[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008023658A - Machine tool - Google Patents

Machine tool Download PDF

Info

Publication number
JP2008023658A
JP2008023658A JP2006199194A JP2006199194A JP2008023658A JP 2008023658 A JP2008023658 A JP 2008023658A JP 2006199194 A JP2006199194 A JP 2006199194A JP 2006199194 A JP2006199194 A JP 2006199194A JP 2008023658 A JP2008023658 A JP 2008023658A
Authority
JP
Japan
Prior art keywords
temperature
heat
column
base
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006199194A
Other languages
Japanese (ja)
Other versions
JP4596480B2 (en
Inventor
Ichiro Araya
新家一朗
Shuichi Kawada
川田秀一
Taro Hasegawa
長谷川太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2006199194A priority Critical patent/JP4596480B2/en
Priority to PCT/JP2007/000606 priority patent/WO2008010309A1/en
Publication of JP2008023658A publication Critical patent/JP2008023658A/en
Application granted granted Critical
Publication of JP4596480B2 publication Critical patent/JP4596480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/18Compensation of tool-deflection due to temperature or force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/01Frames, beds, pillars or like members; Arrangement of ways
    • B23Q1/015Frames, beds, pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/14Methods or arrangements for maintaining a constant temperature in parts of machine tools
    • B23Q11/141Methods or arrangements for maintaining a constant temperature in parts of machine tools using a closed fluid circuit for cooling or heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/14Methods or arrangements for maintaining a constant temperature in parts of machine tools
    • B23Q11/143Methods or arrangements for maintaining a constant temperature in parts of machine tools comprising heating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/04Frames; Guides
    • B30B15/044Means preventing deflection of the frame, especially for C-frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/34Heating or cooling presses or parts thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/49Nc machine tool, till multiple
    • G05B2219/49204Control of heat to compensate for dilatation, thermal displacement

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Machine Tool Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the heat displacement of a structure, and to improve working precision by mitigating the temperature variation of a heating medium with respect to a control target temperature. <P>SOLUTION: This electric discharge working device 1 having a base 2 being a base part, a column 3 erected on the base 2, a working head 4 provided on the column 3 and installed with a tool electrode E to work a work W on it, and a work holding unit 5 to arrange the work W on it as a structure, is provided with a heat exchanging plate 20 including a channel 21c to make a cooling medium flow and installed on the outer peripheral surface of the base, and the column and a cooling medium temperature control device 50 to control a temperature of the cooling medium to control a target temperature. The heat exchanging plate 20 includes a constitution interposing a heat conduction impingement plate 22 between the channel 21c to make the cooling medium flow and the outer peripheral surface of the base and the column. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

本発明は、所定の制御目標温度に制御された熱媒体により構造体に生ずる熱変位を低減することができる構成を備えた工作機械に関する。   The present invention relates to a machine tool having a configuration capable of reducing thermal displacement generated in a structure by a heat medium controlled to a predetermined control target temperature.

近年、工作機械による加工においては数十ナノメートルオーダーの超精密加工を要求される場合も多く、工作機械を設置する加工室内の温度変化や構造体への作業者の接触等による予期せぬ温度変位(熱変位)を低減して、工具とワークとの間の相対的な位置関係を一定に保持することが必要とされており、例えば、特許文献1には、熱変位を低減する構成を備えた工作機械が開示されている。   In recent years, machining with machine tools often requires ultra-precise machining on the order of several tens of nanometers, and unexpected temperature due to changes in temperature in the processing chamber in which the machine tool is installed or contact of the operator with the structure. It is necessary to reduce the displacement (thermal displacement) and to keep the relative positional relationship between the tool and the workpiece constant. For example, Patent Document 1 discloses a configuration for reducing thermal displacement. A machine tool provided is disclosed.

すなわち、同文献1の工作機械によれば、ベッド(ベース)とコラムの外周面に断熱材(熱伝導緩衝体)を貼付しており、この断熱材により周囲の空調環境等による温度変化がベッドやコラムに伝わることを規制する構成を採用していた。しかしながら、同文献1の断熱構造においては加熱手段や冷却手段等の自らが温度を制御する手段は備えておらず、周囲環境の変化による僅かな温度変化は規制できても、例えば、温度変化が短時間でもその変化幅が許容限度を超えた大きいものである場合には、結局変化後の温度がベッドやコラムに伝わり熱変位を生じさせる恐れがあった。 That is, according to the machine tool of the literature 1, a heat insulating material (heat conduction buffer) is affixed to the outer peripheral surface of the bed (base) and the column, and the temperature change due to the surrounding air conditioning environment or the like is caused by this heat insulating material. And a structure that regulates transmission to the column. However, the heat insulating structure of the literature 1 does not have a means for controlling the temperature itself such as a heating means or a cooling means, and even if a slight temperature change due to a change in the surrounding environment can be regulated, for example, the temperature change If the change width is large enough to exceed the allowable limit even for a short time, the temperature after the change may eventually be transferred to the bed or column to cause thermal displacement.

そこで、このような問題を解決すべく、特許文献2に示す工作機械が開示されている。すなわち、同文献2の工作機械によれば、工具を備えたコラム部とワークを保持する保持部に熱交換オイル(熱媒体)を流通させた冷却プレートを設けて自らが温度を制御する手段を備え、周囲の温度環境に変化が生じてもコラム部や保持部の温度を一定に保持することを可能にしている。この冷却プレートとコラム部および保持部との間には伝熱性の充填剤(伝熱セメント)が介装されており、この充填剤を介して熱の伝達が積極的に促進されている。 In order to solve such a problem, a machine tool shown in Patent Document 2 is disclosed. That is, according to the machine tool of the literature 2, there is provided means for controlling the temperature by providing a cooling plate in which heat exchange oil (heat medium) is circulated in a column portion provided with a tool and a holding portion for holding a workpiece. It is possible to keep the temperature of the column part and the holding part constant even if the surrounding temperature environment changes. A heat transfer filler (heat transfer cement) is interposed between the cooling plate and the column portion and the holding portion, and heat transfer is actively promoted through the filler.

特開2003−300122号公報JP 2003-300122 A 特開2005−262379号公報JP 2005-262379 A

ところで、上述した特許文献2の工作機械においては、熱媒体自体に温度変動があると、この変動が構造体に伝達されて該構造体に予期せぬ温度変位(熱変位)を生じさせることがある。すなわち、熱媒体は、一般に一定の制御目標温度に設定されて供給されるものの、通常は制御目標温度に対して一定の温度変動幅を許容して制御されており0.1K程度の変動が許容される場合も少なくない。 By the way, in the machine tool of Patent Document 2 described above, if there is a temperature variation in the heat medium itself, this variation is transmitted to the structure and an unexpected temperature displacement (thermal displacement) may occur in the structure. is there. That is, although the heat medium is generally supplied with a constant control target temperature, it is normally controlled with a constant temperature fluctuation range with respect to the control target temperature, and a fluctuation of about 0.1 K is allowable. It is often the case.

特に上述した工作機械にあっては、冷却プレートとコラム部および保持部との間には積極的に熱の伝達を促進すべく伝熱性の充填剤が介装されており、熱媒体自体の温度変動が構造体に速やかに伝わり構造体に熱変位が生じて工具とワークとの間の相対的な位置関係が変動し、その結果、加工精度に甚大な影響を与える恐れがある。 In particular, in the above-described machine tool, a heat transfer filler is actively interposed between the cooling plate, the column portion, and the holding portion to promote heat transfer, and the temperature of the heat medium itself. The fluctuation is quickly transmitted to the structure, and thermal displacement occurs in the structure, and the relative positional relationship between the tool and the work fluctuates. As a result, there is a possibility that the machining accuracy may be greatly affected.

このような問題に対し、例えば熱媒体の温度変動に寄与する各種因子を予め想定して制御回路を構築し熱媒体の温度制御を厳密に行うことも考えられるが、偶発的な温度変動やコラム部等への温度変動の伝達遅れ等想定されるあらゆる因子を考慮して制御回路を構築することは極めて困難であるばかりか、制御回路が複雑になって製作期間が長期化する等、工作機械の製作コストの増大も招く恐れがある。 To deal with such problems, for example, it is conceivable to construct a control circuit in advance assuming various factors that contribute to the temperature fluctuation of the heat medium, and strictly control the temperature of the heat medium. It is extremely difficult to build a control circuit taking into account all possible factors such as a delay in the transmission of temperature fluctuations to the machine, etc., and the control circuit becomes complicated and the production period becomes longer. There is also a risk that the manufacturing cost of the device will increase.

本発明は、このような事情に鑑みてなされたもので、熱媒体の制御目標温度に対する温度変動を緩衝させることにより構造体の熱変位を低減し加工精度を向上させることができる工作機械の提供を目的とする。 The present invention has been made in view of such circumstances, and provides a machine tool capable of reducing the thermal displacement of the structure and improving the machining accuracy by buffering the temperature fluctuation with respect to the control target temperature of the heat medium. With the goal.

上記目的を達成するために、請求項1の発明は、構造体として、基部をなすベースと、ベースに立設されたコラムと、コラムに設けられ、ワークを加工する工具を装着する加工ヘッドと、ワークを配置するワーク保持ユニットと、を有する工作機械において、熱媒体を流通させる流路を含み、ベースおよびコラムの少なくともいずれか一方の外周面に装着された熱交換プレートと、熱媒体の温度を制御目標温度に制御する熱媒体温度制御手段と、を備え、熱交換プレートは、熱媒体を流通させる流路とベースおよびコラムの少なくともいずれか一方の外周面との間に熱伝導緩衝体を介在させた構成を含むことを特徴とする。 In order to achieve the above-mentioned object, the invention of claim 1 includes, as a structure, a base that forms a base, a column that is erected on the base, and a machining head that is provided on the column and on which a tool for machining a workpiece is mounted. A heat exchange plate mounted on an outer peripheral surface of at least one of the base and the column, and a temperature of the heat medium. A heat medium temperature control means for controlling the heat medium to a control target temperature, and the heat exchange plate has a heat conduction buffer between the flow path through which the heat medium flows and the outer peripheral surface of at least one of the base and the column. It is characterized by including an intervening structure.

本発明によれば、熱媒体の温度を制御目標温度に制御する熱媒体温度制御手段を備えることとしたので、周囲環境の温度変化幅が大きい場合にあっても、工作機械のベースおよびコラムの少なくともいずれか一方の温度を一定に保持することができ、更に、熱交換プレートは、熱媒体を流通させる流路とベースおよびコラムの少なくともいずれか一方の外周面との間に熱伝導緩衝体を介在させた構成を含むこととしたので、熱媒体の温度が制御目標温度に対して変動する場合にあっても、熱伝導緩衝体の作用により熱媒体の温度変動を緩衝させてベースおよびコラムの少なくともいずれか一方に伝達することができる。 According to the present invention, since the heat medium temperature control means for controlling the temperature of the heat medium to the control target temperature is provided, even when the temperature change width of the surrounding environment is large, the base of the machine tool and the column At least one of the temperatures can be kept constant, and the heat exchange plate further includes a heat conduction buffer between the flow path through which the heat medium flows and the outer peripheral surface of at least one of the base and the column. Since the intervening configuration is included, even when the temperature of the heat medium fluctuates with respect to the control target temperature, the heat conduction buffer acts to buffer the temperature fluctuation of the heat medium, thereby It can be transmitted to at least one of them.

熱媒体の温度を、熱媒体温度制御手段により制御目標温度に対して一定の温度変動幅以内に、かつ、一定の温度変動周期以内に制御するとともに、温度変動幅を、熱伝導緩衝体により目標規制幅以内に緩衝させてベースおよびコラムの少なくともいずれか一方に伝達する場合において、熱媒体の温度変動パターンを、制御目標温度と、温度変動幅の最大幅と、温度変動周期の最長周期と、熱媒体温度制御手段による熱媒体の温度制御時間と、をパラメータとした演算式として特定し、熱伝導緩衝体の厚みを、制御目標温度と、温度変動幅の最大幅と、温度変動周期の最長周期と、温度制御時間と、目標規制幅と、熱伝導緩衝体の熱伝導率と、熱伝導緩衝体の比熱と、熱伝導緩衝体の密度と、に基づいて特定された熱媒体の温度変動パターンの演算式およびフーリエの法則を用いた解析により設定することとすれば、熱媒体温度制御手段の性能や熱伝導緩衝体の材質に応じて、熱媒体の温度変動に対する所期の目標規制幅以内となるように容易に熱伝導緩衝体の厚みを設定することができる。なお、温度変動パターンは温度変動幅の最大幅および温度変動周期の最長周期に基づいて設定されるため、熱伝導緩衝体の厚みを安全側で設定することができる。(請求項2)。 The temperature of the heat medium is controlled within a certain temperature fluctuation range and within a certain temperature fluctuation period with respect to the control target temperature by the heat medium temperature control means, and the temperature fluctuation width is controlled by the heat conduction buffer. When buffered within the regulation range and transmitted to at least one of the base and the column, the temperature variation pattern of the heat medium, the control target temperature, the maximum width of the temperature variation range, the longest cycle of the temperature variation period, The heat medium temperature control time by the heat medium temperature control means is specified as an arithmetic expression using the parameters as parameters, and the thickness of the heat conduction buffer is determined as the control target temperature, the maximum temperature fluctuation width, and the longest temperature fluctuation cycle. Temperature variation of the heat medium identified based on the period, temperature control time, target regulation width, heat conductivity of the heat transfer buffer, specific heat of the heat transfer buffer, and density of the heat transfer buffer Pattern If it is set by analysis using the formula and Fourier's law, it will be within the desired target regulation range for the temperature variation of the heat medium depending on the performance of the heat medium temperature control means and the material of the heat conduction buffer. Thus, the thickness of the heat conduction buffer can be set easily. Since the temperature variation pattern is set based on the maximum temperature variation width and the longest temperature variation cycle, the thickness of the heat conduction buffer can be set on the safe side. (Claim 2).

また、熱伝導緩衝体は塩化ビニル系の材料で構成されることとすれば、塩化ビニル系材料の相対的に低い熱伝導率が作用して熱伝導緩衝体の厚みを小さく設定しつつ熱媒体の温度変動を所望の範囲に緩衝させることができるので、工作機械の軽量化・コンパクト化に寄与することができる(請求項3)。 Further, if the heat conduction buffer is made of a vinyl chloride material, the heat conductivity of the vinyl chloride material is reduced while the thickness of the heat conduction buffer is set small due to the relatively low thermal conductivity of the vinyl chloride material. Therefore, it is possible to reduce the temperature variation of the machine tool within a desired range, thereby contributing to weight reduction and compactness of the machine tool.

なお、工作機械の構造体は内部に発熱体を有し、発熱体と対向する構造体の内面に更に熱交換プレートを装着することとすれば、構造体の内部にモータ等の発熱体を有する場合にあっても、構造体の内面に装着した熱交換プレートが作用して、発熱体の発熱が構造体に伝達することを防止し、かつ、熱媒体の温度変動をも緩衝させることができる。 The structure of the machine tool has a heating element inside, and if a heat exchange plate is further mounted on the inner surface of the structure facing the heating element, the structure of the machine tool has a heating element such as a motor. Even in this case, the heat exchange plate mounted on the inner surface of the structure can act to prevent the heat generated by the heating element from being transmitted to the structure, and the temperature variation of the heat medium can be buffered. .

また、ベース、コラム、および加工ヘッドの外周面と一定の間隔を置いて、該外周面を覆うカバーを設けるとともに、工作機械をチャンバー内に収納し、外周面とカバーとの間およびチャンバー内に一定の温度に設定された空気を供給することとすれば、工作機械の温度の一定性が更に担保される。 In addition, a cover is provided to cover the outer peripheral surface with a certain distance from the outer peripheral surface of the base, column, and machining head, and the machine tool is stored in the chamber, and between the outer peripheral surface and the cover and in the chamber. If air set to a constant temperature is supplied, the machine tool temperature is further ensured.

更にまた、ワークと工具との相対位置関係を変更する送り手段を有し、該送り手段の送り静圧軸受部に一定の温度に設定された空気を供給することとすればより好ましい。 Furthermore, it is more preferable to have feed means for changing the relative positional relationship between the workpiece and the tool, and to supply air set at a constant temperature to the feed hydrostatic bearing portion of the feed means.

本発明によれば、熱媒体の制御目標温度に対する温度変動を緩衝させることにより構造体の熱変位を低減し工作機械の加工精度を向上させることができる。 ADVANTAGE OF THE INVENTION According to this invention, the thermal displacement of a structure can be reduced by buffering the temperature fluctuation with respect to the control target temperature of a heat medium, and the processing precision of a machine tool can be improved.

以下、本発明の実施の形態について図面を参照して詳細に説明する。図1は本発明の第1実施形態を示す放電加工装置(工作機械)の概略を示す構成図である。同図を参照して放電加工装置の概要を説明すると、放電加工装置1は、該装置1の基部をなすベース2、ベース2の上面後部に立設され、その上部で傾斜面を含みつつ略90°屈曲して前方に僅かに延出するコラム3、コラム3の延出部3aの前面に装着されるとともに、下方に延出し、放電加工装置1の略中間位置で工具電極E(工具)を装着する加工ヘッド4、ベース2の上面前部に備えられ、工具電極Eと対向するようにワークWを配置するワーク保持ユニット5、ワークWを加工液に浸漬する加工槽6、ワーク保持ユニット5および加工槽6を載置するワークテーブル7等の各構造体を有している。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing an outline of an electric discharge machining apparatus (machine tool) showing a first embodiment of the present invention. The outline of the electric discharge machining apparatus will be described with reference to FIG. 1. The electric discharge machining apparatus 1 is erected on the base 2 constituting the base of the apparatus 1 and the rear upper surface of the base 2 and includes an inclined surface at an upper portion thereof. The column 3 that is bent 90 ° and extends slightly forward is attached to the front surface of the extending portion 3 a of the column 3, and extends downward, and at a substantially intermediate position of the electric discharge machining apparatus 1, the tool electrode E (tool) Are mounted on the front surface of the base 2 and the workpiece holding unit 5 is disposed so as to face the tool electrode E, the processing tank 6 is immersed in the machining liquid, and the workpiece holding unit. 5 and a work table 7 on which the processing tank 6 is placed.

ベース2、コラム3、および加工ヘッド4の周囲にはこれらベース2等の外周面と一定の間隔を置いてカバー8が設けられている。そして、ベース2およびコラム3の外周面とカバー8との間に形成される空間内であって、ベース2およびコラム3の外周面(以下、単にコラム3等とする)には後に詳述する熱交換プレート20が装着されている。なお、放電加工装置1全体はチャンバー9内に収納されている。 A cover 8 is provided around the base 2, the column 3, and the machining head 4 with a certain distance from the outer peripheral surface of the base 2 and the like. An outer peripheral surface of the base 2 and the column 3 (hereinafter simply referred to as the column 3 or the like) in a space formed between the outer peripheral surface of the base 2 and the column 3 and the cover 8 will be described in detail later. A heat exchange plate 20 is attached. The entire electric discharge machining apparatus 1 is accommodated in the chamber 9.

加工ヘッド4の内部にはZ軸モータ10zが、ワークテーブル7の内部にはX軸モータ10xおよびY軸モータ10yが収納されており、これら各軸モータ10x〜10z(送り手段)を制御することにより工具電極EとワークWとの相対位置関係を適宜に設定することができる。 A Z-axis motor 10z is accommodated in the machining head 4, and an X-axis motor 10x and a Y-axis motor 10y are accommodated in the work table 7, and these axis motors 10x to 10z (feed means) are controlled. Thus, the relative positional relationship between the tool electrode E and the workpiece W can be set as appropriate.

チャンバー9の外部には空気温度制御装置30を併設した空気供給ユニット40と冷却媒体温度制御装置(熱媒体温度制御手段)50を併設した冷却媒体供給ユニット60とが備えられている。すなわち、空気温度制御装置30および空気供給ユニット40により一定の温度に設定された空気がカバー8とベース2、コラム3、および加工ヘッド4の外周面との間に形成される空間、チャンバー9内、更には図示せぬX軸、Y軸、Z軸の各送り静圧軸受部に連続的に供給されており、放電加工装置1が外部の温度環境の影響を受けず一定の温度に保持されるように構成されている。 An air supply unit 40 provided with an air temperature control device 30 and a cooling medium supply unit 60 provided with a cooling medium temperature control device (heat medium temperature control means) 50 are provided outside the chamber 9. That is, in the chamber 9, a space formed between the cover 8, the base 2, the column 3, and the outer peripheral surface of the processing head 4, where the air set at a constant temperature by the air temperature control device 30 and the air supply unit 40 Furthermore, the X-axis, Y-axis, and Z-axis feed hydrostatic bearings (not shown) are continuously supplied, and the electric discharge machining apparatus 1 is maintained at a constant temperature without being affected by the external temperature environment. It is comprised so that.

そして、冷却媒体温度制御装置50および冷却媒体供給ユニット60により一定の制御目標温度に制御された冷却媒体(熱媒体)が熱交換プレート20に連続的に供給されることにより、チャンバー9内に外気が流入したり、メンテナンス作業等において作業者がカバー8に接触等した場合にあっても、放電加工装置1の温度の一定性が更に担保されるように構成されている。なお、各軸モータ10x、10y、10zには図示せぬ冷却管が巻き付けられており、この冷却管にも冷却媒体温度制御装置50および冷却媒体供給ユニット60により一定の制御目標温度に制御された冷却媒体が供給されるので各軸モータ10x、10y、10zの温度が一定に保持される。 Then, the cooling medium (heat medium) controlled at a constant control target temperature by the cooling medium temperature control device 50 and the cooling medium supply unit 60 is continuously supplied to the heat exchange plate 20, thereby allowing the outside air to enter the chamber 9. Even when the operator inflows or the operator touches the cover 8 during maintenance work or the like, the temperature uniformity of the electric discharge machining apparatus 1 is further secured. Note that a cooling pipe (not shown) is wound around each of the shaft motors 10x, 10y, and 10z, and the cooling pipe is also controlled to a constant control target temperature by the cooling medium temperature control device 50 and the cooling medium supply unit 60. Since the cooling medium is supplied, the temperatures of the shaft motors 10x, 10y, and 10z are kept constant.

熱交換プレート20は、図2および図3にその詳細構造を示すように、管部材21と熱伝導緩衝板(熱伝導緩衝体)22とから構成されている。
管部材21は、複数の直管部21aと隣接する直管部21aの一端部間を結ぶ曲管部21bとからなる蛇行形状をなしており、この管部材21は、その内部に断面円状の中空部を有している。この中空部は冷却媒体を流通させる流路21cとして機能する。なお、冷却媒体には、例えば油、水、空気等を採用することができる。
The heat exchange plate 20 is composed of a tube member 21 and a heat conduction buffer plate (heat conduction buffer) 22 as shown in FIG. 2 and FIG.
The pipe member 21 has a meandering shape including a plurality of straight pipe portions 21a and a curved pipe portion 21b connecting one end portions of the adjacent straight pipe portions 21a, and the pipe member 21 has a circular cross section inside. It has a hollow part. This hollow portion functions as a flow path 21c for circulating the cooling medium. In addition, oil, water, air etc. are employable as a cooling medium, for example.

熱伝導緩衝板22は平板状に形成されている。この熱伝導緩衝板22の表面側22aは管部材21の取り付け面として機能するとともに、裏面側22bはコラム3等の冷却面として機能し、熱伝導緩衝板22は冷却媒体の流路21cとコラム3等との間に介在するようにコラム3等に装着されている。 The heat conduction buffer plate 22 is formed in a flat plate shape. The surface 22a of the heat conduction buffer plate 22 functions as a mounting surface for the tube member 21, and the back surface 22b functions as a cooling surface for the column 3 and the like. It is mounted on the column 3 or the like so as to be interposed between the 3 and the like.

すなわち、熱伝導緩衝板22の表面側22aには配管取付具22cが設けられており、この配管取付具22cにより管部材21をその表面側22aに取り付け可能となっている。熱伝導緩衝板22の裏面側22bはコラム3等と接触しており、この裏面側22bを介して管部材21の流路21cを流通する冷却媒体とコラム3等との間で熱交換が行われる構成となっている。 That is, the pipe attachment 22c is provided on the surface side 22a of the heat conduction buffer plate 22, and the pipe member 21 can be attached to the surface side 22a by the pipe attachment 22c. The back surface side 22b of the heat conduction buffer plate 22 is in contact with the column 3 or the like, and heat exchange is performed between the cooling medium flowing through the flow path 21c of the tube member 21 and the column 3 or the like via the back surface side 22b. It is the composition that is called.

したがって、周囲の温度環境に変化が生じても熱交換プレート20が作用してこの温度変化を緩衝させ、コラム3等の温度を一定に保持することができ、更に、熱交換プレート20は、冷却媒体を流通させる流路21cとコラム3等との間に熱伝導緩衝板22を介在した構成を含むこととしたので、冷却媒体の温度が制御目標温度に対して変動する場合にあっても、この温度変動を緩衝してコラム3等に伝達することができる。なお、熱伝導緩衝板22は接着剤やボルト等の締結具によりコラム3等に装着されている。 Therefore, even if a change occurs in the surrounding temperature environment, the heat exchange plate 20 acts to buffer this temperature change, and the temperature of the column 3 and the like can be kept constant. Since the heat conduction buffer plate 22 is interposed between the flow path 21c for circulating the medium and the column 3 or the like, even when the temperature of the cooling medium varies with respect to the control target temperature, This temperature fluctuation can be buffered and transmitted to the column 3 or the like. The heat conduction buffer plate 22 is attached to the column 3 or the like by a fastener such as an adhesive or a bolt.

この熱伝導緩衝板22の構成材料としては、相対的に熱伝導率の小さいプラスチック系の材料、より詳しくは、ポリ塩化ビニルやポリエチレン等の汎用プラスチック類、ポリアミド、ポリアセタール、ポリフェニレンスルフィド等のエンジニアリング・プラスチック類が好ましく、特に、ポリ塩化ビニル(塩化ビニル樹脂)に代表される塩化ビニル系の材料については安価かつ容易に調達できるのでより好ましい。なお、セラミックス系や鉄系材料等のように相対的に熱伝導率の高い材料であっても、熱伝導緩衝板22の厚みを適宜に設定することにより冷却媒体の温度変動を所望の範囲に緩衝させることできる様々な材料を採用することができる。 As a constituent material of the heat conduction buffer plate 22, plastic materials having relatively low thermal conductivity, more specifically, general-purpose plastics such as polyvinyl chloride and polyethylene, polyamide, polyacetal, polyphenylene sulfide, etc. Plastics are preferable, and in particular, a vinyl chloride material represented by polyvinyl chloride (vinyl chloride resin) is more preferable because it can be procured inexpensively and easily. Even if the material has a relatively high thermal conductivity such as a ceramic or iron-based material, the temperature variation of the cooling medium can be set within a desired range by appropriately setting the thickness of the heat conduction buffer plate 22. Various materials that can be buffered can be employed.

冷却媒体温度制御装置50は、図4に示すように、制御目標温度入力部51と、冷却媒体温度比較部52と、冷却媒体温度指令出力部53と、を有している。すなわち、図5に示すように、これら各部が相互に機能して、冷却媒体の温度を制御目標温度に対して一定の温度変動幅以内に、かつ、一定の温度変動周期以内に制御しており、本実施形態においては、冷却媒体温度制御装置50は、制御目標温度を296.15K(23℃)に設定した場合、温度変動幅を0.1K以内、かつ、温度変動周期を1s以内として冷却媒体の温度を制御する能力を有している。 As illustrated in FIG. 4, the cooling medium temperature control device 50 includes a control target temperature input unit 51, a cooling medium temperature comparison unit 52, and a cooling medium temperature command output unit 53. That is, as shown in FIG. 5, each of these units functions mutually to control the temperature of the cooling medium within a certain temperature fluctuation range with respect to the control target temperature and within a certain temperature fluctuation period. In this embodiment, when the control target temperature is set to 296.15 K (23 ° C.), the cooling medium temperature control device 50 cools the temperature fluctuation range within 0.1 K and the temperature fluctuation period within 1 s. It has the ability to control the temperature of the medium.

制御目標温度入力部51には、キーボード操作、ボリューム操作またはタッチパネル操作等により冷却媒体の制御目標温度が入力されるとともに、この入力された制御目標温度を冷却媒体温度比較部52に出力する機能を有している。
冷却媒体温度比較部52には、制御目標温度入力部51から制御目標温度が入力されるとともに、冷却媒体の供給経路上に設けられた温度検出器52aから冷却媒体の温度が入力され、冷却媒体温度比較部52はこれら温度の差を演算するとともに、この温度差を制御目標温度とともに冷却媒体温度指令出力部53に出力する機能を有している。
The control target temperature input unit 51 has a function of inputting the control target temperature of the cooling medium by keyboard operation, volume operation, touch panel operation, or the like, and outputting the input control target temperature to the cooling medium temperature comparison unit 52. Have.
The cooling medium temperature comparison unit 52 receives the control target temperature from the control target temperature input unit 51 and the temperature of the cooling medium from a temperature detector 52a provided on the cooling medium supply path. The temperature comparison unit 52 has a function of calculating the temperature difference and outputting the temperature difference to the coolant temperature command output unit 53 together with the control target temperature.

冷却媒体温度指令出力部53には、冷却媒体温度比較部52から制御目標温度および制御目標温度と検出された冷却媒体の温度との差が入力されるとともに、これら制御目標温度および温度差に基づいて冷却媒体供給ユニット60に制御信号を出力する機能を有している。 The cooling medium temperature command output unit 53 receives the control target temperature and the difference between the control target temperature and the detected temperature of the cooling medium from the cooling medium temperature comparison unit 52, and based on the control target temperature and the temperature difference. And a function of outputting a control signal to the cooling medium supply unit 60.

次に、冷却媒体の温度変動を所期の目標規制幅以内に緩衝してコラム3等に伝達すべく、熱伝導緩衝板22の厚み設定方法について説明する。
すなわち、熱伝導緩衝板22の厚みは、制御目標温度と、温度変動幅の最大幅と、温度変動周期の最長周期と、冷却媒体温度制御装置50による冷却媒体の温度制御時間と、熱伝導緩衝板22の作用による冷却媒体の温度変動に対する目標規制幅と、熱伝導緩衝板22の熱伝導率と、熱伝導緩衝板22の比熱と、熱伝導緩衝板22の密度と、に基づいて冷却媒体の温度変動パターンの演算式およびフーリエの法則を用いた解析により設定することができる。
Next, a method for setting the thickness of the heat conduction buffer plate 22 will be described in order to buffer the temperature fluctuation of the cooling medium within the intended target regulation range and transmit it to the column 3 or the like.
That is, the thickness of the heat conduction buffer plate 22 includes the control target temperature, the maximum temperature fluctuation width, the longest temperature fluctuation period, the temperature control time of the cooling medium by the cooling medium temperature control device 50, and the heat conduction buffer. The cooling medium based on the target regulation width for the temperature variation of the cooling medium due to the action of the plate 22, the thermal conductivity of the heat conduction buffer plate 22, the specific heat of the heat conduction buffer plate 22, and the density of the heat conduction buffer plate 22. The temperature variation pattern can be set by an analysis using an arithmetic expression and Fourier law.

より具体的には、熱伝導緩衝板22の厚みは、冷却媒体の温度が制御目標温度に対して変動していることより非定常熱伝導として計算され、フーリエの法則から以下の数式のような前進差分形差分式により計算し設定することができる。 More specifically, the thickness of the heat conduction buffer plate 22 is calculated as unsteady heat conduction because the temperature of the cooling medium fluctuates with respect to the control target temperature. From the Fourier law, It can be calculated and set by a forward differential type differential equation.

図6(a)乃至図6(d)に示すように、管部材21とコラム3等との間に介在した熱伝導緩衝板22を熱伝達方向にN分割した直方体形の要素として考える(管部材21に最も近い要素番号を0、以下要素番号を1、…、n−1、n、n+1、…とし、コラム3等に最も近い要素番号をN−1とする)。このとき、各要素の熱の出入りは図6(b)〜(d)に示すようになる。各要素の幅をa,互いに接触している面の面積をA、ある要素nの温度をTn,要素nの図示左側の要素n−1の温度をTn−1,同右側の要素n+1をTn+1とする。時間Δt(以下、計算単位時間とする)の間に要素nに入る熱量Δqは熱伝導率をkとして、左側から入る熱量

Figure 2008023658
と右側から入る熱量
Figure 2008023658
の和であり、
Figure 2008023658
となる。
この熱量Δqを受けとることにより要素nの温度TはT+ΔTに変化し、この変化分ΔTは、熱伝導緩衝板22の比熱をcp、密度をρとして数4に示す熱容量C
Figure 2008023658
に反比例し、
Figure 2008023658
となるため数3乃至数5より
Figure 2008023658
となる。 As shown in FIGS. 6A to 6D, the heat conduction buffer plate 22 interposed between the tube member 21 and the column 3 or the like is considered as a rectangular parallelepiped element divided into N in the heat transfer direction (tube). The element number closest to the member 21 is 0, the element numbers are 1,..., N−1, n, n + 1,... And the element number closest to the column 3 is N−1). At this time, heat input / output of each element is as shown in FIGS. The width of each element is a, the area of the surfaces in contact with each other is A, the temperature of a certain element n is Tn, the temperature of the element n-1 on the left side of the element n is T n-1 , and the element n + 1 on the right side is Let Tn + 1 . The amount of heat Δq n entering the element n during the time Δt (hereinafter referred to as the calculation unit time) is the amount of heat entering from the left side with the thermal conductivity k.
Figure 2008023658
And the amount of heat entering from the right side
Figure 2008023658
Is the sum of
Figure 2008023658
It becomes.
By receiving this amount of heat Δq n , the temperature T n of the element n changes to T n + ΔT n , and this change ΔT n is the heat capacity C shown in Equation 4 where cp is the specific heat of the heat conduction buffer plate 22 and ρ is the density.
Figure 2008023658
Inversely proportional to
Figure 2008023658
From Equation 3 to Equation 5
Figure 2008023658
It becomes.

すなわち、冷却媒体温度制御装置50による冷却媒体の温度制御時間tでの要素nの温度を、あらたにTn,tと定義すると、Δt後の温度制御時間t+Δtでの温度Tn,t+Δtは、

Figure 2008023658
となる(図6(b))。 That is, if the temperature of the element n at the temperature control time t of the cooling medium by the cooling medium temperature control device 50 is newly defined as T n, t , the temperature T n, t + Δt at the temperature control time t + Δt after Δt is
Figure 2008023658
(FIG. 6B).

また、管部材21の温度は例えば数8(冷却媒体の温度変動パターンの演算式)に示す冷却媒体温度Tp,t

Figure 2008023658
Tbase:冷却媒体の制御目標温度[K]
Trange:冷却媒体の温度変動幅の最大幅[K]
B:冷却媒体の温度変動周期の最長周期[s]
t:冷却媒体温度制御装置50による冷却媒体の温度制御時間[s]
とすると、Tp,tは要素番号―1の温度T−1,tに相当するから、管部材21に最も近い要素0の温度T0,t+Δt は、
Figure 2008023658
となる(図6(c))。また、最もコラム3等に近い要素N−1の温度TN−1,t+Δt は、安全側を考慮してコラム3等に逃げる熱がないとすると、数2においてΔqnr=0となるから、
Figure 2008023658
となる(図6(d))。 Further, the temperature of the pipe member 21 is, for example, the cooling medium temperature Tp, t shown in Formula 8 (the arithmetic expression of the temperature variation pattern of the cooling medium).
Figure 2008023658
Tbase: Control target temperature of the cooling medium [K]
Range: Maximum width of temperature variation of the cooling medium [K]
B: Longest cycle [s] of the temperature variation cycle of the cooling medium
t: cooling medium temperature control time [s] by the cooling medium temperature control device 50
Then, since Tp, t corresponds to the temperature T- 1, t of the element number -1, the temperature T0 , t + Δt of the element 0 closest to the pipe member 21 is
Figure 2008023658
(FIG. 6C). Further, the temperature T N−1, t + Δt of the element N−1 closest to the column 3 or the like is Δq nr = 0 in Equation 2 if there is no heat escaping to the column 3 or the like in consideration of the safety side.
Figure 2008023658
(FIG. 6D).

なお、このシミュレーションの安定条件としては

Figure 2008023658
となるΔtを用いる必要がある。 As a stability condition for this simulation,
Figure 2008023658
It is necessary to use Δt.

上記の数式より、各要素の温度を計算単位時間Δtで順次繰り返し演算することにより、最もコラム3等に近い要素N−1(熱伝導緩衝板22の裏面側22b)の制御目標温度Tbaseに対する温度変動幅(=TN−1,t+Δt−Tbase)を求め、この温度変動幅が目標規制幅以内となるように熱伝導緩衝板22の厚みを設定することができる。 From the above equation, the temperature of each element is repeatedly calculated in units of the calculation unit time Δt, so that the temperature relative to the control target temperature Tbase of the element N-1 (the back surface side 22b of the heat conduction buffer plate 22) closest to the column 3 etc. The fluctuation range (= TN-1, t + Δt− Tbase) is obtained, and the thickness of the heat conduction buffer plate 22 can be set so that the temperature fluctuation range is within the target regulation range.

次にこのような計算手法に基づく計算例について表1、図5、図7に基づいて説明する。すなわち、図5に示す性能を有する本実施形態の冷却媒体温度制御装置50においては、冷却媒体の制御目標温度Tbaseを296.15K(23.0℃)に設定した場合、温度変動幅の最大幅Trangeは0.1K、温度変動周期の最長周期Bは1sとなり、数8に基づいて演算されるTp,t、すなわち冷却媒体の温度変動パターンは図7に示すように特定される。 Next, calculation examples based on such a calculation method will be described with reference to Table 1, FIG. 5, and FIG. That is, in the cooling medium temperature control device 50 of the present embodiment having the performance shown in FIG. 5, when the control target temperature Tbase of the cooling medium is set to 296.15 K (23.0 ° C.), the maximum width of the temperature fluctuation range The transition is 0.1 K, the longest period B of the temperature fluctuation period is 1 s, and Tp, t calculated based on Equation 8, that is, the temperature fluctuation pattern of the cooling medium is specified as shown in FIG.

続いて、熱伝導緩衝板22の材質をポリ塩化ビニルとして、表1に示すように熱伝導緩衝板22の熱伝導率kを0.16[J/(m・s・K)]、比熱cpを0.95[J/(kg・K)]、密度ρを1400[kg/m]に設定し、更に、熱伝導緩衝板22の熱伝達方向の分割数Nを5、計算単位時間Δtを0.0005[s]に設定すると、図7に示すように、熱伝導緩衝板22の裏面側22bにおける制御目標温度Tbaseに対する温度変動幅(=TN−1,t+Δt−Tbase)を目標規制幅±0.01[K](熱伝導緩衝板裏面側温度296.15K(23.0℃)±0.01K)以内に緩衝させるには、熱伝導緩衝板22の厚みN×aを18mm程度に設定する必要があることがわかる。なお、上述の温度変動パターンは温度変動幅の最大幅および温度変動周期の最長周期に基づいて設定されるため、熱伝導緩衝板22の厚みを安全側で設定することができる。 Subsequently, the material of the heat conduction buffer plate 22 is polyvinyl chloride, and the heat conductivity k of the heat conduction buffer plate 22 is 0.16 [J / (m · s · K)] and the specific heat cp as shown in Table 1. Is set to 0.95 [J / (kg · K)], the density ρ is set to 1400 [kg / m 3 ], the division number N of the heat conduction buffer plate 22 in the heat transfer direction is set to 5, and the calculation unit time Δt Is set to 0.0005 [s], as shown in FIG. 7, the temperature fluctuation width (= TN−1, t + Δt− Tbase) with respect to the control target temperature Tbase on the back surface side 22b of the heat conduction buffer plate 22 is set as the target regulation. In order to buffer within a width of ± 0.01 [K] (backside temperature of heat conduction buffer plate 296.15 K (23.0 ° C.) ± 0.01 K), the thickness N × a of the heat conduction buffer plate 22 is about 18 mm. It turns out that it is necessary to set to. In addition, since the above-mentioned temperature fluctuation pattern is set based on the maximum width of the temperature fluctuation width and the longest period of the temperature fluctuation period, the thickness of the heat conduction buffer plate 22 can be set on the safe side.

Figure 2008023658
Figure 2008023658

続いて、本発明の第2実施形態乃至第4実施形態について図8乃至図10に基づいて説明する。
本発明の第2実施形態は熱交換プレート20の装着箇所を拡張した構成を示している。具体的には、図8に示すように、熱交換プレート20をベース2およびコラム3の外周面に装着するとともに、更に加工ヘッド4の外周面にも装着することとし、加工ヘッド4を冷却する場合にも冷却媒体の温度変動が緩衝される構成となっている。
Next, a second embodiment to a fourth embodiment of the present invention will be described with reference to FIGS.
2nd Embodiment of this invention has shown the structure which extended the attachment location of the heat exchange plate 20. As shown in FIG. Specifically, as shown in FIG. 8, the heat exchange plate 20 is mounted on the outer peripheral surfaces of the base 2 and the column 3, and is further mounted on the outer peripheral surface of the processing head 4 to cool the processing head 4. Even in this case, the temperature variation of the cooling medium is buffered.

本発明の第3実施形態は同じく熱交換プレート20の装着箇所を拡張した構成であって、放電加工装置の内部に加工ヘッド4の如く発熱体を有する場合において、この発熱体と対向する構造体の内面に更に熱交換プレートを装着した構成を示している。具体的には、図9に示すように、加工ヘッド4の内部に収納されたZ軸モータ10zに対向する加工ヘッド4の内面に本発明の熱交換プレート20を装着することにより、Z軸モータ10zが発熱する場合にあっても、この発熱が加工ヘッド4に伝達することを防止し、かつ、冷却媒体の温度変動をも緩衝させる構成となっている。 Similarly, the third embodiment of the present invention has a configuration in which the mounting location of the heat exchange plate 20 is expanded, and in the case where a heating element such as the machining head 4 is provided inside the electric discharge machining apparatus, the structure facing the heating element. The structure which attached the heat exchange plate further to the inner surface of is shown. Specifically, as shown in FIG. 9, the Z-axis motor is mounted by mounting the heat exchange plate 20 of the present invention on the inner surface of the machining head 4 facing the Z-axis motor 10z housed in the machining head 4. Even when 10z generates heat, the heat generation is prevented from being transmitted to the machining head 4, and the temperature variation of the cooling medium is also buffered.

本発明の第4実施形態は、熱交換プレート20の構成を一部変更した構成を示している。具体的には図10に示すように熱伝導緩衝板22の裏面側22bとコラム3等との間に隙間22dを形成し、この隙間22dに空気を介在させる構成としている。このような構成を採用することにより、隙間22dに介在した空気も熱伝導緩衝体として作用するので熱伝導緩衝板22の厚みを小さく設定することができる。 4th Embodiment of this invention has shown the structure which changed the structure of the heat exchange plate 20 partially. Specifically, as shown in FIG. 10, a gap 22d is formed between the back surface side 22b of the heat conduction buffer plate 22 and the column 3 or the like, and air is interposed in the gap 22d. By adopting such a configuration, the air interposed in the gap 22d also acts as a heat conduction buffer, so that the thickness of the heat conduction buffer plate 22 can be set small.

なお、本発明は上述した第1乃至第4実施形態に限定されるものではなく、必要に応じて種々の応用実施または変形実施が可能であることは勿論である。例えば、本実施形態にあっては熱交換プレート20の熱伝導緩衝板22に単一の材料を採用することとしているが、複数の材料を組み合わせる構成としてもよく、また、管部材21および配管取付具22cについても塩化ビニル系の材料等、各種熱伝導緩衝体を採用することとしても良い。更に、熱伝導緩衝板22の厚みを計算により設定することとしているが、熱伝導緩衝板22の表面側22aおよび裏面側22bの温度を実測して設定することとしてもよい。更にまた、冷却媒体によりコラム3等を冷却することとしているが、必要に応じて加熱媒体を採用して加熱する構成としてもよい。 It should be noted that the present invention is not limited to the first to fourth embodiments described above, and it is needless to say that various application implementations or modifications can be made as necessary. For example, in the present embodiment, a single material is adopted for the heat conduction buffer plate 22 of the heat exchange plate 20, but a configuration in which a plurality of materials are combined may be used. As for the tool 22c, various heat conduction buffers such as a vinyl chloride material may be used. Furthermore, although the thickness of the heat conduction buffer plate 22 is set by calculation, the temperature of the front surface side 22a and the back surface side 22b of the heat conduction buffer plate 22 may be set by actual measurement. Furthermore, although the column 3 and the like are cooled by the cooling medium, a heating medium may be employed as necessary for heating.

本発明は、工作機械に利用できる。具体的には、熱媒体により構造体に生ずる熱変位を低減する構成を備えた工作機械において、熱媒体の温度が制御目標温度に対し変動する場合に役立つ。   The present invention can be used for machine tools. Specifically, it is useful when the temperature of the heat medium fluctuates with respect to the control target temperature in a machine tool having a configuration that reduces the thermal displacement generated in the structure by the heat medium.

本発明の第1実施形態に係る放電加工装置の構成を示す図である。It is a figure which shows the structure of the electric discharge machining apparatus which concerns on 1st Embodiment of this invention. 同放電加工装置に装着される熱交換プレートの構成を示す平面図である。It is a top view which shows the structure of the heat exchange plate with which the electrical discharge machining apparatus is mounted | worn. 同熱交換プレートの構成を示す断面図である。It is sectional drawing which shows the structure of the same heat exchange plate. 冷却媒体温度制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of a cooling medium temperature control apparatus. 冷却媒体の温度制御における温度変動の状態を説明するための模式図である。It is a schematic diagram for demonstrating the state of the temperature fluctuation in the temperature control of a cooling medium. 熱交換プレートの熱伝導緩衝板の厚み設定方法を説明するための模式図である。It is a schematic diagram for demonstrating the thickness setting method of the heat conductive buffer plate of a heat exchange plate. 冷却媒体の温度変動パターンおよび熱伝導緩衝板裏面側における温度変動の緩衝状態の一例を示すグラフである。It is a graph which shows an example of the temperature fluctuation pattern of a cooling medium, and the buffer state of the temperature fluctuation in the heat conductive buffer board back surface side. 本発明の第2実施形態に係る放電加工装置の熱交換プレートの装着箇所を示す図である。It is a figure which shows the mounting location of the heat exchange plate of the electric discharge machining apparatus which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る放電加工装置の熱交換プレートの装着箇所を示す図である。It is a figure which shows the mounting location of the heat exchange plate of the electric discharge machining apparatus which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る放電加工装置の熱交換プレートの構成を示す断面図である。It is sectional drawing which shows the structure of the heat exchange plate of the electric discharge machining apparatus which concerns on 4th Embodiment of this invention.

符号の説明Explanation of symbols

E:工具電極
W:ワーク
1:放電加工装置
2:ベース
3:コラム
3a:コラムの延出部
4:加工ヘッド
5:ワーク保持ユニット
6:加工槽
7:ワークテーブル
8:カバー
9:チャンバー
10:モータ
20:熱交換プレート
21:管部材
21a:直管部
21b:曲管部
21c:流路
22:熱伝導緩衝板
22a:熱伝導緩衝板の表面側
22b:熱伝導緩衝板の裏面側
22c:配管取付具
22d:隙間
30:空気温度制御装置
40:空気供給ユニット
50:冷却媒体温度制御装置
51:制御目標温度入力部
52:冷却媒体温度比較部
52a:温度検出器
53:冷却媒体温度指令出力部
60:冷却媒体供給ユニット
E: Tool electrode W: Work piece 1: Electric discharge machining device 2: Base 3: Column 3a: Column extension part 4: Work head 5: Work holding unit 6: Work tank 7: Work table 8: Cover 9: Chamber 10: Motor 20: Heat exchange plate 21: Pipe member 21a: Straight pipe portion 21b: Curved pipe portion 21c: Flow path 22: Heat conduction buffer plate 22a: Front side 22b of heat conduction buffer plate: Back side 22c of heat conduction buffer plate: Pipe fitting 22d: Clearance 30: Air temperature control device 40: Air supply unit 50: Cooling medium temperature control device 51: Control target temperature input unit 52: Cooling medium temperature comparison unit 52a: Temperature detector 53: Cooling medium temperature command output Unit 60: Cooling medium supply unit

Claims (3)

構造体として、基部をなすベースと、前記ベースに立設されたコラムと、前記コラムに設けられ、ワークを加工する工具を装着する加工ヘッドと、前記ワークを配置するワーク保持ユニットと、を有する工作機械において、
熱媒体を流通させる流路を含み、前記ベースおよび前記コラムの少なくともいずれか一方の外周面に装着された熱交換プレートと、
前記熱媒体の温度を制御目標温度に制御する熱媒体温度制御手段と、を備え、
前記熱交換プレートは、前記熱媒体を流通させる流路と前記ベースおよび前記コラムの少なくともいずれか一方の外周面との間に熱伝導緩衝体を介在させた構成を含むことを特徴とする工作機械。
The structure includes a base that forms a base, a column that is erected on the base, a machining head that is provided on the column and mounts a tool for machining the workpiece, and a workpiece holding unit that arranges the workpiece. In machine tools,
A heat exchange plate that includes a flow path for circulating a heat medium, and is mounted on an outer peripheral surface of at least one of the base and the column;
A heat medium temperature control means for controlling the temperature of the heat medium to a control target temperature,
The heat exchange plate includes a configuration in which a heat conduction buffer is interposed between a flow path through which the heat medium flows and at least one outer peripheral surface of the base and the column. .
前記熱媒体の温度を、前記熱媒体温度制御手段により前記制御目標温度に対して一定の温度変動幅以内に、かつ、一定の温度変動周期以内に制御するとともに、前記温度変動幅を、前記熱伝導緩衝体により目標規制幅以内に緩衝させて前記ベースおよび前記コラムの少なくともいずれか一方に伝達する場合において、
前記熱媒体の温度変動パターンを、前記制御目標温度と、前記温度変動幅の最大幅と、前記温度変動周期の最長周期と、前記熱媒体温度制御手段による熱媒体の温度制御時間と、をパラメータとした演算式として特定し、
前記熱伝導緩衝体の厚みを、前記制御目標温度と、前記温度変動幅の最大幅と、前記温度変動周期の最長周期と、前記温度制御時間と、前記目標規制幅と、前記熱伝導緩衝体の熱伝導率と、前記熱伝導緩衝体の比熱と、前記熱伝導緩衝体の密度と、に基づいて前記特定された熱媒体の温度変動パターンの演算式およびフーリエの法則を用いた解析により設定することを特徴とする請求項1に記載の工作機械。
The temperature of the heat medium is controlled by the heat medium temperature control means within a constant temperature fluctuation range with respect to the control target temperature and within a constant temperature fluctuation period, and the temperature fluctuation width is controlled by the heat medium temperature control means. In the case of transmitting to at least one of the base and the column by buffering within a target regulation width by a conductive buffer,
The temperature variation pattern of the heat medium is a parameter of the control target temperature, the maximum width of the temperature variation width, the longest period of the temperature variation period, and the temperature control time of the heat medium by the heat medium temperature control means. Specified as
The thickness of the heat conduction buffer includes the control target temperature, the maximum temperature fluctuation width, the longest temperature fluctuation period, the temperature control time, the target regulation width, and the heat conduction buffer. The heat conductivity of the heat transfer buffer, the specific heat of the heat transfer buffer, and the density of the heat transfer buffer are set by the analysis using the arithmetic expression of the temperature variation pattern of the specified heat medium and the Fourier law The machine tool according to claim 1.
前記熱伝導緩衝体は塩化ビニル系の材料で構成されることを特徴とする請求項1または請求項2に記載の工作機械。 The machine tool according to claim 1, wherein the heat conduction buffer is made of a vinyl chloride material.
JP2006199194A 2006-07-21 2006-07-21 Machine tool and heat conduction buffer thickness setting method in the same machine tool Expired - Fee Related JP4596480B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006199194A JP4596480B2 (en) 2006-07-21 2006-07-21 Machine tool and heat conduction buffer thickness setting method in the same machine tool
PCT/JP2007/000606 WO2008010309A1 (en) 2006-07-21 2007-06-05 Machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199194A JP4596480B2 (en) 2006-07-21 2006-07-21 Machine tool and heat conduction buffer thickness setting method in the same machine tool

Publications (2)

Publication Number Publication Date
JP2008023658A true JP2008023658A (en) 2008-02-07
JP4596480B2 JP4596480B2 (en) 2010-12-08

Family

ID=38956644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199194A Expired - Fee Related JP4596480B2 (en) 2006-07-21 2006-07-21 Machine tool and heat conduction buffer thickness setting method in the same machine tool

Country Status (2)

Country Link
JP (1) JP4596480B2 (en)
WO (1) WO2008010309A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140069609A1 (en) * 2012-09-06 2014-03-13 Daniel CAIHUZAC Air-temperature regulation device for a machine tool
JP2015027728A (en) * 2013-07-17 2015-02-12 アプライド マテリアルズ スウィッツァーランド エス アー エール エル Wire saw device and method of manufacturing the same
JP2015163427A (en) * 2014-02-17 2015-09-10 ディッケル マホ プロンテン ゲーエムベーハー Machine tool with machine rack constructed of structural parts
JP2018079521A (en) * 2016-11-14 2018-05-24 株式会社ニイガタマシンテクノ Temperature adjustment device of machine tool
JP2018079520A (en) * 2016-11-14 2018-05-24 株式会社ニイガタマシンテクノ Temperature adjustment device of machine tool

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202014105522U1 (en) 2014-11-17 2016-02-18 Heckert Gmbh Temperature control and machine tool containing a temperature control according to the invention
CN115079658B (en) * 2022-08-22 2022-12-02 安徽新境界自动化技术有限公司 Intelligent production line monitoring system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519881U (en) * 1991-04-11 1993-03-12 松下冷機株式会社 Cold storage type cold storage
JP2005081496A (en) * 2003-09-09 2005-03-31 Nachi Fujikoshi Corp Attenuator for temperature controller and method for using it
JP2005262379A (en) * 2004-03-18 2005-09-29 Niigata Machine Techno Co Ltd Machine tool

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003145373A (en) * 2001-11-14 2003-05-20 Mitsubishi Heavy Ind Ltd Thermal deformation preventing structure for machine tool
JP2006287158A (en) * 2005-04-05 2006-10-19 Nikon Corp Gas supplying apparatus, exposure apparatus and method of manufacturing device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0519881U (en) * 1991-04-11 1993-03-12 松下冷機株式会社 Cold storage type cold storage
JP2005081496A (en) * 2003-09-09 2005-03-31 Nachi Fujikoshi Corp Attenuator for temperature controller and method for using it
JP2005262379A (en) * 2004-03-18 2005-09-29 Niigata Machine Techno Co Ltd Machine tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140069609A1 (en) * 2012-09-06 2014-03-13 Daniel CAIHUZAC Air-temperature regulation device for a machine tool
CN103659456A (en) * 2012-09-06 2014-03-26 科茂法兰西公司 Air-temperature regulation device for a machine tool
JP2015027728A (en) * 2013-07-17 2015-02-12 アプライド マテリアルズ スウィッツァーランド エス アー エール エル Wire saw device and method of manufacturing the same
JP2015163427A (en) * 2014-02-17 2015-09-10 ディッケル マホ プロンテン ゲーエムベーハー Machine tool with machine rack constructed of structural parts
JP2018079521A (en) * 2016-11-14 2018-05-24 株式会社ニイガタマシンテクノ Temperature adjustment device of machine tool
JP2018079520A (en) * 2016-11-14 2018-05-24 株式会社ニイガタマシンテクノ Temperature adjustment device of machine tool

Also Published As

Publication number Publication date
WO2008010309A1 (en) 2008-01-24
JP4596480B2 (en) 2010-12-08

Similar Documents

Publication Publication Date Title
JP4596480B2 (en) Machine tool and heat conduction buffer thickness setting method in the same machine tool
KR101074206B1 (en) Heat dislocation compensation method of machine tool, heat dislocation compensation device of machine tool and computer readable medium in which program for heat dislocation compensation is stored
KR101088774B1 (en) Mover cooling method and device for machine tool
KR20150097426A (en) A machine tool having functional components that produce heat during the operation
US20100163221A1 (en) Local control of heat flow to more accurately regulate machine temperatures
JP2014500156A (en) Guidance system for machine tools
JP2011073108A (en) Feed shaft cooling system of machine tool
JP2019072814A (en) Machine tool, and thermal management method of slide rail of machine tool
JP4264847B1 (en) Machine tool cooling system
JP6708804B1 (en) Table rotation device and machine tool
US10272533B2 (en) Machine tool
JP5144348B2 (en) Processing equipment with temperature controller
JP2000042864A (en) Machine tool
JP6955655B2 (en) Machine tool temperature control device
JP2003145373A (en) Thermal deformation preventing structure for machine tool
JP2002103102A (en) Working apparatus and working method
Jedrzejewski et al. Research on forced cooling of machine tools and its operational effects
JP6698106B2 (en) Coolant device for machine tools
JP2005262379A (en) Machine tool
JP2647542B2 (en) Heat equalizer
JP2011143490A (en) Liquid temperature control device
KR20170130859A (en) Column structure for a machining center and machining center having the same
EP3842880A1 (en) A device for thermal control of machine tool
US20220065253A1 (en) Device
JP6582522B2 (en) Machine tool, calculation method and computer program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090622

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100118

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100916

R150 Certificate of patent or registration of utility model

Ref document number: 4596480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees