[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008012121A - 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法 - Google Patents

荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法 Download PDF

Info

Publication number
JP2008012121A
JP2008012121A JP2006187352A JP2006187352A JP2008012121A JP 2008012121 A JP2008012121 A JP 2008012121A JP 2006187352 A JP2006187352 A JP 2006187352A JP 2006187352 A JP2006187352 A JP 2006187352A JP 2008012121 A JP2008012121 A JP 2008012121A
Authority
JP
Japan
Prior art keywords
charged particle
particle beam
extraction
energy
dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006187352A
Other languages
English (en)
Other versions
JP4206414B2 (ja
Inventor
Kunio Moriyama
國夫 森山
Noriaki Ouchi
紀明 大内
Masahiro Tadokoro
昌宏 田所
Hisataka Fujimaki
寿隆 藤巻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Hitachi Information and Control Systems Inc
Hitachi Information and Control Solutions Ltd
Original Assignee
Hitachi Ltd
Hitachi Information and Control Systems Inc
Hitachi Information and Control Solutions Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Information and Control Systems Inc, Hitachi Information and Control Solutions Ltd filed Critical Hitachi Ltd
Priority to JP2006187352A priority Critical patent/JP4206414B2/ja
Priority to US11/774,085 priority patent/US7692168B2/en
Publication of JP2008012121A publication Critical patent/JP2008012121A/ja
Application granted granted Critical
Publication of JP4206414B2 publication Critical patent/JP4206414B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/12Arrangements for varying final energy of beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Radiation-Therapy Devices (AREA)
  • Particle Accelerators (AREA)

Abstract

【課題】ビーム照射中にSOBP幅が所望の幅であるかどうかをリアルタイムに確認することにより、治療の精度を向上する。
【解決手段】シンクロトロン4を有する荷電粒子ビーム発生装置1と、この荷電粒子ビーム発生装置1から出射されたイオンビームのブラッグピーク幅を形成するRMW装置28、及びこのRMW装置28のイオンビーム進行方向に設けられ、イオンビームの線量を検出する線量モニタ31を備えた照射装置16と、線量モニタ31の検出値に基づいて、RMW装置28により形成されたイオンビームのブラッグピーク幅を演算するSOBP幅演算装置73とを備える。
【選択図】図2

Description

本発明は、陽子及び炭素イオン等の荷電粒子ビームを患部に照射して治療する荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法に関する。
癌などの患者の患部に陽子及び炭素イオン等の荷電粒子ビーム(イオンビーム)を照射する治療方法が知られている。この治療に用いる粒子線出射装置(荷電粒子ビーム出射装置)は、荷電粒子ビーム発生装置,ビーム輸送系、及び照射装置を備えている。荷電粒子ビーム発生装置で加速されたイオンビームは、第1ビーム輸送系及び回転ガントリーに設けられた第2ビーム輸送系を経て回転ガントリーに設置された照射装置に達する。イオンビームは照射装置より出射されて患者の患部に照射される。荷電粒子ビーム発生装置としては、例えば、荷電粒子ビームを周回軌道に沿って周回させる手段,共鳴の安定限界の外側で荷電粒子ビームのベータトロン振動を共鳴状態にする手段、及び荷電粒子ビームを周回軌道から取り出す出射用デフレクターを備えたシンクロトロン(円形加速器)が知られている(例えば、特許文献1)。
イオンビームを用いた治療、例えば陽子ビームの患部への照射では、陽子ビームのエネルギーの大部分が、陽子が停止するときに放出される、すなわちブラッグピークが形成されるという特性を利用し、陽子ビームの入射エネルギーの選択により陽子を患部近傍で停止させてエネルギー(吸収線量)の大部分を患部の細胞にのみ与えるようにする。
通常、患部は、患者の体表面からの深さ方向(イオンビームの進行方向でもあり、以下、単に深さ方向という)にある程度の厚みをもっている。その深さ方向における患部の厚み全域にわたってイオンビームを効果的に照射するためには、深さ方向においてある程度広いフラットな吸収線量範囲(拡大ブラッグピーク幅(spread-out Bragg peak) 。以下、SOBP幅という。)を形成するように、イオンビームのエネルギーを調節しなければならない。
このような観点から、従来、周方向に段階的に厚みが変化している複数の羽根部を回転軸の周囲に配置したレンジモジュレーション回転体(レンジモジュレーションホイール。以下、RMWという)が既に提唱されている(例えば、非特許文献1の2077頁、図
30、非特許文献2)。複数の羽根部は回転軸に取り付けられる。RMWは、隣り合う羽根部の相互間に貫通する開口を形成している。例えば、開口をイオンビームの経路(ビーム経路という)に位置させてRMWを回転させる。開口及び羽根部が交互にビーム経路を横切る。イオンビームが開口を通過したときはビームエネルギーが減衰しないため、ブラッグピークが体内の最も深い位置に生じる。イオンビームが羽根部を通過する際には、羽根部の厚みが厚い部分を通過するほど、このイオンビームのエネルギーの減衰度合いが大きくなり、患部の体表面に近い部分にブラックピークが形成される。RMWの回転によって、このようなブラッグピークが形成される深さ方向の位置が周期的に変動する結果、時間積分で見ると、患部の深さ方向において比較的広くフラットなブラッグピーク幅を得ることができる。また、SOBP幅の形成は、リッジフィルタを用いても可能であることが知られている(非特許文献1の2078頁、図31)。
患部へ与えた吸収線量は、イオンビーム進行軸上で患者よりも上流に置かれた線量検モニタにより吸収線量に比例する検出値を測定し、その検出値を実際の吸収線量値に換算するための係数を用いて算出できる。この線量モニタによる検出値と実際の患部に与えた吸収線量値との換算係数が、ビームの到達深度及びSOBP幅の間に相関関係を持つことが提唱されている(例えば、非特許文献2)。
USP5,363,008号 レビュー オブ サイエンティフィック インスツルメンツ64巻8号(1993年8月)のページ2074〜2084、図30〜図32(REVIEW OF SCIENTIFIC INSTRUMENTS VOLUME 64 NUMBER 8(AUGUST 1993)P2074-2084 FIG.30-32) フィジクス イン メディスン アンド バイオロジー48巻17号(2003年9月7日)のページ2797から2808(PHYSICS IN MEDICINE AND BIOLOGY VOLUME 48 NUMBER 17 (7 SEPTEMBER 2003) 2797-2808)
本発明の目的は、荷電粒子ビームの照射中にSOBP幅が所望の幅であることを確認できる荷電粒子ビーム出射装置を提供することにある。
上記した目的を達成する本発明の特徴は、荷電粒子ビームの進行方向における厚みが変化し、かつ通過する前記荷電粒子ビームのエネルギーを変えて照射対象内に拡大ブラッグピーク幅を形成させるビームエネルギー調整装置の下流側に配置された線量検出装置で検出された線量に基づいて拡大ブラッグピーク幅を算出する拡大ブラッグピーク幅演算装置とを備えたことにある。
本発明は、線量検出装置で検出された線量に基づいて拡大ブラッグピーク幅を算出するため、荷電粒子ビームを照射しているときに照射対象内に形成される拡大ブラッグピーク幅が所望の幅であるかを確認することができる。
好ましくは、線量に基づいた拡大ブラッグピーク幅の算出を、計測された線量値から求めた出射ON/OFF時間のDuty比に基づいて行うことである。
これにより、拡大ブラッグピーク幅を算出することにより、精度の良い拡大ブラッグピーク幅を得ることができる。
好ましくは、算出された拡大ブラッグピーク幅が設定された幅であるかを判定する拡大ブラッグピーク幅判定装置を備えることが望ましい。これにより、その判定結果に基づいて、照射対象内に形成されたブラッグピーク幅が設定された幅になっているかを容易に確認できる。
好ましくは、算出された拡大ブッラグピーク幅が設定された幅でないとき、荷電粒子ビーム発生装置からの荷電粒子ビームの出射を停止させると良い。これによって、照射対象に対する荷電粒子ビームを用いた治療の精度が向上する。
本発明によれば、荷電粒子ビームの照射中に拡大ブッラグピーク幅が所望の幅であるかを確認することができる。
RMWが回転しているときに、シンクロトロンからのイオンビームの出射をON/OFF制御する荷電粒子ビーム出射する技術がある。その技術では、RMWを回転させつつ、例えば比較的長い時間、すなわちRMWの広い回転角度の範囲にわたってイオンビームを通過させるようにすればイオンビームの減衰度合いが大きく変動することからSOBP幅は広くなり、比較的短い時間すなわちRMWの狭い回転角度の範囲にイオンビームを通過させるようにすればイオンビームの減衰度合いがあまり変動しないためSOBP幅は狭くなる。このように、RMWの回転時にイオンビームの出射をON/OFF制御することで、1つのRMWで多様なSOBP幅を得られるので、RMWの交換頻度を低減でき、多数の患者に対し、円滑に治療を行うことができる。
しかしながら、上記技術には以下のような更なる改善の余地があることが分かった。
すなわち、その技術によれば、各患者ごとにビーム発生動作を制御してその患者の患部に応じたSOBP幅を得ることができるものの、そのSOBP幅が患者の患部に応じた所望の値となっているかどうかを確認するためには、ビームを途中で全部吸収させて吸収線量を測定するしかなかった。このため、ビーム照射中にリアルタイムに確認する手法が確立されておらず、治療の精度向上の観点において更なる改善の余地があった。
以下、本発明の実施の形態を図面を用いて詳細に説明する。
(実施形態1)
本発明の好適な一実施形態である荷電粒子ビーム出射装置を、図1を用いて説明する。本実施形態の荷電粒子ビーム出射装置24は、荷電粒子ビーム発生装置1,荷電粒子ビーム発生装置1の下流側に接続されたビーム輸送系2、及び照射野形成装置である照射装置(荷電粒子ビーム照射装置)16を備えている。本実施形態の荷電粒子ビーム出射装置
24は、具体的には陽子線出射装置である。
荷電粒子ビーム発生装置1は、イオン源(図示せず),前段加速器(例えば線形加速器)3及び主加速器であるシンクロトロン4を有する。シンクロトロン4は、一対の電極によって構成された高周波印加装置5及び高周波加速空胴(加速装置)6をイオンビームの周回軌道上に設置している。第1高周波電源8が開閉スイッチ9,10を介して高周波印加装置5の電極に接続される。高周波加速空胴6に高周波電力を印加する第2高周波電源
(図示せず)が、別途設けられる。イオン源で発生したイオン(例えば、陽イオン(または炭素イオン))は前段加速器3で加速される。前段加速器3から出射されたイオンビーム(荷電粒子ビーム)はシンクロトロン4に入射される。荷電粒子ビーム(粒子線)であるイオンビームは、第2高周波電源からの高周波電力の印加によって高周波加速空胴6内に発生する電磁場に基づいてエネルギーを与えられて加速される。シンクロトロン4内を周回するイオンビームは、設定されたエネルギー(例えば100〜200MeV)まで加速された後、開閉スイッチ9を閉じることによってシンクロトロン4から出射される。すなわち、第1高周波電源8からの高周波が、開閉スイッチ9を閉じることによって、閉じられている開閉スイッチ10、及び開閉スイッチ9を通して高周波印加装置5より周回しているイオンビームに印加される。このため、安定限界内で周回しているイオンビームは、安定限界外に移行し、出射用デフレクタ11を通って出射される。イオンビームの出射の際には、シンクロトロン4に設けられた四極電磁石12及び偏向電磁石13に導かれる電流が電流設定値に保持され、安定限界もほぼ一定に保持されている。開閉スイッチ9
(または開閉スイッチ10)を開いて高周波印加装置5への高周波電力の印加を停止することによって、シンクロトロン4からのイオンビームの出射が停止される。
シンクロトロン4から出射されたイオンビームは、ビーム輸送系2により下流側のビーム経路17に輸送される。ビーム輸送系2は、四極電磁石18及び偏向電磁石19,20を備え、照射装置16に連絡されるビーム経路17に連絡される。照射装置16及びビーム経路17は、治療室(図示せず)内に設置された回転ガントリー(図示せず)に取り付けられている。四極電磁石18,偏向電磁石19及び偏向電磁石20がこの順にビーム経路17に設けられる。ビーム経路17内のイオンビームは、照射装置16へと輸送される。患者22が、回転ガントリー内に形成された治療ケージ(図示せず)内で位置決めされた治療用ベッド21に横たわっている。照射装置16から出射されたイオンビームは、その患者22の癌の患部K(後述の図2参照)に照射される。四極電磁石18等の電磁石を備えたビーム経路17はビーム輸送系であるとも言える。
照射装置16の構造を、図2を用いて説明する。この図2に示すように、照射装置16は、回転ガントリーに取り付けられ、ビーム経路17に接続されるケーシング25を有する。照射装置16は、ケーシング25内に、イオンビーム進行方向の上流側より順次、ビームプロファイルモニタ26,RMW装置(ブラッグピーク幅形成装置)28,第2散乱体装置29,飛程調整装置(例えば、レンジシフタ)30,線量モニタ31,平坦度モニタ32,ブロックコリメータ33,患者コリメータ34、及びボーラス35を、ケーシング25内のビーム経路(ビーム軸)m上に配置している。
ビームプロファイルモニタ26は、ビーム輸送系2から照射装置16に入射されたイオンビームがビーム軸m上に位置しているかどうかを確認するモニタである。ビームプロファイルモニタ26は、ケーシング25に取り付けられた支持テーブル39上に設置される。
図2に戻り、RMW装置28は、RMW40,RMW40を回転させる回転装置(例えばモータ)42、及びRMW40の回転角度を検出する角度計51を有する。RMW40,回転装置42及び角度計51は、ケーシング25に設置された支持部材50によって保持される。図4に示すように、RMW40は、回転軸43,回転軸43と同心円状に配置された円筒部材44、及び回転軸43に取り付けられてRMW40の半径方向に伸び、他端が円筒部材44に取り付けられた複数の羽根部45(本実施例では羽根部45A,45B,45Cの3枚)を有している。これらの羽根部45の周方向における幅は回転軸43側の端部よりも円筒部材44側の端部で広くなっている。RMW40の周方向における羽根部45の相互間には、それぞれ開口46が形成されている。これら開口46の周方向における幅も円筒部材44の内面に近づくほど広くなるように形成されている。
各羽根部45は、RMW40の周方向において階段状に配置された複数の平面領域(段部)47を有しており、回転軸43の軸方向(ビーム軸mの方向)におけるRMW40の底面から各平面領域47までの各厚みが異なっている。すなわち、RMW40の底面から各平面領域47までのレベルが異なる。ここでは、1つの平面領域47に対するその厚みを、平面領域部分の厚みという。すなわち、羽根部45は、周方向において羽根部45の両側に位置する開口46からビーム軸mの方向における最も厚みの厚い頂部に位置する平面領域47に向かって各平面領域部分の厚みが階段状に増加している。各平面領域47は回転軸43から円筒部材44に向かって延びており、その周方向における幅も円筒部材
44に近づくほど広くなっている。
ケーシング25に設置される支持部材50は、ビーム軸mの方向に対向する支持部50A,50Bを有し、更に支持部50Bの下流側に支持部50Cを有する。これら支持部50A,50Bはそれぞれ回転軸48,49を回転可能に支持している。RMW40は保持部
50A,50Bの間に挿入され、RMW40の回転軸43が回転軸48,49に挟まれるように支持される。すなわち、回転軸43は回転軸48,49に着脱可能に取り付けられ、RMW40が交換可能となる。回転軸48,49のそれぞれの端部が回転軸43に設けられた貫通孔内に挿入されている。なお、支持部50A,50Bはケーシング25内のビーム経路をさえぎらないように配置される。回転軸43,48,49もそのビーム経路からずれた位置に配置される。
支持部50Cに設置された回転装置42が回転軸49に連結されている。RMW40の回転角度(回転位相)を検出する角度計51が、回転軸48に連結されて支持部50Aに取り付けられている。角度計51で検出されたRMW40の回転角度の測定値は、後述する照射制御装置70の照射制御部66に入力される。
なお、本実施形態は、図2及び図4に図示していないが、RMW装置28と第2散乱体装置29との間で、ビーム軸m上に第1散乱体が設置されている。この第1散乱体も、ケーシング25に設置される。第1散乱体は、RMW40を通過したイオンビームをビーム軸mと直交する方向に広げる機能を有する。
第2散乱体装置29は、複数の第2散乱体55,回転テーブル56及びモータ57を有している。モータ57は、ケーシング25に取り付けられる支持部材58に設置されている。イオンビームを散乱する度合いが異なる複数の第2散乱体55は回転テーブル56上に周方向に並んで設置される。回転テーブル56がモータ57により回転されることによって、所定の第2散乱体55がビーム軸m上に配置される。モータ57の駆動は駆動制御部68によって制御される。
飛程調整装置30は、厚みの異なる複数の吸収体60(本実施の形態では4つ)、及び各吸収体60ごとに設けられた吸収体操作装置61を有する。この吸収体操作装置61としては、例えば圧縮空気により駆動するエアシリンダ等が用いられる。各吸収体操作装置61は吸収体駆動装置62によって駆動され、この吸収体駆動装置62は駆動制御部68によって制御される。
線量モニタ31は照射装置16に入射されたイオンビームの線量を測定するためのモニタである。図3を用いてその検出原理の一例を説明する。線量モニタ31は、複数(ここでは例えば5枚とする)の重ね合わせた電極31a〜31cを有しており、厚さが数μm程度と非常に薄く構成されている。これら5枚の電極は、イオンビーム進行方向において、中心に位置し、線量モニタカウンタ63に接続された信号電極31a,信号電極31aを挟むように位置し、正側の電圧を印加された2枚の正電極31b、及びこれらの正電極31bをさらに挟むように最も外側に位置する2枚の接地電極31cである。これらの電極をイオンビームが通過すると、そのエネルギーにより信号電極31aと正電極31b,31bとの間で電離電荷が発生し、この発生した電離電荷は信号電極31aから取り出される。信号電極31aから取り出される電離電荷量はイオンビームの線量に比例するので、線量モニタカウンタ63でこの電離電荷量をカウントすることによって、イオンビームの線量を求めることができる。本実施例では、線量測定装置は、線量モニタ31及び線量モニタカウンタ63を有する。
ブロックコリメータ33は、イオンビームをビーム軸mと垂直な平面方向に整形してイオンビームの照射野を粗くコリメートする。ブロックコリメータ33の開口径は駆動制御部68によって可変に制御される。患者コリメータ34はイオンビームを患部22の患部Kの形状に合わせてさらに細かくコリメートするためのものである。ボーラス35は、治療患者22の患部K(例えば癌や腫瘍の発生部位)の最大深さに合わせてイオンビームの到達深度を調整するものであり、ビーム軸mに垂直な平面上の各位置における飛程を、照射目標である患部Kの深さ形状に合わせて調整するものである。
図2に戻り、荷電粒子ビーム出射装置24は、照射制御装置70を備える。照射制御装置70は、線量モニタカウンタ63,照射制御部(第2制御装置)72,拡大ブラッグピーク幅演算装置(以下、SOBP幅演算装置という)73,駆動制御部74を有する。
SOBP幅演算装置73はSOBP幅判定装置でもある。照射制御部72は、SOBP幅を形成するための荷電粒子ビーム発生装置1からのイオンビームの出射のON・OFF制御を行う。SOBP幅演算装置73は、照射中のイオンビームのSOBP幅を算出し、このSOBP幅が設定幅となっているかどうかの判定を行う。駆動制御部74は、第2散乱体装置29のモータ57,飛程調整装置30の吸収体駆動装置62、及びブロックコリメータ33のそれぞれの駆動を制御する。更に、荷電粒子ビーム出射装置24はインターロック装置(第1制御装置)76を備える。
以上の構成を有する荷電粒子ビーム出射装置24は、RMW40の回転角度に応じて荷電粒子ビーム発生装置1からのイオンビームの出射ON/OFFを制御することにより、複数のSOBP幅を生成することができる。以下、この原理を、図5,図6及び図7を用いて説明する。
イオンビームがRMW40の開口46を通過したときは、ビームエネルギーは減衰しないためブラッグピークが体表面から深い第1の位置に形成される。羽根部45のうち最も厚みが厚くなる頂部45Aに位置する平面領域47をイオンビームが通過したときは、ビームエネルギーが最も大きく減衰されてブラックピークが体表面近くの浅い第2の位置に形成される。イオンビームが開口46と頂部45Aの間に位置する平面領域47を通過したときは、その平面領域47が位置する部分の厚みに応じてビームエネルギーが減衰するため、ブラッグピークは第1位置と第2位置の間に存在する第3の位置に形成される。したがって、図5及び図6における照射条件アのように、RMW40の周方向において、
360°の全回転角度領域において常にビームONである場合には、RMW40の回転によりブラッグピークは第1位置と第2位置との間で周期的に変動する。この結果、照射条件アは、時間積分で見ると、図7に示す深さ方向の線量分布アのように体表面近くから深い位置に至る比較的広いSOBP幅というを得ることができる。「ビームON」は、イオンビームがシンクロトロン4から出射されてRMW40を通過し照射装置16から出射される状態を意味する。これに対し、「ビームOFF」は、イオンビームがシンクロトロン4から出射されず照射装置16から出射されない状態を意味する。
図5及び図6における照射条件イは、RMW40の周方向において、各羽根部45の比較的厚い領域(頂部付近)ではビームOFFとし、これ以外の回転角度領域ではビーム
ONとする。照射条件イは、体表面近くの浅い部分で生じるブラッグピークがなくなるため、図7に示す深さ方向の線量分布イのように線量分布アよりもフラット部分が狭くなったSOBP幅が形成される。
図5及び図6における照射条件ウは、RMW40の周方向において、開口46及び開口46付近の各羽根部45の厚みが比較的薄い領域にてビームONとし、これら以外の回転角度領域ではビームOFFとする。照射条件ウは、全体にビームエネルギーの減衰量が少ないため、体表面から深い位置にブラッグピークが形成される。このため、照射条件ウは、図7に示す深さ方向の線量分布ウのように線量分布イよりもフラット部分が狭くなったSOBP幅が形成される。
荷電粒子ビーム出射装置24は、以上のようにRMW40の回転角度に応じてイオンビームの出射ON/OFF制御を行うことにより、1つのRMWで複数の異なるSOBP幅を形成することができる。
RMW40の回転時にイオンビームの出射ON/OFF制御を行うことにより種々の
SOBP幅を形成できることは、後述するように、非常にメリットがある。しかしながら、ある患者に対して望まれたSOBP幅が実際に形成されているかを確認できることは、イオンビームを用いた治療の精度を高めるためにも、荷電粒子ビーム出射装置に要求される重要な要件の1つである。発明者らは、この課題を解決するために種々の検討を行い、RMW装置28を通過したイオンビームの線量に基づけば、イオンビームを患者に照射している状態で、患者の体内に形成されるSOBP幅を確認できることを考案した。この発明者らの検討結果を、以下に説明する。
前述の通り、患者の体内に形成されるSOBP幅は、RMW回転時のイオンビームの出射ON/OFF時間により決定する。この関係は、使用するRMW毎の固有値となるが、計算や実験結果から事前に求めることが可能である。
例として、あるRMWにおけるSOBP幅と出射ON/OFF時間の関係を図8に示す。出射ON/OFF時間は、下式で表すDuty比を使用して表現する。ここで、TONは出射ON時間、TOFFは出射OFF時間を表す。
Figure 2008012121
目標のSOBP幅が大きい場合は、それに伴ない出射ON時間が長くなる為、Duty比も大きくなる。
本実施形態では、RMWの種類毎に目標SOBP幅に対応する出射ON/OFF時間の設定が照射制御装置のメモリに記憶されている。従って、目標SOBP幅が設定されると自動的に出射ON/OFF時間が設定される。
実際に形成されたイオンビームのSOBP幅は、RMWを通過したイオンビームの出射ON/OFF時間を計測し、上記で設定される出射ON/OFF時間の設定と比較することで算出が可能である。実際のON/OFF時間からDuty比を計算し、(図8に示したような)事前に算出したRMW毎のSOBP幅とDuty比の関係表を参照して、Duty比が一致するSOBP幅が、実際に形成されたイオンビームのSOBP幅となる。
実際にRMWを通過したイオンビームの出射ON/OFF時間は、RMWの下流側に設置された線量モニタ31の計測値を使用して算出する。
図9は、実際の出射ON/OFF時間と線量モニタから出力されるパルス信号の関係である。前述のように、線量モニタを通過するイオンビームの荷電粒子数は、出射ビーム量に比例して増加する。その為、出射ONのタイミングで、線量モニタ31を通過するイオンビームの荷電粒子数は増加し、その結果、線量モニタカウンタ63に入力されるパルス数も増加する。線量モニタカウンタ63のパルスカウント値を単位時間当たりのカウントレートに変換した例を図10に示す。
単位時間の設定に依存するが、単位時間当たりのカウント値は、出射ON時に大きく、出射OFF時に小さくなり、出射ON/OFFで明確な違いが現れる。図10において、単位時間当たりのカウント値にある閾値を設け、閾値以上である場合を出射ON、閾値以下である場合を、出射OFFと判定することで、実際の出射ON/OFF時間を求めることができる。この判定で使用する閾値としては、カウントレートに変換する際の単位時間の設定により適切な値を選定する必要がある。
本実施形態では、実際のイオンビーム量に相当するパルスカウント値のカウントレートへの変換および閾値判定をSOBP幅演算装置で行い、閾値判定により求められる出射
ON/OFFのDuty比を、あらかじめメモリに登録されたSOBP幅設定値に対応した
Duty比と比較し、実際に形成されたSOBP幅の判定を行う。
この方法を用いることで、RMWの回転に合わせ、例えば、1回転毎に判定処理を行うことが可能であり、イオンビームを患部に照射している状態で、リアルタイムに患者の体内に形成されるSOBP幅の算出・判定を行うことができる。
荷電粒子ビーム出射装置24による治療開始前に、医者は、X線CT装置(図示せず)によって得られた患者22の患部K付近の断層像を用いて診断を行い、患部Kの位置及びサイズを把握すると共に、イオンビームの照射方向,最大照射深さ等の情報を治療計画装置77に入力する。治療計画装置77は、治療計画ソフトによって、入力されたイオンビームの照射方向,最大照射深さ等に基づき、SOBP幅,照射野径及び患部22に対する目標線量等を算出する。さらに、治療計画装置77は、各種運転パラメータ(シンクロトロン4から出射されるイオンビームのエネルギー(照射装置16への入射エネルギー),回転ガントリー角度、及びイオンビームの出射ON/OFF時におけるRMW40の各回転角度)を算出すると共に、治療に適切なRMW40を選定する。回転角度及び目標線量、さらに、照射野径,飛程,入射エネルギー(入射Eg),第1散乱体の厚み(SC1厚),SOBP幅,第2散乱体55の種類(SC2種類),飛程調整装置30におけるビーム経路に位置させる吸収体60の厚み(RS厚)及びブロックコリメータ33の開口径
(BC開口径)等の上記した治療計画情報が、荷電粒子ビーム出射装置の中央制御装置に入力され、中央制御装置の記憶装置(図示せず)に記憶される。以上に述べた各治療計画情報は、中央制御装置から照射制御装置70のメモリに記憶される。
ガントリー制御装置(図示せず)は、入力した回転ガントリー角度情報に基づいて、照射装置16のビーム経路がその角度で患者22を向くように、回転ガントリーを回転させる。患者が横たわっている治療用ベッド21を移動させて患部Kが照射装置16のビーム経路の延長線上に位置するように、治療用ベッド21の位置決めがなされる。
照射制御装置70の駆動制御部74は、記憶された照射野径,飛程及び入射エネルギーの各情報を用いて、予め記憶されている照射条件情報から、第1散乱体の厚み,SOBP幅,第2散乱体の種類,吸収体の厚み、及びブロックコリメータ開口径を選定する。駆動制御部74は、第1散乱体の厚みの情報に基づいて、ビーム軸m上に位置するようにその厚みの第1散乱体を移動させる。駆動制御部74は、選定された第2散乱体55がビーム軸m上に位置するようにモータ57を駆動して回転テーブル56を回転させる。また、駆動制御部68は、選定された吸収体60がビーム軸m上に位置するように吸収体駆動装置62を介して吸収体操作装置61を操作する。駆動制御部68は、選定されたブロックコリメータ33の開口径情報に基づき、図示しない駆動装置を制御し、ブロックコリメータ
33の各ブロックを駆動し、その開口径を所定の径にする。
各種の治療計画情報は、荷電粒子ビーム出射装置24の制御室内に設置された表示装置に表示される。治療を受ける患者22に対するRMW40,ボーラス35及び患者コリメータ34が、作業員によって、照射装置16のケーシング25内に図2に示すように設置される。
照射制御装置70のSOBP幅演算装置73は、選定されたSOBP幅,使用するRMW40に基づき、関係情報をメモリから読み出す。また、照射制御装置70の照射制御部
72は、治療する患者22に対する、ケージング25内に設置した回転角度情報及び目標線量をメモリから読み出す。
荷電粒子ビーム出射装置24を用いた患部Kの治療について、以下に説明する。
シンクロトロン4は、前段加速器3からのイオンビームの入射,イオンビームの加速,イオンビームの出射、および減速を繰り返して運転される。設定エネルギーで出射エネルギーまで、イオンビームが加速されると、イオンビームの加速が終了し、イオンビームがシンクロトロン4から出射可能な状態になる。
照射制御装置70の照射制御部72は、メモリからの読み出したデータをもとに、出射開始条件の判定を行い、SOBP幅形成のためのイオンビーム出射ON/OFF指令を出力する。この出射ON指令によって開閉スイッチ9が閉じられる。開閉スイッチ10は閉じており、第1高周波電源8から出力された高周波が高周波印加装置5より周回しているイオンビームに印加されるため、イオンビームがシンクロトロン4から出射される。このイオンビームは、照射装置16に輸送される。
このイオンビームは、照射装置16内でビーム軸mに沿って進行する。イオンビームは、ビームプロファイルモニタ26,回転しているRMW40を通過し、第1散乱体によりビーム軸mに直行する方向に拡大される。その後、イオンビームは、第2散乱体55により上記に直行する方向で線量分布が平坦化され、飛程調整装置30の吸収体60を通過してエネルギーが減少し、患者22の体内における飛翔が調整される。吸収体60を通過したイオンビームは、線量モニタ31で線量を計測され、平坦度モニタ32でビームm軸方向に垂直な方向における平坦度が確認される。線量計測値は、線量モニタカウンタ63に入力される。イオンビームは更に、ブロックコリメータ33,患者コリメータ34及びボーラス35を通過して、患部Kに照射される。
線量モニタ31によって測定された線量から、患部Kに照射された線量が、目標線量に到達したどうかが照射制御部72で常時に判定されている。判定の結果、患部Kに照射された線量が目標線量に達した場合は、出射OFF指令が出力され、開閉スイッチ9が開き、高周波印加装置5への高周波供給が停止され、シンクロトロン4からのイオンビームの出射が停止される。これにより、治療用ベッド21上の患者22に対するイオンビームの照射が終了するし、回転装置42のおよび、RMW40の回転も停止する。
照射制御装置70内のSOBP幅演算装置73は、照射中のイオンビームのSOBP幅が所定の幅になっているかどうかの判定を行う。この詳細について以下に示す。
SOBP幅演算装置73には、イオンビームの線量に相当する電離電荷量が、線量モニタ31で検出、線量モニタカウンタ63でカウントされ、入力される。SOBP幅演算装置73は、入力されたパルス値を単位時間当たりのカウントレートに変換し、事前に設定された閾値との比較から、ビームON/OFF時間を判定し、そのDuty比(実績)を計算する。
算出されたDuty比(実績)が、治療計画情報で設定されたSOBP幅設定値から求められるDuty比(設定)に一致するかを判定する。2つのDuty比を比較した結果が、あるトレランス内で一致しない場合、SOBP幅演算装置73は、SOBP幅異常信号をインターロック装置76に出力する。
このとき、インターロック装置76は、スイッチOFF信号を開閉スイッチ10に出力し、開閉スイッチ10が開く。このため、第1高周波電源8から高周波印加装置5への高周波の供給が停止され、シンクロトロン4からのイオンビームの出射が停止される。Duty比が一致している場合は、SOBP幅演算装置73は、SOBP幅正常信号をインターロック装置76に対し出力する為、インターロック装置76は、スイッチOFF指令を出力しない。そのため、所望のSOBP幅が形成されているとして、患者22へのイオンビーム照射が継続される。前述のように、このイオンビーム照射は、線量モニタ31の検出信号により得られた線量値が目標線量に到達するまで継続される。
SOBP幅演算装置73でのDuty比の比較結果は、SOBP幅異常、またはSOBP幅正常信号として表示装置54に表示される。この際、実際のイオンビームの出射ON/
OFF時間のDuty比(実績)と、あらかじめメモリに記憶されている使用したRMWのSOBP幅とDuty比(設定)の関係を示すデータテーブル(例えば図9のような)から、実際のSOBP幅が逆算され、表示装置54に表示される。
なお、SOBP幅演算装置73は、SOBP幅判定装置でもある。SOBP幅設定値は、患者22により異なり、同一の患者であっても、治療の進行に伴なう患部Kの縮小により異なる。
本実施形態の荷電粒子ビーム出射装置24によれば、RMW40を回転させた状態でイオンビームをON/OFF制御するため、回転方向において、RMW40内でイオンビームが通過する領域を、RMW40の回転方向において、変化させることができる。このため、1つのRMW40で、患者22の体表面からの深さ方向で異なる幅を有する複数の
SOBP幅を形成することができ、1つのRMW40を複数の患者に使用することができる。すなわち、1つのRMW40を用いて治療できる患者数が増加する。また、1つの
RMW40を用いて、複数のSOBP幅を形成することができるため、荷電粒子ビーム出射装置24を有するがん治療センタで準備するRMWの個数が低減できる。1つのRMW40で複数のSOBP幅を形成できることは、照射装置16に設置されたRMWの交換回数が減少する。これは、治療の準備に要する時間が短縮されることになり、荷電粒子ビーム出射装置24における患者の治療人数が増加できる。特に、本実施形態は、イオンビームのON/OFF制御をRMW40の回転角度(具体的には回転角度の計測値及び設定値)に基づいて行っているため、特定のSOBP幅を精度良く形成することができる。ビームのON/OFF制御を行うRMWの回転角度を変えることによって、種々のSOBP幅を形成することができる。
シンクロトロン4では、加速されるイオンの数が同じであるため、ビームONの期間を短縮しても、第1高周波電源8から高周波印加装置5に供給する出射用の高周波のパワーを増加することによって、ビームONの期間中にシンクロトロン4から出射されるイオンビームの電流密度を増大できる。このため、ビームONの期間が短くても患者に照射される線量率(単位時間当りで単位体積当りに照射される放射線量)を増大できる。厚さの薄い患部K、または体積が小さい患部Kを有する患者22に対しては、電流密度が増大されたイオンビームを照射することによってイオンビームの照射時間を短縮できる。この照射時間の短縮は、患者22の負担を軽減でき、1年間当りの治療人数を増加できる。ビームONの期間を短縮する場合でも、出射用の高周波のパワーを前述のように増大することによって、周回する全てのイオンビームを実質的にシンクロトロン4から出射させることができるため、シンクロトロン4等の機器の放射化の度合いが低下する。
加速器としてシンクロトロンの代りにサイクロトロンを用い、サイクロトロンから出射されたイオンビームを照射装置16に導くことが考えられる。しかしながら、サイクロトロンは、シンクロトロンのように減速工程がなく、イオンビームの入射,加速及び出射の各工程を連続して行うため、「ビームON」の期間を短くすると、単位時間当りに照射装置16から出射されるイオンの数が減少する。しかしながら、患部Kに対する線量率は変わらない。これは、SOBP幅を減少させる、つまり、照射体積を減らしていることと等価である。この結果、「ビームON」の期間を短くしても、厚さの薄い患部K、または体積が小さい患部Kを有する患者22に対しては、イオンビームの照射時間が変わらない。サイクロトロンにおいて「ビームOFF」をイオンビームの加速過程または加速後に行えば、捨てられるイオンビーム量が多くなり、サイクロトロン等の機器の放射化が増加する。
本実施形態の荷電粒子ビーム出射装置24によれば、RMW40に対するビームON/OFF制御により形成された実SOBP幅がSOBP幅設定値と同じであるか否かをイオンビームの照射中にリアルタイムに確認することができる。実SOBP幅がSOBP幅設定値でない場合にはイオンビームの出射を停止できるので、治療計画で設定したSOBP幅と異なる異常なSOBP幅が患者22内で形成されることを避けることができる。このため、イオンビームによる治療の精度が著しく向上する。すなわち、本実施形態によれば、治療計画で設定したSOBP幅が患者22の体内に形成されるときにのみ、イオンビームを患者22に照射できる。
SOBP幅演算装置73から出力されたSOBP幅異常信号またはSOBP幅正常信号が表示装置54に表示されるため、医者(または放射線技師)は患者22内で形成されているSOBP幅の正常(または異常)を確認できる。このため、万が一、表示装置54にSOBP幅異常信号(SOBP幅異常情報)が表示されても、インターロック装置76等の異常により、シンクロトロン4からのイオンビームの出射が停止されない場合には、医者(または放射線技師)は制御室内のオペレータコンソール(図示せず)に設けられたビーム出射停止ボタンを押すことにより、開閉スイッチ10を開くことができる。すなわち、手動でシンクロトロン4からのイオンビームの出射を停止できる。
(実施形態2)
本発明の他の実施形態である荷電粒子ビーム出射装置を、図11を用いて以下に説明する。本実施形態の荷電粒子ビーム出射装置24Aは、荷電粒子ビーム出射装置24における、シンクロトロン4を有する荷電粒子ビーム発生装置1を、サイクロトロン4Aを有する荷電粒子ビーム発生装置1Aに置き替え、ビーム輸送系2にエネルギー変更装置82を付加した構成を有する。照射装置16はRMW装置28を有する。
荷電粒子ビーム発生装置1Aは、加速装置81を有するサイクロトロン4A,イオン源80及びエネルギー変更装置82を備える。エネルギー変更装置82は、サイクロトロン4A付近でビーム輸送系2に設置される。エネルギー変更装置82は、イオンビームを通過させてエネルギーを損失させる板状の複数のディグレーダ,エネルギーの低くなったイオンビームを偏向する偏向電磁石(図示せず),偏向電磁石通過後のイオンビームの一部分を切り出すアパーチャ(図示せず)、及びイオンビームのビーム輸送系2下流側への輸送をシャットアウトするビームシャッタ(図示せず)を備える。
照射制御部72によりイオンビームのON/OFF制御が行われる。しかし、出力される出射ON信号は、イオン源電源装置に出力される。イオン源電源装置86は、出射ON信号の入力によりイオン源80に電力を供給する。イオン源80は起動されてイオンビームを出射させる。このイオンビームは、サイクロトロン4Aに入射され、加速装置81によって設定エネルギーまで加速される。設定エネルギーまで加速されたイオンビームは、出射用デフレクタ11を介してサイクロトロン4Aから出射される。その後、照射制御部72から出力される出射OFF信号により、イオン源電源装置86がイオン源80への電力の供給を停止させる。イオンビームのサイクロトロン4Aへの入射が停止され、サイクロトロン4Aからのイオンビームの出射も停止される。
また、イオンビームの出射中において、SOBP幅演算装置73がSOBP幅異常信号を出力した場合には、インターロック装置76がイオン源電源装置87に電力供給停止信号を出力する。イオン源電源装置86からイオン源80への電力の供給が停止され、サイクロトロン4Aからのイオンビームの出射が停止される。
実施形態2は、実施形態1で得られる、(1)厚さの薄い患部K、または体積が小さい患部Kを有する患者22に対する、電流密度が増大されたイオンビームを照射することによってイオンビームの照射時間の短縮、(2)機器の放射化度合いの低下、の2つの効果以外の実施形態1で生じる効果を得ることができる。
なお、イオンビームのON/OFF制御は、イオン源80の起動/停止以外に、エネルギー変更装置82のビームシャッタを開閉することによって行うことも可能である。また、偏向電磁石15への電源供給の制御により、イオンビームの経路を変更させて、照射装置16へのイオンビームの入射のON/OFFを制御してもよい。
本発明の第1実施形態の荷電粒子ビーム出射装置の全体構成図である。 図1に示す照射装置の詳細構成を表す縦断面図である。 図1に示す線量モニタの概略構成を示す構成図である。 図1に示すRMWの斜視図である。 図4に示したRMWの平面図であり、イオンビームの出射のケースa〜cを例として示したものである。 図5に示すケースa〜cにおけるそれぞれのビームON及びビームOFFを時系列で示した図である。 図5に示すケースa〜cのそれぞれに対する深さ方向の線量分布及びSOBP幅を示す図である。 あるRMWにおけるSOBP幅とDutyの関係を示す図である。 出射ON/OFF時の線量モニタの計測値パルス信号を示す図である。 線量モニタの計測信号を単位時間当たりのカウントレートに変換した例を示す図である。 本発明の他の実施例である実施形態2の荷電粒子ビーム出射装置の全体構成図である。
符号の説明
1,1A…荷電粒子ビーム発生装置、2…ビーム輸送系、3…前段加速器(線形加速器)、4…シンクロトロン、4A…サイクロトロン、5…高周波印加装置、6…高周波加速空胴(加速装置)、8…第1高周波電源、9,10…開閉スイッチ、11…出射用デフレクタ、12,18…四極電磁石、13,19,20…偏向電磁石、16…照射装置(荷電粒子ビーム照射装置)、17…ビーム経路、21…治療用ベッド、22…患者、24,24A…荷電粒子ビーム出射装置、25…ケーシング、26…ビームプロファイルモニタ、28…RMW装置(ブラッグピーク幅形成装置)、29…第2散乱体装置、30…飛程調整装置、31…線量モニタ、31a…電極(信号電極)、31b…電極(正電極)、31c…電極(接地電極)、32…平坦度モニタ、33…ブロックコリメータ、34…患者コリメータ、35…ボーラス、39…支持テーブル、40…RMW、42…回転装置、50…支持部材、51…角度計、55…第2散乱体、57…モータ、62…吸収体駆動装置、63…線量モニタカウンタ、66…照射制御部、68…駆動制御部、70…照射制御装置、
72…照射制御部、73…拡大ブラッグピーク幅演算装置(SOBP幅演算装置)、74…駆動制御部、76…インターロック装置(第1制御装置)、77…治療計画装置、80…イオン源、81…加速装置、82…エネルギー変更装置、86…イオン源電源装置。

Claims (29)

  1. 荷電粒子ビームを照射対象に対して出射する荷電粒子ビーム出射装置おいて、
    前記荷電粒子ビームを発生する荷電粒子ビーム発生装置と、
    前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームの進行方向における厚みが変化し、かつ通過する前記荷電粒子ビームのエネルギーを変えて前記照射対象内に拡大ブラッグピーク幅を形成させるビームエネルギー調整装置を有し、前記ビームエネルギー調整装置を通過した前記荷電粒子ビームを前記照射対象に対して出射する照射装置と、
    前記荷電粒子ビームの進行方向で前記ビームエネルギー調整装置の下流側の前記荷電粒子ビームの線量を測定する線量測定装置と、
    前記線量測定装置で測定された線量値に基づいて前記拡大ブラッグピーク幅を算出する拡大ブラッグピーク幅演算装置とを備えたことを特徴とする荷電粒子ビーム出射装置。
  2. 前記線量値に基づいた前記拡大ブラッグピーク幅の算出を、前記線量値から求めた出射ON/OFF時間に基づいて行う前記拡大ブラッグピーク幅演算装置を備えた請求項1記載の荷電粒子ビーム出射装置。
  3. 前記ビームエネルギー調整装置は厚みが回転方向において変化して通過する前記荷電粒子ビームのエネルギーを変える回転体を含んでいる請求項1記載の荷電粒子ビーム出射装置。
  4. 前記回転体の回転時に、前記荷電粒子ビーム発生装置からの前記荷電粒子ビームの出射及び出射停止を制御する制御装置を備えた請求項3記載の荷電粒子ビーム出射装置。
  5. 前記荷電粒子ビームの出射及び出射停止の制御を前記回転体の回転角度に基づいて行う前記制御装置を備えた請求項4記載の荷電粒子ビーム出射装置。
  6. 前記拡大ブラックピーク幅を表示する表示装置を備えた請求項1記載の荷電粒子ビーム出射装置。
  7. 荷電粒子ビームを照射対象に対して出射する荷電粒子ビーム出射装置おいて、
    前記荷電粒子ビームを発生する荷電粒子ビーム発生装置と、
    前記荷電粒子ビーム発生装置から出射された前記荷電粒子ビームの進行方向における厚みが変化し、かつ通過する前記荷電粒子ビームのエネルギーを変えて前記照射対象内に拡大ブラッグピーク幅を形成させるビームエネルギー調整装置を有し、前記ビームエネルギー調整装置を通過した前記荷電粒子ビームを前記照射対象に対して出射する照射装置と、
    前記荷電粒子ビームの進行方向で前記ビームエネルギー調整装置の下流側に配置された線量測定装置と、
    前記線量測定装置で測定された線量に基づいて前記拡大ブラッグピーク幅を算出し、算出された前記拡大ブラッグピーク幅が設定された幅であるかを判定する拡大ブラッグピーク幅判定装置とを備えたことを特徴とする荷電粒子ビーム出射装置。
  8. 算出された前記拡大ブッラグピーク幅が前記設定された幅でないとき、前記荷電粒子ビームの出射を停止するように前記荷電粒子ビーム発生装置を制御する第1制御装置を備えた請求項7記載の荷電粒子ビーム出射装置。
  9. 前記算出された拡大ブラックピーク幅を表示する表示装置を備えた請求項7記載の荷電粒子ビーム出射装置。
  10. 前記線量値に基づいた前記拡大ブラッグピーク幅の算出を、前記線量値から求めた出射ON/OFF時間に基づいて行う前記拡大ブラッグピーク幅演算装置を備えた請求項7記載の荷電粒子ビーム出射装置。
  11. 前記ビームエネルギー調整装置は厚みが回転方向において変化して通過する前記荷電粒子ビームのエネルギーを変える回転体を含んでいる請求項7記載の荷電粒子ビーム出射装置。
  12. 前記回転体の回転時に、前記荷電粒子ビーム発生装置からの前記荷電粒子ビームの出射及び出射停止を制御する第2制御装置を備えた請求項11記載の荷電粒子ビーム出射装置。
  13. 前記荷電粒子ビームの出射及び出射停止の制御を前記回転体の回転角度に基づいて行う前記第2制御装置を備えた請求項12記載の荷電粒子ビーム出射装置。
  14. 前記回転体は、厚みが回転方向において変化して通過する前記荷電粒子ビームのエネルギーを変える複数の前記羽根部を有する請求項11記載の荷電粒子ビーム出射装置。
  15. 前記荷電粒子ビーム発生装置がシンクロトロン及びサイクロトロンのいずれか一方を含んでいる請求項1または請求項7記載の荷電粒子ビーム出射装置。
  16. 高周波印加装置を有するシンクロトロンを含む前記荷電粒子ビーム発生装置と、算出された前記拡大ブッラグピーク幅が前記設定された幅でないとき、前記シンクロトロンからの前記荷電粒子ビームの出射を停止するために、前記高周波印加装置への高周波の印加を停止させる前記第1制御装置を備えた請求項8記載の荷電粒子ビーム出射装置。
  17. 厚みが回転方向において変化して通過する前記荷電粒子ビームのエネルギーを変える回転体を含んでいる前記ビームエネルギー調整装置と、
    前記回転体の回転時に、前記シンクロトロンからの前記荷電粒子ビームの出射及び出射停止を制御する第2制御装置とを備え、
    前記第2制御装置は、前記荷電粒子ビームの出射及び出射停止の制御を、前記高周波印加装置への高周波の供給及び供給停止を制御することによって行う請求項16記載の荷電粒子ビーム出射装置。
  18. サイクロトロン及び前記サイクロトロンに前記荷電粒子ビームを入射するイオン源を含む前記荷電粒子ビーム発生装置と、算出された前記拡大ブッラグピーク幅が前記設定された幅でないとき、前記サイクロトロンからの前記荷電粒子ビームの出射を停止するために、前記イオン源への電力の供給を停止させる前記第1制御装置を備えた請求項8記載の荷電粒子ビーム出射装置。
  19. サイクロトロン及び前記サイクロトロンに前記荷電粒子ビームを入射するイオン源を含む前記荷電粒子ビーム発生装置と、前記サイクロトロンから出射された前記荷電粒子ビームのエネルギーを変更するエネルギー変更装置と、算出された前記拡大ブッラグピーク幅が前記設定された幅でないとき、前記照射装置への前記荷電粒子ビームの輸送を停止するために、前記エネルギー変更装置に設けられるシャッターを閉じる前記第1制御装置を備えた請求項8記載の荷電粒子ビーム出射装置。
  20. 荷電粒子ビーム発生装置から出射された荷電粒子ビームを、前記荷電粒子ビームの進行方向における厚みが変化し、かつ通過する前記荷電粒子ビームのエネルギーを変えて前記照射対象内に拡大ブラッグピーク幅を形成させるビームエネルギー調整装置を有する照射装置より出射させる荷電粒子ビーム出射方法において、
    前記荷電粒子ビーム進行方向において、前記ビームエネルギー調整装置の下流側で前記荷電粒子ビームの線量を測定し、
    前記線量に基づいて前記拡大ブラッグピーク幅を算出することを特徴とする荷電粒子ビーム出射方法。
  21. 前記線量値に基づいた前記拡大ブラッグピーク幅の算出を、前記線量値から求めた出射ON/OFF時間に基づいて行う請求項20記載の荷電粒子ビーム出射方法。
  22. 前記ビームエネルギー調整装置に含まれている、厚みが回転方向において変化して通過する前記荷電粒子ビームのエネルギーを変える回転体を回転させているときに、前記荷電粒子ビーム発生装置からの前記荷電粒子ビームの出射及び出射停止を行う請求項20記載の荷電粒子ビーム出射方法。
  23. 前記荷電粒子ビームの出射及び出射停止を前記回転体の回転角度に基づいて行う請求項22記載の荷電粒子ビーム出射方法。
  24. 荷電粒子ビーム発生装置から出射された荷電粒子ビームを、前記荷電粒子ビームの進行方向における厚みが変化し、かつ通過する前記荷電粒子ビームのエネルギーを変えて前記照射対象内に拡大ブラッグピーク幅を形成させるビームエネルギー調整装置を有する照射装置より出射させる荷電粒子ビーム出射方法において、
    前記荷電粒子ビーム進行方向において、前記ビームエネルギー調整装置の下流側で前記荷電粒子ビームの線量を測定し、
    前記線量に基づいて前記拡大ブラッグピーク幅を算出し、算出された前記拡大ブラッグピーク幅が設定された幅であるかを判定することを特徴とする荷電粒子ビーム出射方法。
  25. 算出された前記拡大ブッラグピーク幅が前記設定された幅でないとき、前記荷電粒子ビームの出射を停止する請求項24記載の荷電粒子ビーム出射方法。
  26. 算出された前記拡大ブラックピーク幅を表示装置に表示する請求項24記載の荷電粒子ビーム出射方法。
  27. 前記線量値に基づいた前記拡大ブラッグピーク幅の算出を、前記線量値の単位時間当たりの線量率に基づいて行う請求項24記載の荷電粒子ビーム出射方法。
  28. 前記ビームエネルギー調整装置に含まれている、厚みが回転方向において変化して通過する前記荷電粒子ビームのエネルギーを変える回転体を回転させているときに、前記荷電粒子ビーム発生装置からの前記荷電粒子ビームの出射及び出射停止を行う請求項24記載の荷電粒子ビーム出射方法。
  29. 前記荷電粒子ビームの出射及び出射停止を前記回転体の回転角度に基づいて行う請求項28記載の荷電粒子ビーム出射方法。



JP2006187352A 2006-07-07 2006-07-07 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法 Expired - Fee Related JP4206414B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006187352A JP4206414B2 (ja) 2006-07-07 2006-07-07 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
US11/774,085 US7692168B2 (en) 2006-07-07 2007-07-06 Device and method for outputting charged particle beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006187352A JP4206414B2 (ja) 2006-07-07 2006-07-07 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法

Publications (2)

Publication Number Publication Date
JP2008012121A true JP2008012121A (ja) 2008-01-24
JP4206414B2 JP4206414B2 (ja) 2009-01-14

Family

ID=39069741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006187352A Expired - Fee Related JP4206414B2 (ja) 2006-07-07 2006-07-07 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法

Country Status (2)

Country Link
US (1) US7692168B2 (ja)
JP (1) JP4206414B2 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012254146A (ja) * 2011-06-08 2012-12-27 Hitachi Ltd 荷電粒子ビーム照射システム
JP2015163229A (ja) * 2009-10-23 2015-09-10 イオンビーム アプリケーションズ, エス.エー. 粒子線治療で使用するビーム分析器を備えるガントリ
JP2015530194A (ja) * 2012-09-28 2015-10-15 メビオン・メディカル・システムズ・インコーポレーテッド 粒子治療の制御
JP2015535713A (ja) * 2012-09-28 2015-12-17 メビオン・メディカル・システムズ・インコーポレーテッド 粒子加速器用の制御システム
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
USRE48047E1 (en) 2004-07-21 2020-06-09 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
CN115607852A (zh) * 2022-10-11 2023-01-17 中子高新技术产业发展(重庆)有限公司 模块化的可旋转中子治疗机

Families Citing this family (130)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077022B2 (en) * 2004-10-29 2015-07-07 Medtronic, Inc. Lithium-ion battery
US7728311B2 (en) 2005-11-18 2010-06-01 Still River Systems Incorporated Charged particle radiation therapy
US8933650B2 (en) 2007-11-30 2015-01-13 Mevion Medical Systems, Inc. Matching a resonant frequency of a resonant cavity to a frequency of an input voltage
US8581523B2 (en) 2007-11-30 2013-11-12 Mevion Medical Systems, Inc. Interrupted particle source
US7931784B2 (en) 2008-04-30 2011-04-26 Xyleco, Inc. Processing biomass and petroleum containing materials
JP4691574B2 (ja) * 2008-05-14 2011-06-01 株式会社日立製作所 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
US8969834B2 (en) 2008-05-22 2015-03-03 Vladimir Balakin Charged particle therapy patient constraint apparatus and method of use thereof
US8188688B2 (en) * 2008-05-22 2012-05-29 Vladimir Balakin Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system
US9974978B2 (en) 2008-05-22 2018-05-22 W. Davis Lee Scintillation array apparatus and method of use thereof
US8710462B2 (en) 2008-05-22 2014-04-29 Vladimir Balakin Charged particle cancer therapy beam path control method and apparatus
US8093564B2 (en) 2008-05-22 2012-01-10 Vladimir Balakin Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system
US8374314B2 (en) 2008-05-22 2013-02-12 Vladimir Balakin Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system
US8373146B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US8907309B2 (en) 2009-04-17 2014-12-09 Stephen L. Spotts Treatment delivery control system and method of operation thereof
US8373143B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy
US9910166B2 (en) 2008-05-22 2018-03-06 Stephen L. Spotts Redundant charged particle state determination apparatus and method of use thereof
US8598543B2 (en) * 2008-05-22 2013-12-03 Vladimir Balakin Multi-axis/multi-field charged particle cancer therapy method and apparatus
US8642978B2 (en) 2008-05-22 2014-02-04 Vladimir Balakin Charged particle cancer therapy dose distribution method and apparatus
US8378311B2 (en) 2008-05-22 2013-02-19 Vladimir Balakin Synchrotron power cycling apparatus and method of use thereof
US8718231B2 (en) 2008-05-22 2014-05-06 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
US9095040B2 (en) 2008-05-22 2015-07-28 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US8129699B2 (en) * 2008-05-22 2012-03-06 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration
US8519365B2 (en) * 2008-05-22 2013-08-27 Vladimir Balakin Charged particle cancer therapy imaging method and apparatus
US9737734B2 (en) 2008-05-22 2017-08-22 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10029122B2 (en) 2008-05-22 2018-07-24 Susan L. Michaud Charged particle—patient motion control system apparatus and method of use thereof
US8198607B2 (en) * 2008-05-22 2012-06-12 Vladimir Balakin Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system
US9177751B2 (en) 2008-05-22 2015-11-03 Vladimir Balakin Carbon ion beam injector apparatus and method of use thereof
US8144832B2 (en) * 2008-05-22 2012-03-27 Vladimir Balakin X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system
CN102113419B (zh) * 2008-05-22 2015-09-02 弗拉迪米尔·叶戈罗维奇·巴拉金 多轴带电粒子癌症治疗方法和装置
WO2009142545A2 (en) 2008-05-22 2009-11-26 Vladimir Yegorovich Balakin Charged particle cancer therapy patient positioning method and apparatus
US8373145B2 (en) * 2008-05-22 2013-02-12 Vladimir Balakin Charged particle cancer therapy system magnet control method and apparatus
US8569717B2 (en) * 2008-05-22 2013-10-29 Vladimir Balakin Intensity modulated three-dimensional radiation scanning method and apparatus
US9498649B2 (en) 2008-05-22 2016-11-22 Vladimir Balakin Charged particle cancer therapy patient constraint apparatus and method of use thereof
US8129694B2 (en) * 2008-05-22 2012-03-06 Vladimir Balakin Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system
US8309941B2 (en) 2008-05-22 2012-11-13 Vladimir Balakin Charged particle cancer therapy and patient breath monitoring method and apparatus
US8624528B2 (en) * 2008-05-22 2014-01-07 Vladimir Balakin Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods
US8896239B2 (en) * 2008-05-22 2014-11-25 Vladimir Yegorovich Balakin Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system
US10684380B2 (en) 2008-05-22 2020-06-16 W. Davis Lee Multiple scintillation detector array imaging apparatus and method of use thereof
US8378321B2 (en) * 2008-05-22 2013-02-19 Vladimir Balakin Charged particle cancer therapy and patient positioning method and apparatus
US9782140B2 (en) 2008-05-22 2017-10-10 Susan L. Michaud Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof
US9737272B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle cancer therapy beam state determination apparatus and method of use thereof
US9744380B2 (en) 2008-05-22 2017-08-29 Susan L. Michaud Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof
US10143854B2 (en) 2008-05-22 2018-12-04 Susan L. Michaud Dual rotation charged particle imaging / treatment apparatus and method of use thereof
US9682254B2 (en) 2008-05-22 2017-06-20 Vladimir Balakin Cancer surface searing apparatus and method of use thereof
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US8637833B2 (en) 2008-05-22 2014-01-28 Vladimir Balakin Synchrotron power supply apparatus and method of use thereof
US10070831B2 (en) 2008-05-22 2018-09-11 James P. Bennett Integrated cancer therapy—imaging apparatus and method of use thereof
US10092776B2 (en) 2008-05-22 2018-10-09 Susan L. Michaud Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof
US9937362B2 (en) 2008-05-22 2018-04-10 W. Davis Lee Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof
US7939809B2 (en) * 2008-05-22 2011-05-10 Vladimir Balakin Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US20090314960A1 (en) * 2008-05-22 2009-12-24 Vladimir Balakin Patient positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8089054B2 (en) 2008-05-22 2012-01-03 Vladimir Balakin Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system
US9981147B2 (en) 2008-05-22 2018-05-29 W. Davis Lee Ion beam extraction apparatus and method of use thereof
US8368038B2 (en) 2008-05-22 2013-02-05 Vladimir Balakin Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron
US8436327B2 (en) * 2008-05-22 2013-05-07 Vladimir Balakin Multi-field charged particle cancer therapy method and apparatus
US8487278B2 (en) * 2008-05-22 2013-07-16 Vladimir Yegorovich Balakin X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
US9058910B2 (en) * 2008-05-22 2015-06-16 Vladimir Yegorovich Balakin Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system
US9044600B2 (en) 2008-05-22 2015-06-02 Vladimir Balakin Proton tomography apparatus and method of operation therefor
US10548551B2 (en) 2008-05-22 2020-02-04 W. Davis Lee Depth resolved scintillation detector array imaging apparatus and method of use thereof
US9155911B1 (en) 2008-05-22 2015-10-13 Vladimir Balakin Ion source method and apparatus used in conjunction with a charged particle cancer therapy system
MX2010012714A (es) * 2008-05-22 2011-06-01 Vladimir Yegorovich Balakin Metodo y aparato de control de la trayectoria de haces para la terapia contra el cancer mediante particulas cargadas.
US8399866B2 (en) 2008-05-22 2013-03-19 Vladimir Balakin Charged particle extraction apparatus and method of use thereof
US8288742B2 (en) * 2008-05-22 2012-10-16 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US9056199B2 (en) 2008-05-22 2015-06-16 Vladimir Balakin Charged particle treatment, rapid patient positioning apparatus and method of use thereof
US9168392B1 (en) 2008-05-22 2015-10-27 Vladimir Balakin Charged particle cancer therapy system X-ray apparatus and method of use thereof
CN102119586B (zh) * 2008-05-22 2015-09-02 弗拉迪米尔·叶戈罗维奇·巴拉金 多场带电粒子癌症治疗方法和装置
US9855444B2 (en) 2008-05-22 2018-01-02 Scott Penfold X-ray detector for proton transit detection apparatus and method of use thereof
US8975600B2 (en) 2008-05-22 2015-03-10 Vladimir Balakin Treatment delivery control system and method of operation thereof
JP2011523169A (ja) 2008-05-22 2011-08-04 エゴロヴィチ バラキン、ウラジミール 荷電粒子癌治療システムと併用する荷電粒子ビーム抽出方法及び装置
US9616252B2 (en) 2008-05-22 2017-04-11 Vladimir Balakin Multi-field cancer therapy apparatus and method of use thereof
US9737733B2 (en) 2008-05-22 2017-08-22 W. Davis Lee Charged particle state determination apparatus and method of use thereof
US9579525B2 (en) 2008-05-22 2017-02-28 Vladimir Balakin Multi-axis charged particle cancer therapy method and apparatus
NZ602841A (en) * 2008-06-18 2014-03-28 Xyleco Inc Processing materials with ion beams
US9387454B2 (en) 2008-06-18 2016-07-12 Xyleco, Inc. Processing material with ion beams
AU2013202840B2 (en) * 2008-06-18 2015-01-22 Xyleco, Inc. Processing materials with ion beams
US8625739B2 (en) 2008-07-14 2014-01-07 Vladimir Balakin Charged particle cancer therapy x-ray method and apparatus
US8627822B2 (en) * 2008-07-14 2014-01-14 Vladimir Balakin Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system
US8229072B2 (en) * 2008-07-14 2012-07-24 Vladimir Balakin Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system
EP2177244B1 (de) * 2008-10-17 2016-04-13 AD Verwaltungs-GmbH & Co. KG Anlage zur Bestrahlung von Patienten mit geladenen Teilchen und Verfahren zur Überwachung der Anlage
US8632448B1 (en) 2009-02-05 2014-01-21 Loma Linda University Medical Center Proton scattering analysis system
MX2011009222A (es) 2009-03-04 2011-11-02 Protom Aozt Metodo y aparato para terapia de cancer con particulas cargadas de campos multiples.
EP2308561B1 (en) * 2009-09-28 2011-06-15 Ion Beam Applications Compact gantry for particle therapy
JP5646312B2 (ja) * 2010-04-02 2014-12-24 三菱電機株式会社 粒子線照射装置及び粒子線治療装置
US10556126B2 (en) 2010-04-16 2020-02-11 Mark R. Amato Automated radiation treatment plan development apparatus and method of use thereof
US10179250B2 (en) 2010-04-16 2019-01-15 Nick Ruebel Auto-updated and implemented radiation treatment plan apparatus and method of use thereof
US10518109B2 (en) 2010-04-16 2019-12-31 Jillian Reno Transformable charged particle beam path cancer therapy apparatus and method of use thereof
US20170216632A1 (en) * 2010-04-16 2017-08-03 W. Davis Lee Dispersive force corrected gantry based radiation treatment apparatus and method of use thereof
US10555710B2 (en) 2010-04-16 2020-02-11 James P. Bennett Simultaneous multi-axes imaging apparatus and method of use thereof
US10625097B2 (en) 2010-04-16 2020-04-21 Jillian Reno Semi-automated cancer therapy treatment apparatus and method of use thereof
US10589128B2 (en) 2010-04-16 2020-03-17 Susan L. Michaud Treatment beam path verification in a cancer therapy apparatus and method of use thereof
US10188877B2 (en) 2010-04-16 2019-01-29 W. Davis Lee Fiducial marker/cancer imaging and treatment apparatus and method of use thereof
US10638988B2 (en) 2010-04-16 2020-05-05 Scott Penfold Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof
US10086214B2 (en) 2010-04-16 2018-10-02 Vladimir Balakin Integrated tomography—cancer treatment apparatus and method of use thereof
US10376717B2 (en) 2010-04-16 2019-08-13 James P. Bennett Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof
US9737731B2 (en) 2010-04-16 2017-08-22 Vladimir Balakin Synchrotron energy control apparatus and method of use thereof
US10349906B2 (en) 2010-04-16 2019-07-16 James P. Bennett Multiplexed proton tomography imaging apparatus and method of use thereof
US11648420B2 (en) 2010-04-16 2023-05-16 Vladimir Balakin Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof
US10751551B2 (en) 2010-04-16 2020-08-25 James P. Bennett Integrated imaging-cancer treatment apparatus and method of use thereof
CA2829094A1 (en) 2011-03-07 2012-11-29 Loma Linda University Medical Center Systems, devices and methods related to calibration of a proton computed tomography scanner
WO2012120677A1 (ja) 2011-03-10 2012-09-13 三菱電機株式会社 線量監視装置の感度補正方法及び粒子線治療装置
US8963112B1 (en) 2011-05-25 2015-02-24 Vladimir Balakin Charged particle cancer therapy patient positioning method and apparatus
US8644571B1 (en) 2011-12-06 2014-02-04 Loma Linda University Medical Center Intensity-modulated proton therapy
TWI604868B (zh) 2012-09-28 2017-11-11 美威高能離子醫療系統公司 粒子加速器及質子治療系統
EP3342462B1 (en) 2012-09-28 2019-05-01 Mevion Medical Systems, Inc. Adjusting energy of a particle beam
CN104813750B (zh) 2012-09-28 2018-01-12 梅维昂医疗系统股份有限公司 调整主线圈位置的磁垫片
US10254739B2 (en) 2012-09-28 2019-04-09 Mevion Medical Systems, Inc. Coil positioning system
US9622335B2 (en) 2012-09-28 2017-04-11 Mevion Medical Systems, Inc. Magnetic field regenerator
JP6121544B2 (ja) 2012-09-28 2017-04-26 メビオン・メディカル・システムズ・インコーポレーテッド 粒子ビームの集束
US8933651B2 (en) 2012-11-16 2015-01-13 Vladimir Balakin Charged particle accelerator magnet apparatus and method of use thereof
US8791656B1 (en) 2013-05-31 2014-07-29 Mevion Medical Systems, Inc. Active return system
US9730308B2 (en) 2013-06-12 2017-08-08 Mevion Medical Systems, Inc. Particle accelerator that produces charged particles having variable energies
CN105764567B (zh) 2013-09-27 2019-08-09 梅维昂医疗系统股份有限公司 粒子束扫描
US9962560B2 (en) 2013-12-20 2018-05-08 Mevion Medical Systems, Inc. Collimator and energy degrader
US10675487B2 (en) 2013-12-20 2020-06-09 Mevion Medical Systems, Inc. Energy degrader enabling high-speed energy switching
US9661736B2 (en) 2014-02-20 2017-05-23 Mevion Medical Systems, Inc. Scanning system for a particle therapy system
WO2016014422A1 (en) * 2014-07-21 2016-01-28 The Trustees Of The University Of Pennsylvania Charged particle system and methods for irradiating a planning target volume
US9950194B2 (en) 2014-09-09 2018-04-24 Mevion Medical Systems, Inc. Patient positioning system
US9884206B2 (en) 2015-07-23 2018-02-06 Loma Linda University Medical Center Systems and methods for intensity modulated radiation therapy
US10786689B2 (en) 2015-11-10 2020-09-29 Mevion Medical Systems, Inc. Adaptive aperture
US9907981B2 (en) 2016-03-07 2018-03-06 Susan L. Michaud Charged particle translation slide control apparatus and method of use thereof
US10037863B2 (en) 2016-05-27 2018-07-31 Mark R. Amato Continuous ion beam kinetic energy dissipater apparatus and method of use thereof
EP3906968A1 (en) 2016-07-08 2021-11-10 Mevion Medical Systems, Inc. Treatment planning
US10403413B2 (en) * 2016-09-30 2019-09-03 Varian Medical Systems, Inc. Beam filter assembly and beam filter positioning device
US11103730B2 (en) 2017-02-23 2021-08-31 Mevion Medical Systems, Inc. Automated treatment in particle therapy
US10653892B2 (en) 2017-06-30 2020-05-19 Mevion Medical Systems, Inc. Configurable collimator controlled using linear motors
WO2019023901A1 (zh) * 2017-07-31 2019-02-07 西安大医数码科技有限公司 放疗设备的控制方法、装置及放射治疗系统
JP7002952B2 (ja) * 2018-01-29 2022-01-20 株式会社日立製作所 円形加速器、円形加速器を備えた粒子線治療システム、及び円形加速器の運転方法
EP3669941B1 (en) * 2018-12-20 2023-07-12 RaySearch Laboratories AB System and method for planning of passive ion radiotherapy treatment
TW202041245A (zh) 2019-03-08 2020-11-16 美商美威高能離子醫療系統公司 用於粒子治療系統之準直儀及降能器
WO2023069489A1 (en) * 2021-10-19 2023-04-27 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College System and method for simulating non-homogenous space radiation environment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363008A (en) 1991-10-08 1994-11-08 Hitachi, Ltd. Circular accelerator and method and apparatus for extracting charged-particle beam in circular accelerator
JP3655292B2 (ja) * 2003-04-14 2005-06-02 株式会社日立製作所 粒子線照射装置及び荷電粒子ビーム照射装置の調整方法
US7208748B2 (en) 2004-07-21 2007-04-24 Still River Systems, Inc. Programmable particle scatterer for radiation therapy beam formation
JP3806723B2 (ja) 2004-11-16 2006-08-09 株式会社日立製作所 粒子線照射システム
JP4575756B2 (ja) 2004-11-25 2010-11-04 三菱電機株式会社 荷電粒子照射野形成装置
JP2006280457A (ja) * 2005-03-31 2006-10-19 Hitachi Ltd 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
US7385203B2 (en) * 2005-06-07 2008-06-10 Hitachi, Ltd. Charged particle beam extraction system and method
US7394082B2 (en) * 2006-05-01 2008-07-01 Hitachi, Ltd. Ion beam delivery equipment and an ion beam delivery method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE48047E1 (en) 2004-07-21 2020-06-09 Mevion Medical Systems, Inc. Programmable radio frequency waveform generator for a synchrocyclotron
US10052498B2 (en) 2009-10-23 2018-08-21 Ion Beam Applications S.A. Gantry comprising beam analyser for use in particle therapy
JP2015163229A (ja) * 2009-10-23 2015-09-10 イオンビーム アプリケーションズ, エス.エー. 粒子線治療で使用するビーム分析器を備えるガントリ
US10799714B2 (en) 2009-10-23 2020-10-13 Ion Beam Applications, S.A. Gantry comprising beam analyser for use in particle therapy
JP2012254146A (ja) * 2011-06-08 2012-12-27 Hitachi Ltd 荷電粒子ビーム照射システム
JP2015535713A (ja) * 2012-09-28 2015-12-17 メビオン・メディカル・システムズ・インコーポレーテッド 粒子加速器用の制御システム
US9723705B2 (en) 2012-09-28 2017-08-01 Mevion Medical Systems, Inc. Controlling intensity of a particle beam
US9681531B2 (en) 2012-09-28 2017-06-13 Mevion Medical Systems, Inc. Control system for a particle accelerator
US10155124B2 (en) 2012-09-28 2018-12-18 Mevion Medical Systems, Inc. Controlling particle therapy
US9545528B2 (en) 2012-09-28 2017-01-17 Mevion Medical Systems, Inc. Controlling particle therapy
JP2015530194A (ja) * 2012-09-28 2015-10-15 メビオン・メディカル・システムズ・インコーポレーテッド 粒子治療の制御
CN115607852A (zh) * 2022-10-11 2023-01-17 中子高新技术产业发展(重庆)有限公司 模块化的可旋转中子治疗机
CN115607852B (zh) * 2022-10-11 2023-07-21 中子高新技术产业发展(重庆)有限公司 模块化的可旋转中子治疗机

Also Published As

Publication number Publication date
US7692168B2 (en) 2010-04-06
US20080067452A1 (en) 2008-03-20
JP4206414B2 (ja) 2009-01-14

Similar Documents

Publication Publication Date Title
JP4206414B2 (ja) 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
JP2007296321A (ja) 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
JP4602242B2 (ja) 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
JP4696965B2 (ja) 荷電粒子ビーム照射システム及び荷電粒子ビーム出射方法
JP5245193B2 (ja) 荷電粒子ビーム照射システム及び荷電粒子ビーム出射方法
US7456415B2 (en) Charged particle beam extraction system and method
JP4691574B2 (ja) 荷電粒子ビーム出射装置及び荷電粒子ビーム出射方法
JP3806723B2 (ja) 粒子線照射システム
JP3874766B2 (ja) 粒子線出射装置及び粒子線出射方法
JP2006239404A (ja) イオンビーム出射装置及びイオンビーム出射方法
JP4114590B2 (ja) 粒子線治療装置
JP5002612B2 (ja) 荷電粒子ビーム照射装置
US20110240874A1 (en) Particle beam irradiation apparatus and particle beam therapy system
JP2009000347A (ja) 粒子線照射システム
JP2010011962A (ja) 荷電粒子ビーム照射システムおよび荷電粒子ビーム出射方法
JP4726869B2 (ja) 荷電粒子ビーム照射システム及びその制御方法
JPWO2018003179A1 (ja) 放射線治療装置
US8198608B2 (en) Reducing the widening of a radiation beam
JP2010253000A (ja) 放射線照射システム
JP2012002772A (ja) 深さ方向線量分布測定装置、粒子線治療装置及び粒子線照射装置
US20220062656A1 (en) Charged particle irradiation apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4206414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees