JP2008001945A - Bright annealing-finished ferritic stainless steel sheet having excellent rusting resistance and workability and method for producing the same - Google Patents
Bright annealing-finished ferritic stainless steel sheet having excellent rusting resistance and workability and method for producing the same Download PDFInfo
- Publication number
- JP2008001945A JP2008001945A JP2006172489A JP2006172489A JP2008001945A JP 2008001945 A JP2008001945 A JP 2008001945A JP 2006172489 A JP2006172489 A JP 2006172489A JP 2006172489 A JP2006172489 A JP 2006172489A JP 2008001945 A JP2008001945 A JP 2008001945A
- Authority
- JP
- Japan
- Prior art keywords
- stainless steel
- steel sheet
- workability
- bright
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001220 stainless steel Inorganic materials 0.000 title claims abstract description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 238000000137 annealing Methods 0.000 claims abstract description 41
- 239000007789 gas Substances 0.000 claims abstract description 16
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 7
- 238000002791 soaking Methods 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 6
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 230000000630 rising effect Effects 0.000 claims abstract description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 3
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract 2
- 239000001257 hydrogen Substances 0.000 claims abstract 2
- 229910000831 Steel Inorganic materials 0.000 claims description 51
- 239000010959 steel Substances 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 25
- 229910010413 TiO 2 Inorganic materials 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 17
- 239000010935 stainless steel Substances 0.000 claims description 15
- 239000011261 inert gas Substances 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 5
- 239000010960 cold rolled steel Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 238000005507 spraying Methods 0.000 claims description 3
- 238000005097 cold rolling Methods 0.000 claims description 2
- 230000035558 fertility Effects 0.000 claims 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 abstract 1
- 230000007797 corrosion Effects 0.000 description 25
- 238000005260 corrosion Methods 0.000 description 25
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- 230000000694 effects Effects 0.000 description 13
- 238000007670 refining Methods 0.000 description 10
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 230000009467 reduction Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 6
- 230000006872 improvement Effects 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 238000007711 solidification Methods 0.000 description 4
- 230000008023 solidification Effects 0.000 description 4
- 238000005728 strengthening Methods 0.000 description 4
- 229910000859 α-Fe Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910002588 FeOOH Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 238000005275 alloying Methods 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- -1 cation ions Chemical class 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical group [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、耐発銹性と加工性に優れた光輝焼鈍仕上げフェライト系ステンレス鋼板およびその製造方法に関するものである。 TECHNICAL FIELD The present invention relates to a bright annealed ferritic stainless steel sheet excellent in rust resistance and workability and a method for producing the same.
フェライト系ステンレス鋼板は、厨房機器、家電製品、電子機器など幅広い分野で使用されている。しかしながら、オ−ステナイト系ステンレス鋼板と比較して加工性に劣るため、用途限定される場合もあった。近年、精錬技術の向上により極低炭素・窒素化が可能となり、更にTiやNbなどの安定化元素の添加により、加工性を高めたフェライト系ステンレス鋼板は広範囲の加工用途へ適用されつつある。これは、フェライト系ステンレス鋼が多量のNiを添加するオ−ステナイト系ステンレス鋼よりも経済性に優れているためである。 Ferritic stainless steel sheets are used in a wide range of fields such as kitchen equipment, home appliances, and electronic equipment. However, since it is inferior in workability as compared with an austenitic stainless steel sheet, its use may be limited. In recent years, improvement in refining technology has enabled extremely low carbon and nitrogenization, and ferritic stainless steel sheets with improved workability by addition of stabilizing elements such as Ti and Nb are being applied to a wide range of processing applications. This is because ferritic stainless steel is more economical than austenitic stainless steel to which a large amount of Ni is added.
加工性を高めたフェライト系ステンレス鋼板は、代表的なオ−ステナイト系ステンレス鋼板のSUS304(18Cr−8Ni)と比べ、Cr量が低い場合も多く,耐食性には課題がある。意匠性が要求されるステンレスシンク等の厨房機器や家電製品については、初期の発銹やしみなどの腐食による表面性状の劣化を問題とする場合が多い。 Ferritic stainless steel plates with improved workability often have a lower Cr content than SUS304 (18Cr-8Ni), which is a typical austenitic stainless steel plate, and there is a problem with corrosion resistance. For kitchen appliances such as stainless steel sinks and home electric appliances that require design properties, deterioration of surface properties due to corrosion such as initial rusting and stains is often a problem.
上述のような耐発銹性を改善するには、CrやMoを合金化する方法と、光輝焼鈍により鋼板表面に形成する皮膜を改質する方法とがある。前者は、合金化によるコスト上昇を招くとともに、加工性を阻害する要因となるため好ましくない。後者は、材料コストの上昇と加工性の低下を抑制する視点から有効な方法であり、光輝焼鈍を利用した皮膜改質については種々の発明が開示されている。 In order to improve the above-mentioned galling resistance, there are a method of alloying Cr and Mo and a method of modifying a film formed on the steel sheet surface by bright annealing. The former is not preferable because it causes an increase in cost due to alloying and becomes a factor that hinders workability. The latter is an effective method from the viewpoint of suppressing an increase in material cost and a decrease in workability, and various inventions have been disclosed for film modification utilizing bright annealing.
特許文献1には、非晶質シリカ(SiO2)を主成分とする皮膜を形成させることでステンレス光輝焼鈍材の耐発銹性を高めることを開示している。SiO2皮膜による耐発銹性の改善については、特許文献2において鋼中Al量と皮膜中Al量の規制により向上すること、特許文献3においてNb酸化物との共存により向上することも開示されている。 Patent Document 1 discloses that the anti-glare property of a stainless bright annealing material is improved by forming a film mainly composed of amorphous silica (SiO 2 ). Regarding the improvement of the rust resistance by the SiO 2 film, it is disclosed in Patent Document 2 that it is improved by regulating the amount of Al in steel and the amount of Al in the film, and in Patent Document 3 that it is improved by coexistence with Nb oxide. ing.
上述の光輝焼鈍を利用した耐発銹性の向上は、Siを主な脱酸元素としたものであり、実質的にSiを0.5%以上含むフェライト系ステンレス鋼である。近年、例えば、特許文献4,特許文献5の中で加工性の向上を図るために低Si化,Ti添加したフェライト系ステンレス鋼板が開示されている。低Si化,Ti添加したフェライト系ステンレス鋼の皮膜改質については、例えば、特許文献6,特許文献7,特許文献8において、皮膜中にAlとTiの両者を濃化させることで耐発銹性が向上することを開示している。 The improvement in the resistance to cracking using the bright annealing described above is made of Si as a main deoxidizing element, and is a ferritic stainless steel substantially containing 0.5% or more of Si. In recent years, for example, Patent Document 4 and Patent Document 5 disclose ferritic stainless steel sheets to which Si is reduced and Ti is added in order to improve workability. Regarding film reforming of ferritic stainless steel with low Si and Ti addition, for example, in Patent Document 6, Patent Document 7, and Patent Document 8, both Al and Ti are concentrated in the film to prevent rusting. It is disclosed that the performance is improved.
加工性に優れた低Si,Ti添加したフェライト系ステンレス鋼において、光輝焼鈍を利用した耐発銹性の向上技術は、鋼板表面に形成する皮膜のAlとTiの複合作用に基づいている。上記効果を得るには、Alを光輝焼鈍で皮膜中に濃化させることが必要であり、鋼中のAl含有量は実質的に、特許文献6では0.06%超、特許文献7および特許文献8では0.12%超としなければならない。すなわち、Ti単独の効果で耐発銹性の向上を達成したものではない。Alは、低Si化したフェライト系ステンレス鋼の脱酸元素として有効に作用するものの、0.05%を超えて脱酸の必要量以上に添加すると、鋼の加工性,靭性,溶接性を阻害することになる。 In the ferritic stainless steel with low Si and Ti added, which is excellent in workability, the technology for improving the galling resistance utilizing bright annealing is based on the combined action of Al and Ti of the coating formed on the steel sheet surface. In order to obtain the above effect, it is necessary to concentrate Al in the film by bright annealing, and the Al content in the steel is substantially over 0.06% in Patent Document 6, Patent Document 7 and Patent In Document 8, it must be over 0.12%. That is, the improvement of rust resistance is not achieved by the effect of Ti alone. Al effectively acts as a deoxidizing element for ferritic stainless steel with low Si content, but if added in excess of the necessary amount of deoxidation exceeding 0.05%, the workability, toughness and weldability of the steel are impaired. Will do.
上述した通り、従来、光輝焼鈍を利用した耐発銹性向上技術は、脱酸元素であるSiやAlを積極的に添加することで成し得たものであり、加工性に優れたTi添加フェライト系ステンレス鋼の耐発銹性を著しく向上する技術は未だ開発されていない。すなわち、Ti単独の効果で耐発銹性の向上を図った例はない。従来、光輝焼鈍へのTi添加鋼の適用が一般的でない理由として、テンパ−カラ−を生じやすい,窒化物(TiN)を生じやすいなどが挙げられる。テンパ−カラ−は、表面の色調と光沢を著しく損なうとともに、耐発銹性にも悪影響を及ぼす。また、TiN等の粗大な析出物を生成すれば表面疵の起点となり意匠性を損なう。かくして、本発明の目的は、Ti添加フェライト系ステンレス鋼において、加工性を阻害するSiやAlを利用することなく,耐発銹性を著しく向上させた光輝焼鈍板を提供することにある。 As mentioned above, conventionally, the technology for improving the weathering resistance using bright annealing was achieved by positively adding deoxidizing elements such as Si and Al, and Ti addition with excellent workability No technology has yet been developed to significantly improve the weathering resistance of ferritic stainless steel. That is, there is no example of improving the rust resistance by the effect of Ti alone. Conventionally, the reason why Ti-added steel is not generally used for bright annealing is that temper color is likely to occur and nitride (TiN) is likely to be generated. The temper color significantly deteriorates the color tone and gloss of the surface, and also adversely affects the rust resistance. In addition, if coarse precipitates such as TiN are generated, it becomes the starting point of surface defects and impairs the design. Thus, it is an object of the present invention to provide a bright annealed plate having significantly improved galling resistance without using Si or Al that impairs workability in Ti-added ferritic stainless steel.
本発明は、加工性に優れたTi添加フェライト系ステンレス鋼の耐発銹性を向上させるべく案出されたものであり、加工性を阻害するSiやAlを利用することなく光輝焼鈍時の皮膜改質により耐発銹性を向上させた鋼板とその製造方法について提供することを目的とする。 The present invention has been devised to improve the galling resistance of Ti-added ferritic stainless steel with excellent workability, and is a film during bright annealing without using Si or Al that impairs workability. An object of the present invention is to provide a steel sheet having improved rust resistance by modification and a method for producing the same.
(1)質量%にて、C:0.001〜0.010%、Si:0.01〜0.20%、Mn:0.01〜0.30%、P:0.005〜0.050%、S:0.0001〜0.0100%、Cr:14〜22%、N:0.001〜0.020%、Ti:0.05〜0.30%、Al:0.005〜0.050%、残部がFeおよび不可避的不純物からなるフェライト系ステンレス鋼板であって、表面酸化皮膜内のCr/Fe原子濃度比>0.5かつ表面酸化皮膜にTiO2を含有し、表面の孔食電位V’c100が0.5V以上であることを特徴とする耐発銹性と加工性に優れた光輝焼鈍仕上げステンレス鋼板。
(2)前記鋼が、さらに質量%にて、0.0050%以下、Nb:0.6%以下、Mo:2.0%以下、Ni:2.0%以下、Cu:2.0%以下、B:0.0003〜0.0050%の1種または2種以上含有していることを特徴とする請求項1に記載の耐発銹性と加工性に優れた光輝焼鈍仕上げステンレス鋼板。
(3)請求項1または2に記載の鋼成分を有するフェライト系ステンレス鋼スラブを熱間圧延して熱延鋼板とし、その後冷間圧延と焼鈍を組み合わせて冷延鋼板を製造する最終焼鈍工程において、雰囲気中の水素ガスを70容量%以上とし、残部が実質的に窒素ガスからなり、雰囲気ガスの露点を−40℃以下として光輝焼鈍することを特徴とする、耐発銹性と加工性に優れた光輝焼鈍仕上げステンレス鋼板の製造方法。
(4)常温〜700℃の昇温過程において雰囲気ガスの露点を−45℃以下,滞留時間を60〜600秒とし、700〜1000℃の均熱過程において雰囲気ガスの露点を−40℃以下,滞留時間を1〜60秒とし、次いで400℃までの冷却過程において雰囲気ガスの露点を−45℃以下,滞留時間を180秒以下とする光輝焼鈍を行うことを特徴とする、請求項3に記載の耐発銹性と加工性に優れた光輝焼鈍仕上げステンレス鋼板の製造方法。
(5)光輝焼鈍に先立ち,常温から200℃の範囲で不活性ガスを鋼板表面に吹き付けるシ−ル設備を1〜180秒間通過する工程を含むことを特徴とする請求項3又は4に記載の耐発銹性と加工性に優れた光輝焼鈍仕上げステンレス鋼板の製造方法。
(1) In mass%, C: 0.001 to 0.010%, Si: 0.01 to 0.20%, Mn: 0.01 to 0.30%, P: 0.005 to 0.050 %, S: 0.0001-0.0100%, Cr: 14-22%, N: 0.001-0.020%, Ti: 0.05-0.30%, Al: 0.005-0. Ferritic stainless steel sheet composed of 050%, the balance being Fe and inevitable impurities, Cr / Fe atomic concentration ratio in surface oxide film> 0.5, and surface oxide film containing TiO 2 , surface pitting corrosion A bright annealed stainless steel plate excellent in galling resistance and workability, characterized in that the potential V′c100 is 0.5 V or more.
(2) The steel is further in mass%, 0.0050% or less, Nb: 0.6% or less, Mo: 2.0% or less, Ni: 2.0% or less, Cu: 2.0% or less. B: 0.0003-0.0050% of 1 type or 2 types or more are contained, The bright annealing finish stainless steel plate excellent in the weathering resistance and workability of Claim 1 characterized by the above-mentioned.
(3) In the final annealing step of producing a cold-rolled steel sheet by combining cold rolling and annealing, hot-rolling a ferritic stainless steel slab having the steel component according to claim 1 or 2 into a hot-rolled steel sheet In addition, the hydrogen gas in the atmosphere is 70% by volume or more, the balance is substantially made of nitrogen gas, and the dew point of the atmosphere gas is set to -40 ° C. or less, and bright annealing is performed. An excellent bright annealed stainless steel sheet manufacturing method.
(4) The atmospheric gas dew point is −45 ° C. or lower and the residence time is 60 to 600 seconds in the temperature rising process from normal temperature to 700 ° C., and the atmospheric gas dew point is −40 ° C. or lower in the soaking process of 700 to 1000 ° C. 4. The bright annealing is performed by setting the residence time to 1 to 60 seconds, and then performing the atmospheric gas dew point to −45 ° C. or less and the residence time to 180 seconds or less in the cooling process to 400 ° C. A method for producing a bright annealed stainless steel sheet with excellent rust resistance and workability.
(5) Prior to bright annealing, it includes a step of passing through a seal facility for spraying an inert gas on the surface of a steel sheet in a range from room temperature to 200 ° C. for 1 to 180 seconds. A method for producing a bright annealed stainless steel sheet with excellent rust resistance and workability.
なお、表面酸化皮膜の化学的な状態は、X線光電子分光分析器(XPS)を用いて分析することが出来る。Cr2O3(Cr2P電子)の結合エネルギ−は575〜580eV,TiO2(Ti2P電子)の結合エネルギ−は455〜460eVである。TiO2の存在は、455〜460eVでのピ−クの検出により確認できる。また、孔食電位の測定はJISG0577に準拠し、30℃,1kmol/m3塩化ナトリウム水溶液中で、鋼板表面は無処理の状態のまま測定する。電極はAgClとし、孔食発生電位V’c100の値を測定したものである。 The chemical state of the surface oxide film can be analyzed using an X-ray photoelectron spectrometer (XPS). The binding energy of Cr 2 O 3 (Cr 2 P electrons) is 575 to 580 eV, and the binding energy of TiO 2 (Ti 2 P electrons) is 455 to 460 eV. The presence of TiO 2 can be confirmed by peak detection at 455 to 460 eV. The pitting corrosion potential is measured in accordance with JISG0577 in a 30 ° C., 1 kmol / m 3 sodium chloride aqueous solution with the steel sheet surface left untreated. The electrode is AgCl, and the value of the pitting corrosion occurrence potential V′c100 is measured.
以上に説明したように、(1)〜(2)の本発明の光輝焼鈍仕上げステンレス鋼板は、加工性を阻害するSiやAlを利用することなく,皮膜の化学的な状態を最適化することにより、SUS304を超える高い孔食電位を有し,耐発銹性を著しく向上させることが出来る。この光輝焼鈍仕上げステンレス鋼板は、(3)〜(5)の本発明の方法によって、工業的に安定して製造することが可能である。 As explained above, the bright annealed stainless steel sheet according to the present invention of (1) to (2) optimizes the chemical state of the film without using Si or Al that impairs workability. Therefore, it has a high pitting corrosion potential exceeding SUS304, and can improve the rust resistance remarkably. This bright annealed stainless steel sheet can be produced industrially and stably by the methods of the present invention (3) to (5).
本発明者らは、前記した課題を解決するために、Ti添加フェライト系ステンレス鋼板において、優れた耐発銹性を発現する皮膜の化学的な状態とそれら皮膜の製造方法について種々検討を行い、下記の新しい知見を得た。 In order to solve the above-described problems, the present inventors have conducted various studies on the chemical state of the film expressing excellent weathering resistance and the method for producing these films in the Ti-added ferritic stainless steel sheet, The following new findings were obtained.
(a)光輝焼鈍で生成する皮膜の化学的な状態は上述したようにXPSにより分析することができる。SiとAl量を低く規定したTi添加フェライト系ステンレス鋼光輝焼鈍板はCr2O3を主体とする酸化皮膜を生成し、皮膜中から検出されるSiやAlは極微量である。 (A) The chemical state of the film formed by bright annealing can be analyzed by XPS as described above. A Ti-added ferritic stainless steel bright annealed plate with low amounts of Si and Al produces an oxide film mainly composed of Cr 2 O 3 , and the amount of Si and Al detected in the film is extremely small.
(b)Tiは上記の皮膜中に濃化し,テンパカラ−を発生しない,すなわち色調を害さない表面状態において、TiO2の状態で存在する場合を見出した。 (B) It has been found that Ti is concentrated in the above-mentioned film and does not generate tempara, that is, exists in a TiO 2 state in a surface state that does not impair the color tone.
(c)表面酸化皮膜内のCr/Fe原子濃度比>0.5となるCr2O3を主体とする酸化皮膜にTiO2を含有する場合、鋼表面の孔食電位は、上述の測定条件で0.5V以上の値となる。この数値は、SUS304を上回る高い耐孔食性を示すものである。 (C) When the oxide film mainly composed of Cr 2 O 3 having a Cr / Fe atomic concentration ratio> 0.5 in the surface oxide film contains TiO 2 , the pitting corrosion potential on the steel surface is determined according to the measurement conditions described above. The value becomes 0.5V or more. This numerical value shows high pitting corrosion resistance exceeding SUS304.
(d)近年、ステンレス鋼の耐発銹性は、製造メ−カ−に限らず個々の需要家においても塩水噴霧などの加速試験により簡便的に評価される場合が多くなっている。上記の高い孔食電位を有する鋼板は、これら簡便的な評価においてSUS304やSUS316Lを上回る優れた耐発銹性を発現する。 (D) In recent years, the rust resistance of stainless steel is often easily evaluated by an accelerated test such as salt spray not only by the manufacturing manufacturer but also by individual consumers. The steel sheet having the high pitting corrosion potential expresses excellent rust resistance exceeding SUS304 and SUS316L in these simple evaluations.
(e)上記(c)に記載する酸化皮膜は、冷延鋼板を仕上げる光輝焼鈍の条件を最適化することによって工業的に安定して製造することができる。 (E) The oxide film described in the above (c) can be industrially stably produced by optimizing the bright annealing conditions for finishing the cold-rolled steel sheet.
(f)光輝焼鈍に使用される雰囲気ガスは、通常、露点−40℃以下である。露点−40℃以下では、Feは還元領域にあり、鋼表面はCrの選択酸化によりCr2O3を主体とする酸化皮膜を生成する。Tiは、Crよりも酸化物の生成自由エネルギ−が低く酸化されやすいとともに,酸化物中の拡散も速く酸化物が成長しやすいという特徴を持つ。そのため、TiはCr2O3を主体とする酸化皮膜中に濃化し,熱力学的に安定なTiO2として存在し得たものと推察する。 (F) The atmospheric gas used for bright annealing usually has a dew point of −40 ° C. or lower. Below the dew point of −40 ° C., Fe is in the reduction region, and the steel surface forms an oxide film mainly composed of Cr 2 O 3 by selective oxidation of Cr. Ti has the characteristics that the free energy of formation of oxide is lower than that of Cr and is easily oxidized, and the diffusion in the oxide is fast and the oxide is easy to grow. Therefore, it is assumed that Ti was concentrated in an oxide film mainly composed of Cr 2 O 3 and could exist as thermodynamically stable TiO 2 .
(g)しかしながら、工業的に光輝焼鈍の露点を(f)で述べた通り低く管理することは大変困難である。すなわち、工業的な製造においては、鋼表面に付着残存した酸素や水分が炉内へ持ち越される,大気が炉内に侵入する,炉壁から水分が放出される等の要因により鋼表面近傍の露点を低く管理することは容易でないと考えられる。さらに、高温での滞留時間が長くなるとTi酸化物の成長によるテンパ−カラ−も生じやすくなる。 (G) However, it is very difficult to industrially manage the dew point of bright annealing as described in (f). In other words, in industrial production, oxygen and moisture remaining on the steel surface are carried over into the furnace, the air enters the furnace, the moisture is released from the furnace wall, and other factors. It is considered that it is not easy to manage low. Furthermore, when the residence time at high temperature becomes longer, a temper color due to the growth of Ti oxide tends to occur.
(h)(g)の仮説に基づいて、鋼表面近傍の露点を低く管理する方法について検討した結果、700℃以下の昇温過程の露点を下げる,均熱過程の滞留時間を短くする,400℃までの冷却過程の露点を下げることが、(c)に記載した皮膜の製造に有効であることを知見した。 (H) Based on the hypothesis of (g), as a result of investigating a method for managing the dew point near the steel surface low, the dew point of the heating process at 700 ° C. or lower is lowered, the residence time of the soaking process is shortened, 400 It has been found that lowering the dew point in the cooling process to 0 ° C. is effective for the production of the film described in (c).
(i)さらに、(h)に述べた製造方法において、700℃以下の昇温過程で露点を下げることが最も有効であり、光輝焼鈍に先立ち鋼表面に不活性ガスを吹き付ける工程を取り入れて鋼表面に付着残存した酸素源を除去することが効果的な手段であることも知見した。 (I) Further, in the manufacturing method described in (h), it is most effective to lower the dew point in the temperature rising process of 700 ° C. or less, and a process of blowing an inert gas to the steel surface prior to bright annealing is adopted. It has also been found that removing the oxygen source remaining on the surface is an effective means.
前記(1)〜(5)の本発明は、上記(a)〜(i)の知見に基づいて完成されたものである。 The present inventions (1) to (5) have been completed based on the findings (a) to (i).
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」表示は「質量%」を意味する。 Hereinafter, each requirement of the present invention will be described in detail. In addition, "%" display of the content of each element means "mass%".
(A)成分の限定理由を以下に説明する。 (A) The reason for limitation of a component is demonstrated below.
Cは、成形性と耐食性を劣化させるため、その含有量は少ないほど良いため、上限を0.010%とした。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.001%とした。好ましくは、耐食性や製造コストを考慮して0.002〜0.005%とする。 Since C deteriorates moldability and corrosion resistance, the lower the content, the better. Therefore, the upper limit was made 0.010%. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.001%. Preferably, it is 0.002 to 0.005% in consideration of corrosion resistance and manufacturing cost.
Siは、脱酸元素として添加される場合がある。しかし、固溶強化元素であり、伸びの低下抑制からその含有量は少ないほど良いため、上限を0.20%とした。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.01%とした。好ましくは、加工性や製造コストを考慮して0.03〜0.15%とする。 Si may be added as a deoxidizing element. However, since it is a solid solution strengthening element and its content is preferably as small as possible from the suppression of the decrease in elongation, the upper limit was made 0.20%. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.01%. Preferably, considering the workability and manufacturing cost, 0.03 to 0.15%.
Mnは、Siと同様、固溶強化元素であるため、その含有量は少ないほど良い。伸びの低下抑制から上限を0.30%とした。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.01%とした。好ましくは、加工性と製造コストを考慮して0.03〜0.15%とする。 Since Mn is a solid solution strengthening element like Si, the smaller the content, the better. The upper limit was made 0.30% in order to suppress the decrease in elongation. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.01%. Preferably, considering the workability and the manufacturing cost, 0.03 to 0.15%.
Pは、SiやMnと同様、固溶強化元素であるため、その含有量は少ないほど良い。伸びの低下抑制から上限を0.050%とした。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.005%とした。好ましくは、製造コストと加工性を考慮して0.010〜0.020%とする。 Since P is a solid solution strengthening element like Si and Mn, the smaller the content, the better. The upper limit was made 0.050% from the suppression of the decrease in elongation. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.005%. Preferably, considering the manufacturing cost and workability, the content is made 0.010 to 0.020%.
Sは、不純物元素であり、熱間加工性や耐食性を阻害するため、その含有量は少ないほど良い。そのため、上限は0.0100%とした。但し、過度の低減は精錬コストの増加に繋がるため、下限を0.0001とした。好ましくは、耐食性や製造コストを考慮して0.0010〜0.0050%とする。 S is an impurity element and inhibits hot workability and corrosion resistance, so the smaller the content, the better. Therefore, the upper limit was made 0.0100%. However, excessive reduction leads to an increase in refining costs, so the lower limit was made 0.0001. Preferably, considering the corrosion resistance and the manufacturing cost, the content is made 0.0010 to 0.0050%.
Crは、耐食性を確保するための必須元素であり、本発明の孔食電位を確保するために下限は14%とする。但し、22%超の添加はコストの上昇や本発明で重要視する加工性の低下に繋がる。よって、Crの上限は22%とした。好ましくは、耐食性および製造性と加工性を考慮して16〜18%とする。 Cr is an essential element for ensuring corrosion resistance, and the lower limit is made 14% in order to ensure the pitting corrosion potential of the present invention. However, addition of more than 22% leads to an increase in cost and a decrease in workability which is regarded as important in the present invention. Therefore, the upper limit of Cr is 22%. Preferably, considering the corrosion resistance, manufacturability and workability, the content is made 16 to 18%.
Nは、Cと同様に加工性と耐食性を劣化させるため、その含有量は少ないほど良いため、上限を0.020%とした。但し、過度の低下は凝固時にフェライト粒生成の核となるTiNが析出せず、凝固組織が柱状晶化し、製品の耐リジング性が劣化する懸念もある。そのため、下限を0.001%とした。好ましくは、加工性と耐食性を考慮して0.003〜0.012%とする。 N, like C, deteriorates workability and corrosion resistance, so the lower the content, the better. Therefore, the upper limit was made 0.020%. However, excessive reduction does not cause TiN which becomes the nucleus of ferrite grain formation during solidification, and the solidified structure becomes columnar crystals, which may deteriorate the ridging resistance of the product. Therefore, the lower limit is made 0.001%. Preferably, considering the workability and corrosion resistance, the content is made 0.003 to 0.012%.
Tiは、CやNを固定して加工性を向上させるために極めて有効な元素であるとともに、本発明の光輝焼鈍での皮膜改質による耐発銹性向上に必要不可欠である。Tiは、本発明で規定する光輝焼鈍条件によりCr2O3を主体とする皮膜中に濃化しTiO2として存在する。光輝焼鈍材の耐発銹性向上効果は、TiO2がCr2O3を主体とする皮膜中に存在することに起因している。このような耐発銹性向上効果を得るには、Tiを0.05%以上添加する必要がある。しかし、Tiも固溶強化元素であり、過度の添加は伸びの低下に繋がる。さらに、光輝焼鈍時のテンパカラ−を生じやすくし表面色調を阻害することにも繋がる。そのため、上限を0.30%とした。好ましくは、耐発銹性向上や加工性と製造性を考慮して0.10〜0.20%とする。 Ti is an extremely effective element for improving workability by fixing C and N, and is indispensable for improving the rust resistance by the film modification in the bright annealing of the present invention. Ti is concentrated and present as TiO 2 in the film mainly composed of Cr 2 O 3 under the bright annealing conditions defined in the present invention. The effect of improving the glazing resistance of the bright annealed material is due to the presence of TiO 2 in the film mainly composed of Cr 2 O 3 . In order to obtain such an effect of improving the rust resistance, it is necessary to add 0.05% or more of Ti. However, Ti is also a solid solution strengthening element, and excessive addition leads to a decrease in elongation. Furthermore, it is easy to produce a temper color at the time of bright annealing, and it leads to inhibiting surface color tone. Therefore, the upper limit is made 0.30%. Preferably, it is set to 0.10 to 0.20% in consideration of improvement of rust resistance and workability and manufacturability.
Alは、脱酸元素として有効な元素であるため、下限を0.005%とした。しかし、過度の添加は加工性や靭性および溶接性の劣化をもたらすため、上限を0.050%とした。好ましくは、精錬コストを考慮して0.01〜0.03%とする。 Since Al is an effective element as a deoxidizing element, the lower limit was made 0.005%. However, excessive addition causes deterioration of workability, toughness and weldability, so the upper limit was made 0.050%. Preferably, considering the refining cost, 0.01 to 0.03%.
Mgは、溶鋼中でAlとともにMg酸化物を形成し脱酸剤として作用する他、TiNの晶出核として作用する。TiNは凝固過程においてフェライト相の凝固核となり、TiNの晶出を促進させることで、凝固時にフェライト相を微細生成させることができる。凝固組織を微細化させることにより、製品のリジングやロ−ピングなどの粗大凝固組織に起因した表面欠陥を防止できる他、加工性の向上をもたらす。TiNの晶出核となるMg酸化物の溶鋼中での積極的な形成は、Mg0.0001%から発現する。これら効果を得るため、下限を0.0001%とした。但し、0.0050%を超えると溶接性が劣化するため、上限を0.0050%とした。好ましくは、精錬コストを考慮して0.0003〜0.0020%とする。 Mg forms Mg oxide with Al in molten steel and acts as a deoxidizer, and also acts as a crystallization nucleus of TiN. TiN becomes a solidification nucleus of the ferrite phase in the solidification process, and by facilitating crystallization of TiN, the ferrite phase can be finely formed during solidification. By refining the solidified structure, surface defects caused by coarse solidified structures such as ridging and roping of the product can be prevented and workability can be improved. Aggressive formation in the molten steel of Mg oxide that becomes the crystallization nucleus of TiN is manifested from Mg 0.0001%. In order to obtain these effects, the lower limit was made 0.0001%. However, if it exceeds 0.0050%, the weldability deteriorates, so the upper limit was made 0.0050%. Preferably, considering the refining cost, 0.0003 to 0.0020%.
Nbは、加工性と耐食性を向上させる元素であり、要求される用途に応じて添加する。添加する場合は、その効果が発現する0.01%以上とする。しかし、過度な添加は材料強度を上昇させて伸びの低下をもたらすため、上限を0.6%とした。好ましくは、製造性や加工性を考慮して0.1〜0.3%とする。 Nb is an element that improves workability and corrosion resistance, and is added according to the required application. When added, the content is 0.01% or more where the effect is manifested. However, excessive addition increases the material strength and causes a decrease in elongation, so the upper limit was made 0.6%. Preferably, it is set to 0.1 to 0.3% in consideration of manufacturability and workability.
Mo、Ni、Cuは耐食性を向上させる元素であり、耐食性が要求される用途では添加する。添加する場合は、その効果が発現する0.1%以上とする。しかし、過度な添加は加工性、特に伸びの低下をもたらすため、上限を2.0%とした。好ましくは、製造性や加工性を考慮して0.5〜1.5%とする。 Mo, Ni, and Cu are elements that improve corrosion resistance, and are added in applications that require corrosion resistance. When added, the content is 0.1% or more where the effect is manifested. However, excessive addition causes a decrease in workability, particularly elongation, so the upper limit was made 2.0%. Preferably, considering the manufacturability and workability, the content is made 0.5 to 1.5%.
Bは、2次加工性を向上させる元素であり、Ti添加鋼への添加は有効である。Ti添加鋼はTiでCを固定するため、粒界の強度が低下し、2次加工の際に粒界割れが生じやすくなる。添加する場合は、その効果が発現する0.0003%以上とする。しかし、過度の添加は、伸びの低下をもたらすため、上限を0.0050%とした。好ましくは、精錬コストや加工性を考慮して0.0005〜0.0020%とする。 B is an element that improves secondary workability, and addition to Ti-added steel is effective. Since Ti-added steel fixes C with Ti, the strength of the grain boundary is lowered, and intergranular cracking is likely to occur during secondary processing. When added, the content is made 0.0003% or more where the effect is manifested. However, excessive addition causes a decrease in elongation, so the upper limit was made 0.0050%. Preferably, considering the refining cost and workability, 0.0005 to 0.0020%.
(B)鋼板表面の酸化皮膜に関する限定理由を以下に説明する。 (B) The reason for limitation regarding the oxide film on the steel sheet surface will be described below.
本発明のフェライト系ステンレス鋼板は、(A)項で述べた成分を有し、耐発銹性の向上を図るために、光輝焼鈍で生成する酸化皮膜の化学的な状態を規定したものである。 The ferritic stainless steel sheet of the present invention has the components described in the section (A), and defines the chemical state of the oxide film formed by bright annealing in order to improve the resistance to cracking. .
表面酸化皮膜内のCr/Fe原子濃度比>0.5となるCr2O3を主体とする皮膜中にTiO2が存在すると、鋼表面の耐発銹性を著しく向上させる作用がある。詳細な作用機構は不明であるが、このTiO2による耐発銹性向上効果は、鋼表面から検出されるFeの存在が抑制される場合に顕著に発現する。ここで、Feは鋼表面において主としてFeOOHやFe2O3の混在状態で存在する。 When TiO 2 is present in a film mainly composed of Cr 2 O 3 with a Cr / Fe atomic concentration ratio> 0.5 in the surface oxide film, it has the effect of significantly improving the rust resistance on the steel surface. Although the detailed mechanism of action is unknown, the effect of improving rust resistance by TiO 2 is remarkably exhibited when the presence of Fe detected from the steel surface is suppressed. Here, Fe exists mainly in a mixed state of FeOOH and Fe 2 O 3 on the steel surface.
既に述べたように、本発明でいう鋼表面のCrやTi,Feなど各元素の化学的な状態はX線光電子分光分析器(XPS)を用いて分析することが出来る。FeOOHやFe2O3(Fe2P電子)の結合エネルギ−は708〜712eVである。ここで、TiO2の存在は、450〜470eVの範囲において、455〜460eVに存在するTiO2のX線カウント数(cps)がその周辺であるX線カウント数(cps)に対して100cps以上高い状態にある場合とする。 As already described, the chemical state of each element such as Cr, Ti, Fe on the steel surface in the present invention can be analyzed using an X-ray photoelectron spectrometer (XPS). FeOOH or Fe 2 O 3 bonding energy (Fe2p electronic) - is 708~712EV. Wherein the presence of the TiO 2 is in the range of 450~470eV, 455~460eV to TiO 2 in the X ray count present (cps) is X-ray count number is around the (cps) 100 cps or more to the high Suppose that it is in a state.
鋼表面の孔食発生電位V’c100>0.5として耐発銹性の向上を図るには、酸化皮膜の組成としてはC,Nを除くOとカチオンイオンの存在割合でCr/Fe原子濃度比>0.5となるCr2O3主体の皮膜中にTiO2が存在するものとする。ここで、鋼表面の耐発銹性を著しく高める場合には、Cr/Fe原子濃度比>0.7のCr2O3主体の皮膜中にTiO2が存在することが好ましい。 In order to improve the galling resistance with the pitting corrosion potential V′c100> 0.5 on the steel surface, the composition of the oxide film is Cr / Fe atomic concentration in the presence ratio of O and cation ions except C and N It is assumed that TiO 2 exists in the film mainly composed of Cr 2 O 3 with a ratio> 0.5. Here, in order to remarkably improve the weathering resistance of the steel surface, it is preferable that TiO 2 is present in the Cr 2 O 3 main film having a Cr / Fe atomic concentration ratio> 0.7.
酸化皮膜内のC,Nを除くOとカチオンイオンの濃度は、次の手法で求められる。Arイオンスパッタリングにより鋼表面の酸化皮膜を最表面から徐々に削っていきながらオ−ジェ電子分光法にて表面組成の変化を測定する。ここで、酸化皮膜の存在領域を把握し,その領域における検出元素の平均原子濃度(表記:atom%)を求めた。 The concentrations of O and cation ions other than C and N in the oxide film are obtained by the following method. The surface composition change is measured by Auger electron spectroscopy while the oxide film on the steel surface is gradually scraped from the outermost surface by Ar ion sputtering. Here, the existence region of the oxide film was grasped, and the average atomic concentration (notation: atom%) of the detection element in the region was obtained.
酸化皮膜の膜厚は、光輝焼鈍の露点や温度および時間に依存して変化するため、明確な範囲は規定できないが、20オングストロ−ム以上であれば本発明の効果を発現する。しかし、1000オングストロ−ムを超えた場合には、テンパ−カラ−による着色を生じるため、表面の色調を損なう恐れがある。従って、膜厚は1000オングストロ−ム以下とする。耐発銹性と製造性を考慮して、膜厚は30〜100オングストロ−ムとすることが好ましい。 Since the thickness of the oxide film changes depending on the dew point, temperature, and time of bright annealing, a clear range cannot be defined, but the effect of the present invention is manifested if it is 20 angstroms or more. However, when the thickness exceeds 1000 angstroms, coloration by tempering colors occurs, which may impair the color tone of the surface. Therefore, the film thickness is 1000 angstroms or less. In consideration of weathering resistance and manufacturability, the film thickness is preferably 30 to 100 Å.
(C)製造方法に関する限定理由を以下に説明する。 (C) The reason for limitation regarding the manufacturing method will be described below.
前記(A)項に記載の成分を有するフェライト系ステンレス鋼において、前記(B)項に記載の皮膜を生成させるために、冷延鋼板の仕上げ光輝焼鈍条件を規定したものである。 In the ferritic stainless steel having the component described in the item (A), the finish bright annealing condition of the cold-rolled steel sheet is defined in order to generate the film described in the item (B).
光輝焼鈍時の雰囲気ガスは、水素ガスが70容量%以上とし,残部が実質的に窒素ガスからなるものとする。水素ガスは、光輝焼鈍時のFe系酸化物の還元作用を有するために、好ましくは80%以上とする。残部は、鋼の酸化に寄与しない不活性ガス,例えばアルゴンガスなどでもよいが、工業的なコスト面を考慮して窒素ガスとすることが好ましい。 The atmosphere gas at the time of bright annealing is assumed to be 70% by volume or more of hydrogen gas, and the balance is substantially made of nitrogen gas. Since hydrogen gas has a reducing action of Fe-based oxides during bright annealing, it is preferably 80% or more. The balance may be an inert gas that does not contribute to the oxidation of steel, such as argon gas, but is preferably nitrogen gas in view of industrial cost.
雰囲気ガスの露点は、酸化皮膜中のFe系酸化物を還元してCr2O3を主体とする酸化膜とし、Cr/Fe原子濃度比>0.5とすると同時に、酸化皮膜中にTiO2を存在させるために、−40℃以下とする。Feの存在状態を十分に抑制してCr2O3を主体とする皮膜を生成させかつTiO2を存在させるには、以下に説明するように昇温過程,均熱過程,冷却過程の温度域に応じて露点と滞留時間を規定することが好ましい。 The dew point of the atmospheric gas is that the Fe-based oxide in the oxide film is reduced to an oxide film mainly composed of Cr 2 O 3 , and the Cr / Fe atomic concentration ratio> 0.5, and at the same time, TiO 2 in the oxide film In order to make it exist, it is made into -40 degrees C or less. In order to sufficiently suppress the existence state of Fe to form a film mainly composed of Cr 2 O 3 and to make TiO 2 exist, the temperature range of the heating process, the soaking process, and the cooling process as described below. It is preferable to define the dew point and the residence time according to the above.
常温から700℃の昇温過程は、露点を−45℃以下とし,雰囲気ガス中での鋼板の滞留時間を60〜600秒とするのが好ましい。露点が−45℃を超える,あるいは滞留時間が600秒を超える場合は、テンパ−カラ−の要因となるFeとTiの酸化物が生成しやすい。また滞留時間が600秒以下であれば、Cr/Fe原子濃度比>0.5とすることができる。滞留時間を60秒未満とするのは、工業炉において実用上困難である。従って、滞留時間の下限は60秒とした。 In the temperature raising process from room temperature to 700 ° C., it is preferable that the dew point is −45 ° C. or less and the residence time of the steel sheet in the atmospheric gas is 60 to 600 seconds. When the dew point exceeds −45 ° C. or the residence time exceeds 600 seconds, Fe and Ti oxides that cause temper color are likely to be generated. If the residence time is 600 seconds or less, the Cr / Fe atomic concentration ratio can be set to> 0.5. Setting the residence time to less than 60 seconds is practically difficult in an industrial furnace. Therefore, the lower limit of the residence time is 60 seconds.
700〜1000℃の均熱過程は、露点を−40℃以下とし,雰囲気ガス中での鋼板の滞留時間を1〜60秒とするのが好ましい。露点が−40℃を超える,あるいは滞留時間が60秒を越えると、テンパ−カラ−の要因となるFeとTiの酸化物が生成しやすい。また滞留時間が60秒以下であれば、Cr/Fe原子濃度比>0.5とすることができる。露点を低くしても,滞留時間が60秒を超えるとTi酸化物の成長により表面色調や皮膜組成に変化を及ぼしやすい。滞留時間を1秒未満とするのは、工業炉において実用上困難である。従って、滞留時間の下限は1秒とした。 In the soaking process at 700 to 1000 ° C., the dew point is preferably −40 ° C. or less, and the residence time of the steel sheet in the atmospheric gas is preferably 1 to 60 seconds. When the dew point exceeds −40 ° C. or the residence time exceeds 60 seconds, Fe and Ti oxides that cause temper color are likely to be generated. If the residence time is 60 seconds or less, the Cr / Fe atomic concentration ratio can be set to> 0.5. Even if the dew point is lowered, if the residence time exceeds 60 seconds, the surface color tone and film composition are likely to change due to the growth of Ti oxide. It is practically difficult in an industrial furnace to set the residence time to less than 1 second. Therefore, the lower limit of the residence time is 1 second.
均熱から400℃までの冷却過程は、露点を−40℃以下とし,雰囲気ガス中での鋼板の滞留時間を180秒以下とするのが好ましい。露点が−40℃を超える,あるいは滞留時間が180秒を超えると、生産性を阻害するとともにテンパ−カラ−の要因となるFeとTiの酸化物が成長しやすい。また滞留時間が180秒以下であれば、Cr/Fe原子濃度比>0.5とすることができる。 In the cooling process from soaking to 400 ° C., the dew point is preferably −40 ° C. or less, and the residence time of the steel sheet in the atmospheric gas is preferably 180 seconds or less. When the dew point exceeds −40 ° C. or the residence time exceeds 180 seconds, the productivity of Fe and Ti, which is a factor of temper color, is likely to grow while the productivity is hindered. If the residence time is 180 seconds or less, the Cr / Fe atomic concentration ratio can be set to> 0.5.
上記の光輝焼鈍条件に加え,より効率的に鋼表面近傍の露点を低くする手段として、光輝焼鈍に先立ち常温から200℃の範囲で不活性ガスを鋼表面に吹き付けるシ−ル設備を1〜180秒間通過する工程を含むことが好ましい。光輝焼鈍時の昇温過程で生成・成長する酸化物は、鋼表面に付着している水分などに含まれる酸素源に起因するところが大きい。そのため、光輝焼鈍に先立ち鋼表面に不活性ガスを吹き付けることによりこれを効率的に除去することができる。さらに、上記のシ−ル設備を有することにより、炉内への大気侵入も防止される。温度の上限を200℃としたのは、これを越えると逆に酸化を助長してしまうためである。通過時間が1秒未満では、鋼表面に付着残存する酸素源を除去する効果は得られない。180秒を越えるとシ−ル設備の増強によるコスト増や生産性を損ねる恐れもある。また、不活性ガスは工業的なコスト面から窒素ガスとすることが好ましい。 In addition to the above-mentioned bright annealing conditions, as a means for lowering the dew point near the steel surface more efficiently, a seal facility for blowing an inert gas to the steel surface in the range of room temperature to 200 ° C. prior to bright annealing is 1-180. It is preferable to include a step of passing for 2 seconds. Oxides generated and grown during the temperature rise process during bright annealing are largely due to oxygen sources contained in moisture adhering to the steel surface. Therefore, this can be efficiently removed by spraying an inert gas on the steel surface prior to bright annealing. Furthermore, by having the above-mentioned seal facility, air intrusion into the furnace is also prevented. The reason why the upper limit of the temperature is set to 200 ° C. is that if this temperature is exceeded, the oxidation is promoted. When the passage time is less than 1 second, the effect of removing the oxygen source remaining on the steel surface cannot be obtained. If it exceeds 180 seconds, there is a risk that the cost will increase due to the increase in seal facilities and the productivity may be impaired. Further, the inert gas is preferably nitrogen gas from the viewpoint of industrial cost.
以下、本発明の鋼板について、実施例により更に詳しく説明する。 Hereinafter, the steel sheet of the present invention will be described in more detail with reference to examples.
表1の成分を有するフェライト系ステンレス鋼を溶製し、加熱温度1150〜1200℃の熱間圧延を行い板厚3.8mmの熱延鋼板とした。熱延鋼板は焼鈍し、酸洗後に板厚0.4mmまで冷間圧延し、仕上げの光輝焼鈍に供した。仕上げの光輝焼鈍は、表1に示す本発明で規定する範囲とそれ以外の条件でも実施した。比較にはSUS304(18%Cr−8%Ni)鋼とSUS316(17%Cr−12%Ni−2.0Mo)鋼を用いた。 Ferritic stainless steel having the components shown in Table 1 was melted and hot rolled at a heating temperature of 1150 to 1200 ° C. to obtain a hot rolled steel sheet having a thickness of 3.8 mm. The hot-rolled steel sheet was annealed, cold-rolled to a sheet thickness of 0.4 mm after pickling, and subjected to finish bright annealing. The bright finish annealing was also performed in the range specified in the present invention shown in Table 1 and other conditions. For comparison, SUS304 (18% Cr-8% Ni) steel and SUS316 (17% Cr-12% Ni-2.0Mo) steel were used.
上記のようにして得た厚さ0.4mmの光輝焼鈍鋼板について、表面の色調を目視で判定した。テンパカラ−による表面の色調変化が確認されない場合を「○」、テンパカラ−による色調変化を生じた場合を「×」とした。 About the bright annealing steel plate of thickness 0.4mm obtained as mentioned above, the surface color tone was determined visually. A case where no change in the color tone of the surface due to the tempara was confirmed was “◯”, and a case where a change in the color tone due to the tempera was generated was indicated as “x”.
また、各種試験片を採取して、皮膜の状態分析,鋼表面の孔食電位測定,塩水噴霧試験,キャス試験に供した。 Various test pieces were collected and subjected to film state analysis, pitting corrosion potential measurement on the steel surface, salt spray test, and cast test.
既に述べたように、皮膜のCr/Fe原子濃度比はオ−ジェ電子分光法,皮膜の化学的状態はXPSを用いて分析した。孔食電位は、上述したJISG0577に準拠する方法で測定した。 As described above, the Cr / Fe atomic concentration ratio of the film was analyzed using Auger electron spectroscopy, and the chemical state of the film was analyzed using XPS. The pitting potential was measured by a method based on JISG0577 described above.
塩水噴霧試験およびキャス試験は、JISZ2371に準拠する方法で実施した。試験には、いずれも、光輝焼鈍鋼板と円筒深絞りした加工品を使用した。円筒深絞りは、ブランク径φ80mm, ポンチ径φ40mm, ダイス径φ42mm, しわ押さえ圧1tonで実施し,潤滑にはフィルムを使用した。試験日数は7日間(168hr)とした。発銹の程度はSUS304と比較して、同等以上である場合を「○」,劣る場合を「×」,SUS316Lと比較して同等以上である場合を「◎」とし,耐発銹性を評価した。 The salt spray test and the cast test were performed by a method based on JISZ2371. In each test, a bright annealed steel plate and a cylindrical deep-drawn processed product were used. The cylindrical deep drawing was performed with a blank diameter of 80 mm, a punch diameter of 40 mm, a die diameter of 42 mm, and a wrinkle holding pressure of 1 ton, and a film was used for lubrication. The test days were 7 days (168 hours). The degree of rusting is evaluated as “◯” when it is equal to or higher than SUS304, “×” when it is inferior, and “◎” when it is equal or higher than SUS316L, and the rust resistance is evaluated. did.
表2に各試験結果をまとめて示す。 Table 2 summarizes the test results.
表2から、試験番号1〜7の本発明の製造条件を満たすTi添加フェライト系ステンレス鋼板は、表面の色調変化が見られず,Cr/Fe原子濃度比>0.5のCr2O3を主体とする表面酸化皮膜にTiO2を有し,表面の孔食電位は0.5V以上である。これら光輝焼鈍板および円筒深絞りした加工品は、比較のSUS304(試験番号8)あるいはSUS316L(試験番号9)と同等以上の耐発銹性を示す。 From Table 2, the Ti-added ferritic stainless steel sheet satisfying the production conditions of the present invention with test numbers 1 to 7 shows no change in surface color tone, and Cr 2 O 3 with a Cr / Fe atomic concentration ratio> 0.5 is observed. The main surface oxide film has TiO 2 and the surface pitting corrosion potential is 0.5 V or more. These bright annealed plates and cylindrical deep-drawn processed products exhibit galling resistance equal to or higher than that of comparative SUS304 (test number 8) or SUS316L (test number 9).
これに対して、試験番号10〜17のTi添加フェライト系ステンレス鋼板は、本発明で規定する製造条件を満足しないものである。 On the other hand, the Ti-added ferritic stainless steel plates having test numbers 10 to 17 do not satisfy the manufacturing conditions defined in the present invention.
試験番号10〜12のTi添加フェライト系ステンレス鋼板は、表面の色調変化はないものの,いずれも皮膜のCr/Fe原子濃度比<0.5でありTiO2を含有していても,孔食電位は0.5V未満である。そのため、これら光輝焼鈍板および円筒深絞りした加工品は、比較のSUS304(試験番号8)より耐発銹性に劣る。 Although the Ti-added ferritic stainless steel plates of test numbers 10 to 12 have no surface color change, the pitting corrosion potential is not affected even if the Cr / Fe atomic concentration ratio of the coating is <0.5 and TiO 2 is contained. Is less than 0.5V. Therefore, these bright annealed plates and cylindrical deep-drawn processed products are inferior in glazing resistance than the comparative SUS304 (test number 8).
試験番号13〜17のTi添加フェライト系ステンレス鋼板は、表面の色調変化を示し,いずれも皮膜のCr/Fe原子濃度比<0.5でありTiO2を含有していても,孔食電位は0.5V未満である。そのため、これら光輝焼鈍板および円筒深絞りした加工品は、比較のSUS304(試験番号8)より耐発銹性に劣る。 The Ti-added ferritic stainless steel plates of Test Nos. 13 to 17 show a change in the color tone of the surface, and even when the Cr / Fe atomic concentration ratio of the coating is <0.5 and TiO 2 is contained, the pitting potential is It is less than 0.5V. Therefore, these bright annealed plates and cylindrical deep-drawn processed products are inferior in glazing resistance than the comparative SUS304 (test number 8).
本発明によれば、Ti添加フェライト系ステンレス鋼板の優れた加工性を生かしつつ、耐発銹性を著しく向上させることが可能となり、オ−ステナイト系ステンレス鋼板と比較して経済性に優れたフェライト系ステンレス鋼板の適応用途の拡大を図ることが出来る。 ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to remarkably improve galling resistance, making use of the excellent workability of a Ti-added ferritic stainless steel sheet, and a ferrite that is more economical than an austenitic stainless steel sheet. Expansion of applicable applications of stainless steel sheets.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006172489A JP4963043B2 (en) | 2006-06-22 | 2006-06-22 | Bright annealed ferritic stainless steel sheet with excellent rust resistance and workability and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006172489A JP4963043B2 (en) | 2006-06-22 | 2006-06-22 | Bright annealed ferritic stainless steel sheet with excellent rust resistance and workability and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008001945A true JP2008001945A (en) | 2008-01-10 |
JP4963043B2 JP4963043B2 (en) | 2012-06-27 |
Family
ID=39006573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006172489A Active JP4963043B2 (en) | 2006-06-22 | 2006-06-22 | Bright annealed ferritic stainless steel sheet with excellent rust resistance and workability and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4963043B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008261007A (en) * | 2007-04-12 | 2008-10-30 | Jfe Steel Kk | Ferritic stainless steel having excellent corrosion resistance in the existence of chlorine-based bleaching agent |
WO2010067878A1 (en) | 2008-12-09 | 2010-06-17 | 新日鐵住金ステンレス株式会社 | High-purity ferritic stainless steel having excellent corrosion resistance, and method for producing same |
US8262815B2 (en) | 2008-01-28 | 2012-09-11 | Nippon Steel & Sumikin Stainless Steel Corporation | High-purity ferritic stainless steel with excellent corrosion resistance and workability and method of production of same |
WO2012133506A1 (en) * | 2011-03-29 | 2012-10-04 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel for biofuel supply system part, biofuel supply system part, ferritic stainless steel for exhaust heat recovery unit, and exhaust heat recovery unit |
WO2013035775A1 (en) * | 2011-09-06 | 2013-03-14 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel of exceptional corrosion resistance and processability |
WO2015141145A1 (en) * | 2014-03-20 | 2015-09-24 | Jfeスチール株式会社 | Ferrite-based stainless steel and production method therefor |
WO2016017123A1 (en) * | 2014-07-31 | 2016-02-04 | Jfeスチール株式会社 | Ferritic stainless steel and method for producing same |
KR20160080317A (en) * | 2014-12-26 | 2016-07-08 | 주식회사 포스코 | Ferritic stainless steel |
US9611525B2 (en) | 2011-03-29 | 2017-04-04 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel for biofuel supply system part, biofuel supply system part, ferritic stainless steel for exhaust heat recovery unit, and exhaust heat recovery unit |
TWI579391B (en) * | 2014-12-24 | 2017-04-21 | Jfe Steel Corp | Production of iron-based stainless steel for welding with Ni-containing welding consumables and its manufacturing method |
CN110214195A (en) * | 2016-12-23 | 2019-09-06 | 株式会社Posco | Golden steel plate and its manufacturing method |
WO2021025248A1 (en) * | 2019-08-05 | 2021-02-11 | 주식회사 포스코 | Ferritic stainless steel with improved high temperature creep resistance and manufacturing method therefor |
JP2021091960A (en) * | 2019-12-09 | 2021-06-17 | 中外炉工業株式会社 | Heat treatment device |
JP2021095610A (en) * | 2019-12-18 | 2021-06-24 | Jfeスチール株式会社 | Ferritic stainless steel and method of producing the same |
JP2021154335A (en) * | 2020-03-26 | 2021-10-07 | 日本製鉄株式会社 | Clad |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07180001A (en) * | 1993-12-22 | 1995-07-18 | Nippon Steel Corp | Ferritic stainless steel bright annealing material excellent in workability and rust resistance |
JPH07216447A (en) * | 1994-02-04 | 1995-08-15 | Sumitomo Metal Ind Ltd | Production of ferritic stainless steel sheet for exterior use, excellent in rust resistance and workability |
JPH09202945A (en) * | 1996-01-23 | 1997-08-05 | Nisshin Steel Co Ltd | Bright annealing finished stainless steel sheet for building material and its production |
JPH10273760A (en) * | 1997-03-31 | 1998-10-13 | Nisshin Steel Co Ltd | Bright stainless steel sheet for building material, free from hydrogen embrittlement, and its production |
JPH1161350A (en) * | 1997-08-11 | 1999-03-05 | Nisshin Steel Co Ltd | Heat treating method for removing hydrogen enbrittlement of high cr-containing bright annealed stainless steel, stainless steel sheet for building material excellent in workability and manufacture thereof |
JP2000087189A (en) * | 1998-09-04 | 2000-03-28 | Kawasaki Steel Corp | FERRITIC STAINLESS STEEL WITH Ti OXIDE FILM AND ITS PRODUCTION |
JP2000087188A (en) * | 1998-09-04 | 2000-03-28 | Kawasaki Steel Corp | FERRITIC STAINLESS STEEL WITH Ti OXIDE FILM AND ITS PRODUCTION |
JP2004156107A (en) * | 2002-11-07 | 2004-06-03 | Nisshin Steel Co Ltd | Water circulation system made of stainless steel |
JP2005023397A (en) * | 2003-07-04 | 2005-01-27 | Sumitomo Metal Ind Ltd | Austenitic stainless steel sheet and its production method |
-
2006
- 2006-06-22 JP JP2006172489A patent/JP4963043B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07180001A (en) * | 1993-12-22 | 1995-07-18 | Nippon Steel Corp | Ferritic stainless steel bright annealing material excellent in workability and rust resistance |
JPH07216447A (en) * | 1994-02-04 | 1995-08-15 | Sumitomo Metal Ind Ltd | Production of ferritic stainless steel sheet for exterior use, excellent in rust resistance and workability |
JPH09202945A (en) * | 1996-01-23 | 1997-08-05 | Nisshin Steel Co Ltd | Bright annealing finished stainless steel sheet for building material and its production |
JPH10273760A (en) * | 1997-03-31 | 1998-10-13 | Nisshin Steel Co Ltd | Bright stainless steel sheet for building material, free from hydrogen embrittlement, and its production |
JPH1161350A (en) * | 1997-08-11 | 1999-03-05 | Nisshin Steel Co Ltd | Heat treating method for removing hydrogen enbrittlement of high cr-containing bright annealed stainless steel, stainless steel sheet for building material excellent in workability and manufacture thereof |
JP2000087189A (en) * | 1998-09-04 | 2000-03-28 | Kawasaki Steel Corp | FERRITIC STAINLESS STEEL WITH Ti OXIDE FILM AND ITS PRODUCTION |
JP2000087188A (en) * | 1998-09-04 | 2000-03-28 | Kawasaki Steel Corp | FERRITIC STAINLESS STEEL WITH Ti OXIDE FILM AND ITS PRODUCTION |
JP2004156107A (en) * | 2002-11-07 | 2004-06-03 | Nisshin Steel Co Ltd | Water circulation system made of stainless steel |
JP2005023397A (en) * | 2003-07-04 | 2005-01-27 | Sumitomo Metal Ind Ltd | Austenitic stainless steel sheet and its production method |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008261007A (en) * | 2007-04-12 | 2008-10-30 | Jfe Steel Kk | Ferritic stainless steel having excellent corrosion resistance in the existence of chlorine-based bleaching agent |
US8262815B2 (en) | 2008-01-28 | 2012-09-11 | Nippon Steel & Sumikin Stainless Steel Corporation | High-purity ferritic stainless steel with excellent corrosion resistance and workability and method of production of same |
WO2010067878A1 (en) | 2008-12-09 | 2010-06-17 | 新日鐵住金ステンレス株式会社 | High-purity ferritic stainless steel having excellent corrosion resistance, and method for producing same |
KR101149704B1 (en) | 2008-12-09 | 2012-05-23 | 닛폰 스틸 앤드 스미킨 스테인레스 스틸 코포레이션 | High?purity ferritic stainless steel having excellent corrosion resistance, and method for producing same |
US8721960B2 (en) | 2008-12-09 | 2014-05-13 | Nippon Steel & Sumikin Stainless Steel Corporation | High-purity ferritic stainless steels excellent in corrosion resistance and method of production of same |
US9611525B2 (en) | 2011-03-29 | 2017-04-04 | Nippon Steel & Sumikin Stainless Steel Corporation | Ferritic stainless steel for biofuel supply system part, biofuel supply system part, ferritic stainless steel for exhaust heat recovery unit, and exhaust heat recovery unit |
WO2012133506A1 (en) * | 2011-03-29 | 2012-10-04 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel for biofuel supply system part, biofuel supply system part, ferritic stainless steel for exhaust heat recovery unit, and exhaust heat recovery unit |
WO2013035775A1 (en) * | 2011-09-06 | 2013-03-14 | 新日鐵住金ステンレス株式会社 | Ferritic stainless steel of exceptional corrosion resistance and processability |
JP5846339B1 (en) * | 2014-03-20 | 2016-01-20 | Jfeスチール株式会社 | Ferritic stainless steel and manufacturing method thereof |
WO2015141145A1 (en) * | 2014-03-20 | 2015-09-24 | Jfeスチール株式会社 | Ferrite-based stainless steel and production method therefor |
KR101830561B1 (en) | 2014-03-20 | 2018-02-20 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel and production method therefor |
WO2016017123A1 (en) * | 2014-07-31 | 2016-02-04 | Jfeスチール株式会社 | Ferritic stainless steel and method for producing same |
US10450625B2 (en) | 2014-07-31 | 2019-10-22 | Jfe Steel Corporation | Ferritic stainless steel and method for producing same |
KR101935288B1 (en) * | 2014-07-31 | 2019-01-04 | 제이에프이 스틸 가부시키가이샤 | Ferritic stainless steel |
JP6044743B2 (en) * | 2014-07-31 | 2016-12-14 | Jfeスチール株式会社 | Ferritic stainless steel and manufacturing method thereof |
TWI567210B (en) * | 2014-07-31 | 2017-01-21 | Jfe Steel Corp | Fat iron type stainless steel and its manufacturing method |
EP3176280A4 (en) * | 2014-07-31 | 2017-10-04 | JFE Steel Corporation | Ferritic stainless steel and method for producing same |
CN106574333A (en) * | 2014-07-31 | 2017-04-19 | 杰富意钢铁株式会社 | Ferritic stainless steel and method for producing same |
TWI579391B (en) * | 2014-12-24 | 2017-04-21 | Jfe Steel Corp | Production of iron-based stainless steel for welding with Ni-containing welding consumables and its manufacturing method |
EP3239315A4 (en) * | 2014-12-24 | 2018-01-24 | JFE Steel Corporation | Ferritic stainless steel and process for producing same |
CN107109569A (en) * | 2014-12-24 | 2017-08-29 | 杰富意钢铁株式会社 | Ferrite-group stainless steel and its manufacture method |
US10458013B2 (en) | 2014-12-24 | 2019-10-29 | Jfe Steel Corporation | Ferritic stainless steel and process for producing same |
KR101668535B1 (en) | 2014-12-26 | 2016-10-24 | 주식회사 포스코 | Ferritic stainless steel |
KR20160080317A (en) * | 2014-12-26 | 2016-07-08 | 주식회사 포스코 | Ferritic stainless steel |
CN110214195A (en) * | 2016-12-23 | 2019-09-06 | 株式会社Posco | Golden steel plate and its manufacturing method |
WO2021025248A1 (en) * | 2019-08-05 | 2021-02-11 | 주식회사 포스코 | Ferritic stainless steel with improved high temperature creep resistance and manufacturing method therefor |
JP2021091960A (en) * | 2019-12-09 | 2021-06-17 | 中外炉工業株式会社 | Heat treatment device |
WO2021117516A1 (en) * | 2019-12-09 | 2021-06-17 | 中外炉工業株式会社 | Heat treatment apparatus |
JP2021095610A (en) * | 2019-12-18 | 2021-06-24 | Jfeスチール株式会社 | Ferritic stainless steel and method of producing the same |
JP7215408B2 (en) | 2019-12-18 | 2023-01-31 | Jfeスチール株式会社 | Ferritic stainless steel and its manufacturing method |
JP2021154335A (en) * | 2020-03-26 | 2021-10-07 | 日本製鉄株式会社 | Clad |
JP7440756B2 (en) | 2020-03-26 | 2024-02-29 | 日本製鉄株式会社 | cladding |
Also Published As
Publication number | Publication date |
---|---|
JP4963043B2 (en) | 2012-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4963043B2 (en) | Bright annealed ferritic stainless steel sheet with excellent rust resistance and workability and method for producing the same | |
JP4624473B2 (en) | High purity ferritic stainless steel with excellent weather resistance and method for producing the same | |
KR101536291B1 (en) | Ferritic stainless steel sheet superior in surface glossiness and corrosion resistance and method for producing same | |
EP3438310B1 (en) | Ferritic stainless steel sheet used for tig welding | |
TWI467032B (en) | High-purity fat iron-based stainless steel plate with excellent oxidation resistance and high temperature strength and manufacturing method thereof | |
WO2012018074A1 (en) | Ferritic stainless steel | |
JP6792951B2 (en) | Duplex stainless steel for ozone-containing water | |
WO2019221286A1 (en) | Steel plate and enameled product | |
TWI638055B (en) | Ferrous iron series stainless steel plate | |
TW201420781A (en) | Ferritic stainless steel | |
CN111433382B (en) | Ferritic stainless steel having excellent high-temperature oxidation resistance and method for producing same | |
JP6106450B2 (en) | High purity ferritic stainless steel sheet excellent in temper color resistance and workability and method for producing the same | |
JP7341016B2 (en) | Ferritic stainless cold rolled steel sheet | |
JP4808598B2 (en) | Corrosion-resistant steel with excellent bare rust resistance | |
KR101940427B1 (en) | Ferritic stainless steel sheet | |
KR101624425B1 (en) | Super austenitic stainless steel sheet with excellent surface properties and manufacturing method thereof | |
JP2020164956A (en) | Ferritic stainless steel sheet and manufacturing method therefor | |
JP2015132019A (en) | High-purity ferritic stainless steel sheet with excellent oxidation resistance and high-temperature strength, and method for producing the same | |
WO2022025078A1 (en) | Highly corrosion-resistant austenitic stainless steel and method for producing same | |
JP6505415B2 (en) | Surface treatment method of Fe-Cr-Ni alloy material excellent in workability and corrosion resistance | |
JP2007197779A (en) | Manufacturing method of cr-containing steel sheet having excellent high-temperature strength and toughness, and cr-containing steel sheet | |
US20130180632A1 (en) | Steel Sheet for Enamel Having No Surface Defects and Method of Manufacturing the Same | |
JP2007092134A (en) | Cold-rolled steel sheet excellent in chemical conversion treatment, and manufacturing method therefor | |
KR19990023274A (en) | Fe-Cr-Si steel sheet excellent in corrosion resistance and its manufacturing method | |
JP7568497B2 (en) | Martensitic stainless steel material and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090310 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110607 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110701 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120321 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120321 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4963043 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150406 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |