection cylinder and a hydraulic path of a back room side thereof are connected by a hydraulic pump circuit. The bi-directional hydraulic pump rotating regularly and reversely by an electrically driven servo motor is provided in the hydraulic pump circuit. A check valves are provided in the hydraulic paths on the tank side of the front room side hydraulic path and the back room side hydraulic path. An electromagnetic switching valve is provided and a hydraulic motor for controlling the back pressure rotating regularly and reversely by the electrically driven servo motor is provided in a discharging oil path provided in parallel to the hydraulic path on the back room side. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、樹脂の可塑化計量時における射出ピストンの背圧制御を油圧モータにより行うことができる射出装置の油圧回路及び背圧制御方法とに関するものである。   The present invention relates to a hydraulic circuit of an injection device and a back pressure control method capable of performing back pressure control of an injection piston by a hydraulic motor during plasticization measurement of resin.

射出シリンダのピストンに加熱筒内の射出スクリュを連結し、その射出スクリュの回転により可塑化計量した樹脂を、油圧により射出ピストンを前進移動して金型に射出充填する油圧式射出装置では、可塑化計量時に樹脂圧により後退する射出ピストンの速度を、油圧による背圧力を射出ピストンに付与して制御しており、その制御をリリーフバルブにより行っている。
特開平1−281913号公報 特開平7−276449号公報
In a hydraulic injection device in which an injection screw in a heating cylinder is connected to a piston of an injection cylinder, and the resin plasticized and measured by the rotation of the injection screw is moved forward by the injection piston by hydraulic pressure, the mold is injected and filled. The speed of the injection piston retreating by the resin pressure during chemical weighing is controlled by applying a back pressure by hydraulic pressure to the injection piston, and the control is performed by a relief valve.
JP-A-1-281913 JP 7-276449 A

上記従来の背圧制御では、リリーフバルブを全開に設定して排出される油に圧力が立たないようにして、油圧による背圧力を0設定しても、弁体がバネにより付勢されていることから、射出ピストンの後退力により加圧されるシリンダ後室の油に圧力が立ち、低圧ながら射出ピストンの背圧力として作用する。このためリリーフバルブのみによる背圧制御では無背圧(0MPa)付近での背圧制御が難しいとされ、無背圧用電磁切換弁や背圧制御用ロジック弁を併用している。   In the conventional back pressure control, the valve body is biased by a spring even when the back pressure by hydraulic pressure is set to 0 so that no pressure is generated in the oil discharged by setting the relief valve to fully open. Therefore, a pressure is generated in the oil in the cylinder rear chamber that is pressurized by the retreating force of the injection piston, and acts as a back pressure of the injection piston while being low in pressure. For this reason, it is considered that back pressure control near no back pressure (0 MPa) is difficult by back pressure control using only a relief valve, and a back pressure electromagnetic switching valve and a back pressure control logic valve are used in combination.

しかしながら、射出ピストンに作用する背圧力は油圧力以外にも、射出ピストン側の重量(ピストン+スクリュ)とピストンリングの摩擦抵抗などによる後退抵抗力が機械的な背圧力として作用しており、これが無背圧付近での背圧制御を難しくしている一因ともなっている。   However, the back pressure acting on the injection piston is not only the oil pressure, but also the reverse resistance due to the weight of the injection piston (piston + screw) and the frictional resistance of the piston ring acts as a mechanical back pressure. This also contributes to the difficulty of back pressure control near no back pressure.

この発明は、上記事情から考えられたものであって、その目的は、背圧制御に油圧モータを採用し、また射出シリンダへの圧油の圧送供給に双方向油圧ポンプを採用することによって、無背圧力(0MPa)付近での背圧制御を可能とする射出装置の油圧回路と背圧制御方法を提供することにある。   The present invention has been conceived from the above circumstances, and its purpose is to employ a hydraulic motor for back pressure control and a bidirectional hydraulic pump for pressure supply of pressure oil to the injection cylinder. An object of the present invention is to provide a hydraulic circuit of an injection device and a back pressure control method that enable back pressure control near no back pressure (0 MPa).

上記目的によるこの発明の油圧回路は、射出シリンダの前室側油圧路と後室側油圧路の両方にわたり接続した油圧ポンプ回路と、その油圧ポンプ回路に設けた双方向油圧ポンプと、その双方向油圧ポンプを正逆回転する電動サーボモータと、前室側油圧路と後室側油圧路のタンク側の油圧路に設けた逆止弁と、電磁切換弁を設けて後室側油圧路と並設した排出油路と、その排出油路に設けた背圧制御用の油圧モータと、その油圧モータを正逆回転する電動サーボモータとからなる、というものである。   The hydraulic circuit of the present invention according to the above object includes a hydraulic pump circuit connected over both the front chamber side hydraulic path and the rear chamber side hydraulic path of the injection cylinder, a bidirectional hydraulic pump provided in the hydraulic pump circuit, and the bidirectional circuit thereof. An electric servo motor that rotates the hydraulic pump in the forward and reverse directions, a check valve provided in the tank side hydraulic path of the front chamber side hydraulic path and the rear chamber side hydraulic path, and an electromagnetic switching valve are provided in parallel with the rear chamber side hydraulic path. It comprises a drain oil passage provided, a hydraulic motor for back pressure control provided in the drain oil passage, and an electric servo motor that rotates the hydraulic motor forward and backward.

またこの発明の油圧回路による背圧制御は、樹脂の可塑化計量時に上記射出シリンダの後室側油圧路を上記排出油路に切換え、樹脂圧による上記射出ピストンの後退により上記射出シリンダから排出油路に排出された圧油を、電動サーボモータによる油圧モータの正逆回転により制御して、射出ピストンに対する背圧制御を行うというものであり、また上記射出ピストンの後退移動に同期して双方向油圧ポンプを電動サーボモータにより逆回転し、該射出ピストンに射出ピストン側の後退抵抗力に対応する油圧力を付与する流量の圧油を、上記射出シリンダの前室に供給する、というものである。   Further, the back pressure control by the hydraulic circuit according to the present invention switches the rear chamber side hydraulic path of the injection cylinder to the discharge oil path when plasticizing and metering resin, and discharges oil from the injection cylinder by retreating the injection piston by resin pressure. The pressure oil discharged to the road is controlled by forward / reverse rotation of a hydraulic motor by an electric servo motor to perform back pressure control on the injection piston, and in both directions in synchronization with the backward movement of the injection piston The hydraulic pump is reversely rotated by an electric servo motor, and pressure oil at a flow rate that applies an oil pressure corresponding to the reverse resistance force on the injection piston side to the injection piston is supplied to the front chamber of the injection cylinder. .

上記構成では、リリーフバルブに代えて排出油路に油圧モータを設けるだけでよいので、排出油路の構成が特に複雑となるようなことがなく、その油圧モータの回転方向及び回転速度を電動サーボモータにより制御して背圧制御ができるので、射出ピストンの後退速度に対応した背圧制御を容易に行い得る。また油圧モータの正回転により射出シリンダの後室の油に圧力が立たないように、油の排出を後退速度に合わせて行えるので、無背圧力付近での背圧制御も容易に行えるようになる。   In the above configuration, since it is only necessary to provide a hydraulic motor in the discharge oil passage instead of the relief valve, the configuration of the discharge oil passage is not particularly complicated, and the rotation direction and rotation speed of the hydraulic motor are controlled by an electric servo. Since the back pressure can be controlled by the motor, the back pressure can be easily controlled according to the reverse speed of the injection piston. In addition, oil can be discharged according to the reverse speed so that no pressure is generated in the oil in the rear chamber of the injection cylinder due to the positive rotation of the hydraulic motor, so back pressure control near no back pressure can be easily performed. .

また射出シリンダの前室側油圧路と後室側油圧路の両方を、双方向油圧ポンプを設けた油圧ポンプ回路に接続し、その双方向油圧ポンプの回転方向及び回転速度を電動サーボモータにより制御して、射出シリンダの前室と後室の両方にタンクの圧油を圧送供給できるように構成したので、前室側油圧路と後室側油圧路を交互に切換える切換弁が不要となる。また双方向油圧ポンプでは、射出ピストンの前進移動時に前室の油をタンクからの圧油と共に後室に圧送供給ができ、これにより使用油量が低減するのでタンクの小型化を図ることができる。   In addition, both the front chamber side hydraulic path and the rear chamber side hydraulic path of the injection cylinder are connected to a hydraulic pump circuit provided with a bidirectional hydraulic pump, and the rotational direction and rotational speed of the bidirectional hydraulic pump are controlled by an electric servo motor. Thus, since the pressure oil of the tank can be pumped and supplied to both the front chamber and the rear chamber of the injection cylinder, a switching valve for alternately switching the front chamber side hydraulic path and the rear chamber side hydraulic path becomes unnecessary. In the bidirectional hydraulic pump, when the injection piston moves forward, the oil in the front chamber can be pumped and supplied to the rear chamber together with the pressure oil from the tank, thereby reducing the amount of oil used and reducing the size of the tank. .

さらに双方向油圧ポンプでは、射出ピストンの後退移動時にタンクの圧油を射出シリンダの前室に圧送供給できるので、これにより樹脂圧で後退移動する射出ピストンを前室の油圧力により加圧して、後退抵抗力による機械的な背圧力を除くことができ、上記油圧モータによる背圧制御と相俟って無背圧力(0MPa)付近での背圧制御が容易に行えるようになる。   Furthermore, in the bidirectional hydraulic pump, when the injection piston moves backward, the pressure oil in the tank can be pumped and supplied to the front chamber of the injection cylinder, so that the injection piston moving backward with resin pressure is pressurized by the oil pressure in the front chamber, Mechanical back pressure due to reverse resistance can be removed, and back pressure control near no back pressure (0 MPa) can be easily performed in combination with back pressure control by the hydraulic motor.

図中1は射出装置の射出シリンダで、射出ピストン2を回転かつ進退自在に備え、その射出ピストン2のヘッド2aによりシリンダ内が前室1aと後室1bとに区画されている。射出ピストン2の先端には図では省略したが加熱筒内の射出スクリュが連結してある。3は電動(AC)サーボモータによる計量用モータで、駆動軸を射出ピストン内に挿入して、該射出ピストン2と共に図示しない射出スクリュを回転駆動できるようにしてある。   In the figure, reference numeral 1 denotes an injection cylinder of an injection device, which is provided with an injection piston 2 that can rotate and advance and retract. The cylinder 2 is divided into a front chamber 1a and a rear chamber 1b by a head 2a of the injection piston 2. Although not shown in the figure, an injection screw in the heating cylinder is connected to the tip of the injection piston 2. A metering motor 3 is an electric (AC) servo motor. A drive shaft is inserted into the injection piston so that an injection screw (not shown) can be rotated together with the injection piston 2.

10は油圧回路で、前室1aとタンク11とにわたり設けた前室側油圧路12と、後室1bとタンク11とにわたり設けた後室側油圧路13と、その前室側油圧路12と後室側油圧路13の両方にわたり接続した油圧ポンプ回路14と、電磁切換弁15を設けて後室側油圧路13と並設した排出油路16とからなる。   Reference numeral 10 denotes a hydraulic circuit, a front chamber side hydraulic passage 12 provided between the front chamber 1a and the tank 11, a rear chamber side hydraulic passage 13 provided between the rear chamber 1b and the tank 11, and a front chamber side hydraulic passage 12 thereof. The hydraulic pump circuit 14 connected over both the rear chamber side hydraulic path 13 and the discharge oil path 16 provided with the electromagnetic switching valve 15 in parallel with the rear chamber side hydraulic path 13.

上記油圧ポンプ回路14には、電動(AC)サーボモータ17により正逆回転する双方向油圧ポンプ18が設けてある。この油圧ポンプ回路14の接続により、前室側油圧路12と後室側油圧路13では、双方向油圧ポンプ18の回転によるタンク11からの圧油の吸込みが、回転方向によりタンク側油路12a,13aとが入れ替わって、圧油が油圧ポンプ回路14を経由するようになる。またタンク側油路12a,13aにはパイロット逆止弁19,20が設けてあリ、タンク側油路12aの逆止弁20はタンク側油路13aの回路圧により、また逆止弁19はタンク側油路12aの回路圧により開弁するようにしてある。   The hydraulic pump circuit 14 is provided with a bidirectional hydraulic pump 18 that rotates forward and backward by an electric (AC) servo motor 17. By connecting the hydraulic pump circuit 14, in the front chamber side hydraulic path 12 and the rear chamber side hydraulic path 13, the suction of the pressure oil from the tank 11 due to the rotation of the bidirectional hydraulic pump 18 is caused by the rotation direction of the tank side oil path 12a. , 13a are switched, and the pressure oil passes through the hydraulic pump circuit 14. Pilot check valves 19 and 20 are provided in the tank side oil passages 12a and 13a. The check valve 20 of the tank side oil passage 12a is caused by the circuit pressure of the tank side oil passage 13a. The valve is opened by the circuit pressure of the tank side oil passage 12a.

上記排出油路16には、電動(AC)サーボモータ21を駆動源として正逆回転する背圧制御用の油圧モータ22が設けてある。この油圧モータ22の回転方向により後室1bから排出油路16に排出された圧油を制御して、可塑化計量時の樹脂圧により後退する上記射出ピストン2に背圧制御が行えるようにしてある。また前室側油圧路12及び後室側油圧路13と排出油路16のそれぞれには回路圧を検出するセンサー23,24,25が取付けてある。   The drain oil passage 16 is provided with a back pressure control hydraulic motor 22 that rotates forward and backward using an electric (AC) servo motor 21 as a drive source. The pressure oil discharged from the rear chamber 1b to the discharge oil passage 16 is controlled by the rotation direction of the hydraulic motor 22 so that back pressure control can be performed on the injection piston 2 that moves backward by the resin pressure during plasticization measurement. is there. Sensors 23, 24, and 25 for detecting circuit pressure are attached to the front chamber side hydraulic path 12, the rear chamber side hydraulic path 13, and the discharge oil path 16, respectively.

上記構成の油圧回路10では、図1に示すように、電磁切換弁15により後室1bと排出油路16とを遮断し、後室1bを後室側油圧路13と接続して電動サーボモータ17により双方向油圧ポンプ18を正回転(矢印方向)すると、油圧ポンプ回路14の前室側油圧路12側が負圧となって逆止弁20が開弁し、タンク11の圧油がタンク側油路12aに吸い上げられる。圧油は実線矢印に示すように、油圧ポンプ回路14から後室側油圧路13を通って後室1bに圧送される。それにより射出ピストン2は前進移動を開始して、図示しない射出スクリュ先端の加熱筒内に可塑化計量した樹脂の金型への射出充填を開始する。   In the hydraulic circuit 10 having the above-described configuration, as shown in FIG. 1, the rear chamber 1 b and the discharge oil passage 16 are shut off by the electromagnetic switching valve 15, and the rear chamber 1 b is connected to the rear chamber side hydraulic passage 13. 17, when the bidirectional hydraulic pump 18 is rotated forward (in the direction of the arrow), the front chamber side hydraulic path 12 side of the hydraulic pump circuit 14 becomes negative pressure, the check valve 20 is opened, and the pressure oil in the tank 11 is transferred to the tank side. It is sucked up into the oil passage 12a. The pressure oil is pumped from the hydraulic pump circuit 14 to the rear chamber 1b through the rear chamber side hydraulic passage 13 as indicated by the solid line arrow. As a result, the injection piston 2 starts moving forward, and starts injection filling of the resin mold plasticized and measured in the heating cylinder at the tip of the injection screw (not shown).

前室1aでは射出ピストン2の前進移動により圧油が加圧されるので、圧油は点線矢印に示すように前室側油圧路12に流出し、さらに双方向油圧ポンプ18の回転によりタンク11からの圧油と合流して、後室側油圧路13から後室1bに圧送される。これによりタンク11から後室1bへ圧送供給する圧油の油量が、前室1aから流入する分だけ少なく済むようになる。   In the front chamber 1 a, the pressure oil is pressurized by the forward movement of the injection piston 2, so that the pressure oil flows out to the front chamber side hydraulic path 12 as indicated by the dotted arrow, and further, the tank 11 is rotated by the rotation of the bidirectional hydraulic pump 18. From the rear chamber side hydraulic passage 13 to the rear chamber 1b. As a result, the amount of pressure oil pressure-fed and supplied from the tank 11 to the rear chamber 1b can be reduced by the amount flowing from the front chamber 1a.

次に、射出装置における作業工程が樹脂の射出充填工程から可塑化計量に移行すると、電動サーボモータ17による双方向油圧ポンプ18の正回転が停止し、図2に示すように、後室1bの油圧路が電磁切換弁15により後室側油圧路13から排出油路16に切り換わってのち、上記計量用モータ3が始動して射出ピストン2を図示しない先端の射出スクリュと共に回転し、加熱筒内における樹脂の可塑化計量を開始する。   Next, when the operation process in the injection apparatus shifts from the resin injection filling process to the plasticization metering, the forward rotation of the bidirectional hydraulic pump 18 by the electric servo motor 17 is stopped, and as shown in FIG. After the hydraulic path is switched from the rear chamber side hydraulic path 13 to the discharge oil path 16 by the electromagnetic switching valve 15, the metering motor 3 starts and rotates the injection piston 2 together with the injection screw at the tip (not shown), and the heating cylinder Start plasticizing metering of resin inside.

射出ピストン2はスクリュ回転により加熱筒の先端部内に送られて計量される樹脂の圧力により、後室1bの圧油を排出しながら後退する。また射出ピストン2の後退に伴い拡張される前室1aは負圧となるので、タンク側油路12aの逆止弁20が開弁し、タンク11の油圧が前室1aに前室側油圧路12を経て吸引供給される。   The injection piston 2 moves backward while discharging the pressure oil in the rear chamber 1b by the pressure of the resin sent into the tip of the heating cylinder by the screw rotation and measured. Further, since the front chamber 1a expanded as the injection piston 2 moves backward becomes negative pressure, the check valve 20 of the tank side oil passage 12a is opened, and the hydraulic pressure of the tank 11 is transferred to the front chamber 1a. Suction supply is carried out through 12.

射出ピストン2の後退移動により後室1bから排出された圧油は、排出油路16に設けた油圧モータ22を通過してタンク11に戻る。この際、油圧モータ22は排出油路16の圧油により回転し、電動サーボモータ21へ動力を与える。この動力は電動サーボモータ21の回生電力となって消費され、消費エネルギーは反流抵抗にて熱に変換される。   The pressure oil discharged from the rear chamber 1 b by the backward movement of the injection piston 2 passes through the hydraulic motor 22 provided in the discharge oil passage 16 and returns to the tank 11. At this time, the hydraulic motor 22 is rotated by the pressure oil in the discharge oil passage 16 and supplies power to the electric servomotor 21. This power is consumed as regenerative electric power of the electric servo motor 21, and the consumed energy is converted into heat by the countercurrent resistance.

油圧モータ22を電動サーボモータ21により正回転(排出方向)すると、排出油路16からタンク11への油の排出が、該油圧モータにより積極的に行われて、流量が射出ピストンの加圧のみによる場合よりも増加し、後室1bにおける油に圧力が立ち難くなる。また排出流量は油圧モータ22の回転速度により異なるので、電動サーボモータ21による油圧モータ22の回転制御をもって、射出ピストン2の後退速度に対応した背圧制御が可能となる。   When the hydraulic motor 22 is rotated forward (discharge direction) by the electric servo motor 21, oil is actively discharged from the discharge oil passage 16 to the tank 11, and the flow rate is only the pressurization of the injection piston. And the pressure in the oil in the rear chamber 1b is less likely to stand. Further, since the discharge flow rate varies depending on the rotation speed of the hydraulic motor 22, the back pressure control corresponding to the reverse speed of the injection piston 2 can be performed by the rotation control of the hydraulic motor 22 by the electric servomotor 21.

また上記双方向油圧ポンプ18を、上記計量用モータ3と油圧モータ22の正回転始動に同期して、電動サーボモータ17により逆回転始動すると、実線矢印に示すように、タンク11の圧油がタンク側油路13aから油圧ポンプ回路14に吸い上げられて、前室側油圧路12から前室1aに加圧供給され、前室1aの油に圧力が立つ。これにより樹脂圧で後退移動する射出ピストン2に、さらに油圧力が加わる。   When the bidirectional hydraulic pump 18 is reversely rotated by the electric servomotor 17 in synchronization with the forward rotation of the metering motor 3 and the hydraulic motor 22, as shown by the solid line arrow, the pressure oil in the tank 11 is discharged. The oil is sucked up from the tank-side oil passage 13a to the hydraulic pump circuit 14, and is pressurized and supplied from the front chamber-side hydraulic passage 12 to the front chamber 1a, and pressure is applied to the oil in the front chamber 1a. As a result, oil pressure is further applied to the injection piston 2 that moves backward by the resin pressure.

この油圧力が上記後退抵抗力に対する圧力として射出ピストン2に付与されることから、射出ピストン側の後退抵抗力による余計な背圧力がなくなり、上記油圧モータ22による排出油路16の積極的な油の排出とによって、背圧力0〜2MPa範囲の背圧制御をも容易となる。この結果、液晶ポリマー等の低粘度樹脂の射出成形を無背圧力(0MPa)付近での背圧制御により高精度に行い得るようになる。   Since this oil pressure is applied to the injection piston 2 as a pressure against the reverse resistance force, there is no excessive back pressure due to the reverse resistance force on the injection piston side, and the positive oil in the discharge oil passage 16 by the hydraulic motor 22 is eliminated. The back pressure control in the back pressure range of 0 to 2 MPa is facilitated by the discharge. As a result, injection molding of a low-viscosity resin such as a liquid crystal polymer can be performed with high accuracy by back pressure control in the vicinity of no back pressure (0 MPa).

また油圧モータ22を逆回転すると、圧油の流れを阻止するように動作して、排出油路16の流量が減少し、後室1bに油圧力が立って射出ピストン2の背圧力となる。この背圧力が設定値に達して油圧力が油圧モータ22に掛かると、電動サーボモータ21はブレーキとして動作して背圧力をその設定値に保つようになる。   Further, when the hydraulic motor 22 is rotated in reverse, the hydraulic oil 22 is operated so as to block the flow of the pressure oil, the flow rate of the discharge oil passage 16 is reduced, and the oil pressure rises in the rear chamber 1b and becomes the back pressure of the injection piston 2. When the back pressure reaches the set value and the oil pressure is applied to the hydraulic motor 22, the electric servo motor 21 operates as a brake to keep the back pressure at the set value.

上記背圧制御は、図3に示すように、排出油路16の回路圧をセンサー25により検出し、また回転速度検出器26により電動サーボモータ21の回転速度を検出して、その検出値と設定値との対比から油圧モータ22の軸トルクを電動サーボモータ21により制御して行うことができる。   In the back pressure control, as shown in FIG. 3, the circuit pressure of the drain oil passage 16 is detected by the sensor 25, and the rotational speed of the electric servo motor 21 is detected by the rotational speed detector 26, and the detected value and The shaft torque of the hydraulic motor 22 can be controlled by the electric servo motor 21 in comparison with the set value.

この発明に係わる射出装置の射出開始時の油圧回路図である。It is a hydraulic circuit diagram at the time of the start of injection of the injection device concerning this invention. 同じく背圧制御時の油圧回路図である。It is the hydraulic circuit figure at the time of back pressure control similarly. 背圧制御図である。It is a back pressure control diagram.

符号の説明Explanation of symbols

1 射出シリンダ
1a 前室
1b 後室
2 射出プランジャ
3 計量用モータ
10 油圧回路
11 タンク
12 後室側油圧路
13 前室側油圧路
13a タンク側油路
14 油圧ポンプ回路
14a タンク側油路
15 電磁切換弁
16 排出油路
17 電動サーボモータ
18 双方向油圧ポンプ
19,20 パイロット逆止弁
21 電動サーボモータ
22 背圧制御用の油圧モータ
DESCRIPTION OF SYMBOLS 1 Injection cylinder 1a Front chamber 1b Rear chamber 2 Injection plunger 3 Metering motor 10 Hydraulic circuit 11 Tank 12 Rear chamber side hydraulic path 13 Front chamber side hydraulic path 13a Tank side oil path 14 Hydraulic pump circuit 14a Tank side oil path 15 Electromagnetic switching Valve 16 Drain oil passage 17 Electric servo motor 18 Bidirectional hydraulic pump 19, 20 Pilot check valve 21 Electric servo motor 22 Hydraulic motor for back pressure control

Claims (3)

射出シリンダの前室側油圧路と後室側油圧路の両方にわたり接続した油圧ポンプ回路と、その油圧ポンプ回路に設けた双方向油圧ポンプと、その双方向油圧ポンプを正逆回転する電動サーボモータと、前室側油圧路と後室側油圧路のタンク側の油圧路に設けた逆止弁と、電磁切換弁を設けて後室側油圧路と並設した排出油路と、その排出油路に設けた背圧制御用の油圧モータと、その油圧モータを正逆回転する電動サーボモータとからなることを特徴とする射出装置の油圧回路。   A hydraulic pump circuit connected across both the front chamber side hydraulic path and the rear chamber side hydraulic path of the injection cylinder, a bidirectional hydraulic pump provided in the hydraulic pump circuit, and an electric servo motor that rotates the bidirectional hydraulic pump forward and backward A check valve provided in the tank side hydraulic path of the front chamber side hydraulic path and the rear chamber side hydraulic path, a discharge oil path provided in parallel with the rear chamber side hydraulic path by providing an electromagnetic switching valve, and the discharged oil A hydraulic circuit for an injection device, comprising a hydraulic motor for back pressure control provided on a road, and an electric servo motor that rotates the hydraulic motor forward and backward. 請求項1に記載の油圧回路において、樹脂の可塑化計量時に上記射出シリンダの後室側油圧路を上記排出油路に切換え、樹脂圧による上記射出ピストンの後退により上記射出シリンダから排出油路に排出された圧油を、電動サーボモータによる上記油圧モータの正逆回転により制御して、射出ピストンに対する背圧制御を行うことを特徴とする背圧制御方法。   2. The hydraulic circuit according to claim 1, wherein a rear chamber side hydraulic path of the injection cylinder is switched to the discharge oil path when plasticizing and metering resin, and the injection cylinder is moved from the injection cylinder to the discharge oil path by retreating the injection piston due to resin pressure. A back pressure control method, wherein the discharged pressure oil is controlled by forward / reverse rotation of the hydraulic motor by an electric servo motor to perform back pressure control on the injection piston. 請求項2に記載の背圧制御において、上記射出ピストンの後退移動に同期して双方向油圧ポンプを上記電動サーボモータにより逆回転し、該射出ピストンに射出ピストン側の後退抵抗力に対応する油圧力を付与する流量の圧油を、上記射出シリンダの前室に供給することを特徴とする背圧制御方法。   3. The back pressure control according to claim 2, wherein the bidirectional hydraulic pump is reversely rotated by the electric servomotor in synchronization with the backward movement of the injection piston, and the oil corresponding to the reverse resistance force on the injection piston side is applied to the injection piston. A back pressure control method characterized by supplying pressure oil at a flow rate for applying pressure to the front chamber of the injection cylinder.
JP2006208186A 2006-07-31 2006-07-31 Hydraulic circuit of injection device and back pressure control method Expired - Fee Related JP4837477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006208186A JP4837477B2 (en) 2006-07-31 2006-07-31 Hydraulic circuit of injection device and back pressure control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006208186A JP4837477B2 (en) 2006-07-31 2006-07-31 Hydraulic circuit of injection device and back pressure control method

Publications (2)

Publication Number Publication Date
JP2008030379A true JP2008030379A (en) 2008-02-14
JP4837477B2 JP4837477B2 (en) 2011-12-14

Family

ID=39120284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006208186A Expired - Fee Related JP4837477B2 (en) 2006-07-31 2006-07-31 Hydraulic circuit of injection device and back pressure control method

Country Status (1)

Country Link
JP (1) JP4837477B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154027A1 (en) * 2008-06-16 2009-12-23 ダイキン工業株式会社 Hydraulic device for injection molding machine and method of controlling the same
CN102001168A (en) * 2010-09-08 2011-04-06 宁波伊士通控制技术有限公司 Novel hydraulic servo pressure-relief mode control system
US9056418B2 (en) 2011-10-19 2015-06-16 Kabushiki Kaisha Toyota Jidoshokki Injection apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207623A (en) * 1986-03-08 1987-09-12 Daikin Ind Ltd Controller for back pressure in cylinder of injection molder
JPH04272819A (en) * 1991-02-27 1992-09-29 Japan Steel Works Ltd:The Hydraulic circuit for injection molding machine
JPH07276449A (en) * 1994-04-11 1995-10-24 Toyo Mach & Metal Co Ltd Back pressure control hydraulic circuit for injection molding machine
JP2000218666A (en) * 1999-01-29 2000-08-08 Yuken Kogyo Co Ltd Hydraulic-electromotive hybrid injection molding apparatus
JP2001252944A (en) * 2000-03-13 2001-09-18 Sumitomo Heavy Ind Ltd Injection molding machine
JP2003021105A (en) * 2001-07-10 2003-01-24 Sumitomo Heavy Ind Ltd Hydraulic circuit
JP2004011777A (en) * 2002-06-06 2004-01-15 Toyooki Kogyo Co Ltd Hydraulic drive unit
JP2004195936A (en) * 2002-12-20 2004-07-15 Nissei Plastics Ind Co Method for controlling backing pressure of hydraulic type injection machine
JP2004263645A (en) * 2003-03-03 2004-09-24 Opton Co Ltd Hydraulic device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62207623A (en) * 1986-03-08 1987-09-12 Daikin Ind Ltd Controller for back pressure in cylinder of injection molder
JPH04272819A (en) * 1991-02-27 1992-09-29 Japan Steel Works Ltd:The Hydraulic circuit for injection molding machine
JPH07276449A (en) * 1994-04-11 1995-10-24 Toyo Mach & Metal Co Ltd Back pressure control hydraulic circuit for injection molding machine
JP2000218666A (en) * 1999-01-29 2000-08-08 Yuken Kogyo Co Ltd Hydraulic-electromotive hybrid injection molding apparatus
JP2001252944A (en) * 2000-03-13 2001-09-18 Sumitomo Heavy Ind Ltd Injection molding machine
JP2003021105A (en) * 2001-07-10 2003-01-24 Sumitomo Heavy Ind Ltd Hydraulic circuit
JP2004011777A (en) * 2002-06-06 2004-01-15 Toyooki Kogyo Co Ltd Hydraulic drive unit
JP2004195936A (en) * 2002-12-20 2004-07-15 Nissei Plastics Ind Co Method for controlling backing pressure of hydraulic type injection machine
JP2004263645A (en) * 2003-03-03 2004-09-24 Opton Co Ltd Hydraulic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009154027A1 (en) * 2008-06-16 2009-12-23 ダイキン工業株式会社 Hydraulic device for injection molding machine and method of controlling the same
CN102001168A (en) * 2010-09-08 2011-04-06 宁波伊士通控制技术有限公司 Novel hydraulic servo pressure-relief mode control system
US9056418B2 (en) 2011-10-19 2015-06-16 Kabushiki Kaisha Toyota Jidoshokki Injection apparatus

Also Published As

Publication number Publication date
JP4837477B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP5805031B2 (en) Fluid pressure source control device and injection molding device
US7686067B2 (en) Die casting machine
JP4837477B2 (en) Hydraulic circuit of injection device and back pressure control method
JP2011500367A5 (en)
JP5921736B2 (en) Injection molding machine and control method of injection molding machine
JP2014136342A (en) Injection molding machine
JP4459756B2 (en) Plasticization moving device for electric injection molding machine
JP2004174502A (en) Die casting machine
JP5495388B2 (en) Injection molding machine and control method of injection molding machine
JP2009090321A (en) Injection device for molding machine
JP6784569B2 (en) Injection device and molding machine
JP2012055935A (en) Die cast machine
JP2010120021A (en) Injection device for molding machine
JP4823832B2 (en) Mold clamping device and mold clamping device control method
JP2006088463A (en) Control method of electric/oil pressure type injection device
JP2008284691A (en) Injection molding machine
JP2007244962A (en) Metering/feed-controlling apparatus and method
JP2021160276A (en) Injection molding machine
JP2006062245A (en) Plasticizing moving device of electromotive injection molding machine and nozzle touch method
JP3754433B2 (en) Electric injection device
JP2016161002A (en) Hydraulic device
JP5622326B2 (en) Injection molding machine and operating method of injection molding machine
JP5855080B2 (en) Molding apparatus and method for controlling molding apparatus
JP3969653B2 (en) Back pressure control method for hydraulic injection device
EP3827960B1 (en) Injection molding machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090605

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110928

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees