[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008015199A - Resin composition for optical material, and optical element - Google Patents

Resin composition for optical material, and optical element Download PDF

Info

Publication number
JP2008015199A
JP2008015199A JP2006186002A JP2006186002A JP2008015199A JP 2008015199 A JP2008015199 A JP 2008015199A JP 2006186002 A JP2006186002 A JP 2006186002A JP 2006186002 A JP2006186002 A JP 2006186002A JP 2008015199 A JP2008015199 A JP 2008015199A
Authority
JP
Japan
Prior art keywords
optical
resin
resin composition
optical element
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006186002A
Other languages
Japanese (ja)
Inventor
Nobuya Saegusa
暢也 三枝
Hiroki Oguro
寛樹 小黒
Koji Koide
功史 小出
Shojiro Kuwabara
章二郎 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2006186002A priority Critical patent/JP2008015199A/en
Publication of JP2008015199A publication Critical patent/JP2008015199A/en
Pending legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Optical Head (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin composition for optical materials containing a thermoplastic transparent resin having excellent transparency, low birefringence and excellent light resistance suitable for optical materials, an optical element used in application where laser light particularly of 405 nm waveband is transmitted, and an optical element which is a member of an optical pick-up apparatus. <P>SOLUTION: The resin composition for optical materials contains the thermoplastic transparent resin obtained by filtering a thermoplastic resin at least once in a state of a solution in an organic solvent with a filter having a pore diameter of ≤0.5 μm, wherein the thermoplastic resin is obtained by hydrogenating ≥90% of aromatic double bonds in a copolymer comprising a specific constitutional unit composition obtained by polymerizing a monomer composition containing a (meth)acrylic ester monomer and an aromatic vinyl monomer. The optical element uses the resin composition for optical materials. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は熱可塑性透明樹脂を含む光学材料用樹脂組成物を用いてなる光学素子に関する。   The present invention relates to an optical element using a resin composition for an optical material containing a thermoplastic transparent resin.

透明熱可塑性樹脂はその成形加工性や軽量性、量産性の高さから光学素子に広く用いられている。特にカメラ、デジタルカメラ、フィルム一体型カメラ(レンズ付きフィルム)、ビデオカメラ、携帯電話カメラなどの各種カメラ、CD、DVD、MOなどの光ピックアップ装置、複写機及びプリンターなどのOA機器といった各種機器に使用されるレンズには、これまでポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、環状ポリオレフィン(COP)などの透明熱可塑性樹脂が使用されてきた。   Transparent thermoplastic resins are widely used for optical elements due to their high moldability, light weight, and mass productivity. Especially for various devices such as cameras, digital cameras, film-integrated cameras (film with lens), video cameras, mobile phone cameras, optical pickup devices such as CD, DVD, MO, OA equipment such as copying machines and printers. For the lenses used, transparent thermoplastic resins such as polymethyl methacrylate (PMMA), polycarbonate (PC), and cyclic polyolefin (COP) have been used so far.

しかしながら、近年の情報記録の高密度化や撮像用高性能光学用レンズの高い色調再現性の要求から、透明熱可塑性樹脂を用いた光学材料用樹脂組成物に求められる性能は格段に厳しいものとなっている。小型レンズにおいては、成形時の光学歪みがレンズとしての性能を決める大きな要因となることから、光学異方性(複屈折)を生じにくい材料が求められている。また長時間のレーザー光の照射またはその他の光エネルギー照射条件下では、レンズ中に白濁が発生したりして、光学特性が劣化する場合があるため、改善が求められている。   However, the performance required for resin compositions for optical materials using transparent thermoplastic resins is extremely severe due to the recent demand for high density information recording and high color reproducibility of high-performance optical lenses for imaging. It has become. In a small lens, since optical distortion at the time of molding becomes a major factor that determines the performance as a lens, a material that hardly causes optical anisotropy (birefringence) is required. Further, under long-time laser light irradiation or other light energy irradiation conditions, white turbidity may occur in the lens and optical characteristics may be deteriorated.

特に次世代高密度光ディスクには波長405nm帯の青紫色レーザーを用いるが、読み出し時の低いエネルギーのレーザー光の照射に耐える光学材料用樹脂組成物はあっても、高倍速書き込み時のような高いエネルギーのレーザー光の照射に耐える光学材料用樹脂組成物が知られていないのが現状である。   Especially for next-generation high-density optical discs, a blue-violet laser with a wavelength of 405 nm is used. However, even if there is a resin composition for optical materials that can withstand irradiation with low-energy laser light at the time of reading, it is as high as at high-speed writing. The present condition is that the resin composition for optical materials which resists irradiation of the energy laser beam is not known.

波長405nm帯の青紫色レーザーに対応できる樹脂として、ビニル脂環式炭化水素系樹脂(特許文献1参照。)が開示されているが、耐光性の面で不十分である場合があり、成形直後の光線透過率は良好であるが、高温下(例えば80℃空気下)での促進耐光性試験では顕著に透過光量の減少が見られる。また、本発明者らは少なくとも1種の(メタ)アクリル酸エステルモノマーと少なくとも1種の芳香族ビニルモノマーとを含むモノマー組成物を重合して得られ、かつ、芳香族ビニルモノマー由来の構成単位(Bモル)に対する(メタ)アクリル酸エステルモノマー由来の構成単位(Aモル)のモル比(A/B)が1〜4である共重合体の芳香族二重結合を70%以上水素化して得られる熱可塑性透明樹脂が良好な耐光性を示すことを開示しているが(特許文献2参照。)、実用上はさらに高い耐光性を求められていた。   A vinyl alicyclic hydrocarbon resin (see Patent Document 1) is disclosed as a resin that can be used for a blue-violet laser having a wavelength of 405 nm, but it may be insufficient in terms of light resistance. In the accelerated light resistance test under high temperature (for example, at 80 ° C. air), the amount of transmitted light is significantly reduced. In addition, the present inventors obtained a polymer composition containing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer, and are structural units derived from the aromatic vinyl monomer. The aromatic double bond of the copolymer whose molar ratio (A / B) of the structural unit (A mole) derived from the (meth) acrylate monomer to (B mole) is 1 to 4 is hydrogenated by 70% or more. Although it discloses that the thermoplastic transparent resin obtained shows favorable light resistance (refer patent document 2), higher light resistance was calculated | required practically.

スチレン系樹脂の芳香環を水素化(芳香族二重結合の水素化)する技術は古くから知られており、ポリスチレンから得られるポリビニルシクロヘキサンは、機械強度に劣るという欠点はあるものの、透明性と耐熱変形性に優れた樹脂である。その優れた透明性と耐熱変形性から、光ディスク基板への応用が検討されてきた(特許文献3参照。)。また、メチルメタクリレートとスチレンを共重合したMS樹脂の芳香族二重結合を水素化して得た特定のモノマー組成を有する樹脂を、光ディスク用途やプラスチックレンズ用途に応用した例も開示されている(特許文献4、特許文献5参照。)。しかしこれらに開示されているMMA共重合率の低いMS樹脂(MMA構成単位/スチレン構成単位=0.92以下)の芳香族二重結合を水素化した樹脂は、機械強度が必ずしも十分ではなく、プラスチックレンズなどにおいては機械物性の面において実用性能を満足しない場合があった。また、ビニルシクロヘキサン繰り返し単位を全繰り返し単位の50%以上含むので、光や熱によって劣化しやすい3級炭素を多く含むことから、高温下での波長405nm帯の青紫色レーザーなどの照射下では劣化が起こる場合があった。
特開2001−272501号公報 特開2006―89713号公報 特開昭63−43910号公報 特開平6−25326号公報 特開平4−75001号公報
The technology for hydrogenating aromatic rings of styrene resins (hydrogenation of aromatic double bonds) has been known for a long time. Polyvinylcyclohexane obtained from polystyrene has the disadvantage of being inferior in mechanical strength. It is a resin with excellent heat distortion resistance. Due to its excellent transparency and heat distortion resistance, application to optical disk substrates has been studied (see Patent Document 3). In addition, examples in which a resin having a specific monomer composition obtained by hydrogenating an aromatic double bond of an MS resin obtained by copolymerization of methyl methacrylate and styrene is applied to optical disc use and plastic lens use are also disclosed (patents). Reference 4 and Patent Document 5). However, a resin obtained by hydrogenating an aromatic double bond of an MS resin (MMA constituent unit / styrene constituent unit = 0.92 or less) having a low MMA copolymerization rate disclosed in them does not necessarily have sufficient mechanical strength. In the case of plastic lenses, etc., there are cases where the practical performance is not satisfied in terms of mechanical properties. In addition, since it contains 50% or more of the vinylcyclohexane repeating units, it contains a lot of tertiary carbon that is easily deteriorated by light and heat, so it deteriorates under irradiation of a blue-violet laser with a wavelength of 405 nm at high temperatures. Could happen.
JP 2001-272501 A JP 2006-89713 A Japanese Patent Laid-Open No. 63-43910 JP-A-6-25326 JP-A-4-75001

本発明は上で述べた光学材料用樹脂組成物に要求されている透明性、低複屈折性、耐光性に優れた熱可塑性透明樹脂を含む光学材料用樹脂組成物を提供することを目的とする。また、この光学材料樹脂組成物からなる成形体に波長405nm帯のレーザーを透過させる用途で用いる光学素子、さらには光ピックアップ装置の部材である光学素子を提供することである。   An object of the present invention is to provide a resin composition for an optical material containing a thermoplastic transparent resin excellent in transparency, low birefringence and light resistance required for the resin composition for an optical material described above. To do. Another object of the present invention is to provide an optical element used for transmitting a laser having a wavelength of 405 nm band to a molded body made of this optical material resin composition, and further an optical element which is a member of an optical pickup device.

本発明者らは上記事情に鑑み鋭意検討した結果、(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーとを含むモノマー組成物を重合して得られる、特定の構成単位組成からなる共重合体の芳香族二重結合の90%以上を水素化することによって得られる熱可塑性樹脂を、有機溶媒に溶解した状態で孔径0.5μm以下のフィルターによって少なくとも1回以上濾過して製造した熱可塑性透明樹脂を含む光学材料用樹脂組成物を用いることによって、波長405nm帯のレーザーに対する耐光性が良好な光学素子が得られることを見出し、本発明に到った。   As a result of intensive studies in view of the above circumstances, the present inventors have obtained a copolymer comprising a specific constituent unit composition obtained by polymerizing a monomer composition containing a (meth) acrylic acid ester monomer and an aromatic vinyl monomer. Thermoplastic transparent resin produced by filtering a thermoplastic resin obtained by hydrogenating 90% or more of aromatic double bonds at least once with a filter having a pore size of 0.5 μm or less in a state dissolved in an organic solvent. By using a resin composition for an optical material containing an optical element, it was found that an optical element having good light resistance to a laser having a wavelength of 405 nm band can be obtained, and the present invention has been achieved.

すなわち本発明は、少なくとも1種の(メタ)アクリル酸エステルモノマーと少なくとも1種の芳香族ビニルモノマーとを含むモノマー組成物を重合して得られ、かつ、芳香族ビニルモノマー由来の構成単位(Bモル)に対する(メタ)アクリル酸エステルモノマー由来の構成単位(Aモル)のモル比(A/B)が1〜4である共重合体の芳香族二重結合の90%以上を水素化して得られる熱可塑性透明樹脂を含む光学材料用樹脂組成物であって、該熱可塑性透明樹脂が有機溶媒に溶解した状態で孔径0.5μm以下のフィルターによって少なくとも1回濾過されたものであることを特徴とする光学材料用樹脂組成物に関する。   That is, the present invention is obtained by polymerizing a monomer composition containing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer, and is a structural unit derived from an aromatic vinyl monomer (B Obtained by hydrogenating 90% or more of the aromatic double bond of the copolymer whose molar ratio (A / B) of the structural unit (A mole) derived from the (meth) acrylic acid ester monomer to (mol) is 1 to 4. A resin composition for an optical material comprising a thermoplastic transparent resin, wherein the thermoplastic transparent resin is at least once filtered by a filter having a pore size of 0.5 μm or less in a state dissolved in an organic solvent. It relates to a resin composition for optical materials.

また本発明は、この光学材料用樹脂組成物から得られる成形体に波長405nm帯のレーザーを透過させる用途で用いる光学素子。さらには波長405nm帯のレーザーを用いる光ピックアップ装置の部材である光学素子を提供する。   Moreover, this invention is an optical element used for the use which permeate | transmits the laser of wavelength 405nm band to the molded object obtained from this resin composition for optical materials. Furthermore, an optical element which is a member of an optical pickup device using a laser having a wavelength of 405 nm band is provided.

本発明により得られる熱可塑性透明樹脂は、特に耐光性、低複屈折性に優れている。また酸化劣化にも強く、該熱可塑性透明樹脂を含有する光学材料樹脂組成物を成形する際、成形不良が少なく、色調に優れた光学素子などの成形体を製造することができる。さらに透明性、耐熱変形性、機械物性、低吸水性、などのバランスが優れているため、高品質の光学素子を製造することができる。   The thermoplastic transparent resin obtained by the present invention is particularly excellent in light resistance and low birefringence. In addition, it is resistant to oxidative degradation, and when molding an optical material resin composition containing the thermoplastic transparent resin, it is possible to produce a molded body such as an optical element with few molding defects and excellent color tone. Furthermore, since the balance of transparency, heat distortion resistance, mechanical properties, low water absorption, etc. is excellent, a high-quality optical element can be manufactured.

本発明で用いる(メタ)アクリル酸エステルモノマーとしては、具体的には(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸イソボルニルなどの(メタ)アクリル酸アルキル類;(メタ)アクリル酸(2−ヒドロキシエチル)や(メタ)アクリル酸(2−ヒドロキシプロピル)、(メタ)アクリル酸(2−ヒドロキシ−2−メチルプロピル)などの(メタ)アクリル酸ヒドロキシアルキル類;(メタ)アクリル酸(2−メトキシエチル)、(メタ)アクリル酸(2−エトキシエチル)などの(メタ)アクリル酸アルコキシアルキル類;(メタ)アクリル酸ベンジルや(メタ)アクリル酸フェニルなどの芳香環を有する(メタ)アクリル酸エステル類;および2−(メタ)アクリロイルオキシエチルホスホリルコリンなどのリン脂質類似官能基を有する(メタ)アクリル酸エステル類などをあげることができるが、物性のバランスから、メタクリル酸アルキルを単独で用いるか、あるいはメタクリル酸アルキルとアクリル酸アルキルを併用することが好ましい。さらに、メタクリル酸メチル80〜100モル%およびアクリル酸アルキル0〜20モル%を用いることが好ましい。アクリル酸アルキルのうち、特に好ましいものはアクリル酸メチルまたはアクリル酸エチルである。本発明にいて、(メタ)アクリル酸とは、メタクリル酸及び/又はアクリル酸を示す。これらを単独で用いてもよいし、複数種組み合わせて用いてもよい。   Specific examples of (meth) acrylate monomers used in the present invention include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, lauryl (meth) acrylate, and (meth) acrylic. (Meth) acrylate alkyls such as stearyl acid, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate; (meth) acrylic acid (2-hydroxyethyl) and (meth) acrylic acid (2-hydroxypropyl), (Meth) acrylic acid hydroxyalkyls such as (meth) acrylic acid (2-hydroxy-2-methylpropyl); (meth) acrylic acid (2-methoxyethyl), (meth) acrylic acid (2-ethoxyethyl), etc. (Meth) acrylic acid alkoxyalkyls; benzyl (meth) acrylate and (meth) acrylic (Meth) acrylic acid esters having an aromatic ring such as phenyl acid; and (meth) acrylic acid esters having a phospholipid-like functional group such as 2- (meth) acryloyloxyethyl phosphorylcholine, etc. From the balance of physical properties, it is preferable to use alkyl methacrylate alone or to use alkyl methacrylate and alkyl acrylate together. Furthermore, it is preferable to use methyl methacrylate 80-100 mol% and alkyl acrylate 0-20 mol%. Of the alkyl acrylates, methyl acrylate or ethyl acrylate is particularly preferred. In the present invention, (meth) acrylic acid refers to methacrylic acid and / or acrylic acid. These may be used alone or in combination of two or more.

本発明で用いる芳香族ビニルモノマーとしては、具体的にスチレン、α―メチルスチレン、p−ヒドロキシスチレン、アルコキシスチレン、およびクロロスチレンなどの芳香族ビニル化合物などがあげられるが、スチレンが好適に用いられる。これらを単独で用いてもよいし、複数種組み合わせて用いてもよい。   Specific examples of the aromatic vinyl monomer used in the present invention include aromatic vinyl compounds such as styrene, α-methylstyrene, p-hydroxystyrene, alkoxystyrene, and chlorostyrene, and styrene is preferably used. . These may be used alone or in combination of two or more.

(メタ)アクリル酸エステルモノマーと芳香族ビニルモノマーの重合には、公知の方法を用いることができるが、工業的にはラジカル重合による方法が簡便でよい。ラジカル重合は塊状重合法、溶液重合法、乳化重合法、懸濁重合法など公知の方法を適宜選択することができる。例えば、塊状重合法や溶液重合は、モノマー、連鎖移動剤、及び重合開始剤を含むモノマー組成物を完全混合槽に連続的にフィードし、100〜180℃で重合する連続重合法などにより行われる。溶液重合法ではトルエン、キシレン、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒;酢酸エチルなどのエステル系溶媒;アセトン、メチルエチルケトンなどのケトン系溶媒;テトラヒドロフラン、ジオキサンなどのエーテル系溶媒;メタノール、イソプロパノールなどのアルコール系溶媒などの溶媒を、モノマー組成物と共に重合槽にフィードする。重合後、反応液を重合槽から抜き出し、押出機や減圧槽で揮発分を除去して共重合体を得ることができる。   A known method can be used for the polymerization of the (meth) acrylic acid ester monomer and the aromatic vinyl monomer, but industrially, a method based on radical polymerization may be simple. For the radical polymerization, a known method such as a bulk polymerization method, a solution polymerization method, an emulsion polymerization method or a suspension polymerization method can be appropriately selected. For example, the bulk polymerization method and the solution polymerization are performed by a continuous polymerization method in which a monomer composition containing a monomer, a chain transfer agent, and a polymerization initiator is continuously fed to a complete mixing tank and polymerized at 100 to 180 ° C. . In the solution polymerization method, hydrocarbon solvents such as toluene, xylene, cyclohexane and methylcyclohexane; ester solvents such as ethyl acetate; ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as tetrahydrofuran and dioxane; methanol and isopropanol A solvent such as an alcohol solvent is fed to the polymerization tank together with the monomer composition. After the polymerization, the reaction solution can be extracted from the polymerization tank, and the volatile matter can be removed with an extruder or a vacuum tank to obtain a copolymer.

メタクリル系共重合体の場合、共重合体の構成単位比は仕込みモノマー比とは必ずしも一致せず、重合反応によって実際に共重合体に取り込まれたモノマーの量によって決定される。共重合体の構成単位比は、モノマーの重合変換率が100%であれば仕込みモノマー比と一致するが、実際には50〜80%の重合変換率で製造する場合が多く、反応性の高いモノマーほどポリマーに取り込まれ易いため、モノマー仕込み比と共重合体の構成単位比に違いが生じる。このため、仕込みモノマー比を適宜調整して所望の構成単位比を得るようにする必要がある。   In the case of a methacrylic copolymer, the constituent unit ratio of the copolymer does not necessarily coincide with the charged monomer ratio, and is determined by the amount of monomer actually incorporated into the copolymer by the polymerization reaction. The constitutional unit ratio of the copolymer is the same as the charged monomer ratio when the polymerization conversion rate of the monomer is 100%, but in fact, it is often produced at a polymerization conversion rate of 50 to 80% and is highly reactive. Since the monomer is more easily incorporated into the polymer, there is a difference between the monomer charging ratio and the constituent unit ratio of the copolymer. For this reason, it is necessary to appropriately adjust the charged monomer ratio to obtain a desired constituent unit ratio.

本発明で水素化反応に用いる共重合体の構成単位モル比((メタ)アクリル酸エステルモノマー単位/芳香族ビニルモノマー単位=A/B)は、1〜4である。1未満であると機械強度が劣り実用に耐えない場合がある。4を超えると、吸水による成形体のそりや寸法変化が無視できなくなり、光学材料用樹脂組成物としては好ましくなくなってしまう。構成単位モル比(A/B)は、物性バランスの面から、1〜2.5が好ましく、1〜2がより好ましい。   The constituent unit molar ratio ((meth) acrylic acid ester monomer unit / aromatic vinyl monomer unit = A / B) of the copolymer used for the hydrogenation reaction in the present invention is 1 to 4. If it is less than 1, the mechanical strength is inferior and may not be practically used. If it exceeds 4, warpage and dimensional change of the molded article due to water absorption cannot be ignored, which is not preferable as a resin composition for optical materials. The structural unit molar ratio (A / B) is preferably from 1 to 2.5, more preferably from 1 to 2, from the viewpoint of balance of physical properties.

上記共重合体は、適当な溶媒に溶解して水素化反応を行う。水素化反応溶媒と重合溶媒は、同じでも良いし、異なっていても良い。水素化反応溶媒としては、水素化反応前後の共重合体及び水素に対する溶解能が高く、かつ、水素化反応に不活性な溶媒が好ましい。例えば、シクロヘキサン、メチルシクロヘキサンなどの炭化水素系溶媒;酢酸エチルなどのエステル系溶媒;アセトン、メチルエチルケトンなどのケトン系溶媒、テトラヒドロフラン、ジオキサンなどのエーテル系溶媒;メタノール、イソプロパノールなどのアルコール系溶媒が用いられる。これらは単独で用いてもよいし、混合して用いてもよい。   The copolymer is dissolved in a suitable solvent to perform a hydrogenation reaction. The hydrogenation reaction solvent and the polymerization solvent may be the same or different. As the hydrogenation reaction solvent, a solvent that has a high solubility in the copolymer and hydrogen before and after the hydrogenation reaction and is inert to the hydrogenation reaction is preferable. For example, hydrocarbon solvents such as cyclohexane and methylcyclohexane; ester solvents such as ethyl acetate; ketone solvents such as acetone and methyl ethyl ketone; ether solvents such as tetrahydrofuran and dioxane; alcohol solvents such as methanol and isopropanol are used. . These may be used alone or in combination.

水素化反応は、バッチ式反応や連続流通式反応などの公知の手法を用いて、3〜30MPaの水素圧、60〜250℃の反応温度で行うのが好ましい。反応温度が低すぎると反応が進行しにくく、反応温度が高すぎると分子鎖の切断による分子量の低下が起こったり、エステル部位も水素化されたりすることがある。分子鎖の切断による分子量低下を防ぎかつ円滑に反応を進行させるには、用いる触媒の種類および反応系中の濃度、共重合体の反応系中の濃度、分子量などに応じて、温度、水素圧を適宜選択することが好ましい。   The hydrogenation reaction is preferably performed at a hydrogen pressure of 3 to 30 MPa and a reaction temperature of 60 to 250 ° C. using a known method such as a batch reaction or a continuous flow reaction. If the reaction temperature is too low, the reaction does not proceed easily. If the reaction temperature is too high, the molecular weight may be reduced due to cleavage of the molecular chain, or the ester moiety may be hydrogenated. In order to prevent molecular weight reduction due to molecular chain scission and allow the reaction to proceed smoothly, the temperature, hydrogen pressure, etc., depend on the type of catalyst used, the concentration in the reaction system, the concentration of the copolymer in the reaction system, the molecular weight, etc. Is preferably selected as appropriate.

水素化反応には公知の水素化触媒を使用することができる。具体的にはニッケル、パラジウム、白金、コバルト、ルテニウム、ロジウムなどの金属、または該金属の酸化物、塩、錯体などの化合物をカーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土等の多孔性担体に担持した固体触媒が挙げられる。これらのなかでもニッケル、パラジウム、白金をカーボン、アルミナ、シリカ、シリカ・アルミナ、珪藻土に担持した触媒が好ましく用いられる。担持量は、担体の0.1〜30wt%が好ましい。   A known hydrogenation catalyst can be used for the hydrogenation reaction. Specifically, metals such as nickel, palladium, platinum, cobalt, ruthenium and rhodium, or compounds such as oxides, salts and complexes of such metals are used as porous carriers such as carbon, alumina, silica, silica / alumina, and diatomaceous earth. Examples include a supported solid catalyst. Among these, a catalyst in which nickel, palladium, or platinum is supported on carbon, alumina, silica, silica / alumina, or diatomaceous earth is preferably used. The supported amount is preferably 0.1 to 30 wt% of the carrier.

水素化率は、全芳香族二重結合の90%以上であり、好ましくは95%以上、さらに好ましくは98%以上(100%を含む)である。90%未満の場合には、波長405nm帯のレーザーを照射した際に白化が見られるなど、耐光性が不足する場合が出てくる。   The hydrogenation rate is 90% or more of the total aromatic double bonds, preferably 95% or more, more preferably 98% or more (including 100%). If it is less than 90%, light resistance may be insufficient, for example, whitening is observed when a laser having a wavelength of 405 nm is irradiated.

上で述べた熱可塑性透明樹脂に、特性を損なわない範囲で公知の添加剤を配合し、光学材料用樹脂組成物とする。添加剤としては、例えばフェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤などの酸化防止剤やベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾエート系紫外線吸収剤、サリチル酸系紫外線吸収剤、アクリレート系紫外線吸収剤、金属錯塩系紫外線吸収剤などの紫外線吸収剤、ヒンダードアミン系光安定剤などの光安定剤、アルキルスルホン酸塩、ステアリン酸のグリセリンエステルなどの帯電防止剤、脂肪族アルコール、脂肪族エステル、芳香族エステル、トリグリセライド類、フッ素系界面活性剤、高級脂肪酸金属塩などの離型剤または滑剤、リン酸トリエステル系化合物、フタル酸エステル系化合物、脂肪酸一塩基酸エステル系化合物、二価アルコールエステル系化合物、オキシ酸エステル系化合物、パラフィン系化合物、液状ポリマー系化合物などの可塑剤などが挙げられる。また白化防止に効果があると知られる軟質重合体やアルコール性化合物などを添加してもよい。これらの添加剤は、各々単独で用いてもよいし、相乗効果をもたらすものもあるため、二種以上を組みあわせて用いてもよい。   In the thermoplastic transparent resin described above, a known additive is blended within a range that does not impair the characteristics to obtain a resin composition for optical materials. Examples of additives include antioxidants such as phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, benzophenone UV absorbers, benzotriazole UV absorbers, benzoate UV absorbers, and salicylic acid UV absorbers such as UV absorbers, acrylate UV absorbers, metal complex UV absorbers, light stabilizers such as hindered amine light stabilizers, antistatic agents such as alkyl sulfonates and glycerol esters of stearic acid, fats Release agents or lubricants such as aromatic alcohols, aliphatic esters, aromatic esters, triglycerides, fluorine surfactants, higher fatty acid metal salts, phosphate triester compounds, phthalate esters, fatty acid monobasic esters Compounds, dihydric alcohol ester compounds, oxyacid esters Compounds, paraffinic compounds, and the like plasticizers such liquid polymer compound. Moreover, you may add the soft polymer, alcoholic compound, etc. which are known to be effective in whitening prevention. These additives may be used alone or in combination with one another, and may be used in combination of two or more.

添加剤の添加量は特に限定されないが、重合体100重量部当り、通常0.0001〜5.0重量部、好ましくは0.001〜1.0重量部、より好ましくは0.01〜0.5重量部の範囲であり、目的に応じて適宜選択すればよい。添加剤の添加方法も特に限定されないが、例えば有機溶媒を用いた重合体の製造工程中において、該重合体が有機溶媒に溶解した溶液に添加剤を添加して液中ブレンドして溶媒を除去する方法が挙げられる。後述する濾過工程の前に添加しても良いし、濾過後に転嫁することもできる。また、溶媒が除去された後の重合体にドライブレンドする方法なども簡便で好ましい。   The addition amount of the additive is not particularly limited, but is usually 0.0001 to 5.0 parts by weight, preferably 0.001 to 1.0 parts by weight, more preferably 0.01 to 0.00 parts by weight per 100 parts by weight of the polymer. It is in the range of 5 parts by weight and may be appropriately selected according to the purpose. The method of adding the additive is not particularly limited. For example, in the process of producing a polymer using an organic solvent, the additive is added to a solution in which the polymer is dissolved in the organic solvent, and the solvent is removed by blending in the liquid. The method of doing is mentioned. It may be added before the filtration step described later, or may be passed on after filtration. A method of dry blending the polymer after the solvent has been removed is also preferred because it is convenient.

本発明の熱可塑性透明樹脂を含む光学材料用樹脂組成物は、含有する異物粒子の数が極力少ないことが好ましい。異物とは、外部から混入した不純物のほか、重合体の製造工程で混入する触媒残渣、ゲル化物、副反応物など、樹脂に相溶しない物質である。光拡散剤などを添加して、あえて透過光を散乱させて使用する場合を除き、散乱光を利用しない用途においては、異物粒子の数が多いと透過光の損失が大きくなるため好ましくない。また異物粒子の量が少ないほど光に対する劣化が抑制される。異物の粒径は、光散乱式微粒子検出器などを用いて測定することが出来るが、熱可塑性透明樹脂に粒径1μm以上の異物粒子を実質上含まないことが好ましい。また、粒径が0.5μm以上で1μm未満の異物粒子の含有量が3×10個/g以下であることが好ましく、2×10個/g以下であることがより好ましい。特に高度の透明性を求められる場合は、粒径が0.5μm以上で1μm未満の異物粒子の含有量は5×10個/g以下であるのが好ましい。本発明では異物粒子の含有量を低減させる方法として、熱可塑性透明樹脂の製造工程において、重合体を含有する溶液を、孔径が0.5μm以下、好ましくは0.2μm以下のフィルターで、少なくとも1回以上濾過する方法を用いる。 The resin composition for an optical material containing the thermoplastic transparent resin of the present invention preferably contains as few foreign particles as possible. The foreign substances are substances that are not compatible with the resin, such as impurities mixed from the outside, catalyst residues, gelled products, side reaction products, and the like mixed in the polymer production process. Except for the case where a light diffusing agent is added and the transmitted light is intentionally scattered to be used, in applications that do not use scattered light, a large number of foreign particles is not preferable because the loss of transmitted light increases. Moreover, the deterioration with respect to light is suppressed, so that the quantity of a foreign material particle is small. The particle size of the foreign material can be measured using a light scattering fine particle detector or the like, but it is preferable that the thermoplastic transparent resin does not substantially contain foreign material particles having a particle size of 1 μm or more. The content of foreign particles having a particle size of 0.5 μm or more and less than 1 μm is preferably 3 × 10 4 particles / g or less, and more preferably 2 × 10 4 particles / g or less. In particular, when high transparency is required, the content of foreign particles having a particle size of 0.5 μm or more and less than 1 μm is preferably 5 × 10 3 particles / g or less. In the present invention, as a method for reducing the content of foreign particles, in the thermoplastic transparent resin production process, a solution containing a polymer is at least 1 with a filter having a pore size of 0.5 μm or less, preferably 0.2 μm or less. Use a method of filtering more than once.

用いるフィルターとしては、PTFE製メンブランフィルター(PTI社製プロフロー、日本ポール社製エンフロンなど)やポリプロピレン製デプスフィルター(PTI社製ポリフローなど)、ポリエーテルサルホン製メンブランフィルター(PTI社製クラリフローなど)、焼結金属製フィルター、SUSランダムファイバー型フィルター、セルロース製電位吸着フィルターなどを用いることができるが、いずれも孔径は0.5μm以下のものを使用し、特に少なくとも一回はメンブランフィルターによる濾過を行うと効果的に異物粒子を排除することが出来る。また、該フィルターにかかる負荷を低減するために、フィルター上流に1μm〜10μm程度の目の粗いフィルターを設置しておくほうが好ましい。   Filters used include PTFE membrane filters (PTI Proflow, Nippon Pole Enflon, etc.), polypropylene depth filters (PTI Polyflow, etc.), polyethersulfone membrane filters (PTI Clariflow, etc.) ), Sintered metal filters, SUS random fiber type filters, cellulose potential adsorption filters, etc., all of which have a pore diameter of 0.5 μm or less, and at least once with a membrane filter. Can effectively eliminate foreign particles. In order to reduce the load applied to the filter, it is preferable to install a coarse filter having a size of about 1 μm to 10 μm upstream of the filter.

濾過を行う工程はいずれのタイミングでもよいが、水素化反応後に触媒を除去した反応液を濃縮する前の工程で行うと、粘度が低く、処理量が増えるため好ましい。また、脱揮押出によりペレット化する場合には、押出機直前に耐熱性のあるフィルターを設置するのも効果的である。   The step of performing filtration may be performed at any timing, but it is preferable to perform the step in the step before concentrating the reaction liquid from which the catalyst has been removed after the hydrogenation reaction because the viscosity is low and the processing amount increases. Moreover, when pelletizing by devolatilization extrusion, it is also effective to install a heat resistant filter immediately before the extruder.

また押出機から溶融吐出するストランドを冷却する工程、ペレタイジング工程、ペレットを射出成形機に導入する工程など、大気にさらされる工程を極力清浄な環境下で行うことにより異物粒子の含有量を低減させることができる。これらの工程の少なくとも一工程を、ISO14644−1で定めるクラス5以上の清浄度を持つ環境下で行うことが好ましい。   In addition, the content of foreign particles is reduced by performing the process exposed to the atmosphere in a clean environment as much as possible, such as the process of cooling the strand melted and discharged from the extruder, the pelletizing process, and the process of introducing pellets into the injection molding machine. be able to. It is preferable to perform at least one of these steps in an environment having a cleanliness of class 5 or higher as defined by ISO 14644-1.

本発明の熱可塑性透明樹脂を含む光学材料用樹脂組成物は、加熱溶融することで所望の形状に加工することができる。成形は、公知の射出成形法や押出成形法、熱プレス成形法などによって行うことができる。中でも光学素子はその生産性から射出成形がより一般的に用いられる。射出成形時のシリンダー温度は、好ましくは220〜320℃、より好ましくは230〜300℃である。さらに好ましくは240℃〜290℃である。シリンダー温度が高すぎると樹脂の分解や劣化等が起こって強度特性が低下したり着色したりする場合があり、低すぎると成形体に残留応力が発生して複屈折が大きくなったり、キャビティ形状の転写性が悪くなったりする。金型温度は好ましくは50〜180℃、より好ましくは80〜150℃である。金型温度が高すぎると離型不良が発生したり、成形サイクルが長くなり生産性が悪くなったりする。低すぎると複屈折が大きくなったり、転写性が悪くなったりする。射出圧力は、好ましくは30〜200MPa、より好ましくは60〜150MPaである。保圧時間は、好ましくは1〜300秒間、より好ましくは5〜150秒間である。保圧時間が、長すぎると樹脂の分解、劣化等が起こり、短すぎると成形収縮が大きくなる。冷却時間は、好ましくは5〜300秒間、より好ましくは10〜150秒間である。冷却時間は、長すぎると生産性が低下し、短すぎると複屈折が大きくなったり、転写性が悪くなったりする。成形条件が上記範囲にある場合、光学素子の機械強度、複屈折、離型性、転写性、生産性等がバランスされて好適である。本発明の熱可塑性透明樹脂は耐熱分解性に優れているため、いずれの方法によっても熱劣化などによる成形不良が少なく、色調に優れた成形品を製造することができる。   The resin composition for an optical material containing the thermoplastic transparent resin of the present invention can be processed into a desired shape by heating and melting. The molding can be performed by a known injection molding method, extrusion molding method, hot press molding method, or the like. Among them, injection molding is more commonly used for optical elements because of its productivity. The cylinder temperature at the time of injection molding is preferably 220 to 320 ° C, more preferably 230 to 300 ° C. More preferably, it is 240 degreeC-290 degreeC. If the cylinder temperature is too high, the resin may be decomposed or deteriorated, resulting in reduced strength characteristics or coloring. If it is too low, residual stress will be generated in the molded product, resulting in increased birefringence, cavity shape, etc. The transferability of the ink may deteriorate. The mold temperature is preferably 50 to 180 ° C, more preferably 80 to 150 ° C. If the mold temperature is too high, mold release failure occurs, and the molding cycle becomes longer, resulting in poor productivity. If it is too low, the birefringence becomes large or the transferability becomes poor. The injection pressure is preferably 30 to 200 MPa, more preferably 60 to 150 MPa. The pressure holding time is preferably 1 to 300 seconds, more preferably 5 to 150 seconds. If the pressure holding time is too long, decomposition or deterioration of the resin occurs, and if it is too short, molding shrinkage increases. The cooling time is preferably 5 to 300 seconds, more preferably 10 to 150 seconds. If the cooling time is too long, the productivity decreases, and if it is too short, the birefringence increases or the transferability deteriorates. When the molding conditions are in the above range, the mechanical strength, birefringence, releasability, transferability, productivity, etc. of the optical element are balanced. Since the thermoplastic transparent resin of the present invention is excellent in thermal decomposition resistance, it is possible to produce a molded article having excellent color tone with few molding defects due to thermal degradation or the like by any method.

成形品の具体的な用途としては、各種導光板、各種導光体、光ファイバー、レンズ、プリズム、光学フィルター、光学フィルムなど、光線を透過させて使用する光学素子をあげることができるが、特に波長405nm帯のレーザー光にも耐光性が良好であるため、これを透過させて用いる用途に最適である。射出成形では金型のキャビティ内の形状によって任意の形状にすることが出来るが、光学素子の表面に回折格子やプリズム、低反射加工といった機能性表面を賦形することも出来る。さらに具体的な用途としてはピックアップ対物レンズ、コリメートレンズ、シリンドリカルレンズ、アクロマティックレンズ、ビームエクスパンダー、レシーバーレンズといったレンズ類、光学フィルターやビームスプリッター、ハーフミラー、光ファイバー、回折格子などの光学素子が例示でき、これらの光学素子を用いる光ピックアップ装置の部材として有用である。   Specific applications of the molded product include various light guide plates, various light guides, optical fibers, lenses, prisms, optical filters, optical films, and other optical elements that transmit light, particularly wavelengths. Since the light resistance of the 405 nm band laser light is also good, it is most suitable for use in which it is transmitted. In the injection molding, an arbitrary shape can be formed depending on the shape in the cavity of the mold, but a functional surface such as a diffraction grating, a prism, or a low reflection processing can be formed on the surface of the optical element. Specific examples of applications include pickup objective lenses, collimating lenses, cylindrical lenses, achromatic lenses, beam expanders, receiver lenses, and optical elements such as optical filters, beam splitters, half mirrors, optical fibers, and diffraction gratings. And is useful as a member of an optical pickup device using these optical elements.

一般に、射出成形により製造された光学素子には成形時の応力が残存しているため、複屈折が発生する。複屈折が大きいプラスチックレンズなどを光ピックアップ装置に用いると、スポット形状が楕円形状に変形してしまい、光情報記録媒体の記録、再生を良好に行うことができない。本発明で用いる熱可塑性透明樹脂を含む光学材料用樹脂組成物から得られる成形体は複屈折が小さいので、前記光学素子は、成形手段、形状によらず、偏光を透過させる必要がある用途に最適である。偏光を透過させる用途の部材としては液晶ディスプレイ部材や、光学式情報記録用部材などがあるが、とりわけ光ピックアップ装置の部材として特に好適に用いることができる。   Generally, birefringence occurs in an optical element manufactured by injection molding because stress during molding remains. If a plastic lens or the like having a large birefringence is used in an optical pickup device, the spot shape is deformed into an elliptical shape, and recording and reproduction of the optical information recording medium cannot be performed satisfactorily. Since the molded body obtained from the resin composition for optical materials containing the thermoplastic transparent resin used in the present invention has a small birefringence, the optical element is used for applications that need to transmit polarized light regardless of the molding means and shape. Is optimal. There are a liquid crystal display member, an optical information recording member, and the like as a member for the purpose of transmitting polarized light, and it can be particularly preferably used as a member of an optical pickup device.

波長405nm帯のレーザーを使用する光ピックアップ装置は次世代高密度光ディスクに対して用いられるが、対物レンズの開口数が0.85のBlu−ray Discと開口数が0.65のHD DVDの2種類があり、いずれの光ピックアップ装置にもこれまでのDVDやCDと互換性のあるものが求められている。これを解決するために、2つの対物レンズを使用波長で切り替えて用いる方法や、レンズ表面に鋸歯形状の回折構造を賦形することで、屈折と回折の作用を利用して収差を補正する方法、可動式のコリメーターレンズを用いる方法などが開示されている。回折作用を発揮する微細構造は、対物レンズに施してもよいし、コリメーターレンズに施す場合もある。すなわち波長405nm帯のレーザーを使用する光ピックアップ装置に用いられる光学素子の素材としては、耐光性の問題からガラスが多く用いられているが、このような複雑な形状、微細な表面構造をもっているため、本発明で用いる熱可塑性透明樹脂を含む光学材料用樹脂組成物を射出成形して製造することが、実用上有意義なのである。   An optical pickup device using a laser with a wavelength of 405 nm band is used for next-generation high-density optical discs. There are various types, and all optical pickup devices are required to be compatible with conventional DVDs and CDs. In order to solve this, a method of using two objective lenses by switching at the used wavelength, or a method of correcting aberrations by utilizing the action of refraction and diffraction by shaping a sawtooth diffraction structure on the lens surface. A method using a movable collimator lens is disclosed. The fine structure exhibiting the diffractive action may be applied to the objective lens or may be applied to the collimator lens. That is, glass is often used as a material for optical elements used in optical pickup devices that use lasers having a wavelength of 405 nm band because of the problem of light resistance, but has such a complicated shape and fine surface structure. It is practically meaningful to produce an optical material resin composition containing the thermoplastic transparent resin used in the present invention by injection molding.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらの例によりその範囲を限定されるものではない。なお、熱可塑性透明樹脂および脂熱可塑性透明樹脂を含む光学材料用樹脂組成物の評価方法は次の通りである。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited by these examples. In addition, the evaluation method of the resin composition for optical materials containing a thermoplastic transparent resin and a fat thermoplastic transparent resin is as follows.

評価方法
(1)共重合体中の構成単位のモル比
H―NMR(400MHz:CDCl)の測定値から計算した。
(2)水素化率
水素化反応前後のUVスペクトル測定における波長260nmの吸収の減少率により求めた。水素化反応前の樹脂の濃度Cにおける吸光度A、水素化反応後の樹脂の濃度Cにおける吸光度Aから、以下の式より算出した。
水素化率=100×[1−(A×C)/(A×C)]
(3)ガラス転移温度(Tg)
セイコー電子工業(株)製DSC220型示差走査熱量測定(DSC)装置を用い、樹脂量10mg、10℃/min.の条件で測定し、中点法で算出した。
(4)曲げ試験(曲げ強さ、曲げ弾性率)
射出成形によって得られた126×12×3.2(mm)の直方体の試験片をそれぞれTgより20℃低い温度で16時間アニールし、23℃、50RH条件下にて88時間以上調湿した後に行った。曲げ強さ、曲げ弾性率はJIS K7203に従って測定した。
(5)微小異物量の測定
次に示す方法にて調整した試料を、パーティクルカウンタPacific Scientific Instruments社製HIAC ROYCO SYSTEM 8011で測定し、0.5μm以上1.0μm未満の微小異物の量をカウントした。測定試料の調整法としては、得られた光学材料用樹脂組成物のペレットをあらかじめ濾過して異物を除去したイソプロピルアルコールで超音波洗浄し、表面付着物を取り除き、得られた洗浄ペレットをあらかじめ異物を除去したトルエンに溶解させて5wt%の溶液を作製して測定に供した。
(6)複屈折の測定
射出成形機ファナック製AUTOSHOT100Bを用い、50mmφ、3.2mm厚の円盤状平板を成形した。シリンダーの温度は230℃。金型温度はTgより20℃低い温度に設定、冷却時間は15秒間した。成形片にヒケがないよう計量値、保圧力、保圧時間を適宜決定して得られた円盤状平板の中央部分の位相差を日本分光製エリプソメーターM−220で測定した。測定波長は405nm、650nm、780nmの3波長を用いた。
(7)波長405nmの初期光線透過率
島津製作所製紫外可視分光光度計UV−3100PCを用いて、3.2mm厚の平板を透過法で測定した。
(8)波長405nm帯レーザーの耐光性
射出成形によって得られた3.2mm厚さの熱可塑性樹脂の平板を、空気下80℃のオーブンに入れ、ビーム径4.8mmφ、エネルギー密度500mW/cmとなるよう調整した波長405nm帯のレーザー光を照射した。2mmφ程度の部位に絞った測定が可能となるよう、光束絞り改造を施した紫外可視分光光度計で、レーザー光照射部分の光線透過率を測定し、波長405nmでの光線透過率の径時変化を追跡した。波長405nm光の透過率が0.5%減となった時点での照射時間を記録し、耐光性を評価した。耐光性を示した照射時間が300時間以上を○、300時間未満、150時間以上を△、150時間未満を×とした。
(9)プラスチックレンズの転写性
射出成形したプラスチックレンズを光学顕微鏡で観察し、ヒケ、表面の凹み、荒れなどの欠陥があるものを不良品とした。生産した100個のプラスチックレンズのうち、不良品がない場合をA、不良品が1〜10個の場合をB、不良品が11個以上の場合をCとした。
(10)プラスチックレンズの波長405nm帯レーザーの耐光性
射出成形したプラスチックレンズを空気下80℃のオーブンに入れ、エネルギー密度500mW/cmとなるよう出力を調整した波長405nm帯のレーザー光を300時間照射した。所定時間後、目視及び光学顕微鏡で観察し、照射部分の白化や表面の形状の荒れのないものを○、変化の兆候が見られるものを△、変化が確認されたものを×とした。
Evaluation method (1) Molar ratio of structural units in copolymer
It calculated from the measured value of 1 H-NMR (400 MHz: CDCl 3 ).
(2) Hydrogenation rate It calculated | required by the decreasing rate of absorption of wavelength 260nm in the UV spectrum measurement before and behind hydrogenation reaction. From the absorbance A 1 at the concentration C 1 of the resin before the hydrogenation reaction and the absorbance A 2 at the concentration C 2 of the resin after the hydrogenation reaction, it was calculated from the following equation.
Hydrogenation rate = 100 × [1- (A 2 × C 1 ) / (A 1 × C 2 )]
(3) Glass transition temperature (Tg)
Using a DSC220 type differential scanning calorimetry (DSC) apparatus manufactured by Seiko Denshi Kogyo Co., Ltd., the resin amount was 10 mg, 10 ° C./min. The measurement was performed under the conditions described above, and the midpoint method was used.
(4) Bending test (bending strength, flexural modulus)
A 126 × 12 × 3.2 (mm) rectangular parallelepiped test piece obtained by injection molding was annealed for 16 hours at a temperature 20 ° C. lower than Tg, respectively, and conditioned at 23 ° C. and 50 RH for 88 hours or more. went. The bending strength and flexural modulus were measured according to JIS K7203.
(5) Measurement of the amount of minute foreign matter The sample prepared by the following method was measured with a HIAC ROYCO SYSTEM 8011 manufactured by Particle Scientific Instruments, and the amount of minute foreign matter of 0.5 μm or more and less than 1.0 μm was counted. . As a method for preparing the measurement sample, the obtained pellet of the resin composition for optical material was filtered in advance with ultrasonic cleaning with isopropyl alcohol from which foreign matters had been removed, the surface deposits were removed, and the resulting washed pellets were preliminarily foreign matter. A 5 wt% solution was prepared by dissolving in toluene from which the water was removed.
(6) Measurement of birefringence A disk-shaped flat plate having a thickness of 50 mmφ and a thickness of 3.2 mm was molded using an AUTOSHOT 100B manufactured by FANUC, an injection molding machine. The cylinder temperature is 230 ° C. The mold temperature was set to 20 ° C. lower than Tg, and the cooling time was 15 seconds. The phase difference of the central part of the disc-shaped flat plate obtained by appropriately determining the measurement value, the holding pressure, and the holding time so that there is no sink on the molded piece was measured with an ellipsometer M-220 manufactured by JASCO. The measurement wavelengths used were three wavelengths of 405 nm, 650 nm, and 780 nm.
(7) Initial light transmittance at a wavelength of 405 nm A 3.2 mm thick flat plate was measured by a transmission method using an ultraviolet-visible spectrophotometer UV-3100PC manufactured by Shimadzu Corporation.
(8) Light resistance of 405 nm wavelength laser A 3.2 mm-thick thermoplastic resin plate obtained by injection molding is placed in an oven at 80 ° C. under air, a beam diameter of 4.8 mmφ, and an energy density of 500 mW / cm 2. A laser beam having a wavelength of 405 nm band adjusted to become was irradiated. Measure the light transmittance of the laser light irradiated part with an ultraviolet-visible spectrophotometer with a modified beam stop so that the measurement can be focused on a site of about 2 mmφ, and the time-dependent change in the light transmittance at a wavelength of 405 nm Tracked. The irradiation time when the transmittance of light having a wavelength of 405 nm was reduced by 0.5% was recorded, and light resistance was evaluated. Irradiation time showing light resistance was evaluated as ◯ for 300 hours or more, less than 300 hours, Δ for 150 hours or more, and x for less than 150 hours.
(9) Transferability of plastic lens The injection-molded plastic lens was observed with an optical microscope, and defectives such as sink marks, surface dents, and roughness were regarded as defective. Of the 100 plastic lenses produced, A was assigned when there was no defective product, B was assigned when there were 1 to 10 defective products, and C was assigned when there were 11 or more defective products.
(10) Light resistance of a 405 nm wavelength laser of a plastic lens An injection molded plastic lens is placed in an oven at 80 ° C. in the air, and a laser beam having a wavelength of 405 nm is adjusted for an energy density of 500 mW / cm 2 for 300 hours. Irradiated. After a predetermined time, the sample was observed visually and with an optical microscope. A sample without whitening or roughening of the surface of the irradiated portion was indicated by ◯, a symbol showing a change was indicated by Δ, and a change was confirmed by ×.

実施例1
モノマー成分としてメタクリル酸メチル59.9モル%とスチレン39.9モル%、重合開始剤として2.1×10-3モル%のt−アミルパーオキシ2−エチルヘキサノエートからなるモノマー組成物を、ヘリカルリボン翼付き10リットル完全混合槽に1kg/時間で連続的にフィードし、平均滞留時間2.5時間、重合温度150℃で連続重合を行った。
Example 1
A monomer composition comprising 59.9 mol% methyl methacrylate and 39.9 mol% styrene as monomer components and 2.1 × 10 −3 mol% t-amylperoxy 2-ethylhexanoate as a polymerization initiator Then, the mixture was continuously fed at a rate of 1 kg / hour to a 10 liter complete mixing tank with a helical ribbon blade, and continuous polymerization was carried out at an average residence time of 2.5 hours and a polymerization temperature of 150 ° C.

重合槽液面が一定となるように、底部から重合液をギヤポンプで抜き出し、150℃に維持しながら、ベント口を備えた押出機に導入して揮発分を脱揮し、ストランド状に押出し、切断してペレットとした(樹脂A)。このとき共重合体中の構成単位のモル比(A/B)は1.5であった。
また、樹脂Aの16.4mgをクロロホルム15mLに溶解させ、測定した波長260nmの吸光度は1.093であった。
The polymerization liquid is drawn out from the bottom with a gear pump so that the polymerization tank liquid level is constant, and while maintaining at 150 ° C., it is introduced into an extruder equipped with a vent port to devolatilize and extrude into a strand, Cutting into pellets (resin A). At this time, the molar ratio (A / B) of the structural units in the copolymer was 1.5.
In addition, 16.4 mg of Resin A was dissolved in 15 mL of chloroform, and the measured absorbance at a wavelength of 260 nm was 1.093.

上記、樹脂Aをジオキサンに溶解し、10wt%ジオキサン溶液を調製した。1000mLオートクレーブ装置に10wt%ジオキサン溶液を500重量部、10wt%Pd/C(NEケムキャット社製)を1重量部仕込み、水素圧10MPaで200℃、15時間保持して水素化反応した。フィルターにより触媒を除去した後、ジオキサンを加熱留去して反応液を50wt%まで濃縮した。トルエンで再び10wt%まで希釈することを繰り返して溶媒置換し、50wt%トルエン溶液を得た。   Resin A was dissolved in dioxane to prepare a 10 wt% dioxane solution. A 1000 mL autoclave was charged with 500 parts by weight of a 10 wt% dioxane solution and 1 part by weight of 10 wt% Pd / C (manufactured by NE Chemcat), and the hydrogenation reaction was carried out by maintaining the hydrogen pressure at 10 MPa at 200 ° C. for 15 hours. After removing the catalyst with a filter, dioxane was distilled off by heating to concentrate the reaction solution to 50 wt%. Dilution to 10 wt% with toluene was repeated to replace the solvent to obtain a 50 wt% toluene solution.

得られた樹脂液の一部からメタノール中に沈殿精製し、乾燥させた樹脂の62.5mgをクロロホルム5mLに溶解させて測定した波長260nmの吸光度は0.521であった。前記樹脂Aの波長260nmの吸光度、測定試料の濃度から、水素化率は96%と計算された。   Absorbance at a wavelength of 260 nm measured by dissolving 62.5 mg of the resin obtained by precipitation purification in methanol from a part of the obtained resin liquid and 5 mL of chloroform was 0.521. From the absorbance of the resin A at a wavelength of 260 nm and the concentration of the measurement sample, the hydrogenation rate was calculated to be 96%.

50wt%トルエン溶液を再びトルエンで10wt%まで希釈し、オクタデシル−3−(3、5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネートを樹脂100重量部に対して0.05重量部、2−(2H−ベンゾトリアゾール−2−イル)−4、6−ビス(1−メチル−1−フェニルエチル)フェノールを樹脂100重量部に対して0.01重量部、ビス(1、2、2、6、6−ペンタメチル−4−ピペリジル)[[3,5−ビス(1、1−ジメチルエチル)−4−ヒドロキシフェニル]メチル]ブチルマロネートを樹脂100重量部に対して0.02重量部添加した。   The 50 wt% toluene solution was again diluted with toluene to 10 wt%, and octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate was added in an amount of 0.05 parts by weight to 100 parts by weight of resin. -(2H-benzotriazol-2-yl) -4,6-bis (1-methyl-1-phenylethyl) phenol in an amount of 0.01 parts by weight, bis (1,2,2, 6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate is added in an amount of 0.02 parts by weight based on 100 parts by weight of the resin. did.

この組成物をギヤポンプで直列に接続した2本のカートリッジ型フィルターハウジングへ送液して濾過を行った。1本目のプレフィルターとしてはPP製デプスフィルター(PTI社製ポリフロー孔径5μm)を用い、2本目の仕上げフィルターとしてPTFE製メンブランフィルター(PTI社製プロフローII孔径0.45μm)を用いた。濾過された樹脂液をタンクで昇温し、さらにギヤポンプでベント口を備えた押出機に導入して揮発分を脱揮して、ストランド状に押出した。これをクリーンブース内に設置したペレタイザで切断して熱可塑性透明樹脂を含む光学材料用樹脂組成物のペレットを得た(組成物A1)。   The composition was filtered through two cartridge-type filter housings connected in series with a gear pump. A PP depth filter (PTI Polyflow pore diameter 5 μm) was used as the first prefilter, and a PTFE membrane filter (PTI Proflow II pore diameter 0.45 μm) was used as the second finish filter. The filtered resin solution was heated in a tank, and further introduced into an extruder equipped with a vent port by a gear pump to devolatilize volatile components and extruded into a strand shape. This was cut with a pelletizer installed in a clean booth to obtain pellets of a resin composition for an optical material containing a thermoplastic transparent resin (Composition A1).

組成物A1を用いて射出成形機(ファナック製AUTOSHOT100B)により、シリンダー温度260℃で種々の試験片を作製し、ガラス転移温度、曲げ強さ、曲げ弾性率、微小異物量、波長405nm、650nm、780nmにおける複屈折量(位相差)、波長405nmの初期光線透過率、波長405nm帯レーザーの耐光性を評価した。結果を第1表に示す。   Various test pieces were produced at a cylinder temperature of 260 ° C. by using an injection molding machine (FANUC AUTOSHOT 100B) using the composition A1, and the glass transition temperature, bending strength, bending elastic modulus, minute foreign matter amount, wavelength 405 nm, 650 nm, The amount of birefringence (phase difference) at 780 nm, the initial light transmittance at a wavelength of 405 nm, and the light resistance of a laser with a wavelength of 405 nm were evaluated. The results are shown in Table 1.

実施例2
モノマー成分としてメタクリル酸メチル80.0モル%とスチレン19.8モル%を用いた以外は製造例1と同様にして共重合体を合成した(樹脂B)。共重合体中の構成単位のモル比(A/B)は4.0であった。
Example 2
A copolymer was synthesized in the same manner as in Production Example 1 except that 80.0 mol% methyl methacrylate and 19.8 mol% styrene were used as monomer components (Resin B). The molar ratio (A / B) of the structural units in the copolymer was 4.0.

樹脂Bを用いた以外は実施例1と同様にして、水素化反応して熱可塑性透明樹脂を含む光学材料用樹脂組成物を得た(組成物B1)。水素化率は100%であった。組成物Bを用い、実施例1と同様にして、ガラス転移温度、曲げ強さ、曲げ弾性率、微小異物量、波長405nm、650nm、780nmにおける複屈折量(位相差)、波長405nmの初期光線透過率、波長405nm帯レーザーの耐光性を評価した。結果を第1表に示す。   A resin composition for an optical material containing a thermoplastic transparent resin was obtained by a hydrogenation reaction in the same manner as in Example 1 except that the resin B was used (composition B1). The hydrogenation rate was 100%. Using composition B, in the same manner as in Example 1, glass transition temperature, bending strength, bending elastic modulus, amount of fine foreign matter, birefringence amount (phase difference) at wavelengths of 405 nm, 650 nm, and 780 nm, initial ray at wavelength of 405 nm The transmittance and the light resistance of a 405 nm wavelength laser were evaluated. The results are shown in Table 1.

実施例3
モノマー成分としてメタクリル酸メチル50.7モル%、アクリル酸メチル9.3モル%とスチレン39.8モル%を用いた以外は実施例1と同様にして共重合体を合成した(樹脂C)。共重合体中の構成単位のモル比(A/B)は1.6であった。
Example 3
A copolymer was synthesized in the same manner as in Example 1 except that 50.7 mol% methyl methacrylate, 9.3 mol% methyl acrylate, and 39.8 mol% styrene were used as the monomer components (Resin C). The molar ratio (A / B) of the structural units in the copolymer was 1.6.

樹脂Cを用いた以外は実施例1と同様にして、水素化反応して熱可塑性透明樹脂を含む光学材料用樹脂組成物を得た(組成物C1)。水素化率は97%であった。組成物C1を用い、実施例1と同様にして、ガラス転移温度、曲げ強さ、曲げ弾性率、微小異物量、波長405nm、650nm、780nmにおける複屈折量(位相差)、波長405nmの初期光線透過率、波長405nm帯レーザーの耐光性を評価した。結果を第1表に示す。
実施例4
モノマー成分としてメタクリル酸メチル51.3モル%、スチレン48.7モル%を用いた以外は実施例1と同様にして共重合体を合成した(樹脂D)。共重合体中の構成単位のモル比(A/B)は1.1であった。
A resin composition for an optical material containing a thermoplastic transparent resin was obtained by a hydrogenation reaction in the same manner as in Example 1 except that the resin C was used (composition C1). The hydrogenation rate was 97%. Using composition C1, in the same manner as in Example 1, glass transition temperature, bending strength, bending elastic modulus, amount of fine foreign matter, birefringence amount (phase difference) at wavelengths of 405 nm, 650 nm, and 780 nm, initial ray at wavelength of 405 nm The transmittance and the light resistance of a 405 nm wavelength laser were evaluated. The results are shown in Table 1.
Example 4
A copolymer was synthesized in the same manner as in Example 1 except that 51.3 mol% methyl methacrylate and 48.7 mol% styrene were used as monomer components (Resin D). The molar ratio (A / B) of the structural units in the copolymer was 1.1.

樹脂Dを用いた以外は実施例1と同様にして、水素化反応して熱可塑性透明樹脂を含む光学材料用樹脂組成物を得た(組成物D1)。水素化率は98%であった。組成物D1を用い、実施例1と同様にして、ガラス転移温度、曲げ強さ、曲げ弾性率、微小異物量、波長405nm、650nm、780nmにおける複屈折量(位相差)、波長405nmの初期光線透過率、波長405nm帯レーザーの耐光性を評価した。結果を第1表に示す。   A resin composition for an optical material containing a thermoplastic transparent resin was obtained by a hydrogenation reaction in the same manner as in Example 1 except that the resin D was used (composition D1). The hydrogenation rate was 98%. Using composition D1, in the same manner as in Example 1, glass transition temperature, bending strength, bending elastic modulus, amount of fine foreign matter, birefringence amount (phase difference) at wavelengths of 405 nm, 650 nm, and 780 nm, initial ray at wavelength of 405 nm The transmittance and the light resistance of a 405 nm wavelength laser were evaluated. The results are shown in Table 1.

比較例1
樹脂Aの水素化反応時間を10時間に短縮した以外は実施例1と同様にして、水素化率の異なる熱可塑性透明樹脂を含む光学材料用樹脂組成物(水素化率72%、組成物A2)を得た。組成物A2を用い、実施例1と同様にして、ガラス転移温度、曲げ強さ、曲げ弾性率、微小異物量、波長405nm、650nm、780nmにおける複屈折量(位相差)、波長405nmの初期光線透過率、波長405nm帯レーザーの耐光性を評価した。結果を第2表に示す。
Comparative Example 1
A resin composition for an optical material containing a thermoplastic transparent resin having a different hydrogenation rate (72% hydrogenation rate, composition A2) in the same manner as in Example 1 except that the hydrogenation reaction time of the resin A was reduced to 10 hours. ) Using composition A2, in the same manner as in Example 1, glass transition temperature, bending strength, bending elastic modulus, amount of fine foreign matter, birefringence amount (phase difference) at wavelengths of 405 nm, 650 nm, and 780 nm, initial ray at wavelength of 405 nm The transmittance and the light resistance of a 405 nm wavelength laser were evaluated. The results are shown in Table 2.

比較例2
樹脂Bの水素化反応の時間を3時間に短縮した以外は実施例1と同様にして、水素化率の異なる熱可塑性透明樹脂を含む光学材料用樹脂組成物(水素化率76%、組成物B2)を得た。組成物B2を用い、製造例1と同様にして、ガラス転移温度、曲げ強さ、曲げ弾性率、微小異物量、波長405nm、650nm、780nmにおける複屈折量(位相差)、波長405nmの初期光線透過率、波長405nm帯レーザーの耐光性を評価した。結果を第2表に示す。
Comparative Example 2
Resin composition for optical materials containing a thermoplastic transparent resin having a different hydrogenation rate (hydrogenation rate: 76%, composition) in the same manner as in Example 1 except that the time for the hydrogenation reaction of resin B was shortened to 3 hours B2) was obtained. Using composition B2, in the same manner as in Production Example 1, glass transition temperature, bending strength, bending elastic modulus, amount of fine foreign matter, birefringence amount (phase difference) at wavelengths of 405 nm, 650 nm, and 780 nm, initial ray at wavelength of 405 nm The transmittance and the light resistance of a 405 nm wavelength laser were evaluated. The results are shown in Table 2.

比較例3
樹脂Cの水素化反応時間を3時間に短縮した以外は実施例1と同様にして、水素化率の異なる熱可塑性透明樹脂を含む光学材料用樹脂組成物(水素化率72%、組成物C2)を得た。組成物C2を用い、実施例1と同様にして、ガラス転移温度、曲げ強さ、曲げ弾性率、微小異物量、波長405nm、650nm、780nmにおける複屈折量(位相差)、波長405nmの初期光線透過率、波長405nm帯レーザーの耐光性を評価した。結果を第2表に示す。
Comparative Example 3
A resin composition for an optical material containing a thermoplastic transparent resin having a different hydrogenation rate (hydrogenation rate: 72%, composition C2) in the same manner as in Example 1 except that the hydrogenation reaction time of the resin C was shortened to 3 hours. ) Using composition C2, in the same manner as in Example 1, glass transition temperature, bending strength, bending elastic modulus, amount of minute foreign matter, birefringence amount (phase difference) at wavelengths of 405 nm, 650 nm, and 780 nm, initial ray at wavelength of 405 nm The transmittance and the light resistance of a 405 nm wavelength laser were evaluated. The results are shown in Table 2.

比較例4
樹脂Dの水素化反応時間を8時間に短縮した以外は実施例1と同様にして、水素化率の異なる熱可塑性透明樹脂を含む光学材料用樹脂組成物(水素化率70%、組成物D2)を得た。組成物D2を用い、実施例1と同様にして、ガラス転移温度、曲げ強さ、曲げ弾性率、微小異物量、波長405nm、650nm、780nmにおける複屈折量(位相差)、波長405nmの初期光線透過率、波長405nm帯レーザーの耐光性を評価した。結果を第2表に示す。
Comparative Example 4
Resin composition for optical material containing a thermoplastic transparent resin having a different hydrogenation rate (hydrogenation rate: 70%, composition D2) in the same manner as in Example 1 except that the hydrogenation reaction time of resin D was reduced to 8 hours. ) Using composition D2, in the same manner as in Example 1, glass transition temperature, bending strength, bending elastic modulus, amount of minute foreign matter, birefringence amount (phase difference) at wavelengths of 405 nm, 650 nm, and 780 nm, initial ray at wavelength of 405 nm The transmittance and the light resistance of a 405 nm wavelength laser were evaluated. The results are shown in Table 2.

比較例5
モノマー成分としてメタクリル酸メチル20.4モル%とスチレン79.4モル%を用いた以外は実施例1と同様にして共重合体を合成した(樹脂E)。共重合体中の構成単位のモル比(A/B)は0.25であった。
Comparative Example 5
A copolymer was synthesized in the same manner as in Example 1 except that 20.4 mol% of methyl methacrylate and 79.4 mol% of styrene were used as monomer components (Resin E). The molar ratio (A / B) of the structural units in the copolymer was 0.25.

樹脂Eを用いた以外は実施例1と同様にして、水素化反応して熱可塑性透明樹脂を含む光学材料用樹脂組成物を得た(組成物E1)。水素化率は95%であった。組成物E1を用い、実施例1と同様にして、ガラス転移温度、曲げ強さ、曲げ弾性率、微小異物量、波長405nm、650nm、780nmにおける複屈折量(位相差)、波長405nmの初期光線透過率、波長405nm帯レーザーの耐光性を評価した。結果を第2表に示す。   A resin composition for an optical material containing a thermoplastic transparent resin was obtained by a hydrogenation reaction in the same manner as in Example 1 except that the resin E was used (composition E1). The hydrogenation rate was 95%. Using composition E1, in the same manner as in Example 1, glass transition temperature, bending strength, bending elastic modulus, amount of fine foreign matter, birefringence amount (phase difference) at wavelengths of 405 nm, 650 nm, and 780 nm, initial ray at wavelength of 405 nm The transmittance and the light resistance of a 405 nm wavelength laser were evaluated. The results are shown in Table 2.

比較例6
上記、実施例1において、溶液状態の組成物に対して、フィルターによる濾過を行わずに製造した以外は実施例1と同様にして、熱可塑性透明樹脂を含む光学材料用樹脂組成物を製造した(組成物A3)。組成物A3を用い、実施例1と同様にして、ガラス転移温度、曲げ強さ、曲げ弾性率、微小異物量、波長405nm、650nm、780nmにおける複屈折量(位相差)、波長405nmの初期光線透過率、波長405nm帯レーザーの耐光性を評価した。結果を第2表に示す。
Comparative Example 6
In Example 1, a resin composition for an optical material containing a thermoplastic transparent resin was produced in the same manner as in Example 1 except that the composition in a solution state was produced without filtration through a filter. (Composition A3). Using composition A3, in the same manner as in Example 1, glass transition temperature, bending strength, bending elastic modulus, amount of minute foreign matter, birefringence amount (phase difference) at wavelengths of 405 nm, 650 nm, and 780 nm, initial ray at wavelength of 405 nm The transmittance and the light resistance of a 405 nm wavelength laser were evaluated. The results are shown in Table 2.

Figure 2008015199
Figure 2008015199

Figure 2008015199
Figure 2008015199

実施例5 プラスチックレンズの成形
実施例1で作製した光学材料用樹脂組成物を用いて射出成形機(ファナック社製、AUTOSHOT100B)により、樹脂温度260℃、金型温度100℃にて、ピックアップレンズを成形した。直交させた二枚の偏光板の間に得られたレンズをおき、面光源上において観察したが、複屈折によるムラや光の抜けはほとんど見られなかった。キャビティ内形状の転写性も良好であり、耐光性も良好であった。転写性および耐光性の評価の結果を第3表に示す。
Example 5 Molding of Plastic Lens Using the resin composition for optical materials produced in Example 1, an injection molding machine (manufactured by FANUC, AUTOSHOOT 100B) was used to form a pickup lens at a resin temperature of 260 ° C. and a mold temperature of 100 ° C. Molded. The obtained lens was placed between two orthogonal polarizing plates and observed on a surface light source, but almost no unevenness or light loss due to birefringence was observed. The transferability of the shape inside the cavity was also good, and the light resistance was also good. The results of evaluation of transferability and light resistance are shown in Table 3.

実施例6
実施例2で作製した光学材料用樹脂組成物を用いて実施例5と同様にピックアップレンズを成形した。直交させた二枚の偏光板の間に得られたレンズをおき、面光源上において観察したが、複屈折によるムラや光の抜けはほとんど見られなかった。キャビティ内形状の転写性も良好であり、耐光性も良好であった。転写性および耐光性の評価の結果を第3表に示す。
Example 6
A pickup lens was molded in the same manner as in Example 5 by using the optical material resin composition prepared in Example 2. The obtained lens was placed between two orthogonal polarizing plates and observed on a surface light source, but almost no unevenness or light loss due to birefringence was observed. The transferability of the shape inside the cavity was also good, and the light resistance was also good. The results of evaluation of transferability and light resistance are shown in Table 3.

実施例7
実施例3で作製した光学材料用樹脂組成物を用いて実施例5と同様にピックアップレンズを成形した。直交させた二枚の偏光板の間に得られたレンズをおき、面光源上において観察したが、複屈折によるムラや光の抜けはほとんど見られなかった。キャビティ内形状の転写性も良好であり、耐光性も良好であった。転写性および耐光性の評価の結果を第3表に示す。
Example 7
A pickup lens was molded in the same manner as in Example 5 by using the optical material resin composition prepared in Example 3. The obtained lens was placed between two orthogonal polarizing plates and observed on a surface light source, but almost no unevenness or light loss due to birefringence was observed. The transferability of the shape inside the cavity was also good, and the light resistance was also good. The results of evaluation of transferability and light resistance are shown in Table 3.

実施例8
実施例4で作製した光学材料用樹脂組成物を用いて実施例5と同様にピックアップレンズを成形した。直交させた二枚の偏光板の間に得られたレンズをおき、面光源上において観察したが、複屈折によるムラや光の抜けはほとんど見られなかった。キャビティ内形状の転写性も良好であり、耐光性も良好であった。転写性および耐光性の評価の結果を第3表に示す。
Example 8
A pickup lens was molded in the same manner as in Example 5 using the optical material resin composition prepared in Example 4. The obtained lens was placed between two orthogonal polarizing plates and observed on a surface light source, but almost no unevenness or light loss due to birefringence was observed. The transferability of the shape inside the cavity was also good, and the light resistance was also good. The results of evaluation of transferability and light resistance are shown in Table 3.

Figure 2008015199
Figure 2008015199

Claims (4)

少なくとも1種の(メタ)アクリル酸エステルモノマーと少なくとも1種の芳香族ビニルモノマーとを含むモノマー組成物を重合して得られ、かつ、芳香族ビニルモノマー由来の構成単位(Bモル)に対する(メタ)アクリル酸エステルモノマー由来の構成単位(Aモル)のモル比(A/B)が1〜4である共重合体の芳香族二重結合の90%以上を水素化して得られる熱可塑性透明樹脂を含む光学材料用樹脂組成物であって、該熱可塑性透明樹脂が有機溶媒に溶解した状態で孔径0.5μm以下のフィルターによって少なくとも1回濾過されたものであることを特徴とする光学材料用樹脂組成物。 It is obtained by polymerizing a monomer composition containing at least one (meth) acrylic acid ester monomer and at least one aromatic vinyl monomer, and (meth) with respect to the structural unit (B mole) derived from the aromatic vinyl monomer. ) Thermoplastic transparent resin obtained by hydrogenating 90% or more of the aromatic double bond of the copolymer whose molar ratio (A / B) of the structural unit (A mole) derived from the acrylate monomer is 1-4. A resin composition for an optical material comprising the thermoplastic transparent resin that has been filtered at least once with a filter having a pore size of 0.5 μm or less in a state dissolved in an organic solvent. Resin composition. 請求項1に記載の光学材料用樹脂組成物を成形してなる光学素子。 The optical element formed by shape | molding the resin composition for optical materials of Claim 1. 少なくとも波長405nm帯のレーザー光を透過させて用いることを特徴とする請求項2に記載の光学素子。 The optical element according to claim 2, wherein the optical element is used by transmitting at least a laser beam having a wavelength of 405 nm. 光ピックアップ装置に組み込まれる部材である請求項3に記載の光学素子。 The optical element according to claim 3, wherein the optical element is a member incorporated in the optical pickup device.
JP2006186002A 2006-07-05 2006-07-05 Resin composition for optical material, and optical element Pending JP2008015199A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006186002A JP2008015199A (en) 2006-07-05 2006-07-05 Resin composition for optical material, and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006186002A JP2008015199A (en) 2006-07-05 2006-07-05 Resin composition for optical material, and optical element

Publications (1)

Publication Number Publication Date
JP2008015199A true JP2008015199A (en) 2008-01-24

Family

ID=39072284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006186002A Pending JP2008015199A (en) 2006-07-05 2006-07-05 Resin composition for optical material, and optical element

Country Status (1)

Country Link
JP (1) JP2008015199A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249548A (en) * 2008-04-08 2009-10-29 Nippon Shokubai Co Ltd Thermoplastic resin molded product and its manufacturing method
JP2010026487A (en) * 2008-06-16 2010-02-04 Sharp Corp Developing device and image forming apparatus equipped therewith
JP2012201729A (en) * 2011-03-24 2012-10-22 Nippon Shokubai Co Ltd Method for producing thermoplastic resin containing reduced amount of foreign matter, method for producing thermoplastic resin composition containing reduced amount of foreign matter, and method for producing thermoplastic resin molded article containing reduced amount of foreign matter
WO2020013203A1 (en) 2018-07-13 2020-01-16 旭化成株式会社 Methacrylic resin, moulded article, optical component or automotive component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009249548A (en) * 2008-04-08 2009-10-29 Nippon Shokubai Co Ltd Thermoplastic resin molded product and its manufacturing method
JP2010026487A (en) * 2008-06-16 2010-02-04 Sharp Corp Developing device and image forming apparatus equipped therewith
JP2012201729A (en) * 2011-03-24 2012-10-22 Nippon Shokubai Co Ltd Method for producing thermoplastic resin containing reduced amount of foreign matter, method for producing thermoplastic resin composition containing reduced amount of foreign matter, and method for producing thermoplastic resin molded article containing reduced amount of foreign matter
WO2020013203A1 (en) 2018-07-13 2020-01-16 旭化成株式会社 Methacrylic resin, moulded article, optical component or automotive component
KR20200143426A (en) 2018-07-13 2020-12-23 아사히 가세이 가부시키가이샤 Methacrylic resin, molded body, optical part or automobile part
KR20220097535A (en) 2018-07-13 2022-07-07 아사히 가세이 가부시키가이샤 Methacrylic resin, moulded article, optical component or automotive component
US11603441B2 (en) 2018-07-13 2023-03-14 Asahi Kasei Kabushiki Kaisha Methacrylic resin, shaped article, and optical component or automotive part

Similar Documents

Publication Publication Date Title
KR100711149B1 (en) Polyester resin composition and optical material
JP4910311B2 (en) Thermoplastic transparent resin
US7501465B2 (en) Resin composition
WO2002012362A1 (en) Block copolymer, process for producing the same, and molded object
WO1998055886A1 (en) Molding material for plastic lenses
JP2001048924A (en) Alicyclic hydrocarbon-based copolymer
KR20050115259A (en) Polyester, moldings thereof, and process for production of the polyester
JP2008015199A (en) Resin composition for optical material, and optical element
JP2008115314A (en) Oriented film
JP2001272501A (en) Plastic lens
JPWO2008015999A1 (en) Composite material and optical element
JP2005266780A (en) Optical element and optical pickup device
JP2003270401A (en) Optical molding
JP5007688B2 (en) Optical resin composition and optical component
US7446152B2 (en) Method of producing hydrogenated polymers
JP5023519B2 (en) Method for producing hydrogenated polymer
JP5440178B2 (en) Alicyclic hydrocarbon random copolymer, process for producing the same, resin composition, and molded article
JP2005202056A (en) Optical resin lens
JPWO2011138953A1 (en) Thermoplastic transparent resin composition
JP2000212226A (en) Cyclic hydrocarbon polymer and its preparation
JP5257046B2 (en) Alicyclic hydrocarbon random copolymer, process for producing the same, resin composition, and molded article
JP2003192780A (en) Molding material for optical part
JP2005234174A (en) Optical resin lens and method for manufacturing optical resin lens
JP2004325950A (en) Plastic optical element and optical pickup device
JP2006188623A (en) Resin for optical element and method for producing the same, and optical element using the same