[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008004358A - Alignment method, alignment apparatus, and organic el element forming apparatus - Google Patents

Alignment method, alignment apparatus, and organic el element forming apparatus Download PDF

Info

Publication number
JP2008004358A
JP2008004358A JP2006172168A JP2006172168A JP2008004358A JP 2008004358 A JP2008004358 A JP 2008004358A JP 2006172168 A JP2006172168 A JP 2006172168A JP 2006172168 A JP2006172168 A JP 2006172168A JP 2008004358 A JP2008004358 A JP 2008004358A
Authority
JP
Japan
Prior art keywords
mask
substrate
calculated
alignment
movement amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006172168A
Other languages
Japanese (ja)
Other versions
JP4865414B2 (en
Inventor
Susumu Bushimata
進 武士俣
Kazunori Tani
和憲 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Tokki Corp
Original Assignee
Tokki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokki Corp filed Critical Tokki Corp
Priority to JP2006172168A priority Critical patent/JP4865414B2/en
Publication of JP2008004358A publication Critical patent/JP2008004358A/en
Application granted granted Critical
Publication of JP4865414B2 publication Critical patent/JP4865414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alignment method extremely excellent in practicability which is capable of achieving improvement in accuracy of positioning by offsetting errors due to unique characteristics of the apparatus, and to provide an alignment apparatus as well as an organic EL element forming apparatus. <P>SOLUTION: This is the alignment method of a substrate 1 and a mask 3, in which differences of the coordinates corresponding to a first calculated movement amount in a positioning process and the coordinates after the first actual movement of the substrate 1 or the mask 3 actually moved by a movement means based on this first calculated movement amount are calculated, and by calculating a correction value to offset the differences between the coordinates corresponding to this calculated movement amount and the coordinates after the actual movement, the first calculated movement amount in the positioning process is corrected by using this correction value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、アライメント方法及びアライメント装置並びに有機EL素子形成装置に関するものである。   The present invention relates to an alignment method, an alignment apparatus, and an organic EL element forming apparatus.

例えば特許文献1に開示されるように、有機EL薄膜を基板上に所定のパターンで成膜するに際し、所定のパターンが形成されたマスクを基板上に密着させた状態で成膜する技術がある。   For example, as disclosed in Patent Document 1, when forming an organic EL thin film in a predetermined pattern on a substrate, there is a technique for forming a film in a state in which a mask on which a predetermined pattern is formed is in close contact with the substrate. .

この際、基板とマスクとを密着させる前に、基板側のアライメントマークとマスク側のアライメントマークとをCCDカメラ等で認識して相対距離(位置ズレ量)を検出し、この検出量に基づいて基板(若しくはマスク)をマスク表面(若しくは基板表面)と平行な平面内で相対的に移動させて、両アライメントマークの位置を合わせることで、基板とマスクとのアライメント調整を行い、その後、基板(若しくはマスク)を垂直方向に移動させて、マスクをマグネット機構等により基板表面に吸着せしめることで、基板上にマスクを密着させている。   At this time, before the substrate and the mask are brought into close contact with each other, the alignment mark on the substrate side and the alignment mark on the mask side are recognized by a CCD camera or the like to detect the relative distance (position shift amount). The substrate (or mask) is moved relatively in a plane parallel to the mask surface (or substrate surface) and the alignment marks are aligned to adjust the alignment between the substrate and the mask. (Or the mask) is moved in the vertical direction, and the mask is adhered to the substrate surface by a magnet mechanism or the like, so that the mask is brought into close contact with the substrate.

特開平11−158605号公報JP-A-11-158605

ところで、上記アライメント調整の際には、通常、上記相対距離の検出及び基板若しくはマスクを平行移動させての位置合わせを複数回行う必要がある。   By the way, at the time of the alignment adjustment, it is usually necessary to perform the detection of the relative distance and the alignment by moving the substrate or the mask in parallel several times.

これは、基板若しくはマスクを保持した状態でこれらを移動せしめるアライメントテーブルを駆動する駆動機構の装置固有の特性により、CCDカメラ等により認識して検出した位置ズレ量の検出量と、この検出量に基づいて駆動される駆動機構による実際の基板等の移動量とに差異が生じているためと考えられる。   This is due to the characteristic of the device of the drive mechanism that drives the alignment table that moves the substrate or mask while holding it, and the amount of positional deviation detected and detected by a CCD camera, etc. This is considered to be because there is a difference in the actual amount of movement of the substrate or the like by the drive mechanism that is driven based on this.

例えば、図1に図示したようなX1,X2及びY軸方向駆動用のボールネジ機構を夫々備えたアライメントテーブルAにおいては、テーブルBを、対称に配置されたX1軸及びX2軸駆動用のボールネジ機構を同時に駆動して移動させた場合と、個別に駆動して移動させた場合とでは、テーブルB(アライメントマーク)の移動量が異なる(非線形)。また、Y軸駆動用のボールネジ機構は、図1に図示したように回転中心Oからオフセットされて配置されることが多いため、Y軸方向にテーブルBを移動させると回転成分C(ねじれ)の移動が発生し、対称性を失う。また、装置に含まれる何らかのゆがみや、ボールネジのバックラッシュも装置固有の特性を生じる原因と考えられる。   For example, in the alignment table A provided with the ball screw mechanisms for driving in the X1, X2, and Y-axis directions as shown in FIG. 1, the table B is arranged symmetrically with the ball screw mechanisms for driving the X1-axis and the X2-axis. The amount of movement of the table B (alignment mark) is different (non-linear) between the case where they are driven and moved simultaneously and the case where they are driven and moved individually. Further, since the ball screw mechanism for driving the Y-axis is often arranged offset from the rotation center O as shown in FIG. 1, when the table B is moved in the Y-axis direction, the rotation component C (twist) is generated. Movement occurs and loses symmetry. In addition, any distortion included in the device and backlash of the ball screw are considered to be the causes of the device-specific characteristics.

更に、上記アライメント調整を行った後、基板とマスクとを密着させる際に、基板とマスクとに若干の位置ズレが生じることで、アライメント調整を行ったにも関わらず、密着した状態では基板とマスクとが(両アライメントマーク位置が)許容範囲以上にズレている場合があり、この場合には再度アライメント調整を行う必要が生じる。   Furthermore, after the alignment adjustment, when the substrate and the mask are brought into close contact with each other, a slight positional deviation occurs between the substrate and the mask. In some cases, the mask is displaced beyond the allowable range (both alignment mark positions). In this case, it is necessary to perform alignment adjustment again.

本発明は、上述のような現状に鑑みなされたもので、装置固有の特性に起因する誤差を相殺して位置合わせ精度の向上を図ることができ、基板若しくはマスクの駆動回数を減少させてアライメント調整時間を短縮でき、また、基板とマスクとの密着時の位置ズレを相殺することもできる極めて実用性に秀れたアライメント方法及びアライメント装置並びに有機EL素子形成装置を提供するものである。   The present invention has been made in view of the current situation as described above, and can offset errors caused by characteristics inherent in the apparatus to improve the alignment accuracy, and can reduce the number of times of driving the substrate or mask for alignment. The present invention provides an alignment method, an alignment apparatus, and an organic EL element forming apparatus that are excellent in practicality and that can shorten the adjustment time and can cancel the positional deviation at the time of close contact between the substrate and the mask.

添付図面を参照して本発明の要旨を説明する。   The gist of the present invention will be described with reference to the accompanying drawings.

基板1に設けた基板側アライメントマーク2とマスク3に設けたマスク側アライメントマーク4との双方を光学手段により認識し得るようにこの基板1とマスク3とを移動手段により相対的に移動せしめ、前記光学手段で認識した画像データを用いて前記基板側アライメントマーク2と前記マスク側アライメントマーク4との位置合わせに必要な移動量を算出し、この算出移動量に基づいて前記移動手段を制御して前記基板1若しくは前記マスク3を移動させる位置合わせ工程を、一回若しくは複数回行うことで前記基板1と前記マスク3とのアライメント調整を行った後、前記基板1と前記マスク3とを密着せしめるアライメント方法であって、前記位置合わせ工程における第一回目の算出移動量に応じた座標と、この第一回目の算出移動量に基づき実際に前記移動手段により移動させた前記基板1若しくは前記マスク3の第一回目の実移動後の座標との差を算出すると共に、この算出移動量に応じた座標と実移動後の座標との差を相殺する補正値を算出して、この補正値を用いて前記位置合わせ工程における第一回目の算出移動量を補正し、この補正値によって補正された補正算出移動量に基づいて前記移動手段により前記基板1若しくは前記マスク3を移動させることを特徴とするアライメント方法に係るものである。   The substrate 1 and the mask 3 are relatively moved by the moving means so that both the substrate-side alignment mark 2 provided on the substrate 1 and the mask-side alignment mark 4 provided on the mask 3 can be recognized by the optical means, Using the image data recognized by the optical means, a movement amount necessary for alignment between the substrate side alignment mark 2 and the mask side alignment mark 4 is calculated, and the movement means is controlled based on the calculated movement amount. The alignment process for moving the substrate 1 or the mask 3 is performed once or a plurality of times to adjust the alignment between the substrate 1 and the mask 3, and the substrate 1 and the mask 3 are brought into close contact with each other. The alignment method includes a coordinate according to a first calculated movement amount in the alignment step, and a first calculated movement. The difference between the substrate 1 or the mask 3 actually moved by the moving means on the basis of the coordinates after the first actual movement is calculated, and the coordinates corresponding to the calculated movement amount and the coordinates after the actual movement are calculated. A correction value that cancels the difference between the first and second positions is calculated, and the first calculated movement amount in the alignment step is corrected using the correction value. Based on the correction calculated movement amount corrected by the correction value, the correction value is corrected. According to the alignment method, the substrate 1 or the mask 3 is moved by a moving means.

また、前記補正値を複数回算出し、この複数回算出した補正値の平均値を用いて前記算出移動量を補正することを特徴とする請求項1記載のアライメント方法に係るものである。   2. The alignment method according to claim 1, wherein the correction value is calculated a plurality of times, and the calculated movement amount is corrected using an average value of the correction values calculated a plurality of times.

また、直近の複数回の前記補正値の平均値を用いて前記算出移動量を補正することを特徴とする請求項2記載のアライメント方法に係るものである。   3. The alignment method according to claim 2, wherein the calculated movement amount is corrected using an average value of the correction values of a plurality of latest times.

また、前記補正値を各算出移動量毎に多数算出・記憶しておき、前記位置合わせ工程における第一回目の算出移動量に応じて、前記各算出移動量毎に算出・記憶したいずれかの補正値を用いて補正することを特徴とする請求項1〜3のいずれか1項に記載のアライメント方法に係るものである。   In addition, a large number of the correction values are calculated and stored for each calculated movement amount, and one of the calculated and stored values for each calculated movement amount according to the first calculated movement amount in the alignment step. It corrects using a correction value, It concerns on the alignment method of any one of Claims 1-3 characterized by the above-mentioned.

また、前記補正値を算出すると共に前記アライメント調整を行い、前記基板1とマスク3とを密着せしめる際に、前記光学手段で認識した画像データを用いて密着前の前記基板側アライメントマーク2とマスク側アライメントマーク4との位置ズレ量と、密着後の前記基板側アライメントマーク2とマスク側アライメントマーク4との位置ズレ量との位置ズレ量差を算出すると共に、この位置ズレ量差を相殺するメカオフセット量を算出し、このメカオフセット量を用いて前記移動手段を制御することで前記アライメント調整後にして密着前の前記基板1と前記マスク3との相対位置を補正した後、前記基板1と前記マスク3とを密着させることを特徴とする請求項1〜4のいずれか1項に記載のアライメント方法に係るものである。   Further, when the correction value is calculated and the alignment adjustment is performed so that the substrate 1 and the mask 3 are brought into close contact with each other, the substrate-side alignment mark 2 and the mask before contact are obtained using image data recognized by the optical means. The positional deviation amount difference between the positional deviation amount with respect to the side alignment mark 4 and the positional deviation amount between the substrate side alignment mark 2 and the mask side alignment mark 4 after contact is calculated, and the positional deviation amount difference is offset. After calculating the mechanical offset amount and controlling the moving means using the mechanical offset amount to correct the relative position between the substrate 1 and the mask 3 before adhesion after the alignment adjustment, the substrate 1 5. The alignment method according to claim 1, wherein the mask and the mask are brought into close contact with each other.

また、前記メカオフセット量を複数回算出し、この複数回算出したメカオフセット量の平均値を用いて前記アライメント調整後にして密着前の前記基板1と前記マスク3との相対位置を補正することを特徴とする請求項5記載のアライメント方法に係るものである。   Further, the mechanical offset amount is calculated a plurality of times, and an average value of the mechanical offset amounts calculated a plurality of times is used to correct the relative position between the substrate 1 and the mask 3 before adhesion after the alignment adjustment. 6. The alignment method according to claim 5, wherein:

また、基板1とマスク3とを相対的に移動せしめる移動手段と、この基板1に設けた基板側アライメントマーク2とマスク3に設けたマスク側アライメントマーク4とを画像化して認識する光学手段と、この光学手段により得られた画像データを用いて前記基板側アライメントマーク2と前記マスク側アライメントマーク4との位置合わせに必要な移動量を算出する移動量算出手段と、この移動量算出手段により算出した算出移動量に基づいて前記移動手段を制御する制御手段と、前記基板1と前記マスク3とを密着させる密着手段とを有し、請求項1〜6のいずれか1項に記載のアライメント方法を用いて前記基板1と前記マスク3とのアライメントを行うことを特徴とするアライメント装置に係るものである。   A moving means for relatively moving the substrate 1 and the mask 3; and an optical means for imaging and recognizing the substrate-side alignment mark 2 provided on the substrate 1 and the mask-side alignment mark 4 provided on the mask 3; The moving amount calculating means for calculating the moving amount necessary for alignment between the substrate side alignment mark 2 and the mask side alignment mark 4 using the image data obtained by the optical means, and the moving amount calculating means The alignment according to claim 1, further comprising: a control unit that controls the moving unit based on the calculated calculated movement amount; and an adhesion unit that closely contacts the substrate 1 and the mask 3. The present invention relates to an alignment apparatus that performs alignment between the substrate 1 and the mask 3 using a method.

また、請求項7記載のアライメント装置を備えたことを特徴とする有機EL素子形成装置に係るものである。   The present invention also relates to an organic EL element forming apparatus comprising the alignment apparatus according to claim 7.

本発明は、上述のように構成したから、装置固有の特性に起因する誤差を相殺して位置合わせ精度の向上を図ることができ、基板若しくはマスクの駆動回数を減少させてアライメント調整時間を短縮でき、また、基板とマスクとの密着時の位置ズレを相殺することもできる極めて実用性に秀れたアライメント方法及びアライメント装置並びに有機EL素子形成装置となる。   Since the present invention is configured as described above, it is possible to improve the alignment accuracy by offsetting errors caused by the characteristics inherent in the apparatus, and reduce the number of times of driving the substrate or mask to shorten the alignment adjustment time. In addition, an alignment method, an alignment apparatus, and an organic EL element forming apparatus that are excellent in practicality and that can offset a positional shift at the time of close contact between the substrate and the mask.

好適と考える本発明の実施形態(発明をどのように実施するか)を、図面に基づいて本発明の作用を示して簡単に説明する。   Embodiments of the present invention that are considered suitable (how to carry out the invention) will be briefly described with reference to the drawings, illustrating the operation of the present invention.

基板1とマスク3とを、基板側アライメントマーク2とマスク側アライメントマーク4との双方が光学手段により認識し得るように相対的に移動せしめ、この光学手段で認識した画像データを用いて両アライメントマーク2・4の位置合わせに必要な移動量を算出し、この算出移動量に基づいて移動手段により基板1若しくはマスク3を移動させた際、前記算出移動量と基板1若しくはマスク3が実際に移動した実移動量との差を算出し、この差を相殺する補正値を用いて次回以降の位置合わせ工程の際に算出された第一回目の算出移動量を補正する。   The substrate 1 and the mask 3 are relatively moved so that both the substrate-side alignment mark 2 and the mask-side alignment mark 4 can be recognized by the optical means, and both alignments are performed using the image data recognized by the optical means. When the movement amount necessary for the alignment of the marks 2 and 4 is calculated and the substrate 1 or the mask 3 is moved by the moving means based on the calculated movement amount, the calculated movement amount and the substrate 1 or the mask 3 are actually A difference from the actual movement amount moved is calculated, and a first calculated movement amount calculated in the subsequent alignment process is corrected using a correction value that cancels the difference.

即ち、例えば、図1に図示したような駆動機構を有する移動手段を採用した場合、光学手段で認識した両アライメントマーク2・4の相対距離(位置ズレ量)から、位置合わせに必要な移動量が、X1=100,X2=100,Y=100と算出され、この算出移動量に応じて移動手段の駆動機構を駆動して実際に移動した座標点から前記の算出移動量に応じた座標までの移動修正量がX1=+10,X2=−8,Y=+5だったとすると、これらの移動修正量を相殺するように、次回以降の位置合わせ工程の際に算出された第一回目の算出移動量に、補正値として(算出移動量/(算出移動量−移動修正量))、即ち、X1=100/(100−10),X2=100/(100+8),Y=100/(100−5)を乗じて補正算出移動量とする。   That is, for example, when a moving means having a drive mechanism as shown in FIG. 1 is adopted, the moving amount necessary for alignment is determined from the relative distance (position shift amount) between the alignment marks 2 and 4 recognized by the optical means. Are calculated as X1 = 100, X2 = 100, and Y = 100, and the driving mechanism of the moving means is driven according to the calculated movement amount to the coordinates corresponding to the calculated movement amount. Assuming that the movement correction amount of X1 = + 10, X2 = −8, and Y = + 5, the first calculated movement calculated in the subsequent alignment process so as to cancel out these movement correction amounts. As a correction value, (calculated movement amount / (calculated movement amount−movement correction amount)), that is, X1 = 100 / (100−10), X2 = 100 / (100 + 8), Y = 100 / (100−5) ) To.

この補正値により補正された補正算出移動量を用いて、基板1若しくはマスク3を移動させることで、位置合わせ工程の際に装置固有の特性を相殺することができ、より少ない基板1若しくはマスク3の移動回数で両アライメントマーク2・4の位置合わせを行うことが可能となり、それだけアライメント時間を短縮することができる。   By moving the substrate 1 or the mask 3 using the correction calculated movement amount corrected by the correction value, the characteristic characteristic of the apparatus can be canceled during the alignment process, and the smaller number of the substrate 1 or the mask 3 is obtained. Thus, the alignment marks 2 and 4 can be aligned with the number of movements, and the alignment time can be shortened accordingly.

即ち、例えば、本工程を行う前に、予備的に搬送した基板によりアライメント調整を行い上記補正値を算出しておき、本工程時にこの補正値を用いて補正を行うことで、極めて効率的なアライメント調整が可能となる。   That is, for example, before performing this process, alignment adjustment is performed using a substrate transported preliminarily to calculate the correction value, and correction is performed using this correction value at the time of this process. Alignment adjustment is possible.

また、例えば、前記補正値を複数回算出し、この複数回算出した補正値の平均値を用いて前記算出移動量を補正することで、より精密な位置合わせが可能となる。特に、予め設定した直近の複数回の前記補正値の平均値を用いて前記算出移動量を補正することで、最新の工程の状態における補正値を選択でき、より現状にマッチした補正が可能となる。   Further, for example, by calculating the correction value a plurality of times and correcting the calculated movement amount using an average value of the correction values calculated a plurality of times, it is possible to perform more precise alignment. In particular, by correcting the calculated movement amount using an average value of the most recent correction values set in advance, it is possible to select a correction value in the state of the latest process, and it is possible to perform a correction that matches the current situation. Become.

また、例えば、前記補正値を各算出移動量毎に多数算出・記憶しておき、前記位置合わせ工程における第一回目の算出移動量に応じて、前記各算出移動量毎に算出・記憶したいずれかの補正値を用いて補正することで(例えば算出移動量が上記X1=100,X2=100,Y=100の場合と、X1=110,X2=100,Y=100の場合とでは、異なる補正値を用いて補正することで)、より一層精密な位置合わせが可能となる。   In addition, for example, a large number of the correction values are calculated and stored for each calculated movement amount, and any of the calculated and stored values for each calculated movement amount according to the first calculated movement amount in the alignment step. (For example, the case where the calculated movement amount is X1 = 100, X2 = 100, Y = 100 differs from the case where X1 = 110, X2 = 100, Y = 100). By performing correction using the correction value), more precise alignment is possible.

また、例えば、前記補正値を算出すると共に前記アライメント調整を行い、前記基板1とマスク3とを密着せしめる際に、前記光学手段で認識した画像データを用いて密着前の前記基板側アライメントマーク2とマスク側アライメントマーク4との位置ズレ量と、密着後の前記基板側アライメントマーク2とマスク側アライメントマーク4との位置ズレ量との位置ズレ量差を算出すると共に、この位置ズレ量差を相殺するメカオフセット量を算出し、このメカオフセット量を用いて前記移動手段を制御することで前記アライメント調整後にして密着前の前記基板1と前記マスク3との相対位置を補正した後、前記基板1と前記マスク3とを密着させることで、基板1とマスク3とを密着させる際に生じる位置ズレを相殺でき、再度アライメント調整を行う頻度を低下させることができ、短時間で高精度なアライメントが可能となる。   Further, for example, when the correction value is calculated and the alignment adjustment is performed so that the substrate 1 and the mask 3 are brought into close contact with each other, the substrate side alignment mark 2 before contact is obtained using image data recognized by the optical means. And a positional deviation amount between the mask side alignment mark 4 and a positional deviation amount between the substrate side alignment mark 2 and the mask side alignment mark 4 after contact are calculated, and this positional deviation amount difference is calculated. After calculating the mechanical offset amount to be canceled and controlling the moving means using this mechanical offset amount, after correcting the relative position between the substrate 1 and the mask 3 before adhesion after the alignment adjustment, By causing the substrate 1 and the mask 3 to be in close contact with each other, it is possible to cancel the positional deviation that occurs when the substrate 1 and the mask 3 are in close contact with each other. Adjustment frequency can be lowered to perform the highly accurate alignment can be performed in a short time.

本発明の具体的な実施例について図面に基づいて説明する。   Specific embodiments of the present invention will be described with reference to the drawings.

本実施例は、基板1に設けた基板側アライメントマーク2とマスク3に設けたマスク側アライメントマーク4との双方を光学手段により認識し得るようにこの基板1とマスク3とを移動手段により相対的に移動せしめ、前記光学手段で認識した画像データを用いて前記基板側アライメントマーク2と前記マスク側アライメントマーク4との位置合わせに必要な移動量を算出し、この算出移動量に基づいて前記移動手段を制御して前記基板1若しくは前記マスク3を移動させる位置合わせ工程を、一回若しくは複数回行うことで前記基板1と前記マスク3とのアライメント調整を行った後、前記基板1と前記マスク3とを密着せしめるアライメント方法であって、前記位置合わせ工程における第一回目の算出移動量に応じた座標と、この第一回目の算出移動量に基づき実際に前記移動手段により移動させた前記基板1若しくは前記マスク3の第一回目の実移動後の座標との差を算出すると共に、この算出移動量に応じた座標と実移動後の座標との差を相殺する補正値を算出して、この補正値を用いて前記位置合わせ工程における第一回目の算出移動量を補正し、この補正値によって補正された補正算出移動量に基づいて前記移動手段により前記基板1若しくは前記マスク3を移動させるアライメント方法を用いるアライメント装置である。   In this embodiment, the substrate 1 and the mask 3 are relatively moved by the moving means so that both the substrate-side alignment mark 2 provided on the substrate 1 and the mask-side alignment mark 4 provided on the mask 3 can be recognized by the optical means. The movement amount necessary for alignment between the substrate side alignment mark 2 and the mask side alignment mark 4 is calculated using the image data recognized by the optical means, and based on the calculated movement amount, the movement amount is calculated. After adjusting the alignment between the substrate 1 and the mask 3 by performing a positioning step of controlling the moving means to move the substrate 1 or the mask 3 once or a plurality of times, An alignment method for bringing the mask 3 into close contact, the coordinates corresponding to the first calculated movement amount in the positioning step, and the first time Based on the calculated movement amount, the difference between the first actual movement of the substrate 1 or the mask 3 actually moved by the moving means is calculated, and the coordinates corresponding to the calculated movement amount and the actual A correction value that cancels the difference from the coordinate after movement is calculated, and the first calculated movement amount in the alignment step is corrected using this correction value, and the corrected calculated movement amount corrected by this correction value The alignment apparatus uses an alignment method for moving the substrate 1 or the mask 3 by the moving means based on the above.

具体的には、本実施例は、基板1とマスク3とを相対的に移動せしめる移動手段と、この基板1に設けた基板側アライメントマーク2とマスク3に設けたマスク側アライメントマーク4とを画像化して認識する光学手段と、この光学手段により得られた画像データを用いて前記基板側アライメントマーク2と前記マスク側アライメントマーク4との位置合わせに必要な移動量を算出する移動量算出手段と、この移動量算出手段により算出した算出移動量に基づいて前記移動手段を制御する制御手段と、前記基板1と前記マスク3とを密着させる密着手段とを有している。   Specifically, in this embodiment, a moving means for relatively moving the substrate 1 and the mask 3 and a substrate-side alignment mark 2 provided on the substrate 1 and a mask-side alignment mark 4 provided on the mask 3 are provided. Optical means for imaging and recognizing, and movement amount calculating means for calculating a movement amount necessary for alignment between the substrate side alignment mark 2 and the mask side alignment mark 4 using image data obtained by the optical means And a control means for controlling the movement means based on the calculated movement amount calculated by the movement amount calculation means, and an adhesion means for bringing the substrate 1 and the mask 3 into close contact with each other.

また、前記移動量算出手段は、前記位置合わせ工程における第一回目の算出移動量と、この第一回目の算出移動量に基づき実際に移動させた前記基板1若しくは前記マスク3の第一回目の実移動量との差を算出して、この算出移動量と実移動量との差を相殺する補正値を用いて前記位置合わせ工程における第一回目の前記算出移動量を補正するように構成し、この補正値によって補正された補正算出移動量に基づいて前記移動手段を制御するように前記制御手段を構成している。   Further, the movement amount calculating means is a first calculation movement amount of the first time in the alignment step and a first time of the substrate 1 or the mask 3 actually moved based on the first calculation movement amount. A difference from the actual movement amount is calculated, and the first calculated movement amount in the alignment step is corrected using a correction value that cancels out the difference between the calculated movement amount and the actual movement amount. The control means is configured to control the moving means based on the correction calculated movement amount corrected by the correction value.

各部を具体的に説明する。   Each part will be specifically described.

基板1としては、一般的なガラス基板が使用される。また、マスク3としては、一般的なメタルマスクが使用される。本実施例においては基板1に十字状の基板側アライメントマーク2を、マスク3に環状のマスク側アライメントマーク4を設け、この環状のマスク側アライメントマーク4内に十字状の基板側アライメントマーク3が丁度収まることで、基板1とマスク3とが適正重合状態となるように設定している。   As the substrate 1, a general glass substrate is used. As the mask 3, a general metal mask is used. In the present embodiment, a cross-shaped substrate-side alignment mark 2 is provided on the substrate 1, and an annular mask-side alignment mark 4 is provided on the mask 3, and the cross-shaped substrate-side alignment mark 3 is provided in the annular mask-side alignment mark 4. By just being accommodated, it sets so that the board | substrate 1 and the mask 3 may be in an appropriate superposition | polymerization state.

移動手段としては、マスク3を保持するマスクホルダを、図1に図示したようなアライメントテーブルA上に設けて、アーム機構等の適宜な基板保持機構により保持された基板1に対し、マスクホルダに保持したマスク3を前記アライメントテーブルAのテーブルBにより移動させて、マスク3と基板1との位置合わせを行うように構成している。   As a moving means, a mask holder for holding the mask 3 is provided on the alignment table A as shown in FIG. 1, and the mask holder is used as a mask holder with respect to the substrate 1 held by an appropriate substrate holding mechanism such as an arm mechanism. The held mask 3 is moved by the table B of the alignment table A so that the mask 3 and the substrate 1 are aligned.

アライメントテーブルAは、X1,X2及びY軸駆動用の各ボールネジ機構によりX1,X2及びY軸方向に夫々移動するように構成され、ボールネジ機構は、テーブルB裏面に設けられるナットと螺合するボールネジと、このボールネジを回転駆動するサーボモータとで構成され、前記サーボモータは制御手段を備えたコンピュータに接続されている。   The alignment table A is configured to move in the X1, X2, and Y axis directions by the ball screw mechanisms for driving the X1, X2, and Y axes, respectively. The ball screw mechanism is a ball screw that is screwed with a nut provided on the back surface of the table B. And a servo motor that rotationally drives the ball screw, and the servo motor is connected to a computer having control means.

光学手段としては、CCDカメラを採用している。このCCDカメラは前記移動量算出手段及び前記制御手段を備えたコンピュータに接続され、CCDカメラで認識した画像は、コンピュータ内で画像データとして処理される。即ち、従来同様に、CCDカメラで認識した映像をコンピュータを用いて処理して自動的にアライメントを行う構成を採用できる。   As the optical means, a CCD camera is adopted. The CCD camera is connected to a computer having the movement amount calculating means and the control means, and an image recognized by the CCD camera is processed as image data in the computer. That is, as in the prior art, it is possible to employ a configuration in which an image recognized by a CCD camera is processed using a computer and automatically aligned.

具体的には、基板側アライメントマーク2とマスク側アライメントマーク4との位置(座標)から相対距離(位置ズレ量)を検出して、両アライメントマーク2・4(の中心位置)を一致させるために必要なマスク3の移動量を算出するように前記移動量算出手段を構成し、この算出移動量を用いて各サーボモータを駆動し、マスク3を基板1の表面と平行な平面内で移動させ得るように前記制御手段を構成している。   Specifically, in order to detect the relative distance (position shift amount) from the position (coordinates) between the substrate side alignment mark 2 and the mask side alignment mark 4, both alignment marks 2 and 4 (the center positions thereof) are matched. The movement amount calculation means is configured to calculate the movement amount of the mask 3 necessary for the movement, each servo motor is driven using the calculated movement amount, and the mask 3 is moved in a plane parallel to the surface of the substrate 1. The control means is configured so as to make it possible.

更に、前記移動量算出手段は、前記算出移動量と、この算出移動量を用いてマスク3を実際に移動させた際の実移動量との差を算出すると共に、この算出移動量と実移動量との差を丁度相殺する補正値を算出して、この補正値により位置合わせ工程における第一回目の算出移動量を補正できるように構成している。   Further, the movement amount calculating means calculates a difference between the calculated movement amount and an actual movement amount when the mask 3 is actually moved using the calculated movement amount, and the calculated movement amount and the actual movement. A correction value that exactly cancels the difference from the amount is calculated, and the first calculated movement amount in the alignment step can be corrected by this correction value.

即ち、位置合わせ工程における第一回目の算出移動量は、特に誤差が大きく(十数μm程度)、そのために複数回位置合わせ工程を繰り返す必要があったが、上記補正値による補正を行うことで、この第一回目の位置合わせでの誤差を、許容範囲である数μm以内に収めることが可能となり、従来のように複数回位置合わせ工程を行う必要なく、一回のマスクの移動で基板1とマスク3との位置合わせを終えることが可能となる。   That is, the calculated movement amount for the first time in the alignment process has a particularly large error (about a dozen μm). Therefore, the alignment process has to be repeated a plurality of times. The error in the first alignment can be kept within an allowable range of several μm, and it is not necessary to perform the alignment process a plurality of times as in the prior art, and the substrate 1 can be moved by a single movement of the mask. And the mask 3 can be aligned.

例えば図2に図示したように、光学手段で認識した両アライメントマーク2・4の位置ズレ量から、位置合わせに必要な移動量を、X1=100,X2=100,Y=100と算出し(図2(a))、この算出移動量に応じて制御された移動手段により実際に移動した座標点から前記の算出移動量に応じた座標までの移動修正量がX1=+10,X2=−8,Y=+5だったとすると、これらの移動修正量を相殺するように、補正値としてX1=100/(100−10),X2=100/(100+8),Y=100/(100−5)を設定する(図2(b))。そして、次回以降の位置合わせ工程の際に算出された第一回目の算出移動量に、前記補正値を乗じた補正算出移動量に応じて移動手段の駆動機構を駆動して(図2(c))、基板1とマスク3との位置合わせを行うことで、装置固有の特性を相殺して一回のマスクの移動で基板1とマスク3との位置合わせを終えることが可能となる(図2(d))。   For example, as shown in FIG. 2, the amount of movement required for alignment is calculated as X1 = 100, X2 = 100, and Y = 100 from the positional shift amount of both alignment marks 2 and 4 recognized by the optical means ( 2A), the movement correction amount from the coordinate point actually moved by the moving means controlled according to the calculated movement amount to the coordinate corresponding to the calculated movement amount is X1 = + 10, X2 = −8. , Y = + 5, X1 = 100 / (100-10), X2 = 100 / (100 + 8), Y = 100 / (100-5) as correction values so as to cancel out these movement correction amounts. The setting is made (FIG. 2B). Then, the drive mechanism of the moving means is driven in accordance with the corrected calculated movement amount obtained by multiplying the first calculated movement amount calculated in the subsequent alignment process by the correction value (FIG. 2 (c). )) By aligning the substrate 1 and the mask 3, it is possible to cancel the characteristic of the apparatus and finish the alignment of the substrate 1 and the mask 3 by one movement of the mask (FIG. 2 (d)).

更に、補正値として、複数回算出した補正値の平均値を用いるように設定しても良い。複数回の平均値としては、この他に、逐次前回までの所定回数分の前記補正値の平均値を採用することが好ましい。このようにすれば、最新の工程の状態における補正値を採択可能とするため、より現状にマッチした補正とすることが可能となる。また、補正値を各算出移動量毎に多数算出・記憶しておき、前記位置合わせ工程における第一回目の算出移動量に応じて、前記各算出移動量毎に算出・記憶したいずれかの補正値を用いて補正するように設定しても良い。即ち、算出移動量がX1=100,X2=100,Y=100である場合には補正値a、X1=110,X2=100,Y=100である場合には補正値b、X1=100,X2=110,Y=100である場合には補正値c等、各算出移動量毎にコンピュータにデータを蓄積しておき、所定の算出移動量に対して所定の補正値を用いるようにしても良い。   Further, an average value of correction values calculated a plurality of times may be used as the correction value. In addition to this, it is preferable to employ an average value of the correction values for a predetermined number of times until the previous time. In this way, since the correction value in the latest process state can be adopted, it is possible to make a correction that matches the current situation. Further, a large number of correction values are calculated and stored for each calculated movement amount, and one of the corrections calculated and stored for each calculated movement amount according to the first calculated movement amount in the alignment step. You may set so that it may correct using a value. That is, when the calculated movement amount is X1 = 100, X2 = 100, Y = 100, the correction value a, and when X1 = 110, X2 = 100, Y = 100, the correction value b, X1 = 100, When X2 = 110 and Y = 100, data is accumulated in the computer for each calculated movement amount, such as the correction value c, and a predetermined correction value is used for the predetermined calculated movement amount. good.

また、本実施例は、上記補正値を算出してアライメント調整を行った後の密着前の基板側アライメントマーク2とマスク側アライメントマーク4との位置ズレ量と、密着後の基板側アライメントマーク2とマスク側アライメントマーク4との位置ズレ量との位置ズレ量差を算出すると共に、この位置ズレ量差を相殺するメカオフセット量を算出し得るように前記移動量算出手段を構成し、このメカオフセット量を用いて前記移動手段を制御し得るように前記制御手段を構成して、前記メカオフセット量を用いて前記アライメント調整後にして密着前の前記基板1と前記マスク3との相対位置を補正できるようにしている。   Further, in the present embodiment, the positional deviation amount between the substrate-side alignment mark 2 and the mask-side alignment mark 4 before adhesion after calculating the correction value and performing alignment adjustment, and the substrate-side alignment mark 2 after adhesion. The movement amount calculating means is configured to calculate a positional deviation amount difference between the positional deviation amount between the mask side alignment mark 4 and the mask side alignment mark 4 and to calculate a mechanical offset amount that cancels the positional deviation amount. The control unit is configured to control the moving unit using an offset amount, and the relative position between the substrate 1 and the mask 3 before adhesion after the alignment adjustment using the mechanical offset amount is determined. It can be corrected.

即ち、図3に図示したように、アライメント調整後(図3(a))、マスク1と基板3とを密着させる際、即ち、マスクホルダに保持されるマスク3上に基板1を載置する際には、基板保持機構等の装置固有の特性により、マスク3上に垂直に載置できずに僅かに位置ズレS1が生じ(図3(b))、この位置ズレS1が、両アライメントマーク2・4の相対距離が許容範囲内に収まる程度であればそのまま密着させることができるが、位置ズレS1が許容範囲外である場合、再度マスク3から基板1を離して位置を調整した後、載置する必要がある。   That is, as shown in FIG. 3, after alignment adjustment (FIG. 3A), when the mask 1 and the substrate 3 are brought into close contact, that is, the substrate 1 is placed on the mask 3 held by the mask holder. At this time, due to the inherent characteristics of the apparatus such as the substrate holding mechanism, the substrate cannot be placed vertically on the mask 3 and a slight displacement S1 occurs (FIG. 3B). If the relative distance of 2 and 4 is within the allowable range, the contact can be made as it is, but if the positional deviation S1 is out of the allowable range, the substrate 1 is separated from the mask 3 again and the position is adjusted. It is necessary to place it.

この点、本実施例は、上記位置ズレS1を相殺するメカオフセット量S2を用いて予め基板保持機構等の装置固有の特性を考慮して、基板1とマスク3との相対位置を補正することができるから(図3(c))、基板1とマスク3との密着時に生じる位置ズレにより基板1とマスク3との位置を合わせることができ(図3(d))、再度の位置調整が不要となり、また、アライメント精度も向上する。   In this respect, in this embodiment, the relative position between the substrate 1 and the mask 3 is corrected in advance by taking into consideration the characteristics inherent in the apparatus such as the substrate holding mechanism using the mechanical offset amount S2 that cancels the positional deviation S1. (FIG. 3 (c)), the position of the substrate 1 and the mask 3 can be aligned by the positional deviation that occurs when the substrate 1 and the mask 3 are in close contact (FIG. 3 (d)). It becomes unnecessary and the alignment accuracy is improved.

従って、例えば本実施例を有機EL素子形成装置に設けた場合には、より高精細なパターンの有機EL膜や封止膜の成膜が可能となり、アライメント工程のスループットを改善して有機EL素子を製造するタクトタイムを改善し、生産性の向上を図ることが可能となる。   Therefore, for example, when this embodiment is provided in an organic EL element forming apparatus, it becomes possible to form an organic EL film or a sealing film with a higher definition pattern, thereby improving the throughput of the alignment process and improving the organic EL element. It is possible to improve the tact time for manufacturing and improve productivity.

特に、例えば、本実施例を組み立てた後、実際の成膜工程中でアライメントを行う前に、予備的に基板を搬送し、この基板とマスクとのアライメント調整を行う際に上記補正値を算出し、また、密着させる際に、上記メカオフセット量を算出しておくことで、実際の成膜工程中でアライメントを行う際に、予め算出しておいた前記補正値を用いて前記位置合わせ工程における第一回目の算出移動量を補正し、また、前記メカオフセット量を用いて、アライメント調整後・密着前の基板1とマスク3との相対位置を補正して、基板1とマスク3とを密着させることで、工程数を増加させることなくアライメント時間の短縮を図れることになる。   In particular, for example, after assembling the present embodiment, before the alignment is performed in the actual film forming process, the substrate is transported preliminarily, and the above correction value is calculated when the alignment adjustment between the substrate and the mask is performed. In addition, by calculating the mechanical offset amount at the time of close contact, the alignment step is performed using the correction value calculated in advance when performing alignment in the actual film forming step. The first calculated movement amount is corrected, and the relative position between the substrate 1 and the mask 3 after alignment adjustment and before adhesion is corrected by using the mechanical offset amount. By closely contacting, the alignment time can be shortened without increasing the number of steps.

尚、本実施例においては説明のため、図2及び図3に分けて記載しているが、実際には、上述のように、予備基板1に対してマスク3を移動させ(図2(a))、位置合わせ工程時に補正値を算出し(図2(b))、アライメント調整を行った後(図3(a))、予備基板1とマスク3とを密着せしめてメカオフセット量を算出し(図3(b))、予備基板1を搬出して、この予備基板1とは異なる基板1を搬入し、実際の成膜工程中で前記補正値を用いて第一回目の算出移動量を補正し(図2(c))、基板1とマスク3との位置合わせを行い(図2(d))、密着前に基板1とマスク3との相対位置を前記メカオフセット量を用いて補正し(図3(c))、基板1とマスク3とを密着する(図3(d))、という順序でアライメントを行う。   In the present embodiment, for the sake of explanation, it is described separately in FIGS. 2 and 3, but actually, the mask 3 is moved relative to the spare substrate 1 as described above (FIG. 2 (a). )), A correction value is calculated during the alignment process (FIG. 2B), and after alignment adjustment (FIG. 3A), the preliminary substrate 1 and the mask 3 are brought into close contact with each other to calculate the mechanical offset amount. (FIG. 3B), the spare substrate 1 is unloaded, a substrate 1 different from the spare substrate 1 is loaded, and the first calculated movement amount is used by using the correction value in the actual film forming process. (FIG. 2 (c)), the substrate 1 and the mask 3 are aligned (FIG. 2 (d)), and the relative position between the substrate 1 and the mask 3 is set using the mechanical offset amount before the contact. Correction is performed (FIG. 3C), and the substrate 1 and the mask 3 are brought into close contact with each other (FIG. 3D). .

本実施例は上述のように構成したから、基板1とマスク3とを、基板側アライメントマーク2とマスク側アライメントマーク4との双方が光学手段により認識し得るように相対的に移動せしめ、この光学手段で認識した画像データを用いて両アライメントマーク2・4の位置合わせに必要な移動量を算出し、この算出移動量に基づいて移動手段により基板1若しくはマスク3を移動させた際、前記算出移動量と基板1若しくはマスク3が実際に移動した実移動量との差を算出し、この差を相殺する補正値を用いて次回以降の位置合わせ工程の際に算出された第一回目の算出移動量を補正するから、位置合わせ工程の際に装置固有の特性を相殺することができ、より少ない基板1若しくはマスク3の移動回数で両アライメントマーク2・4の位置合わせを行うことが可能となり、それだけアライメント時間を短縮することができる。   Since the present embodiment is configured as described above, the substrate 1 and the mask 3 are relatively moved so that both the substrate-side alignment mark 2 and the mask-side alignment mark 4 can be recognized by the optical means. When the movement amount necessary for alignment of both alignment marks 2 and 4 is calculated using the image data recognized by the optical means, and when the substrate 1 or the mask 3 is moved by the movement means based on the calculated movement amount, The difference between the calculated movement amount and the actual movement amount that the substrate 1 or the mask 3 has actually moved is calculated, and the first time calculated in the subsequent alignment process using a correction value that cancels this difference. Since the calculated movement amount is corrected, the characteristic inherent to the apparatus can be canceled during the alignment process, and the position of both alignment marks 2 and 4 can be reduced with a smaller number of movements of the substrate 1 or mask 3. Combined it is possible to perform, it can be shortened correspondingly alignment time.

更に、前記補正値を算出すると共に前記アライメント調整を行い、前記基板1とマスク3とを密着せしめる際に、前記光学手段で認識した画像データを用いて密着前の前記基板側アライメントマーク2とマスク側アライメントマーク4との位置ズレ量と、密着後の前記基板側アライメントマーク2とマスク側アライメントマーク4との位置ズレ量との位置ズレ量差を算出すると共に、この位置ズレ量差を相殺するメカオフセット量を算出し、このメカオフセット量を用いて前記移動手段を制御することで前記アライメント調整後にして密着前の前記基板1と前記マスク3との相対位置を補正した後、前記基板1と前記マスク3とを密着させるから、基板1とマスク3とを密着させる際に生じる位置ズレを相殺でき、再度アライメント調整を行う頻度を低下させることができ、短時間で高精度なアライメントが可能となる。   Further, when the correction value is calculated and the alignment adjustment is performed so that the substrate 1 and the mask 3 are brought into close contact with each other, the substrate-side alignment mark 2 and the mask before contact are obtained using image data recognized by the optical means. The positional deviation amount difference between the positional deviation amount with respect to the side alignment mark 4 and the positional deviation amount between the substrate side alignment mark 2 and the mask side alignment mark 4 after contact is calculated, and the positional deviation amount difference is offset. After calculating the mechanical offset amount and controlling the moving means using the mechanical offset amount to correct the relative position between the substrate 1 and the mask 3 before adhesion after the alignment adjustment, the substrate 1 And the mask 3 are brought into close contact with each other, so that a positional shift that occurs when the substrate 1 and the mask 3 are brought into close contact can be offset, and alignment adjustment is performed again. It is possible to reduce the frequency, highly accurate alignment can be performed in a short time.

従って、本実施例は、装置固有の特性に起因する誤差を可及的に低減して位置合わせ精度の向上を図り、基板若しくはマスクの駆動回数を減少させてアライメント調整時間を短縮でき、また、基板とマスクとの密着時の位置ズレを低減することもできる極めて実用性に秀れたものとなる。   Therefore, this embodiment can reduce the error due to the characteristics peculiar to the apparatus as much as possible to improve the alignment accuracy, reduce the number of times of driving the substrate or mask, and shorten the alignment adjustment time. The positional deviation when the substrate and the mask are in close contact with each other can be reduced, and it is extremely excellent in practicality.

本発明は、本実施例に限られるものではなく、各構成要件の具体的構成は適宜設計し得るものである。   The present invention is not limited to this embodiment, and the specific configuration of each component can be designed as appropriate.

アライメントテーブルの概略説明図である。It is a schematic explanatory drawing of an alignment table. 本実施例の概略説明図である。It is a schematic explanatory drawing of a present Example. 本実施例の概略説明図である。It is a schematic explanatory drawing of a present Example.

符号の説明Explanation of symbols

1 基板
2 基板側アライメントマーク
3 マスク
4 マスク側アライメントマーク
1 Substrate 2 Substrate side alignment mark 3 Mask 4 Mask side alignment mark

Claims (8)

基板に設けた基板側アライメントマークとマスクに設けたマスク側アライメントマークとの双方を光学手段により認識し得るようにこの基板とマスクとを移動手段により相対的に移動せしめ、前記光学手段で認識した画像データを用いて前記基板側アライメントマークと前記マスク側アライメントマークとの位置合わせに必要な移動量を算出し、この算出移動量に基づいて前記移動手段を制御して前記基板若しくは前記マスクを移動させる位置合わせ工程を、一回若しくは複数回行うことで前記基板と前記マスクとのアライメント調整を行った後、前記基板と前記マスクとを密着せしめるアライメント方法であって、前記位置合わせ工程における第一回目の算出移動量に応じた座標と、この第一回目の算出移動量に基づき実際に前記移動手段により移動させた前記基板若しくは前記マスクの第一回目の実移動後の座標との差を算出すると共に、この算出移動量に応じた座標と実移動後の座標との差を相殺する補正値を算出して、この補正値を用いて前記位置合わせ工程における第一回目の算出移動量を補正し、この補正値によって補正された補正算出移動量に基づいて前記移動手段により前記基板若しくは前記マスクを移動させることを特徴とするアライメント方法。   The substrate and the mask are relatively moved by the moving means so that both the substrate-side alignment mark provided on the substrate and the mask-side alignment mark provided on the mask can be recognized by the optical means, and the optical means recognizes them. The amount of movement required for alignment between the substrate side alignment mark and the mask side alignment mark is calculated using image data, and the substrate or the mask is moved by controlling the moving means based on the calculated amount of movement. An alignment method for aligning the substrate and the mask by performing the alignment step to be performed once or a plurality of times and then bringing the substrate and the mask into close contact with each other. Based on the coordinates according to the calculated movement amount of the first time and the calculated movement amount of the first time, the moving means actually The difference between the moved substrate and the mask after the first actual movement of the mask is calculated, and a correction value that cancels the difference between the coordinate according to the calculated movement amount and the coordinate after the actual movement. The first calculated movement amount in the alignment step is corrected using the correction value, and the substrate or the mask is moved by the moving means based on the corrected calculated movement amount corrected by the correction value. An alignment method characterized by moving. 前記補正値を複数回算出し、この複数回算出した補正値の平均値を用いて前記算出移動量を補正することを特徴とする請求項1記載のアライメント方法。   The alignment method according to claim 1, wherein the correction value is calculated a plurality of times, and the calculated movement amount is corrected using an average value of the correction values calculated a plurality of times. 直近の複数回の前記補正値の平均値を用いて前記算出移動量を補正することを特徴とする請求項2記載のアライメント方法。   The alignment method according to claim 2, wherein the calculated movement amount is corrected using an average value of the most recent correction values. 前記補正値を各算出移動量毎に多数算出・記憶しておき、前記位置合わせ工程における第一回目の算出移動量に応じて、前記各算出移動量毎に算出・記憶したいずれかの補正値を用いて補正することを特徴とする請求項1〜3のいずれか1項に記載のアライメント方法。   A large number of the correction values are calculated and stored for each calculated movement amount, and one of the correction values calculated and stored for each calculated movement amount according to the first calculated movement amount in the alignment step. The alignment method according to any one of claims 1 to 3, wherein correction is performed by using the correction method. 前記補正値を算出すると共に前記アライメント調整を行い、前記基板とマスクとを密着せしめる際に、前記光学手段で認識した画像データを用いて密着前の前記基板側アライメントマークとマスク側アライメントマークとの位置ズレ量と、密着後の前記基板側アライメントマークとマスク側アライメントマークとの位置ズレ量との位置ズレ量差を算出すると共に、この位置ズレ量差を相殺するメカオフセット量を算出し、このメカオフセット量を用いて前記移動手段を制御することで前記アライメント調整後にして密着前の前記基板と前記マスクとの相対位置を補正した後、前記基板と前記マスクとを密着させることを特徴とする請求項1〜4のいずれか1項に記載のアライメント方法。   When calculating the correction value and performing the alignment adjustment to bring the substrate and the mask into close contact, the image data recognized by the optical means is used to determine whether the substrate-side alignment mark and the mask-side alignment mark are in close contact with each other. A positional deviation amount difference between the positional deviation amount and the positional deviation amount between the substrate side alignment mark and the mask side alignment mark after adhesion is calculated, and a mechanical offset amount that cancels the positional deviation amount difference is calculated. After the alignment is adjusted by controlling the moving means using a mechanical offset amount, the relative position between the substrate and the mask before contact is corrected, and then the substrate and the mask are brought into contact with each other. The alignment method according to any one of claims 1 to 4. 前記メカオフセット量を複数回算出し、この複数回算出したメカオフセット量の平均値を用いて前記アライメント調整後にして密着前の前記基板と前記マスクとの相対位置を補正することを特徴とする請求項5記載のアライメント方法。   The mechanical offset amount is calculated a plurality of times, and an average value of the mechanical offset amounts calculated a plurality of times is used to correct the relative position between the substrate and the mask before adhesion after the alignment adjustment. The alignment method according to claim 5. 基板とマスクとを相対的に移動せしめる移動手段と、この基板に設けた基板側アライメントマークとマスクに設けたマスク側アライメントマークとを画像化して認識する光学手段と、この光学手段により得られた画像データを用いて前記基板側アライメントマークと前記マスク側アライメントマークとの位置合わせに必要な移動量を算出する移動量算出手段と、この移動量算出手段により算出した算出移動量に基づいて前記移動手段を制御する制御手段と、前記基板と前記マスクとを密着させる密着手段とを有し、請求項1〜6のいずれか1項に記載のアライメント方法を用いて前記基板と前記マスクとのアライメントを行うことを特徴とするアライメント装置。   A moving means for relatively moving the substrate and the mask, an optical means for imaging and recognizing the substrate-side alignment mark provided on the substrate and the mask-side alignment mark provided on the mask, and obtained by the optical means A movement amount calculation means for calculating a movement amount necessary for alignment between the substrate side alignment mark and the mask side alignment mark using image data, and the movement based on the calculated movement amount calculated by the movement amount calculation means. Control means for controlling the means and contact means for bringing the substrate and the mask into close contact with each other, and alignment of the substrate and the mask using the alignment method according to claim 1. An alignment apparatus characterized by performing: 請求項7記載のアライメント装置を備えたことを特徴とする有機EL素子形成装置。
An organic EL element forming apparatus comprising the alignment apparatus according to claim 7.
JP2006172168A 2006-06-22 2006-06-22 Alignment method Active JP4865414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006172168A JP4865414B2 (en) 2006-06-22 2006-06-22 Alignment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006172168A JP4865414B2 (en) 2006-06-22 2006-06-22 Alignment method

Publications (2)

Publication Number Publication Date
JP2008004358A true JP2008004358A (en) 2008-01-10
JP4865414B2 JP4865414B2 (en) 2012-02-01

Family

ID=39008577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006172168A Active JP4865414B2 (en) 2006-06-22 2006-06-22 Alignment method

Country Status (1)

Country Link
JP (1) JP4865414B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287935A (en) * 2007-05-15 2008-11-27 Ulvac Japan Ltd Alignment method and method for forming thin film
KR20110067260A (en) * 2009-12-14 2011-06-22 엘지디스플레이 주식회사 Align method for fabricating of organic electoluminescence divice
KR101107179B1 (en) * 2009-09-25 2012-01-25 삼성모바일디스플레이주식회사 Apparatus for aligning mask and method for aligning mask
JP2013211139A (en) * 2012-03-30 2013-10-10 Hitachi High-Technologies Corp Deposition device and deposition method
KR101425893B1 (en) * 2010-10-27 2014-08-05 캐논 가부시끼가이샤 Alignment method, alignment apparatus, and organic el element manufacturing apparatus
CN111331622A (en) * 2018-12-18 2020-06-26 佳能特机株式会社 Substrate mounting method, film forming apparatus, and organic EL panel manufacturing system
KR20210035706A (en) 2019-09-24 2021-04-01 캐논 톡키 가부시키가이샤 Film forming apparatus and film forming method, information acquiring device, alignment method, and method and apparatus for manufacturing electronic device
CN112962061A (en) * 2017-08-25 2021-06-15 佳能特机株式会社 Alignment mark position detection device, vapor deposition device, and method for manufacturing electronic device
KR20220000820A (en) 2020-06-26 2022-01-04 캐논 톡키 가부시키가이샤 Alignment apparatus, film forming apparatus, alignment method, manufacturing method of electronic device, program, and storage medium
JP7450493B2 (en) 2019-08-10 2024-03-15 キヤノントッキ株式会社 Mask alignment method, film forming method, mask alignment device, and film forming device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144429A (en) * 1984-08-09 1986-03-04 Nippon Kogaku Kk <Nikon> Alignment method
JPH02297011A (en) * 1989-05-11 1990-12-07 Seiko Epson Corp Alignment method
JPH10199784A (en) * 1997-01-06 1998-07-31 Mitsubishi Electric Corp Alignment correction method and semiconductor device
JP2004027291A (en) * 2002-06-25 2004-01-29 Tokki Corp Vapor deposition apparatus
JP2006012597A (en) * 2004-06-25 2006-01-12 Kyocera Corp Manufacturing method of display using mask alignment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6144429A (en) * 1984-08-09 1986-03-04 Nippon Kogaku Kk <Nikon> Alignment method
JPH02297011A (en) * 1989-05-11 1990-12-07 Seiko Epson Corp Alignment method
JPH10199784A (en) * 1997-01-06 1998-07-31 Mitsubishi Electric Corp Alignment correction method and semiconductor device
JP2004027291A (en) * 2002-06-25 2004-01-29 Tokki Corp Vapor deposition apparatus
JP2006012597A (en) * 2004-06-25 2006-01-12 Kyocera Corp Manufacturing method of display using mask alignment

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008287935A (en) * 2007-05-15 2008-11-27 Ulvac Japan Ltd Alignment method and method for forming thin film
US8309282B2 (en) 2009-09-25 2012-11-13 Samsung Display Co., Ltd. Apparatus and method for aligning mask
KR101107179B1 (en) * 2009-09-25 2012-01-25 삼성모바일디스플레이주식회사 Apparatus for aligning mask and method for aligning mask
KR101630328B1 (en) * 2009-12-14 2016-06-15 엘지디스플레이 주식회사 Align method for fabricating of organic electoluminescence divice
KR20110067260A (en) * 2009-12-14 2011-06-22 엘지디스플레이 주식회사 Align method for fabricating of organic electoluminescence divice
KR101425893B1 (en) * 2010-10-27 2014-08-05 캐논 가부시끼가이샤 Alignment method, alignment apparatus, and organic el element manufacturing apparatus
JP2013211139A (en) * 2012-03-30 2013-10-10 Hitachi High-Technologies Corp Deposition device and deposition method
CN112962061A (en) * 2017-08-25 2021-06-15 佳能特机株式会社 Alignment mark position detection device, vapor deposition device, and method for manufacturing electronic device
CN112962061B (en) * 2017-08-25 2023-10-03 佳能特机株式会社 Alignment mark position detection device, vapor deposition device, and method for manufacturing electronic device
CN111331622A (en) * 2018-12-18 2020-06-26 佳能特机株式会社 Substrate mounting method, film forming apparatus, and organic EL panel manufacturing system
CN111331622B (en) * 2018-12-18 2023-04-18 佳能特机株式会社 Substrate mounting method, film forming apparatus, and organic EL panel manufacturing system
JP7450493B2 (en) 2019-08-10 2024-03-15 キヤノントッキ株式会社 Mask alignment method, film forming method, mask alignment device, and film forming device
KR20210035706A (en) 2019-09-24 2021-04-01 캐논 톡키 가부시키가이샤 Film forming apparatus and film forming method, information acquiring device, alignment method, and method and apparatus for manufacturing electronic device
KR20220000820A (en) 2020-06-26 2022-01-04 캐논 톡키 가부시키가이샤 Alignment apparatus, film forming apparatus, alignment method, manufacturing method of electronic device, program, and storage medium

Also Published As

Publication number Publication date
JP4865414B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4865414B2 (en) Alignment method
CN102027568B (en) Systems and methods for calibrating end effector alignment in a plasma processing system
JP4576694B2 (en) Method for aligning transfer position of object processing system and object processing system
JP7002438B2 (en) Robot systems, device manufacturing equipment, and device manufacturing methods
JP6298109B2 (en) Substrate processing apparatus and alignment method
CN101911279A (en) Workpiece support with fluid zones for temperature control
US20220199448A1 (en) Bonding apparatus and method for correcting movement amount of bonding head
CN112720458A (en) System and method for online real-time correction of robot tool coordinate system
JPWO2019013274A1 (en) Device and method for positioning a first object with respect to a second object
JP3744251B2 (en) Electronic component mounting method
JP2019141918A (en) Positional information restoration method of robot
JP2009049251A (en) Wafer conveying device
KR20140146442A (en) A Method for Aligning Substrate with Mask
JP7106608B2 (en) Mark detection device, alignment device, film formation device, mark detection method, and film formation method
JP6035063B2 (en) Substrate transfer device
KR20110019990A (en) Method for aligning a substrate
JP2011035148A (en) Electronic component mounting device, and camera position correcting method in the same
JP2009038194A (en) Surface mounting device
JP2009184069A (en) Wafer carrying device and method of adjusting the same
TWI454860B (en) Image alignment apparatus
JP7094115B2 (en) How to calculate the correction value for industrial robots
JP2002296806A5 (en)
JP2002296806A (en) Exposure device and substrate positioning method therefor
KR101478230B1 (en) Teaching method of apparatus for manufacturing semiconductor
CN113905859B (en) Robot control system and robot control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4865414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141118

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250