JP2008019422A - Epoxy-silicone mixed resin composition and light emitting semiconductor device - Google Patents
Epoxy-silicone mixed resin composition and light emitting semiconductor device Download PDFInfo
- Publication number
- JP2008019422A JP2008019422A JP2007125392A JP2007125392A JP2008019422A JP 2008019422 A JP2008019422 A JP 2008019422A JP 2007125392 A JP2007125392 A JP 2007125392A JP 2007125392 A JP2007125392 A JP 2007125392A JP 2008019422 A JP2008019422 A JP 2008019422A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy
- group
- resin composition
- light emitting
- emitting semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
- Led Device Packages (AREA)
- Polyethers (AREA)
- Epoxy Resins (AREA)
Abstract
Description
本発明は、基本性能として透明で、表面タック性がないことを維持した上で、リフロー試験において透明性に優れた発光半導体被覆保護材として有効なエポキシ・シリコーン混成樹脂組成物及びこれを用いて発光半導体素子を被覆してなる発光半導体装置に関するものである。 The present invention is an epoxy-silicone hybrid resin composition that is effective as a light-emitting semiconductor coating protective material excellent in transparency in a reflow test while maintaining transparency and no surface tack as a basic performance, and using the same The present invention relates to a light emitting semiconductor device formed by coating a light emitting semiconductor element.
発光ダイオード(LED)等の発光半導体素子の被覆保護用樹脂組成物としては、その硬化体が透明性を有することが要求されており、一般にビスフェノールA型エポキシ樹脂又は脂環式エポキシ樹脂等のエポキシ樹脂と酸無水物系硬化剤を用いて得られるものが用いられている(特許文献1:特許第3241338号公報、特許文献2:特開平7−25987号公報参照)。
しかし、かかる透明エポキシ樹脂においても、樹脂の吸水率が高いために耐湿耐久性が低い、特に短波長の光に対する光線透過性が低いために耐光耐久性が低い、あるいは光劣化により着色するという欠点を有していた。
As a resin composition for protecting a light-emitting semiconductor element such as a light-emitting diode (LED), the cured product is required to have transparency, and is generally an epoxy such as a bisphenol A type epoxy resin or an alicyclic epoxy resin. What is obtained using resin and an acid anhydride type hardening | curing agent is used (patent document 1: patent 3241338 gazette, patent document 2: Unexamined-Japanese-Patent No. 7-25987).
However, even in such a transparent epoxy resin, the moisture absorption resistance of the resin is high, so the moisture resistance durability is low, particularly the light resistance to low-wavelength light is low, so the light resistance is low, or it is colored due to light deterioration. Had.
そのため、SiH基と反応性を有する炭素−炭素二重結合を一分子中に少なくとも2個含有する有機化合物、及び一分子中に少なくとも2個のSiH基を含有するケイ素化合物、ヒドロシリル化触媒からなる光半導体素子の被覆保護用樹脂組成物も提案されている(特許文献3:特開2002−327126号公報、特許文献4:特開2002−338833号公報参照)。
しかし、このようなシリコーン系の硬化物は、耐クラック性を改良しようとすると一般に硬化物表面にタックが残り、埃が容易に付着し、光の透過性を損なう欠点がある。
そのため、高硬度シリコーン樹脂を保護被覆用に使用したものが提案されている(特許文献5:特開2002−314139号公報、特許文献6:特開2002−314143号公報参照)。
Therefore, it consists of an organic compound containing at least two carbon-carbon double bonds reactive with SiH groups in one molecule, a silicon compound containing at least two SiH groups in one molecule, and a hydrosilylation catalyst. Resin compositions for protecting the coating of optical semiconductor elements have also been proposed (see Patent Document 3: Japanese Patent Laid-Open No. 2002-327126, Patent Document 4: Japanese Patent Laid-Open No. 2002-338833).
However, such a silicone-based cured product generally has a drawback that when it is intended to improve crack resistance, tack remains on the surface of the cured product, dust easily adheres, and impairs light transmission.
Therefore, what uses the high hardness silicone resin for protective coating is proposed (refer patent document 5: Unexamined-Japanese-Patent No. 2002-314139, patent document 6: Unexamined-Japanese-Patent No. 2002-314143).
しかし、これらの高硬度シリコーン樹脂ではまだ接着性が乏しく、セラミック及び/又はプラスチック筐体内に発光素子が配置され、その筐体内部をシリコーン樹脂で充填したケース型の発光半導体装置では、−40〜120℃での熱衝撃試験で、シリコーン樹脂が筐体のセラミックやプラスチックから剥離してしまう問題点が生じていた。 However, these high-hardness silicone resins still have poor adhesion, and in case-type light-emitting semiconductor devices in which light-emitting elements are arranged in a ceramic and / or plastic housing and the inside of the housing is filled with silicone resin, In the thermal shock test at 120 ° C., there has been a problem that the silicone resin is peeled off from the ceramic or plastic of the casing.
また、これらの欠点を補う可能性をもつ組成物として、特開昭52−107049号公報(特許文献7参照)のエポキシとシリコーンの組成物についても、接着力、変色の問題が生じていた。 In addition, as a composition that can compensate for these drawbacks, the epoxy and silicone composition disclosed in JP-A-52-107049 (see Patent Document 7) also has problems of adhesive strength and discoloration.
近年では光半導体素子パッケージの小型化・薄型化・環境対応等の市場の要望により、鉛フリー半田による実装対応が要求され、高い実装信頼性、特に高温での耐リフロー信頼性が必要となっている。特に光半導体用途では、リフロー試験時に透明性を維持することが重要となっている。 In recent years, due to market demands such as miniaturization, thinning, and environmental friendliness of optical semiconductor element packages, mounting by lead-free solder is required, and high mounting reliability, particularly high-temperature reflow resistance is required. Yes. In particular, for optical semiconductor applications, it is important to maintain transparency during the reflow test.
一方、ケイ素を含んだネットワーク型オリゴマーであるシルセスキオキサンに関しては、例えば、エポキシ基及び/又はオキセタニル基含有シルセスキオキサンをカチオン硬化させてなる発光ダイオード用封止樹脂が知られている(特許文献8:特開2004−238589号公報参照)。 On the other hand, as for silsesquioxane, which is a network-type oligomer containing silicon, for example, a sealing resin for light-emitting diodes obtained by cationically curing an epoxy group and / or oxetanyl group-containing silsesquioxane is known ( Patent Document 8: Japanese Patent Application Laid-Open No. 2004-238589).
しかしながら、カチオン性硬化剤による硬化物は可とう性に乏しく、このような樹脂を発光ダイオードの封止材とした場合、加熱や冷却時に発光素子と封止樹脂の間などで大きな応力が生じ、樹脂クラックの発生、筐体からの封止樹脂の剥離、ボンディングワイヤー切れなどを誘発し、発光ダイオードの出力低下や不良の原因となる。 However, a cured product with a cationic curing agent is poor in flexibility, and when such a resin is used as a sealing material for a light emitting diode, a large stress occurs between the light emitting element and the sealing resin during heating or cooling, Resin cracking, peeling of the sealing resin from the housing, bonding wire breakage, etc. are induced, leading to a reduction in output or failure of the light emitting diode.
また、エポキシ環を少なくとも2つ有するシルセスキオキサン、エポキシ樹脂、酸無水物系硬化剤及び硬化触媒からなりBステージ化されてなる光半導体封止用樹脂組成物が開示されているが(特許文献9:特開2005−263869号公報参照)、その硬化触媒の選択に関し、リフロー試験時の着色可能性に関しては、何ら開示も示唆もされていない。 Further, a resin composition for encapsulating an optical semiconductor comprising a silsesquioxane having at least two epoxy rings, an epoxy resin, an acid anhydride-based curing agent, and a curing catalyst and B-staged is disclosed (patent) Reference 9: Japanese Patent Laid-Open No. 2005-263869), regarding the selection of the curing catalyst, there is no disclosure or suggestion regarding the possibility of coloring during the reflow test.
本発明は、上記事情に鑑みてなされたもので、基本性能として透明で、表面タック性がなく、かつリフロー試験時における透明性に優れた発光半導体被覆保護材として好適なエポキシ・シリコーン混成樹脂組成物及びこれを用いて被覆された発光半導体装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is an epoxy / silicone hybrid resin composition suitable as a light-emitting semiconductor coating protective material that is transparent as a basic performance, has no surface tackiness, and has excellent transparency during a reflow test. It is an object of the present invention to provide an object and a light emitting semiconductor device coated with the object.
本発明者は、上記目的を達成するため鋭意検討した結果、(A)一分子中に少なくとも2個のエポキシ官能性基又はオキセタニル基を有するオルガノポリシルセスキオキサン樹脂、(B)一分子中に少なくとも2個のエポキシ官能性基を有するエポキシ樹脂、(C)硬化剤及び(D)硬化触媒を必須成分とするエポキシ・シリコーン混成樹脂組成物において、硬化触媒として第四級ホスホニウム塩の1種以上を用いるエポキシ・シリコーン混成樹脂組成物、特に第四級ホスホニウム塩として下記式(1)で示される化合物及び/又は下記式(2)で示される化合物を含有するエポキシ・シリコーン混成樹脂組成物で封止保護することで、信頼性に優れた発光半導体装置が得られることを見出したものである。
従って、本発明は、
(A)一分子中に少なくとも2個のエポキシ官能性基又はオキセタニル基を有するオルガノポリシルセスキオキサン樹脂、
(B)一分子中に少なくとも2個のエポキシ官能性基を有するエポキシ樹脂、
(C)硬化剤、
(D)硬化触媒
を必須成分とするエポキシ・シリコーン混成樹脂組成物において、硬化触媒として第四級ホスホニウム塩の1種以上を含むことを特徴とするエポキシ・シリコーン混成樹脂組成物を提供する。この場合、第四級ホスホニウム塩が、上記式(1)で示される化合物及び/又は上記式(2)で示される化合物を含むものが好ましい。また、その硬化物のガラス転移点が130℃以上であることが好ましい。
また、本発明は、発光半導体素子が上記エポキシ・シリコーン混成樹脂組成物の透明硬化物で封止保護された発光半導体装置を提供する。
Therefore, the present invention
(A) an organopolysilsesquioxane resin having at least two epoxy functional groups or oxetanyl groups in one molecule;
(B) an epoxy resin having at least two epoxy functional groups in one molecule;
(C) a curing agent,
(D) An epoxy / silicone hybrid resin composition comprising a curing catalyst as an essential component, which comprises at least one quaternary phosphonium salt as a curing catalyst. In this case, the quaternary phosphonium salt preferably contains a compound represented by the above formula (1) and / or a compound represented by the above formula (2). Moreover, it is preferable that the glass transition point of the hardened | cured material is 130 degreeC or more.
The present invention also provides a light emitting semiconductor device in which a light emitting semiconductor element is sealed and protected with a transparent cured product of the above epoxy / silicone hybrid resin composition.
本発明のエポキシ・シリコーン混成樹脂組成物は、その硬化物で発光半導体素子を被覆保護することにより、リフロー試験による変色もないため実装信頼性に優れる発光半導体装置を提供することが可能となり、産業上のメリットは多大である。またこの場合、ガラス転移点が130℃以上である硬化物は、特に硬化物表面における埃付着が全くなく、耐熱試験において耐クラック性に優れたものである。 The epoxy / silicone hybrid resin composition of the present invention can provide a light emitting semiconductor device having excellent mounting reliability because it does not discolor due to a reflow test by covering and protecting the light emitting semiconductor element with the cured product. The above benefits are enormous. In this case, the cured product having a glass transition point of 130 ° C. or higher has no dust adhesion particularly on the surface of the cured product, and has excellent crack resistance in the heat resistance test.
本発明の発光半導体を被覆保護する被覆保護材に好適に用いられるエポキシ・シリコーン混成樹脂組成物は、(A)一分子中に少なくとも2個のエポキシ官能性基又はオキセタニル基を有するオルガノポリシルセスキオキサン樹脂、(B)一分子中に少なくとも2個のエポキシ官能性基を有するエポキシ樹脂、(C)硬化剤及び(D)硬化触媒を必須成分とする。 The epoxy-silicone hybrid resin composition suitably used for the coating protective material for coating and protecting the light emitting semiconductor of the present invention is (A) an organopolysilsesqui having at least two epoxy functional groups or oxetanyl groups in one molecule. The essential components are an oxan resin, (B) an epoxy resin having at least two epoxy functional groups in one molecule, (C) a curing agent, and (D) a curing catalyst.
ここで、(A)成分としての一分子中に少なくとも2個のエポキシ官能性基又はオキセタニル基を有するオルガノポリシルセスキオキサン樹脂について説明する。
オルガノポリシルセスキオキサン樹脂(以下、単にシルセスキオキサンと記す場合がある。)とは、通常RSiX3(Rは、炭素数1〜20の非置換のアルキル基、アリール基、アルケニル基、アラルキル基等の非置換の1価炭化水素基、又は該非置換の1価炭化水素基の水素原子の少なくとも1個がエポキシ基、グリシドキシ基等のエポキシ官能性基、オキセタニル基、又はトリオルガノシロキシ基で置換された置換1価炭化水素基であるが、少なくともRのうち2個はエポキシ官能性基又はオキセタニル基で置換された置換1価炭化水素基であり、Xはハロゲン、アルコキシ基等の加水分解性基)で表される3官能性有機ケイ素化合物の加水分解、縮(重)合により合成される、RSiO1.5単位を基本構成単位とするポリシロキサン樹脂である。オルガノポリシルセスキオキサン樹脂の分子配列の形状は、代表的には無定形構造(三次元網状構造)、ラダー型構造、かご型(完全縮合ケージ型)構造又はその部分開裂構造体(かご型構造からケイ素原子のうちの一部が欠けた構造やかご型構造の一部のケイ素−酸素結合が切断された構造のもの)等が知られている。なお、基本構成単位とは、通常、(A)成分を構成するオルガノポリシルセスキオキサン樹脂中の80モル%以上(80〜100モル%)、好ましくは90モル%以上(90〜100モル%)、より好ましくは95モル%以上(95〜100モル%)、更に好ましくは98モル%以上(98〜100モル%)が前記RSiO1.5単位であることを示す。なお、オルガノポリシルセスキオキサン樹脂中の該基本構成単位以外の残余の単位としては、R3SiO1/2単位、R2SiO2/2単位、SiO4/2単位、(OH)R2SiO1/2単位、(OH)2RSiO1/2単位、(OH)RSiO2/2単位等を適宜含有してもよい。
Here, the organopolysilsesquioxane resin having at least two epoxy functional groups or oxetanyl groups in one molecule as the component (A) will be described.
Organopolysilsesquioxane resin (hereinafter sometimes simply referred to as silsesquioxane) is usually RSiX 3 (where R is an unsubstituted alkyl group having 1 to 20 carbon atoms, aryl group, alkenyl group, An unsubstituted monovalent hydrocarbon group such as an aralkyl group, or at least one hydrogen atom of the unsubstituted monovalent hydrocarbon group is an epoxy functional group such as an epoxy group or a glycidoxy group, an oxetanyl group, or a triorganosiloxy group Wherein at least two of R are substituted monovalent hydrocarbon groups substituted with an epoxy functional group or an oxetanyl group, and X is a hydrous such as a halogen or an alkoxy group. Polysiloxane resin having RSiO 1.5 unit as a basic structural unit, synthesized by hydrolysis and condensation (heavy) of trifunctional organosilicon compound represented by It is. The molecular arrangement of organopolysilsesquioxane resin is typically an amorphous structure (three-dimensional network structure), a ladder type structure, a cage type (fully condensed cage type) structure, or a partially cleaved structure (cage type). A structure in which a part of silicon atoms is missing from a structure or a structure in which a silicon-oxygen bond in a part of a cage structure is broken) is known. The basic structural unit is usually 80 mol% or more (80 to 100 mol%), preferably 90 mol% or more (90 to 100 mol%) in the organopolysilsesquioxane resin constituting the component (A). ), More preferably 95 mol% or more (95 to 100 mol%), and still more preferably 98 mol% or more (98 to 100 mol%) represents the RSiO 1.5 unit. The remaining units other than the basic structural unit in the organopolysilsesquioxane resin are R 3 SiO 1/2 unit, R 2 SiO 2/2 unit, SiO 4/2 unit, (OH) R 2. SiO 1/2 units, (OH) 2 RSiO 1/2 units, (OH) RSiO 2/2 units and the like may be contained as appropriate.
本発明に用いるシルセスキオキサンは、これらのシルセスキオキサン化合物のうち、いずれの構造のものであってもよく、またそれらの混合物であってもよい。 The silsesquioxane used in the present invention may be of any structure among these silsesquioxane compounds, or may be a mixture thereof.
本発明において、シルセスキオキサンは、(RSiO1.5)8構造に換算した場合、8個の有機基Rの少なくとも2個がエポキシ官能性基もしくはオキセタニル基を含む有機基(即ち、前記のエポキシ官能性基又はオキセタニル基で置換された1価炭化水素基)であることを特徴とする。残りの有機基Rの種類も化学反応性が無いか低いものであれば特に限定されず、同一であっても異なっていてもよい。残る6個以下の有機基Rとしては、好ましくは炭素数1〜20のアルキル基、炭素数5〜12のシクロアルキル基、フェニル基等の炭素数6〜12のアリール基、トリオルガノシロキシ基を含有する炭素数1〜12の1価炭化水素基からなる群から選択された少なくとも1種である。 In the present invention, silsesquioxane is an organic group in which at least two of the eight organic groups R contain an epoxy functional group or an oxetanyl group when converted to the (RSiO 1.5 ) 8 structure (that is, the above epoxy functional group). Or a monovalent hydrocarbon group substituted with an oxetanyl group. The type of the remaining organic group R is not particularly limited as long as it has no or low chemical reactivity, and may be the same or different. The remaining 6 or less organic groups R are preferably alkyl groups having 1 to 20 carbon atoms, cycloalkyl groups having 5 to 12 carbon atoms, aryl groups having 6 to 12 carbon atoms such as phenyl groups, and triorganosiloxy groups. It is at least 1 type selected from the group which consists of a C1-C12 monovalent hydrocarbon group to contain.
ここで、エポキシ官能性基又はオキセタニル基で置換された1価炭化水素基としては、例えば、エポキシメチル基、2−エポキシエチル基、グリシドキシメチル基、γ−グリシロキシプロピル基、β−(3,4−エポキシシクロヘキシル)エチル基、2−オキセタニルブチル基、γ−(2−オキセタニルブチルオキシ)プロピル基等のエポキシ官能性基又はオキセタニル基で置換された、酸素原子を含有してもよい炭素数1〜10のアルキル基などが挙げられる。 Here, as the monovalent hydrocarbon group substituted with an epoxy functional group or an oxetanyl group, for example, an epoxymethyl group, a 2-epoxyethyl group, a glycidoxymethyl group, a γ-glycyloxypropyl group, a β- ( 3,4-epoxycyclohexyl) ethyl group, 2-oxetanylbutyl group, carbon substituted with epoxy functional group such as γ- (2-oxetanylbutyloxy) propyl group or oxetanyl group, which may contain oxygen atom Examples thereof include an alkyl group of 1 to 10.
また、炭素数1〜20のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基等が挙げられる。
炭素数5〜12のシクロアルキル基としては、シクロペンチル基、シクロヘキシル基、ノルボニル基等が挙げられる。
トリオルガノシロキシ基を含有する炭素数1〜12の炭化水素基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基などの通常、炭素数1〜12、好ましくは炭素数1〜6程度の直鎖状、環状又は分岐状のアルキレン基にトリオルガノシロキシ基(例えば、R1 3SiO基、但し、R1は前記Rのうちトリオルガノシロキシ基置換1価炭化水素基以外の、炭素数1〜20の1価炭化水素基、エポキシ官能性基又はオキセタニル基で置換された置換1価炭化水素基)が結合したトリオルガノシロキシ置換アルキル基等が挙げられる。
Moreover, as a C1-C20 alkyl group, a methyl group, an ethyl group, a propyl group, a butyl group etc. are mentioned.
Examples of the cycloalkyl group having 5 to 12 carbon atoms include a cyclopentyl group, a cyclohexyl group, and a norbornyl group.
As a C1-C12 hydrocarbon group containing a triorganosiloxy group, it is C1-C12 normally, such as a methylene group, ethylene group, a propylene group, butylene group etc., Preferably it is about C1-C6. A triorganosiloxy group (for example, R 1 3 SiO group, wherein R 1 is the number of carbon atoms other than the triorganosiloxy group-substituted monovalent hydrocarbon group in R) And triorganosiloxy-substituted alkyl groups to which 1-20 monovalent hydrocarbon groups, epoxy functional groups or substituted monovalent hydrocarbon groups substituted with oxetanyl groups) are bonded.
(A)成分は、ポリスチレン換算の重量平均分子量が2×103以上、典型的には2×103〜1×105、より典型的には4×103〜1×104であるものである。2×103未満であると、結晶化が起こり、配合時に再溶融工程が必要となる場合が生じる。また、1×105を超えると、エポキシ樹脂との相溶性が低くなり、透明硬化物が得られないおそれがある。「ポリスチレン換算の重量平均分子量」とは、ゲルパーミエーションクロマトグラフィ分析による分子量分布における重量平均分子量であり、この分子量分布においてピークが2個以上ある分布形状を示す場合には、該分布形状における最大分子量のピークについての重量平均値を意味する。 The component (A) has a polystyrene equivalent weight average molecular weight of 2 × 10 3 or more, typically 2 × 10 3 to 1 × 10 5 , more typically 4 × 10 3 to 1 × 10 4. It is. If it is less than 2 × 10 3 , crystallization occurs, and a remelting step may be required at the time of blending. On the other hand, if it exceeds 1 × 10 5 , the compatibility with the epoxy resin is lowered, and there is a possibility that a transparent cured product cannot be obtained. The “weight average molecular weight in terms of polystyrene” is the weight average molecular weight in the molecular weight distribution by gel permeation chromatography analysis. When the molecular weight distribution shows a distribution shape having two or more peaks, the maximum molecular weight in the distribution shape The weight average value for the peak of.
次に、(B)成分である一分子中に少なくとも2個のエポキシ官能性基を有するエポキシ樹脂は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂等の芳香族系エポキシ樹脂、前記各種エポキシ樹脂の芳香環を水素添加した水添型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、トリグリシジルイソシアヌレート等の非芳香族系エポキシ樹脂などを挙げることができるが、一分子中に少なくとも2個のエポキシ官能性基があれば上記樹脂に限定されるものではない。これらエポキシ樹脂は、単独もしくは2種以上用いても何ら差し支えない。
なかでも光による劣化を防止するため水添型エポキシ樹脂、脂環式エポキシ樹脂やトリグリシジルイソシアヌレート等の非芳香族系エポキシ樹脂が好適に使用される。
Next, the epoxy resin having at least two epoxy functional groups in one molecule as component (B) is bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin. , Aromatic epoxy resins such as naphthalene type epoxy resins, biphenyl type epoxy resins, phenol aralkyl type epoxy resins, biphenyl aralkyl type epoxy resins, hydrogenated epoxy resins obtained by hydrogenating aromatic rings of the above various epoxy resins, dicyclopentadiene Type epoxy resin, alicyclic epoxy resin, non-aromatic epoxy resin such as triglycidyl isocyanurate, etc., but if there are at least two epoxy functional groups in one molecule, it is limited to the above resin. It is not something. These epoxy resins may be used alone or in combination of two or more.
Of these, non-aromatic epoxy resins such as hydrogenated epoxy resins, alicyclic epoxy resins, and triglycidyl isocyanurate are preferably used in order to prevent deterioration due to light.
上記エポキシ樹脂の配合量(即ち、(A)成分及び(B)成分の合計に占める(B)成分の割合)は、5〜80質量%であることが好ましい。5質量%未満ではエポキシ・シリコーン混成樹脂組成物の硬化物強度が十分に得られず、この種の材料で発光半導体装置を封止した場合、温度サイクルなどの試験で容易にクラックが発生したり、接着不良が生じるおそれがある。一方、80質量%を超えるとエポキシ樹脂分が多くなり、発光素子が紫外線等を発光するような場合、エポキシ・シリコーン混成樹脂組成物の硬化物が紫外光により劣化してしまうおそれがある。このため、より望ましくは10〜70質量%、特に望ましくは20〜60質量%である。 The amount of the epoxy resin blended (that is, the ratio of the component (B) to the total of the components (A) and (B)) is preferably 5 to 80% by mass. If it is less than 5% by mass, the cured product strength of the epoxy / silicone hybrid resin composition cannot be sufficiently obtained, and when a light emitting semiconductor device is sealed with this kind of material, cracks are easily generated in tests such as a temperature cycle. There is a risk of poor adhesion. On the other hand, when the content exceeds 80% by mass, the epoxy resin content increases, and when the light emitting element emits ultraviolet rays or the like, the cured product of the epoxy / silicone hybrid resin composition may be deteriorated by ultraviolet light. For this reason, it is more desirably 10 to 70% by mass, and particularly desirably 20 to 60% by mass.
本発明においては、エポキシ官能性基及び/又はオキセタニル基との反応により架橋物を形成するために、硬化剤((C)成分)を使用することができる。このような硬化剤としては、エポキシ樹脂に使用される硬化剤を使用することができ、アミン系硬化剤、フェノール系硬化剤、酸無水物系硬化剤のいずれであってもよいが、エポキシ官能性基と酸無水物との組み合わせを好適に使用できる。 In the present invention, a curing agent (component (C)) can be used to form a crosslinked product by reaction with an epoxy functional group and / or an oxetanyl group. As such a curing agent, a curing agent used for an epoxy resin can be used, and any of an amine curing agent, a phenol curing agent, and an acid anhydride curing agent may be used. A combination of a functional group and an acid anhydride can be preferably used.
このような硬化剤としては、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3−メチル−ヘキサヒドロ無水フタル酸、4−メチル−ヘキサヒドロ無水フタル酸、あるいは3−メチル−ヘキサヒドロ無水フタル酸と4−メチル−ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸、ノルボルナン−2,3−ジカルボン酸無水物、メチルノルボルナン−2,3−ジカルボン酸無水物などを挙げることができる。硬化剤の配合量は、(A)成分中のエポキシ官能性基及びオキセタニル基と(B)成分中のエポキシ官能性基との合計1モルに対して0.5〜1.5モルが好ましく、より好ましくは0.8〜1.2モルである。 Such curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride, or A mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, methyl nadic anhydride, norbornane-2,3-dicarboxylic anhydride, methylnorbornane-2 , 3-dicarboxylic acid anhydride. As for the compounding quantity of a hardening | curing agent, 0.5-1.5 mol is preferable with respect to a total of 1 mol of the epoxy functional group and oxetanyl group in (A) component, and the epoxy functional group in (B) component, More preferably, it is 0.8-1.2 mol.
本発明において、硬化触媒((D)成分)としては、第四級ホスホニウム塩の1種又は2種以上、特に下記式(1)で示される化合物及び/又は下記式(2)で示される化合物を含む第四級ホスホニウム塩のうち1種又は2種以上を用いる。これにより、基本性能である透明で、表面タック性がなく、リフロー試験時の変色がなく、高い実装信頼性を得ることができるものである。下記式(1)及び(2)で示される化合物以外の第四級ホスホニウム塩の具体例としては、第四級ホスホニウムのブロマイド塩であるサンアプロ社製「U−CAT5003」を挙げることができる。 In the present invention, as the curing catalyst (component (D)), one or more quaternary phosphonium salts, particularly a compound represented by the following formula (1) and / or a compound represented by the following formula (2): 1 type (s) or 2 or more types are used among the quaternary phosphonium salts containing. As a result, the basic performance is transparent, there is no surface tackiness, no discoloration during the reflow test, and high mounting reliability can be obtained. Specific examples of the quaternary phosphonium salts other than the compounds represented by the following formulas (1) and (2) include “U-CAT5003” manufactured by San Apro, which is a bromide salt of quaternary phosphonium.
また、硬化触媒としては、上記式(1)で示される化合物、上記式(2)で示される化合物、これら化合物以外の第四級ホスホニウム塩のうち少なくとも1種以上を用いた上で、更にその他の硬化触媒を用いることもできる。このようなその他の硬化触媒としては、トリフェニルフォスフィン、ジフェニルフォスフィン等の有機フォスフィン系硬化触媒、1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリエタノールアミン、ベンジルジメチルアミン等の三級アミン系硬化触媒、2−メチルイミダゾール、2−フェニル−4−メチルイミダゾールなどのイミダゾール類などを挙げることができる。 Further, as the curing catalyst, at least one or more of the compounds represented by the above formula (1), the compounds represented by the above formula (2), and quaternary phosphonium salts other than these compounds are used. The curing catalyst can also be used. Examples of such other curing catalysts include organic phosphine-based curing catalysts such as triphenylphosphine and diphenylphosphine, 1,8-diazabicyclo (5,4,0) undecene-7, triethanolamine, benzyldimethylamine and the like. And tertiary amine-based curing catalysts, and imidazoles such as 2-methylimidazole and 2-phenyl-4-methylimidazole.
このような(D)成分の硬化触媒の配合量は、上記(A)、(B)、(C)成分の合計量100質量部に対し0.05〜3質量部が好ましい。硬化触媒の配合量が0.05質量部より少ないと、エポキシ樹脂と硬化剤との反応を促進させる効果を十分に得ることができないおそれがある。逆に、硬化触媒の配合量が3質量部より多いと、硬化時やリフロー試験時の変色の原因となるおそれがある。 The blending amount of the curing catalyst of the component (D) is preferably 0.05 to 3 parts by mass with respect to 100 parts by mass of the total amount of the components (A), (B), and (C). If the amount of the curing catalyst is less than 0.05 parts by mass, the effect of promoting the reaction between the epoxy resin and the curing agent may not be sufficiently obtained. On the other hand, if the blending amount of the curing catalyst is more than 3 parts by mass, it may cause discoloration during curing or reflow test.
本発明のエポキシ・シリコーン混成樹脂組成物は、(A)、(B)、(C)及び(D)成分等を混合することにより容易に製造することができる。また、本発明のエポキシ・シリコーン混成樹脂組成物に波長変更するための蛍光体や酸化チタン微粉末などのような光散乱剤などを添加することもできる。 The epoxy-silicone hybrid resin composition of the present invention can be easily produced by mixing the components (A), (B), (C) and (D). In addition, a light scattering agent such as a phosphor for changing the wavelength or fine powder of titanium oxide may be added to the epoxy-silicone hybrid resin composition of the present invention.
更に、本発明の目的を逸脱しない範囲で、その他の成分として、酸化防止剤、変色防止剤、劣化防止剤、シリカなどの無機充填剤、シラン系カップリング剤、変性剤、可塑剤、希釈剤などを必要に応じて併用しても差し支えない。 Furthermore, as long as they do not deviate from the object of the present invention, as other components, antioxidants, discoloration inhibitors, deterioration inhibitors, silica and other inorganic fillers, silane coupling agents, modifiers, plasticizers, diluents Etc. can be used together as necessary.
本発明の発光半導体を被覆保護するための、(A)、(B)、(C)及び(D)成分を必須成分とする被覆保護材をポッティングやインジェクションなどで使用する場合は液状であることが好ましく、25℃の粘度は回転粘度計による測定値として10〜1,000,000mPa・s、特には100〜1,000,000mPa・s程度が好ましい。一方、トランスファー成型で発光半導体装置を製造する場合には、上記の液状樹脂を使用することもできるが、液状樹脂を増粘させて固形化し、ペレット化した後、成型することでも製造することができる。 When the coating protective material containing the components (A), (B), (C) and (D) as essential components for protecting the light-emitting semiconductor of the present invention is used in potting or injection, it must be liquid. The viscosity at 25 ° C. is preferably about 10 to 1,000,000 mPa · s, particularly about 100 to 1,000,000 mPa · s as measured by a rotational viscometer. On the other hand, when the light emitting semiconductor device is manufactured by transfer molding, the above-mentioned liquid resin can be used. However, the liquid resin can be thickened by solidification, pelletized, and then molded by molding. it can.
本発明のエポキシ・シリコーン混成樹脂組成物は、発光半導体を被覆保護するための被覆保護材として好適に使用される。この場合、発光半導体としては、発光ダイオード(LED)、有機電界発光素子(有機EL)、レーザーダイオード、LEDアレイ等を挙げることができる。発光半導体を被覆保護する態様は特に制限されるものではないが、開口部を有する筐体内に配置された発光半導体を覆って筐体内に被覆保護材を充填し、硬化させる等の方法を採用し得る。また、マトリックス化された基板上にLEDを搭載したものを印刷法、トランスファー成型、インジェクション成型などで製造することもできる。 The epoxy / silicone hybrid resin composition of the present invention is suitably used as a coating protective material for coating and protecting a light emitting semiconductor. In this case, examples of the light emitting semiconductor include a light emitting diode (LED), an organic electroluminescent element (organic EL), a laser diode, and an LED array. The mode of covering and protecting the light emitting semiconductor is not particularly limited, but a method of covering the light emitting semiconductor disposed in the housing having the opening, filling the housing with a coating protecting material, and curing the method is adopted. obtain. Moreover, what mounted LED on the matrix-ized board | substrate can also be manufactured by a printing method, transfer molding, injection molding, etc.
なお、本発明において、被覆保護材の硬化条件は、25℃で72時間〜200℃で3分間と、その作業条件に合わせて任意であり、生産性と発光素子や筐体耐熱性とのバランスから適宜選定することができる。トランスファー成型やインジェクション成型の場合は150〜180℃の温度,20〜50kgf/cm2の圧力で1〜5分間成型することで容易に製造することができる。また、後硬化(二次硬化又はポストキュア)を150〜200℃で1〜4時間の条件で行うことができる。 In the present invention, the curing conditions for the coating protective material are arbitrary at 25 ° C. for 72 hours to 200 ° C. for 3 minutes depending on the working conditions, and balance between productivity and light-emitting element and housing heat resistance. Can be selected as appropriate. In the case of transfer molding or injection molding, it can be easily produced by molding at a temperature of 150 to 180 ° C. and a pressure of 20 to 50 kgf / cm 2 for 1 to 5 minutes. Further, post-curing (secondary curing or post-curing) can be performed at 150 to 200 ° C. for 1 to 4 hours.
本発明のエポキシ・シリコーン混成樹脂組成物は、その硬化物のガラス転移点が130℃以上、通常、130〜180℃、特に135〜165℃のものであることが好ましい。この場合、このガラス転移点は熱機械分析(TMA)測定法における線膨張係数の変曲点として定義される値(温度)である。 The epoxy-silicone hybrid resin composition of the present invention preferably has a cured product having a glass transition point of 130 ° C. or higher, usually 130 to 180 ° C., particularly 135 to 165 ° C. In this case, the glass transition point is a value (temperature) defined as the inflection point of the linear expansion coefficient in the thermomechanical analysis (TMA) measurement method.
ここで、本発明組成物の硬化物のガラス転移点を130℃以上にする具体的手段としては、エポキシ樹脂、特に、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、もしくはトリグリシジルイソシアヌレート等の非芳香族系エポキシ樹脂の配合量(即ち、(A)成分及び(B)成分の合計に占める(B)成分の割合)を10〜70質量%、特に20〜60質量%に調整することによって達成することができる。上記配合割合が10質量%に満たないとガラス転移点が130℃以上に達しない場合があり、温度サイクル試験において容易にクラックが発生したり、接着不良が生じたりするおそれがある。70質量%を超えると硬化物の耐紫外線性に劣る場合がある。 Here, as a specific means for setting the glass transition point of the cured product of the present invention to 130 ° C. or higher, an epoxy resin, in particular, a dicyclopentadiene type epoxy resin, an alicyclic epoxy resin, or triglycidyl isocyanurate, etc. The blending amount of the non-aromatic epoxy resin (that is, the proportion of the component (B) in the total of the components (A) and (B)) is adjusted to 10 to 70% by mass, particularly 20 to 60% by mass. Can be achieved. If the blending ratio is less than 10% by mass, the glass transition point may not reach 130 ° C. or higher, and cracks may easily occur in the temperature cycle test, or adhesion failure may occur. When it exceeds 70 mass%, the cured product may be inferior in ultraviolet resistance.
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.
まず、実施例及び比較例の被覆保護材の評価方法を示す。
樹脂組成物を厚さ5mmの棒状、又は、LEDチップ及びリードフレームの配置された砲弾型発光半導体装置の封止材として100℃,2時間、次いで150℃,4時間の条件下で硬化させ下記の項目の評価を行った。
表面タック性
棒状硬化物を触診し、表面タック性の有無を評価した。
硬化物外観
棒状硬化物及び作製した発光半導体装置において変色の有無を目視にて評価した。
耐リフロー性
作製した発光半導体装置に、260℃ピークのリフローテスト処理を5回行い、変色の有無を目視にて評価した。
硬度
棒状硬化物に対し、JIS K6301に準拠して測定した(ショアD)。
ガラス転移点
棒状硬化物を幅4mm、長さ10mmに切り出し、熱機械分析(TMA)測定法により、膨張係数の変曲点をガラス転移点(Tg)とした。
熱衝撃試験
作製した発光半導体装置に、低温側−40℃、高温側120℃の熱衝撃試験を200サイクル行って、外観にクラックが発生した数を測定した。
First, the evaluation method of the coating protective material of an Example and a comparative example is shown.
The resin composition is cured at 100 ° C. for 2 hours and then at 150 ° C. for 4 hours as a sealing material for a rod-shaped light emitting semiconductor device in which the LED chip and the lead frame are arranged in a rod shape having a thickness of 5 mm. The items were evaluated.
The surface tacky rod-shaped cured product was palpated to evaluate the presence or absence of surface tackiness.
Appearance of discoloration in the cured product appearance bar-shaped cured product and the produced light emitting semiconductor device was visually evaluated.
The light-emitting semiconductor device produced with reflow resistance was subjected to a 260 ° C. peak reflow test process five times, and the presence or absence of discoloration was visually evaluated.
It measured based on JIS K6301 with respect to hardness rod-shaped hardened | cured material (Shore D).
A glass transition point bar-like cured product was cut into a width of 4 mm and a length of 10 mm, and the inflection point of the expansion coefficient was determined as the glass transition point (Tg) by thermomechanical analysis (TMA) measurement.
Thermal Shock Test The light-emitting semiconductor device produced was subjected to 200 cycles of a thermal shock test at a low temperature side of −40 ° C. and a high temperature side of 120 ° C., and the number of appearance cracks was measured.
一分子中に少なくとも2個のエポキシ官能性基又はオキセタニル基を有するシルセスキオキサン(成分(A))は次に示す方法で製造した。 Silsesquioxane (component (A)) having at least two epoxy functional groups or oxetanyl groups in one molecule was prepared by the following method.
[製造例]エポキシ官能性基を有するシルセスキオキサンの合成
イソプロピルアルコール900g、水酸化テトラメチルアンモニウムの25%水溶液13g、水91gを仕込んだ後、γ−グリシドキシプロピルトリメトキシシラン(信越化学工業社製KBM403)255gを添加し、室温で20時間撹拌した。
反応終了後、系内にトルエンを1,200g入れ、減圧下でイソプロピルアルコール等を除去した。分液漏斗を用いて、残渣を熱水にて洗浄した。水層が中性になるまで、洗浄を行った後、トルエン層を無水硫酸ナトリウムで脱水した。無水硫酸ナトリウムを濾別し、減圧下トルエンを除去して、目的の樹脂(樹脂1)を得た。エポキシ当量は185g/molであった。
[Production Example] Synthesis of silsesquioxane having an epoxy functional group After charging 900 g of isopropyl alcohol, 13 g of a 25% aqueous solution of tetramethylammonium hydroxide and 91 g of water, γ-glycidoxypropyltrimethoxysilane (Shin-Etsu Chemical) 255 g of Kogyo KBM403) was added and stirred at room temperature for 20 hours.
After completion of the reaction, 1,200 g of toluene was put into the system, and isopropyl alcohol and the like were removed under reduced pressure. The residue was washed with hot water using a separatory funnel. After washing until the aqueous layer became neutral, the toluene layer was dehydrated with anhydrous sodium sulfate. Anhydrous sodium sulfate was removed by filtration, and toluene was removed under reduced pressure to obtain the desired resin (resin 1). The epoxy equivalent was 185 g / mol.
また、一分子中に少なくとも2個のエポキシ官能性基を有するエポキシ樹脂(成分(B))としては、脂環式エポキシ樹脂であるダイセル化学工業社製「セロキサイド2021P」を用いた。
また、硬化剤(成分(C))として、メチルヘキサヒドロ無水フタル酸である新日本理化社製「MH」を用いた。
また、硬化触媒(成分(D))として、上記式(1)で示される化合物である日本化学工業社製「ヒシコーリンPX−4MP」、上記式(2)で示される化合物である日本化学工業社製「ヒシコーリンPX−4ET」、第四級ホスホニウム塩であるサンアプロ社製「U−CAT5003」、2−エチル−4−メチルイミダゾール(2E4MZ)及び2,3−ジヒドロ−1H−ピロロ[1,2−a]ベンズイミダゾール(TBZ)(いずれも四国化成工業社製)を用いた。
Moreover, as an epoxy resin (component (B)) having at least two epoxy functional groups in one molecule, “Celoxide 2021P” manufactured by Daicel Chemical Industries, which is an alicyclic epoxy resin, was used.
Further, as a curing agent (component (C)), “MH” manufactured by Shin Nippon Rika Co., Ltd., which is methylhexahydrophthalic anhydride, was used.
Further, as a curing catalyst (component (D)), “Hishicolin PX-4MP” manufactured by Nippon Chemical Industry Co., Ltd., which is a compound represented by the above formula (1), and Nippon Chemical Industry Co., Ltd., which is a compound represented by the above formula (2). "Hishicolin PX-4ET" manufactured by San-Apro, which is a quaternary phosphonium salt, 2-ethyl-4-methylimidazole (2E4MZ) and 2,3-dihydro-1H-pyrrolo [1,2- a] Benzimidazole (TBZ) (both manufactured by Shikoku Kasei Kogyo Co., Ltd.) was used.
[実施例1〜3及び比較例1,2]
下記表1に示す配合量で、成分(A)、(B)、(C)及び(D)を配合し、上記条件で硬化物及び発光半導体装置を作製し、上記評価方法に従って、表面タック性、硬化物外観、耐リフロー性を測定した。結果を表1に併記する。
[Examples 1 to 3 and Comparative Examples 1 and 2]
In the blending amounts shown in Table 1 below, the components (A), (B), (C) and (D) are blended, and a cured product and a light-emitting semiconductor device are produced under the above conditions. The cured product appearance and reflow resistance were measured. The results are also shown in Table 1.
次に、上記実施例1と下記比較例3,4で得られた硬化物の性状(表面タック性、硬度、ガラス転移点)及び発光半導体装置(熱衝撃試験)を上記評価方法に従って測定した。結果を表2に示す。 Next, the properties (surface tackiness, hardness, glass transition point) and the light emitting semiconductor device (thermal shock test) of the cured products obtained in Example 1 and Comparative Examples 3 and 4 were measured according to the above evaluation methods. The results are shown in Table 2.
[比較例3]
YX−8000(50質量部)、MH(40質量部)、PX−4MP(1質量部)で配合し、上記条件で硬化物及び発光半導体装置を作製した。
[YX−8000:水素添加ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン社製)
MH:メチルヘキサヒドロ無水フタル酸(新日本理化社製)
PX−4MP:有機ホスホニウム塩(日本化学工業社製)]
[Comparative Example 3]
YX-8000 (50 parts by mass), MH (40 parts by mass), and PX-4MP (1 part by mass) were blended, and a cured product and a light emitting semiconductor device were produced under the above conditions.
[YX-8000: Hydrogenated bisphenol A type epoxy resin (Japan Epoxy Resin Co., Ltd.)
MH: Methylhexahydrophthalic anhydride (manufactured by Shin Nippon Chemical Co., Ltd.)
PX-4MP: Organic phosphonium salt (manufactured by Nippon Chemical Industry Co., Ltd.)]
[比較例4]
KJR−632を用い、上記条件で硬化物及び発光半導体装置を作製した。
[KJR−632:シリコーン樹脂(信越化学工業社製)]
[Comparative Example 4]
Using KJR-632, a cured product and a light-emitting semiconductor device were manufactured under the above conditions.
[KJR-632: Silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd.)]
Claims (7)
(B)一分子中に少なくとも2個のエポキシ官能性基を有するエポキシ樹脂、
(C)硬化剤、
(D)硬化触媒
を必須成分とするエポキシ・シリコーン混成樹脂組成物において、硬化触媒が第四級ホスホニウム塩の1種以上を含むことを特徴とするエポキシ・シリコーン混成樹脂組成物。 (A) an organopolysilsesquioxane resin having at least two epoxy functional groups or oxetanyl groups in one molecule;
(B) an epoxy resin having at least two epoxy functional groups in one molecule;
(C) a curing agent,
(D) An epoxy / silicone hybrid resin composition comprising a curing catalyst as an essential component, wherein the curing catalyst contains one or more quaternary phosphonium salts.
RSiX3
(但し、Rは上記の通り。Xは加水分解性基を示す。)
で示される3官能性有機ケイ素化合物を加水分解及び縮合することによって得られたものである請求項3記載のエポキシ・シリコーン混成樹脂組成物。 Organopolysilsesquioxane resin (A) having at least two epoxy functional groups or oxetanyl groups in one molecule is represented by the following formula RSiX 3
(However, R is as described above. X represents a hydrolyzable group.)
The epoxy-silicone hybrid resin composition according to claim 3, which is obtained by hydrolysis and condensation of a trifunctional organosilicon compound represented by the formula:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007125392A JP2008019422A (en) | 2006-06-16 | 2007-05-10 | Epoxy-silicone mixed resin composition and light emitting semiconductor device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006167072 | 2006-06-16 | ||
JP2007125392A JP2008019422A (en) | 2006-06-16 | 2007-05-10 | Epoxy-silicone mixed resin composition and light emitting semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008019422A true JP2008019422A (en) | 2008-01-31 |
Family
ID=39075616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007125392A Pending JP2008019422A (en) | 2006-06-16 | 2007-05-10 | Epoxy-silicone mixed resin composition and light emitting semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008019422A (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009191217A (en) * | 2008-02-18 | 2009-08-27 | Shin Etsu Chem Co Ltd | Epoxy-silicone composite resin composition and light-emitting semiconductor device |
JP2010138380A (en) * | 2008-11-14 | 2010-06-24 | Shin-Etsu Chemical Co Ltd | Thermosetting resin composition |
JP2010147175A (en) * | 2008-12-17 | 2010-07-01 | Shin-Etsu Chemical Co Ltd | Underfiller composition |
JP2011088947A (en) * | 2009-10-20 | 2011-05-06 | Sumitomo Metal Mining Co Ltd | Epoxy group-containing adhesive resin composition and adhesive for optical semiconductor prepared by using the same |
JP2011111550A (en) * | 2009-11-27 | 2011-06-09 | Sumitomo Metal Mining Co Ltd | Epoxy resin adhesive composition and adhesive for optical semiconductor using the same |
WO2013146527A1 (en) | 2012-03-28 | 2013-10-03 | 株式会社ダイセル | Curable epoxy resin composition |
JP2013209525A (en) * | 2012-03-30 | 2013-10-10 | Daicel Corp | Curable epoxy resin composition |
WO2014034507A1 (en) | 2012-08-31 | 2014-03-06 | 株式会社ダイセル | Curable composition, cured product thereof, optical member and optical device |
WO2015025970A1 (en) | 2013-08-20 | 2015-02-26 | 株式会社ダイセル | Wafer lens, wafer lens array, wafer lens laminate, and wafer lens array laminate |
WO2015098736A1 (en) | 2013-12-26 | 2015-07-02 | 株式会社ダイセル | Curable composition for lens, and lens and optical device |
EP3369735A1 (en) | 2013-11-25 | 2018-09-05 | Shikoku Chemicals Corporation | Glycolurils having functional group and use thereof |
TWI655220B (en) * | 2014-02-28 | 2019-04-01 | 日商大賽璐股份有限公司 | Hardenable composition and hardened material thereof, and wafer level lens |
WO2019146659A1 (en) | 2018-01-24 | 2019-08-01 | 株式会社ダイセル | Resin composition for forming hard coating layer |
WO2019188441A1 (en) * | 2018-03-30 | 2019-10-03 | 富士フイルム株式会社 | Composition for forming hard coat layer, hard coat film, article having hard coat film, image display device, and method for manufacturing hard coat film |
WO2020004336A1 (en) | 2018-06-26 | 2020-01-02 | 東京応化工業株式会社 | Liquid composition, quantum dot-containing film, optical film, luminescent display element panel, and luminescent display device |
WO2020059726A1 (en) * | 2018-09-18 | 2020-03-26 | 富士フイルム株式会社 | Hard coat composition, hard coat film, article having hard coat film, image display, and method for manufacturing hard coat film |
WO2021015005A1 (en) | 2019-07-19 | 2021-01-28 | 東京応化工業株式会社 | Wavelength conversion film, wavelength conversion film forming composition, and cluster-containing quantum dot production method |
WO2022225029A1 (en) | 2021-04-23 | 2022-10-27 | 東京応化工業株式会社 | Photocurable composition |
DE102022102650A1 (en) | 2022-02-04 | 2023-08-10 | Delo Industrie Klebstoffe Gmbh & Co. Kgaa | Cationically polymerizable flame-retardant masses |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005089601A (en) * | 2003-09-17 | 2005-04-07 | Stanley Electric Co Ltd | Thermosetting resin composition, light emitting diode with its light emitting element encapsulated by the same, and color conversion type light emitting diode encapsulated by the same |
WO2006083025A1 (en) * | 2005-02-04 | 2006-08-10 | Jsr Corporation | Optical semiconductor, sealing material therefor and sealing composition |
JP2007070554A (en) * | 2005-09-09 | 2007-03-22 | Nippon Kayaku Co Ltd | Epoxy resin composition for encapsulation of optical semiconductor |
-
2007
- 2007-05-10 JP JP2007125392A patent/JP2008019422A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005089601A (en) * | 2003-09-17 | 2005-04-07 | Stanley Electric Co Ltd | Thermosetting resin composition, light emitting diode with its light emitting element encapsulated by the same, and color conversion type light emitting diode encapsulated by the same |
WO2006083025A1 (en) * | 2005-02-04 | 2006-08-10 | Jsr Corporation | Optical semiconductor, sealing material therefor and sealing composition |
JP2007070554A (en) * | 2005-09-09 | 2007-03-22 | Nippon Kayaku Co Ltd | Epoxy resin composition for encapsulation of optical semiconductor |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009191217A (en) * | 2008-02-18 | 2009-08-27 | Shin Etsu Chem Co Ltd | Epoxy-silicone composite resin composition and light-emitting semiconductor device |
JP2010138380A (en) * | 2008-11-14 | 2010-06-24 | Shin-Etsu Chemical Co Ltd | Thermosetting resin composition |
JP2013082939A (en) * | 2008-11-14 | 2013-05-09 | Shin-Etsu Chemical Co Ltd | Thermosetting resin composition |
JP2010147175A (en) * | 2008-12-17 | 2010-07-01 | Shin-Etsu Chemical Co Ltd | Underfiller composition |
JP2011088947A (en) * | 2009-10-20 | 2011-05-06 | Sumitomo Metal Mining Co Ltd | Epoxy group-containing adhesive resin composition and adhesive for optical semiconductor prepared by using the same |
JP2011111550A (en) * | 2009-11-27 | 2011-06-09 | Sumitomo Metal Mining Co Ltd | Epoxy resin adhesive composition and adhesive for optical semiconductor using the same |
WO2013146527A1 (en) | 2012-03-28 | 2013-10-03 | 株式会社ダイセル | Curable epoxy resin composition |
JP2013209525A (en) * | 2012-03-30 | 2013-10-10 | Daicel Corp | Curable epoxy resin composition |
WO2014034507A1 (en) | 2012-08-31 | 2014-03-06 | 株式会社ダイセル | Curable composition, cured product thereof, optical member and optical device |
EP3572447A1 (en) | 2012-08-31 | 2019-11-27 | Daicel Corporation | Use of curable composition, cured product thereof, optical member and optical device |
WO2015025970A1 (en) | 2013-08-20 | 2015-02-26 | 株式会社ダイセル | Wafer lens, wafer lens array, wafer lens laminate, and wafer lens array laminate |
EP3369735A1 (en) | 2013-11-25 | 2018-09-05 | Shikoku Chemicals Corporation | Glycolurils having functional group and use thereof |
WO2015098736A1 (en) | 2013-12-26 | 2015-07-02 | 株式会社ダイセル | Curable composition for lens, and lens and optical device |
EP3486286A1 (en) | 2013-12-26 | 2019-05-22 | Daicel Corporation | Curable composition for lens, lens and optical device |
TWI655220B (en) * | 2014-02-28 | 2019-04-01 | 日商大賽璐股份有限公司 | Hardenable composition and hardened material thereof, and wafer level lens |
WO2019146659A1 (en) | 2018-01-24 | 2019-08-01 | 株式会社ダイセル | Resin composition for forming hard coating layer |
WO2019188441A1 (en) * | 2018-03-30 | 2019-10-03 | 富士フイルム株式会社 | Composition for forming hard coat layer, hard coat film, article having hard coat film, image display device, and method for manufacturing hard coat film |
JPWO2019188441A1 (en) * | 2018-03-30 | 2021-02-12 | 富士フイルム株式会社 | A composition for forming a hard coat layer, a hard coat film, an article having a hard coat film, an image display device, and a method for producing the hard coat film. |
WO2020004336A1 (en) | 2018-06-26 | 2020-01-02 | 東京応化工業株式会社 | Liquid composition, quantum dot-containing film, optical film, luminescent display element panel, and luminescent display device |
WO2020059726A1 (en) * | 2018-09-18 | 2020-03-26 | 富士フイルム株式会社 | Hard coat composition, hard coat film, article having hard coat film, image display, and method for manufacturing hard coat film |
WO2021015005A1 (en) | 2019-07-19 | 2021-01-28 | 東京応化工業株式会社 | Wavelength conversion film, wavelength conversion film forming composition, and cluster-containing quantum dot production method |
WO2022225029A1 (en) | 2021-04-23 | 2022-10-27 | 東京応化工業株式会社 | Photocurable composition |
DE102022102650A1 (en) | 2022-02-04 | 2023-08-10 | Delo Industrie Klebstoffe Gmbh & Co. Kgaa | Cationically polymerizable flame-retardant masses |
WO2023147993A1 (en) | 2022-02-04 | 2023-08-10 | Delo Industrie Klebstoffe Gmbh & Co. Kgaa | Cationically polymerisable flame-retardant materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008019422A (en) | Epoxy-silicone mixed resin composition and light emitting semiconductor device | |
EP2151460B1 (en) | Resin composition for encapsulating optical semiconductor element | |
TWI421304B (en) | Semiconductor device encapsulated by silicone resin composition, and silicone resin tablet for encapsulating semiconductor device | |
JP4803339B2 (en) | Epoxy / silicone hybrid resin composition and light emitting semiconductor device | |
EP2289998B1 (en) | White heat-curable silicone/epoxy hybrid resin composition for optoelectronic use, making method, premolded package, and LED device | |
KR101500757B1 (en) | Optical semiconductor device encapsulating epoxy-silicone hybrid resin composition and tablet for transfer molding containing the same | |
KR20060097089A (en) | Epoxy resin composition for photosemiconductor element encapsulation and photosemiconductor device using the same | |
CN102190776B (en) | Thermosetting resin composition for optical-semiconductor element encapsulation and its curing materials and the optical semiconductor device being obtained using it | |
KR101390087B1 (en) | Epoxy-silicone hybrid resin compositions and light-emitting semiconductor devices | |
JP2006299099A (en) | Resin composition for sealing optical semiconductor element and optical semiconductor element | |
KR101751541B1 (en) | Composition for encapsulating optical semiconductor element | |
TWI466972B (en) | A wafer bonding agent composition for an optical semiconductor element, and an optical semiconductor device using the same | |
JP4614075B2 (en) | Epoxy / silicone hybrid resin composition, method for producing the same, and light emitting semiconductor device | |
KR101683891B1 (en) | Resin composition for encapsulating optical semiconductor element | |
KR101552656B1 (en) | Modified silicone resin composition | |
KR101652120B1 (en) | Die bond agent composition for optical semiconductor element and optical semiconductor device using the composition | |
JP2008222881A (en) | Epoxy-silicone mixed resin composition and light-emitting semiconductor device | |
JP2009191217A (en) | Epoxy-silicone composite resin composition and light-emitting semiconductor device | |
JP2007016128A (en) | Optical resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110713 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111026 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111207 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120118 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20120613 |