[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008025445A - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
JP2008025445A
JP2008025445A JP2006198347A JP2006198347A JP2008025445A JP 2008025445 A JP2008025445 A JP 2008025445A JP 2006198347 A JP2006198347 A JP 2006198347A JP 2006198347 A JP2006198347 A JP 2006198347A JP 2008025445 A JP2008025445 A JP 2008025445A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
ratio
injection
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006198347A
Other languages
English (en)
Inventor
Shinobu Ishiyama
忍 石山
Akitoshi Tomota
晃利 友田
Michio Furuhashi
道雄 古橋
Hisafumi Magata
尚史 曲田
Koichiro Nakatani
好一郎 中谷
Tomoyoshi Ogo
知由 小郷
Eiji Hashimoto
英次 橋本
Koji Karita
孝司 苅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006198347A priority Critical patent/JP2008025445A/ja
Publication of JP2008025445A publication Critical patent/JP2008025445A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】この発明は、内燃機関の制御装置に関し、運転状態の変化に伴ってパイロット噴射の回数が変更された場合の燃焼騒音の変化を緩和することを目的とする。
【解決手段】パイロット噴射を複数回行う低速側のマルチパイロット領域から、パイロット噴射を1回だけ行う高速側のシングルパイロット領域へ運転状態が移行した場合、噴射パターンの切り替えを実施する。その際、切り替えの際、内部EGR割合を一時的に多くする。これにより、着火時期が早くなるので、マルチパイロット噴射からシングルパイロット噴射への切り替えに起因する燃焼騒音の増加を抑制することができる。また、スワール比のアップも併せて行う。これにより、内部EGR割合の増加に伴うスモークの増加を抑制することができる。
【選択図】図8

Description

本発明は、内燃機関の制御装置に関し、特に、メイン噴射に先立ってパイロット噴射が行われる内燃機関の制御装置に関する。
従来、例えば特開2001−342877号公報に開示されているように、ディーゼル機関の1サイクル中に、メイン噴射に先立ってパイロット噴射を行うディーゼル機関の制御装置が知られている。パイロット噴射を行うことにより、燃焼騒音を低減できるなどの利点がある。
上記公報に開示された発明では、ディーゼル機関がアイドル状態にあるとき、吸気絞り弁を閉じて吸入空気量を減少させることで振動および騒音を低減するとともに、外部EGR量を増大させてパイロット噴射燃料を暖めることでパイロット噴射の着火遅れ期間を減少させることができるとされている。また、その際、外部EGR量が多いほど、パイロット噴射とメイン噴射との間隔を短くすることにより、パイロット噴射燃料の燃焼とメイン噴射燃料の燃焼とを適切に連続させることができるとされている。
特開2001−342877号公報 特開2004−116446号公報 特開2005−146960号公報 特開昭60−162018号公報
近年では、パイロット噴射を複数回実施する技術も知られている。パイロット噴射を1回実施する場合(以下、「シングルパイロット噴射」と称する)と比べ、パイロット噴射を複数回実施する場合(以下、「マルチパイロット噴射」と称する)の方が、燃焼騒音を更に低減することができる。
しかしながら、ディーゼル機関の運転状態によっては、何らかの制約によってマルチパイロット噴射を実施することができず、シングルパイロット噴射とせざるを得ない場合がある。このため、ディーゼル機関の運転状態に応じて、マルチパイロット噴射とシングルパイロット噴射との切り替えを行うことになる。その場合、マルチパイロット噴射からシングルパイロット噴射に切り替わったときに、燃焼騒音が大きくなるので、運転者に違和感を抱かせる場合がある。
特に、急加速時にマルチパイロット噴射からシングルパイロット噴射に切り替わった場合には、燃焼騒音が急増し易い。これは、次のような理由による。急加速時には、負荷の増大に伴い、燃料噴射圧力(レール圧)が高くなる。一般に、燃料噴射圧力が高くなると、燃焼騒音は大きくなる。このため、急加速時にマルチパイロット噴射からシングルパイロット噴射に切り替わると、燃焼騒音を大きくする要因が二つ重なることになるので、燃焼騒音が急増し易くなる。
この発明は、上述のような課題を解決するためになされたものであり、運転状態の変化に伴ってパイロット噴射の回数が変更された場合の燃焼騒音の変化を緩和することのできる内燃機関の制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、内燃機関の制御装置であって、
メイン噴射に先立って行われるパイロット噴射の回数を、内燃機関の運転状態に応じて変更する回数変更手段と、
パイロット噴射の回数が変更されるときに、その変更に起因して生ずる燃焼騒音の変化が緩和されるように、着火時期に関与するパラメータを一時的に通常時の値と異なる値にする着火時期制御手段と、
を備えることを特徴とする。
また、第2の発明は、第1の発明において、
前記着火時期制御手段は、パイロット噴射の回数が減らされるときに、前記パラメータを着火時期が早くなる方向に一時的に変化させることを特徴とする。
また、第3の発明は、第2の発明において、
前記着火時期制御手段によって前記パラメータが着火時期が早くなる方向に変更されている間、メイン噴射の時期を通常時より遅くする噴射時期リタード手段を更に備えることを特徴とする。
また、第4の発明は、第2または第3の発明において、
前記内燃機関の内部EGR割合を可変とする内部EGR割合可変手段を更に備え、
前記パラメータは、前記内部EGR割合と相関するパラメータであり、
前記着火時期が早くなる方向は、前記内部EGR割合を増大させる方向であることを特徴とする。
また、第5の発明は、第4の発明において、
前記内燃機関のスワール比を可変とするスワール比可変手段と、
前記着火時期制御手段によって、前記パラメータが、前記内部EGR割合が増大する方向に変更されるときに、前記スワール比が通常時より大きくなるように前記スワール比可変手段を制御するスワール制御手段と、
を更に備えることを特徴とする。
また、第6の発明は、第2または第3の発明において、
前記内燃機関の圧縮比または実圧縮比を可変とする圧縮比可変手段を更に備え、
前記パラメータは、前記圧縮比または前記実圧縮比であり、
前記着火時期が早くなる方向は、前記圧縮比または実圧縮比を高くする方向であることを特徴とする。
また、第7の発明は、第1乃至第6の発明の何れかにおいて、
前記回数変更手段は、前記内燃機関の運転領域を比較的低速側の領域とそれより高速側の領域とに分けて、前記高速側の領域でのパイロット噴射の回数を、前記低速側の領域でのパイロット噴射の回数よりも少なくすることを特徴とする。
また、第8の発明は、第7の発明において、
前記着火時期制御手段は、機関負荷の増大を伴って機関回転速度が前記低速側の領域から前記高速側の領域へ移行する場合に機能し、そうでない場合には機能しないことを特徴とする。
また、第9の発明は、第7または第8の発明において、
機関負荷の増大を伴って機関回転速度が上昇する場合には、パイロット噴射の回数を切り替える境界の機関回転速度を、定常状態のときと比べて高速側にシフトするシフト手段を更に備えることを特徴とする。
また、第10の発明は、第1乃至第9の発明の何れかにおいて、
前記着火時期制御手段は、前記パラメータを通常時の値と異なる値にした後、前記パラメータを徐々に通常時の値に戻すことを特徴とする。
第1の発明によれば、パイロット噴射の回数が内燃機関の運転状態に応じて変更されるときに、その変更に起因して生ずる燃焼騒音の変化が緩和されるように、着火時期に関与するパラメータを一時的に通常時の値と異なる値にすることができる。このため、パイロット噴射の回数の変更に起因する燃焼騒音の変化を抑制することができる。よって、内燃機関の運転状態の変化に伴ってパイロット噴射の回数が変更された場合であっても、運転者に違和感をなるべく感じさせないようにすることができる。
第2の発明によれば、パイロット噴射の回数が減らされるときに、上記パラメータを着火時期が早くなる方向に一時的に変化させることができる。パイロット噴射の回数を減らすと、一般に、燃焼騒音が大きくなる。一方、着火時期を早くする(着火遅れを短くする)と、燃焼騒音を低減することができる。よって、第2の発明によれば、パイロット噴射回数が減少する方向に噴射パターンが切り替えられた場合であっても、燃焼騒音の増大を緩和することができる。このため、運転者に違和感をなるべく感じさせないようにすることができる。
第3の発明によれば、上記パラメータが着火時期が早くなる方向に変更されている間、メイン噴射の時期を通常時より遅くすることができる。上記パラメータが着火時期が早くなる方向に変更されている間は、着火性能が向上するので、失火やHC排出量の増加などの弊害を生ずることなく、メイン噴射時期を遅らせることができる。そして、メイン噴射時期を遅らせると、最大筒内圧Pmaxが低下するので、燃焼騒音を更に低減することができる。このため、第3の発明によれば、パイロット噴射回数が減少する方向に噴射パターンが切り替えられた場合の燃焼騒音の増加を更に抑制することができる。
第4の発明によれば、パイロット噴射回数が減少する方向に噴射パターンが切り替えられた場合に、内部EGR割合を増大させることで着火時期を早くし、もって燃焼騒音の増大を有効に抑制することができる。このため、運転者が違和感を感ずることを更に有効に抑制することができる。
第5の発明によれば、内部EGR割合が増大されたとき、スワール比を通常時より大きくすることができる。このため、内部EGR割合の増大に伴うスモークの増加を緩和または相殺することができる。
第6の発明によれば、パイロット噴射回数が減少する方向に噴射パターンが切り替えられた場合に、圧縮比または実圧縮比を高くすることで着火時期を早くし、もって燃焼騒音の増大を有効に抑制することができる。このため、運転者が違和感を感ずることを更に有効に抑制することができる。
第7の発明によれば、比較的高速側の領域でのパイロット噴射の回数を、比較的低速側の領域でのパイロット噴射の回数よりも少なくすることができる。これにより、比較的高速側の領域でパイロット噴射の回数を多くした場合の弊害(例えばスモークの増加)が生ずることを防止することができる。
第8の発明によれば、機関負荷の増大を伴って機関回転速度が上記低速側の領域から上記高速側の領域へ移行する場合には、燃焼騒音の増加を緩和するための着火時期の制御を実施し、そうでない場合には実施しないようにすることができる。機関負荷の増大を伴って、パイロット噴射の回数が減少する方向に噴射パターンが切り替えられた場合には、燃焼騒音の増加が顕著となり易い。第8の発明によれば、このような場合に限って、燃焼騒音の増加を緩和するための着火時期の制御を実施することで、制御の実施を必要最小限として無駄をなくすことができる。
第9の発明によれば、機関負荷の増大を伴って機関回転速度が上昇する場合には、パイロット噴射の回数を切り替える境界の機関回転速度を、定常状態のときと比べて高速側にシフトすることができる。機関回転速度が高速であるほど、内燃機関の機械騒音や、車両の風切り音、ロードノイズなどの他の騒音が大きいので、燃焼騒音が相対的に小さくなる。従って、第9の発明によれば、パイロット噴射の回数を切り替える境界の機関回転速度を高速側にシフトすることで、燃焼騒音の増加に対して運転者が違和感を感ずることをより確実に抑制することができる。
第10の発明によれば、着火時期に関与するパラメータを通常時の値と異なる値にした後、そのパラメータを徐々に通常時の値に戻すことができる。このため、燃焼騒音の変化をより穏やかにすることができ、運転者が違和感を感ずることをより確実に抑制することができる。
以下、図面を参照して、この発明の実施の形態について説明する。なお、各図において共通する要素には、同一の符号を付して重複する説明を省略する。
実施の形態1.
[システム構成の説明]
図1は、本発明の実施の形態1のシステム構成を説明するための図である。図1に示すシステムは、4サイクルのディーゼル機関(圧縮着火内燃機関)10を備えている。ディーゼル機関10は、車両に搭載され、その動力源とされているものとする。本実施形態のディーゼル機関10は、直列4気筒型であるが、本発明におけるディーゼル機関の気筒数および気筒配置はこれに限定されるものではない。
ディーゼル機関10の各気筒には、燃料を筒内に直接噴射するインジェクタ12が設置されている。各気筒のインジェクタ12は、共通のコモンレール14に接続されている。コモンレール14内には、サプライポンプ16によって加圧された高圧の燃料が貯留されている。そして、コモンレール14内から、各インジェクタ12へ、燃料が供給される。本実施形態のディーゼル機関10では、コモンレール14内の燃料の圧力(以下、「レール圧」と称する)が、インジェクタ12からの燃料噴射圧力に相当する。
インジェクタ12は、1サイクル中に複数回、燃料を筒内に噴射することができる。すなわち、インジェクタ12は、1サイクル中に、メイン噴射に先立って、パイロット噴射を1回または複数回実施することができる。更に、メイン噴射の後に、アフター噴射、ポスト噴射などを実施してもよい。
ディーゼル機関10の排気通路18は、排気マニホールド20により枝分かれして、各気筒の排気ポート22(図2参照)に接続されている。本実施形態のディーゼル機関10は、ターボ過給機24を備えている。排気通路18は、ターボ過給機24の排気タービンに接続されている。
排気通路18の、ターボ過給機24より下流側には、排気ガスを浄化するための触媒(排気浄化装置)26が設けられている。触媒26としては、例えば、酸化触媒、吸蔵還元型または選択還元型のNOx触媒、DPF(Diesel Particulate Filter)、DPNR(Diesel Particulate-NOx-Reduction system)のうちの一つ、またはこれらの組み合わせなどを用いることができる。
ディーゼル機関10の吸気通路28の入口付近には、エアクリーナ30が設けられている。エアクリーナ30を通って吸入された空気は、ターボ過給機24の吸気圧縮機で圧縮された後、インタークーラ32で冷却される。インタークーラ32を通過した吸入空気は、吸気マニホールド34により、各気筒の吸気ポート35(図2参照)に分配される。
吸気通路28の、インタークーラ32と吸気マニホールド34との間には、吸気絞り弁36が設置されている。また、吸気通路28の、エアクリーナ30の下流近傍には、吸入空気量を検出するエアフローメータ38が設置されている。
吸気通路28の吸気マニホールド34の近傍には、外部EGR通路40の一端が接続されている。外部EGR通路40の他端は、排気通路18の排気マニホールド20近傍に接続されている。本システムでは、この外部EGR通路40を通して、排気ガス(既燃ガス)の一部を吸気通路28に還流させること、つまり外部EGR(Exhaust Gas Recirculation)を行うことができる。
外部EGR通路40の途中には、外部EGRガスを冷却するためのEGRクーラ42が設けられている。外部EGR通路40におけるEGRクーラ42の下流には、EGR弁44が設けられている。このEGR弁44の開度を変えることにより、外部EGR通路40を通る排気ガス量、すなわち外部EGR量を調整することができる。
また、本システムにおいて、外部EGR量は、EGR弁44の開度だけでなく、吸気絞り弁36の開度によっても調整することができる。吸気絞り弁36の開度を小さくして吸気を絞ると、吸気圧が小さくなるので、背圧(排気圧)との差圧が大きくなる。つまり、外部EGR通路40の前後の差圧が大きくなる。このため、外部EGR量を多くすることができる。
そして、本実施形態のシステムは、アクセルペダルの踏み込み量(アクセル開度)を検出するアクセル開度センサ48と、ECU(Electronic Control Unit)50とを更に備えている。ECU50には、上述した各種のセンサおよびアクチュエータが接続されている。ECU50は、各センサの出力に基づき、所定のプログラムに従って各アクチュエータを作動させることにより、ディーゼル機関10の運転状態を制御する。
図2は、図1に示すシステムにおけるディーゼル機関10の一つの気筒の断面を示す図である。以下、ディーゼル機関10について更に説明する。図2に示すように、ディーゼル機関10のクランク軸60の近傍には、クランク軸60の回転角度を検出するクランク角センサ62が取り付けられている。このクランク角センサ62は、ECU50に接続されている。クランク角センサ62によれば、機関回転速度を検出することができる。
また、ディーゼル機関10には、吸気弁52のバルブタイミング(開閉時期)を連続的に可変とする吸気可変動弁機構54と、排気弁56のバルブタイミングを連続的に可変とする排気可変動弁機構58とが備えられている。吸気可変動弁機構54および排気可変動弁機構58は、それぞれ、ECU50に接続されている。
吸気可変動弁機構54および排気可変動弁機構58の具体的な構造は、特に限定されず、カム機構などの機械的な機構を利用するものであっても、任意の時期に開閉可能な電磁駆動弁あるいは油圧駆動弁などを利用するものであってもよい。
また、ディーゼル機関10には、冷却水の温度を検出する冷却水温センサ68が設置されている。この冷却水温センサ68は、ECU50に接続されている。
(内部EGRの制御)
本実施形態のディーゼル機関10では、吸気可変動弁機構54および排気可変動弁機構58により、吸気弁52と排気弁56との負のバルブオーバーラップの大きさを連続的に変化させることができる。図3は、負のバルブオーバーラップを説明するための図である。図3に示すように、負のバルブオーバーラップとは、排気弁56が閉じた後、吸気弁52が開くまでの間、吸気弁52および排気弁56が共に閉じている期間のことである。
図3中の細い曲線は、負のバルブオーバーラップを設けない場合の吸気弁52および排気弁56のバルブリフト線図である。この状態から、排気弁56の閉じ時期を早くするとともに、吸気弁52の開き時期を遅くすることにより、負のバルブオーバーラップを生じさせることができる。図3中の太い曲線は負のバルブオーバーラップを生じさせた場合の吸気弁52および排気弁56のバルブリフト線図である。排気弁56の閉じ時期や吸気弁52の開き時期を変える度合いによって、負のバルブオーバーラップの大きさを変えることができる。
負のバルブオーバーラップを生じさせると、筒内の既燃ガスが排気ポート22に流出しきらないうちに排気弁56が閉じる。排気ポート22に排出されなかった既燃ガスは、そのまま筒内に残存するか、あるいは、吸気弁52の開弁に伴って一旦吸気ポート35に出た後、ピストン64の下降によって新気と共に筒内に吸入される。負のバルブオーバーラップを生じさせた場合には、このようにして内部EGRを行うことができる。そして、負のバルブオーバーラップを大きくするほど、内部EGRを多くすることができる。
内部EGR割合(吸気弁52が閉じたときの筒内ガスに占める内部EGRガスの割合)は、燃焼の状態に大きく影響する。そして、最適な内部EGR割合は、機関回転速度および機関負荷によって異なる。本実施形態のシステムでは、最適な内部EGR割合を得るための吸気弁52および排気弁56のバルブタイミングと、機関回転速度および機関負荷との関係がマップ化され、ECU50に予め記憶されているものとする。そして、ディーゼル機関10が通常の定常運転状態にある場合には、そのマップに従って吸気可変動弁機構54および排気可変動弁機構58が制御されることにより、内部EGR割合が制御されるものとする。
なお、本実施形態では、負のバルブオーバーラップを生じさせることで内部EGRを行うものとして説明するが、本発明では、正のバルブオーバーラップ、つまり吸気弁52および排気弁56が共に開いた状態と通常のバルブオーバーラップを生じさせることで内部EGRを行い、その正のバルブオーバーラップの大きさを変更することで内部EGR割合を調節するようにしてもよい。
(スワール比の制御)
図4は、ディーゼル機関10の一つの気筒の模式的な平面図である。同図に示すように、ディーゼル機関10には、1気筒当たり、ヘリカルポート35aとタンジェンシャルポート35bとの二つの吸気ポート35が設けられている。ヘリカルポート35aおよびタンジェンシャルポート35bは、別々の吸気弁52により開閉される。ヘリカルポート35aは、空気を螺旋状に旋回させながら、筒内へ流入させる。つまり、ヘリカルポート35aは、スワール比の大きい吸気ポート35である。一方、タンジェンシャルポート35bは、シリンダボアの接線方向に向けて空気を流入させる。このタンジェンシャルポート35bは、ヘリカルポート35aと比べ、スワール比は小さいが、より多くの空気を筒内に流入させることのできる吸気ポート35である。
吸気可変動弁機構54は、タンジェンシャルポート35b側の吸気弁52をヘリカルポート35a側の吸気弁52よりも早く閉じる動作(以下、「吸気弁52の片弁早閉じ」と称する)を行うことができるようになっている。
ヘリカルポート35a側の吸気弁52とタンジェンシャルポート35b側の吸気弁52とが共に開いている状態では、ヘリカルポート35aから流入する空気が作る強いスワールが、タンジェンシャルポート35bからの流れによって弱められてしまう。これに対し、タンジェンシャルポート35b側の吸気弁52を早く閉じると、その後はヘリカルポート35aのみから空気が流入するので、強いスワールを発生させることができる。よって、タンジェンシャルポート35b側の吸気弁52の閉じ時期を早くするほど、スワール比を大きくすることができる。ディーゼル機関10では、吸気可変動弁機構54により、吸気弁52の片弁早閉じを行う場合において、タンジェンシャルポート35b側の吸気弁52の閉じ時期を連続的に変化させることにより、スワール比を自由に調整することができる。
スワール比は、燃焼の状態に大きく影響する。そして、最適なスワール比は、機関回転速度および機関負荷によって異なる。本実施形態のシステムでは、最適なスワール比を得るためのヘリカルポート35a側およびタンジェンシャルポート35b側の吸気弁52のバルブタイミング(閉じ時期)と、機関回転速度および機関負荷との関係がマップ化され、ECU50に予め記憶されているものとする。そして、ディーゼル機関10が通常の定常運転状態にある場合には、そのマップに従って吸気可変動弁機構54が制御されることにより、スワール比が制御されるものとする。
なお、本実施形態では、上記の手法によってスワール比を変化させるものとして説明するが、本発明では、スワール比を変化させる手法は上記の手法に限定されるものではない。例えば、吸気ポート35に設けたスワール制御弁の開度を調整することでスワール比を変化させるようにしてもよい。
[実施の形態1の特徴]
図5は、ディーゼル機関10において実施されるパイロット噴射を説明するための図である。ディーゼル機関10では、メイン噴射の前に、1回または2回のパイロット噴射を実施することができる。図5中の上側は、パイロット噴射を2回実施する場合(以下、「マルチパイロット噴射」とも言う)のインジェクタ12への駆動信号を示す図である。この図に示す例では、1回目のパイロット噴射と2回目のパイロット噴射との間は、比較的離れており、2回目のパイロット噴射とメイン噴射との間は比較的近くされている。
これに対し、図5中の下側は、パイロット噴射を1回実施する場合(以下、「シングルパイロット噴射」とも言う)のインジェクタ12への駆動信号を示す図である。この図に示すように、シングルパイロット噴射の場合には、マルチパイロット噴射における2回目のパイロット噴射が省略されたような噴射態様とされる。
一般に、ディーゼル機関10の燃焼騒音は、着火遅れ期間が長いほど、つまり着火時期が遅いほど、大きくなり易い。着火遅れ期間が長いと、その間に生成される可燃混合気の量がその分だけ多くなるので、着火後にその多量の可燃混合気が一気に燃焼することになる。その結果、筒内圧が急激に上昇するので、燃焼騒音が大きくなる。
燃焼騒音は、パイロット噴射を行うことで、低減することができる。パイロット噴射を行うと、そのパイロット噴射で噴射された少量の燃料が燃焼することで火種が作られ、筒内の温度が高くなったところに、メイン噴射が行われることになる。このため、メイン噴射で噴射された燃料の着火時期が早まる。つまり、パイロット噴射を行うことで、着火遅れ期間を短くすることができる。よって、燃焼騒音を低減することができる。
そして、マルチパイロット噴射を実施した場合には、シングルパイロット噴射の場合と比べて、着火遅れ期間を更に短くすることができ、筒内圧の上昇をよりなだらかにすることができる。このため、燃焼騒音を更に低減することができる。逆に言えば、シングルパイロット噴射の場合には、マルチパイロット噴射の場合と比べると、燃焼騒音がやや大きくなる。よって、燃焼騒音を抑える観点からは、すべての運転領域においてマルチパイロット噴射を実施することが好ましい。
しかしながら、インジェクタ12等の噴射系の制約により、各回の噴射の時間間隔を短くすることには限界がある。このため、2回目のパイロット噴射とメイン噴射との時間間隔が極めて短くなる高速域では、マルチパイロット噴射を実施することが困難となる。また、2回目のパイロット噴射を敢えて実施したとすると、その噴射によって低下したレール圧が回復し切れないうちにメイン噴射が実施されることになる。その結果、メイン噴射の噴射圧力が低くなり、スモークが増加し易くなる。つまり、高速域では、スモークの抑制が制約となって、マルチパイロット噴射ができなくなる。
このようなことから、本システムでは、機関回転速度がある速度より高い領域では、マルチパイロット噴射を行わず、シングルパイロット噴射を実施することとしている。図6は、マルチパイロット噴射が実施される運転領域(以下、「マルチパイロット領域」と称する)と、シングルパイロット噴射が実施される運転領域(以下、「シングルパイロット領域」と称する)とを示す図である。ディーゼル機関10では、図6中の破線より低速側のマルチパイロット領域ではマルチパイロット噴射が実施され、その破線より高速側のシングルパイロット領域ではシングルパイロット噴射が実施される。なお、図6に示す例では、マルチパイロット領域とシングルパイロット領域との境界が機関負荷(噴射量)にかかわらず一定の機関回転速度になっているが、両領域の境界とする機関回転速度が機関負荷に応じて変化するようになっていてもよい。つまり、図6中の破線は斜めになっていてもよい。
ディーゼル機関10の運転状態がマルチパイロット領域からシングルパイロット領域へ移行した場合には、マルチパイロット噴射からシングルパイロット噴射への切り替えが実施されるので、燃焼騒音が増加する。特に、加速時にマルチパイロット噴射からシングルパイロット噴射へ切り替えられた場合には、燃焼騒音の増加が顕著に現れ易い。その理由は次の通りである。
図7は、機関回転速度および機関負荷と、レール圧との関係を示す図である。図7に示すように、本システムでは、機関回転速度が速くなるほど、レール圧が高くなるように制御される。これは、機関回転速度が高くなるほど、燃料噴射期間を時間的に短くする必要があるからである。また、レール圧は、機関負荷が小さいほど、低くなるように制御される。これは、低負荷域においては、燃焼騒音が耳障りとなり易いため、燃焼騒音を十分に抑制する必要があるからである。
そして、図7から分かる通り、機関回転速度が上昇した場合よりも、機関負荷が増大した場合の方が、レール圧の上昇は大きい。レール圧が高くなると、燃焼騒音は大きくなり易い。加速時には、図6中の点Aから点Bへの変化のように、機関負荷が増大しつつ、マルチパイロット噴射からシングルパイロット噴射へ切り替えが実施される。このため、レール圧、すなわち燃料噴射圧力の上昇による燃焼騒音の増加と、パイロット噴射が2回から1回に切り替わったことによる燃焼騒音の増加とが相まって、燃焼騒音が特に大きくなり易い。その結果、マルチパイロット噴射からシングルパイロット噴射へ切り替わったときに、運転者や乗員がエンジン音に違和感を感じるおそれがある。
そこで、本実施形態では、加速時にマルチパイロット噴射からシングルパイロット噴射へ切り替わる場合には、燃焼騒音の増加を抑えるべく、内部EGR割合を通常の定常運転状態よりも一時的に(本実施形態では2秒間)多くすることとした。内部EGRガスは、高温の既燃ガスである。このため、内部EGR割合を多くすると、圧縮上死点近傍の筒内温度(以下、「圧縮端温度」と称する)が高くなるので、メイン噴射の着火時期を早める(着火遅れを短くする)ことができる。よって、マルチパイロット噴射からシングルパイロット噴射へ切り替わった際に燃焼騒音が増加することを十分に抑制することができる。
また、本実施形態では、上記のようにして内部EGR割合を増加させたとき、スワール比のアップを併せて実施することとした。内部EGR割合を増加させると、その分だけ筒内の空気量(新気量)が減少するので、スモークが増え易くなる傾向がある。一方、スワール比をアップすると、燃料と空気との混合が促進されるので、スモークを低減することができる。本実施形態では、内部EGR割合の増加と併せてスワール比のアップを実施することにより、スモークの増加を有効に抑制することができる。
[実施の形態1における具体的処理]
図8は、上記の機能を実現するために本実施形態においてECU50が実行するルーチンのフローチャートである。図8に示すルーチンによれば、まず、現在の機関回転速度が低速域、すなわちマルチパイロット領域にあるか否かが判別される(ステップ100)。本実施形態では、マルチパイロット領域とシングルパイロット領域との切り替わり回転数が2000rpmであるものとする。よって、このステップ100では、現在の機関回転速度が2000rpm以下である場合に、低速域にあると判別される。
本ルーチンの制御は、例えば図6中の点Aから点Bへの加速のように、低速域、すなわちマルチパイロット領域からの加速時に燃焼騒音を抑えるための制御である。このため、上記ステップ100で機関回転速度が低速域にあると判別された場合には、次に、加速状態にあるか否かが判別される(ステップ102)。すなわち、アクセル開度が検出され、アクセルペダルが踏み増しされている場合には、加速状態にあると判別される。
なお、上記ステップ100で機関回転速度が低速域にないと判別された場合、あるいは上記ステップ102で加速状態にないと判別された場合には、本ルーチンの制御を行う必要がないと判断できるので、今回の処理サイクルがそのまま終了される。
一方、上記ステップ102で加速状態にあると判別された場合には、マルチパイロット噴射からシングルパイロット噴射への切り替えが必要であるか否かが判別される(ステップ104)。具体的には、機関回転速度が切り替わり回転数の2000rpmに到達したか否かが判別される。その結果、機関回転速度が2000rpmに到達したと判別された場合には、他のルーチンの処理により、マルチパイロット噴射からシングルパイロット噴射への切り替えが実施される。そして、この切り替えに伴って、内部EGR割合を増加させる処理が実施される(ステップ106)。具体的には、負のバルブオーバーラップが通常の定常運転状態のときに設定される値よりも大きくなるように吸気可変動弁機構54および排気可変動弁機構58が制御される。その結果、内部EGR割合が増大して、着火遅れが短くなる。このため、シングルパイロット噴射に切り替わったことによる燃焼騒音の増加を有効に抑制することができる。
また、ステップ106での内部EGR割合の増加と併せて、スワール比のアップが実施される(ステップ108)。具体的には、タンジェンシャルポート35b側の吸気弁52の閉じ時期が通常の定常運転状態のときに設定される時期よりも早くなるように、吸気可変動弁機構54が制御される。その結果、スワール比を増大させることができ、スモークを低減することができる。
図8に示すルーチンによれば、続いて、シングルパイロット噴射に切り替わってから2秒間が経過したか否かが判別される(ステップ110)。2秒間が経過していないと判別された場合には、上記ステップ106に戻る。すなわち、内部EGR割合を通常時より多くする制御と、スワール比を通常時よりアップする制御とが継続される。一方、上記ステップ110で2秒間が経過したと判別された場合には、本ルーチンの処理が終了される。これにより、通常制御に復帰し、内部EGR割合およびスワール比が通常時の値に制御される。このとき、内部EGR割合およびスワール比が通常時の値に戻されると、燃焼騒音が増加することとなるが、次のような理由から、それが問題となることはない。
シングルパイロット噴射に切り替わってから2秒間程度経過したときには、切り替わり時と比べて機関回転速度および車速が更に高くなっている。このため、ディーゼル機関10の機械騒音や、車両の風切り音、ロードノイズなどの他の騒音も増加している。よって、燃焼騒音が多少増加したとしても、運転者がそれを気にすることはあまりない。このため、本実施形態では、シングルパイロット噴射に切り替わってから2秒後に、内部EGR割合およびスワール比を通常時の値に戻したときの燃焼騒音の増加が問題となることはない。なお、内部EGR割合およびスワール比を通常時の値に戻すまでの時間は、2秒に限らず、何秒であってもよい。
また、シングルパイロット噴射への切り替えに伴って増加させた内部EGR割合を通常時の値に戻す際には、一気に戻しても良いが、徐々に通常時の値に近づけるようにしてもよい。図9は、そのようにする場合の内部EGR割合の経時変化を示す図である。この図に示すように、マルチパイロット噴射からシングルパイロット噴射へ切り替えた時点(t=0)の直後は内部EGR割合の増加幅を大きくしておき、時間の経過に伴って、内部EGR割合を通常時の値に徐々に近づけるようにしてもよい。この場合には、内部EGR割合を通常時の値に戻す際の燃焼騒音の増加が緩やかに生ずるので、運転者が燃焼騒音の増加に気付くことをより確実に抑制することができる。この場合、スワール比についても、同様にして徐々に通常時の値に戻すようにしてもよい。
また、上記ステップ106では、上記ステップ102で判定された加速の程度に応じて、内部EGR割合の増加幅を変えることとしてもよい。例えば、急加速時には内部EGR割合の増加幅を比較的小さくし、それほど急な加速でない場合には内部EGR割合の増加幅を比較的大きくするようにしてもよい。これにより、燃料噴射量が多くなる急加速時であっても、スモークが増加することを抑制することができる。
なお、上述した実施の形態1では、パイロット噴射回数を、低速域で2回、高速域で1回としているが、パイロット噴射の回数はこれに限定されるものではない。例えば、パイロット噴射回数を、低速域で3回、高速域で2回としてもよい。
また、上記ステップ108のスワール比のアップは、一部の運転領域でのみ行うようにしてもよく、あるいは全域で行わないようにしてもよい。
また、上述した実施の形態1では、加速時のみ、すなわち機関負荷の増大を伴って機関回転速度がマルチパイロット領域からシングルパイロット領域に移行した場合にのみ、燃焼騒音増加を抑制する制御を実施するようにしている。これに対し、本発明では、機関負荷が一定のままで機関回転速度がマルチパイロット領域からシングルパイロット領域に移行した場合にも、燃焼騒音増加を抑制する制御を実施するようにしてもよい。
また、上述した実施の形態1においては、内部EGR割合が前記第1の発明における「着火時期に関与するパラメータ」に相当している。また、ECU50が、図6に示すマップに従って噴射パターンの切り替えを実施することにより前記第1および第7の発明における「回数変更手段」が、上記ステップ106の処理を実行することにより前記第1、第2および第8の発明における「着火時期制御手段」が、それぞれ実現されている。
また、ECU50が、吸気可変動弁機構52および排気可変動弁機構58を制御して負のバルブオーバーラップの大きさを変化させることにより前記第4の発明における「内部EGR割合可変手段」が、吸気可変動弁機構52を制御してタンジェンシャルポート35b側の吸気弁52の閉じ時期を変化させることにより前記第5の発明における「スワール比可変手段」が、上記ステップ108の処理を実行することにより前記第5の発明における「スワール制御手段」が、増加させた内部EGR割合を図9に示すようにして徐々に通常時の値に戻すことにより前記第10の発明における「着火時期制御手段」が、それぞれ実現されている。
また、上述した実施の形態1では、燃焼騒音を抑えるために着火時期を早める(着火遅れを短くする)手法として、内部EGR割合を増大させる方法を採用しているが、着火時期を制御する方法はこれに限定されるものではない。例えば、圧縮比を可変とする圧縮比可変機構を備えたディーゼル機関の場合には、圧縮比を高くすると、圧縮端温度が高くなり、着火遅れを短くすることができるので、燃焼騒音を低減することができる。また、吸気可変動弁機構54によって吸気弁52の閉じ時期を下死点に近づけることで実圧縮比を高くした場合にも、同様に燃焼騒音を低減することができる。
図10は、実圧縮比を高くする場合の吸気弁52のリフト特性を示す図である。図10中の実線のグラフは、通常時における吸気弁52のリフトカーブである。このリフトカーブでは、吸気弁52の閉じ時期(IVC)は、下死点(BDC)より後になっている。一方、図10中の破線のグラフは、実圧縮比をアップした時の吸気弁52のリフトカーブである。このリフトカーブのように、吸気弁52の閉じ時期を通常時よりも下死点に近づけると、有効な圧縮行程が長くなるので、実圧縮比(実質的な圧縮比)を高くすることができる。その結果、着火遅れを短くし、燃焼騒音を低減することができる。
よって、上記ステップ106では、内部EGR割合を増加させることに代えて、圧縮比または実圧縮比を通常時より高くする処理を行うようにしてもよい。この場合であっても、上述したのと同様の効果が得られる。この場合には、圧縮比または実圧縮比が前記第1の発明における「着火時期に関与するパラメータ」に相当し、ECU50が、吸気可変動弁機構54を制御して吸気弁52の閉じ時期を変化させることにより前記第6の発明における「圧縮比可変手段」が実現される。
なお、上述した実施の形態1で述べた各変形例は、後述する各実施の形態においても同様に適用可能である。
実施の形態2.
次に、図11および図12を参照して、本発明の実施の形態2について説明するが、上述した実施の形態1との相違点を中心に説明し、同様の事項については、その説明を簡略化または省略する。本実施形態は、前述した図1および図2に示すハードウェア構成を用いて、ECU50に、後述する図12に示すルーチンの処理を実行させることにより、実現することができる。
[実施の形態2の特徴]
前述した実施の形態1では、加速時にマルチパイロット噴射からシングルパイロット噴射へ噴射パターンの切り替えを実施する場合、図6に示す定常運転状態でのマップに従って、2000rpmを境界として切り替えを実施することとしていた。
これに対し、本実施形態では、加速時においては、マルチパイロット噴射からシングルパイロット噴射へ噴射パターンの切り替えを実施する機関回転速度を定常時の値(ここでは2000rpm)よりも高速側(例えば2500rpm)にシフトさせることとした。
本実施形態では、前述した実施の形態1と同様に、加速時に噴射パターンの切り替えを実施する場合、スワール比をアップすることとしている。前述したように、機関回転速度が高いときにマルチパイロット噴射を実施すると、スモークが増加し易くなるが、スワール比のアップを併せて実施することにより、スモークの増加を抑制することが可能である。このため、本実施形態では、スモークを増加させることなく、噴射パターンの切り替えを実施する機関回転速度を高速側にシフトすることができる。
マルチパイロット噴射からシングルパイロット噴射への切り替えは、高速な機関回転速度で実施された場合ほど、燃焼騒音の増加を運転者に気付かれにくくすることができる。機関回転速度が高速であるほど、ディーゼル機関10の機械騒音が大きく、また車速が高いので、風切り音やロードノイズも大きい。このため、燃焼騒音が他の騒音と比べて相対的に小さくなるからである。よって、本実施形態によれば、加速時に噴射パターンの切り替わり回転数を高速側にシフトすることにより、運転者が燃焼騒音の増加に違和感を感ずることをより確実に抑制することができる。
更に、本実施形態では、マルチパイロット噴射からシングルパイロット噴射へ切り替えた後、メイン噴射の時期を通常時より遅くすることとした。図11は、通常時のメイン噴射時期と、加速時にマルチパイロット噴射からシングルパイロット噴射へ切り替わった場合のメイン噴射時期とを比較するための図である。一般に、メイン噴射時期を遅らせると、最大筒内圧Pmaxが低下するので、燃焼騒音を低減することができる。しかしながら、メイン噴射時期を遅らせると、噴射された燃料が着火しにくくなり、HC排出量が増加したり失火し易くなったりする。このため、メイン噴射時期のリタードには限界がある。
一方、本実施形態では、マルチパイロット噴射からシングルパイロット噴射へ切り替えた後、内部EGR割合を通常時より多くすることとしている。内部EGR割合を増加させると、圧縮端温度が高くなり、着火性能が良くなるので、メイン噴射時期のリタード限界をより遅い時期にすることができる。このため、本実施形態では、図11に示すように、マルチパイロット噴射からシングルパイロット噴射へ切り替えた後のメイン噴射時期のリタードを実施することが可能となる。そして、このメイン噴射時期のリタードにより、燃焼騒音を更に抑制することができるので、運転者が燃焼騒音の増加に違和感を感ずることを更に確実に抑制することができる。
[実施の形態2における具体的処理]
図12は、上記の機能を実現するために本実施形態においてECU50が実行するルーチンのフローチャートである。なお、図12において、図8に示すステップと同一のステップには、同一の符号を付してその説明を省略または簡略化する。図12に示すルーチンは、ステップ102と104との間にステップ112が、ステップ108と110との間にステップ114が、それぞれ挿入されていること以外は、図8に示すルーチンと同様である。
図12に示すルーチンによれば、ステップ100および102においてディーゼル機関10が低速域からの加速状態にあると判別された場合には、噴射パターンの切り替わり回転数が定常時の値(本実施形態では2000rpm)よりも高速側(例えば2500rpm)にシフトされる。そして、そのシフトされた切り替わり回転数に機関回転速度が到達したときに、マルチパイロット噴射からシングルパイロット噴射への切り替えが実施される(ステップ104)。
また、図12に示すルーチンによれば、シングルパイロット噴射への切り替えが実施された場合、内部EGR割合の増加(ステップ106)、スワール比のアップ(ステップ108)と併せて、メイン噴射時期を通常時より遅くする処理が更に実施される(ステップ114)。
以上のような図12に示すルーチンよれば、上記ステップ112および114の処理が追加されたことにより、マルチパイロット噴射からシングルパイロット噴射への切り替えが実施された場合に、運転者が燃焼騒音の増加に違和感を感ずることを極めて有効に抑制することができる。なお、上記ステップ112および114の処理の何れか一方を行うようにしてもよい。その場合であっても、運転者が燃焼騒音の増加に違和感を感ずることを有効に抑制することができる。
上述した実施の形態2では、ECU50が、上記ステップ114の処理を実行することにより前記第3の発明における「噴射時期リタード手段」が、上記ステップ112の処理を実行することにより前記第9の発明における「シフト手段」が、それぞれ実現されている。
以上説明した各実施の形態においては、パイロット噴射の回数を機関回転速度に応じて変更するシステムにおいてその切り替わり時の燃焼騒音を抑制する場合を例に説明したが、本発明は、パイロット噴射の回数を機関回転速度以外の他の運転状態に応じて変更するシステムにも適用することが可能である。
例えば、ディーゼル機関10の冷間始動後の暖機途中で、冷却水温センサ68で検出される冷却水温に応じてパイロット噴射の回数を変更するシステムも考えられる。ディーゼル機関10が冷えている状態では、燃焼騒音が大きくなり易いので、燃焼騒音を低減する観点からはマルチパイロット噴射をすることが好ましい。一方、ディーゼル機関10が暖機された後は、NOx排出量を低減するため、シングルパイロット噴射をすることが好ましい。そこで、暖機時に、初めはマルチパイロット噴射とし、ある冷却水温に到達した後、シングルパイロット噴射に切り替える制御を行うことが考えられる。その場合に、マルチパイロット噴射からシングルパイロット噴射に切り替えた際の燃焼騒音の増加を、前述した実施の形態と同様の手法によって抑制するようにしてもよい。この場合には、冷却水温が前記第1の発明における「運転状態」に相当する。
本発明の実施の形態1のシステム構成を説明するための図である。 図1に示すディーゼル機関の一つの気筒の断面を示す図である。 負のバルブオーバーラップを説明するための図である。 図1に示すディーゼル機関の一つの気筒の模式的な平面図である 図1に示すシステムで実施されるパイロット噴射を説明するための図である。 マルチパイロット領域と、シングルパイロット領域とを示す図である。 機関回転速度および機関負荷と、レール圧との関係を示す図である。 本発明の実施の形態1において実行されるルーチンのフローチャートである。 内部EGR割合の経時変化を示す図である。 実圧縮比を高くする場合の吸気弁のリフト特性を示す図である。 通常時のメイン噴射時期と、噴射パターン切り替え時のメイン噴射時期とを示す図である。 本発明の実施の形態2において実行されるルーチンのフローチャートである。
符号の説明
10 ディーゼル機関
12 インジェクタ
14 コモンレール
18 排気通路
20 排気マニホールド
22 排気ポート
24 ターボ過給機
26 触媒
28 吸気通路
34 吸気マニホールド
35 吸気ポート
35a ヘリカルポート
35b タンジェンシャルポート
36 吸気絞り弁
38 エアフローメータ
40 外部EGR通路
44 EGR弁
48 アクセル開度センサ
50 ECU
52 吸気弁
54 吸気可変動弁機構
56 排気弁
58 排気可変動弁機構
62 クランク角センサ
64 ピストン
68 冷却水温センサ

Claims (10)

  1. メイン噴射に先立って行われるパイロット噴射の回数を、内燃機関の運転状態に応じて変更する回数変更手段と、
    パイロット噴射の回数が変更されるときに、その変更に起因して生ずる燃焼騒音の変化が緩和されるように、着火時期に関与するパラメータを一時的に通常時の値と異なる値にする着火時期制御手段と、
    を備えることを特徴とする内燃機関の制御装置。
  2. 前記着火時期制御手段は、パイロット噴射の回数が減らされるときに、前記パラメータを着火時期が早くなる方向に一時的に変化させることを特徴とする請求項1記載の内燃機関の制御装置。
  3. 前記着火時期制御手段によって前記パラメータが着火時期が早くなる方向に変更されている間、メイン噴射の時期を通常時より遅くする噴射時期リタード手段を更に備えることを特徴とする請求項2記載の内燃機関の制御装置。
  4. 前記内燃機関の内部EGR割合を可変とする内部EGR割合可変手段を更に備え、
    前記パラメータは、前記内部EGR割合と相関するパラメータであり、
    前記着火時期が早くなる方向は、前記内部EGR割合を増大させる方向であることを特徴とする請求項2または3記載の内燃機関の制御装置。
  5. 前記内燃機関のスワール比を可変とするスワール比可変手段と、
    前記着火時期制御手段によって、前記パラメータが、前記内部EGR割合が増大する方向に変更されるときに、前記スワール比が通常時より大きくなるように前記スワール比可変手段を制御するスワール制御手段と、
    を更に備えることを特徴とする請求項4記載の内燃機関の制御装置。
  6. 前記内燃機関の圧縮比または実圧縮比を可変とする圧縮比可変手段を更に備え、
    前記パラメータは、前記圧縮比または前記実圧縮比であり、
    前記着火時期が早くなる方向は、前記圧縮比または実圧縮比を高くする方向であることを特徴とする請求項2または3記載の内燃機関の制御装置。
  7. 前記回数変更手段は、前記内燃機関の運転領域を比較的低速側の領域とそれより高速側の領域とに分けて、前記高速側の領域でのパイロット噴射の回数を、前記低速側の領域でのパイロット噴射の回数よりも少なくすることを特徴とする請求項1乃至6の何れか1項記載の内燃機関の制御装置。
  8. 前記着火時期制御手段は、機関負荷の増大を伴って機関回転速度が前記低速側の領域から前記高速側の領域へ移行する場合に機能し、そうでない場合には機能しないことを特徴とする請求項7記載の内燃機関の制御装置。
  9. 機関負荷の増大を伴って機関回転速度が上昇する場合には、パイロット噴射の回数を切り替える境界の機関回転速度を、定常状態のときと比べて高速側にシフトするシフト手段を更に備えることを特徴とする請求項7または8記載の内燃機関の制御装置。
  10. 前記着火時期制御手段は、前記パラメータを通常時の値と異なる値にした後、前記パラメータを徐々に通常時の値に戻すことを特徴とする請求項1乃至9の何れか1項記載の内燃機関の制御装置。
JP2006198347A 2006-07-20 2006-07-20 内燃機関の制御装置 Pending JP2008025445A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198347A JP2008025445A (ja) 2006-07-20 2006-07-20 内燃機関の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006198347A JP2008025445A (ja) 2006-07-20 2006-07-20 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
JP2008025445A true JP2008025445A (ja) 2008-02-07

Family

ID=39116340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198347A Pending JP2008025445A (ja) 2006-07-20 2006-07-20 内燃機関の制御装置

Country Status (1)

Country Link
JP (1) JP2008025445A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048192A (ja) * 2008-08-22 2010-03-04 Denso Corp 燃料噴射制御装置
JP2010071125A (ja) * 2008-09-17 2010-04-02 Nissan Motor Co Ltd 直接噴射式内燃機関の燃料噴射制御装置
JP2011247220A (ja) * 2010-05-28 2011-12-08 Bosch Corp 蓄圧式燃料噴射装置及びその制御装置
JP2013133763A (ja) * 2011-12-27 2013-07-08 Mazda Motor Corp ターボ過給機付圧縮自己着火エンジンの制御装置
JP2013185540A (ja) * 2012-03-09 2013-09-19 Mazda Motor Corp ターボ過給機付きディーゼルエンジンの制御装置
CN109113886A (zh) * 2017-06-23 2019-01-01 曼能解决方案(曼能解决方案德国股份公司)分公司 大型涡轮增压二冲程压燃式内燃发动机及其操作方法
CN112392622A (zh) * 2020-11-19 2021-02-23 潍柴动力股份有限公司 一种发动机运行模式切换控制方法、装置及车辆
CN113417753A (zh) * 2021-07-30 2021-09-21 广西玉柴机器股份有限公司 一种改善发动机冷起动的控制方法
US11300062B2 (en) 2020-03-12 2022-04-12 Perkins Engines Company Limited Cylinder cut-out modes for engines
JP7501433B2 (ja) 2021-04-08 2024-06-18 株式会社豊田自動織機 排気ガス浄化装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048192A (ja) * 2008-08-22 2010-03-04 Denso Corp 燃料噴射制御装置
JP2010071125A (ja) * 2008-09-17 2010-04-02 Nissan Motor Co Ltd 直接噴射式内燃機関の燃料噴射制御装置
JP2011247220A (ja) * 2010-05-28 2011-12-08 Bosch Corp 蓄圧式燃料噴射装置及びその制御装置
JP2013133763A (ja) * 2011-12-27 2013-07-08 Mazda Motor Corp ターボ過給機付圧縮自己着火エンジンの制御装置
JP2013185540A (ja) * 2012-03-09 2013-09-19 Mazda Motor Corp ターボ過給機付きディーゼルエンジンの制御装置
JP2019007482A (ja) * 2017-06-23 2019-01-17 エムエーエヌ・エナジー・ソリューションズ・フィリアル・アフ・エムエーエヌ・エナジー・ソリューションズ・エスイー・ティスクランド 大型ターボ過給式2ストローク圧縮着火型内燃エンジンおよび該エンジンの運転方法
CN109113886A (zh) * 2017-06-23 2019-01-01 曼能解决方案(曼能解决方案德国股份公司)分公司 大型涡轮增压二冲程压燃式内燃发动机及其操作方法
CN109113886B (zh) * 2017-06-23 2021-12-31 曼能解决方案(曼能解决方案德国股份公司)分公司 大型涡轮增压二冲程压燃式内燃发动机及其操作方法
US11300062B2 (en) 2020-03-12 2022-04-12 Perkins Engines Company Limited Cylinder cut-out modes for engines
CN112392622A (zh) * 2020-11-19 2021-02-23 潍柴动力股份有限公司 一种发动机运行模式切换控制方法、装置及车辆
JP7501433B2 (ja) 2021-04-08 2024-06-18 株式会社豊田自動織機 排気ガス浄化装置
CN113417753A (zh) * 2021-07-30 2021-09-21 广西玉柴机器股份有限公司 一种改善发动机冷起动的控制方法
CN113417753B (zh) * 2021-07-30 2023-02-03 广西玉柴机器股份有限公司 一种改善发动机冷起动的控制方法

Similar Documents

Publication Publication Date Title
JP5904290B2 (ja) ターボ過給機付きエンジン
JP4442659B2 (ja) 内燃機関の排気浄化装置
JP2008025445A (ja) 内燃機関の制御装置
JP4816811B2 (ja) 内燃機関の制御装置
EP2179158B1 (en) Control apparatus and control method for internal combustion engine
JP5370274B2 (ja) ディーゼルエンジンの燃焼制御装置
JP5056966B2 (ja) 燃焼制御装置
JP4715644B2 (ja) 内燃機関の制御装置
JP2006233898A (ja) Egr装置
JP2009216059A (ja) 内燃機関の制御装置
JP2009085053A (ja) 圧縮着火内燃機関の制御装置
JP2009162113A (ja) 内燃機関の制御装置
JP5516144B2 (ja) 自動車搭載用ディーゼルエンジン
JP4635974B2 (ja) ディーゼル機関の制御装置
JP4998632B1 (ja) 燃焼制御装置
US20100076668A1 (en) Control apparatus for internal combustion engine
JP2009299623A (ja) 内燃機関の制御装置
JP4803056B2 (ja) 予混合圧縮着火内燃機関
JP5293683B2 (ja) ディーゼルエンジンの燃焼制御装置
JP4200356B2 (ja) 筒内噴射型内燃機関の燃料制御装置
JP2010014038A (ja) 可変動弁機構を備えた筒内噴射式内燃機関の制御装置
JP2008101513A (ja) 内燃機関の制御装置
JP2008101486A (ja) 内燃機関の制御装置
JP4771977B2 (ja) 内燃機関の燃料制御装置
JP2008038601A (ja) 内燃機関の燃料噴射制御装置