[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008095060A - Antistatic agent, antistatic film, and article coated with antistatic film - Google Patents

Antistatic agent, antistatic film, and article coated with antistatic film Download PDF

Info

Publication number
JP2008095060A
JP2008095060A JP2007028883A JP2007028883A JP2008095060A JP 2008095060 A JP2008095060 A JP 2008095060A JP 2007028883 A JP2007028883 A JP 2007028883A JP 2007028883 A JP2007028883 A JP 2007028883A JP 2008095060 A JP2008095060 A JP 2008095060A
Authority
JP
Japan
Prior art keywords
group
water
antistatic agent
mass
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007028883A
Other languages
Japanese (ja)
Other versions
JP2008095060A5 (en
JP4964608B2 (en
Inventor
Ayako Nishioka
綾子 西岡
Takashi Okubo
隆 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2007028883A priority Critical patent/JP4964608B2/en
Publication of JP2008095060A publication Critical patent/JP2008095060A/en
Publication of JP2008095060A5 publication Critical patent/JP2008095060A5/ja
Application granted granted Critical
Publication of JP4964608B2 publication Critical patent/JP4964608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Materials For Photolithography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antistaic agent excellent in the prevention of fogging and a film thinning phenomenon in a chemically amplified resist, an antistatic film and a coated article using the antistaic agent. <P>SOLUTION: The antistatic agent includes a water-soluble conductive polymer, a solvent, and a water-soluble polymer. Effects on the resist (fogging and the film thinning phenomenon of the resist caused by dissolution or development of the resist) can be avoided using a specific water-soluble polymer, particularly a water-soluble polymeric compound having a polypeptide bonding or a water-soluble polymeric compound having a polyvinyl structure in combination with the water-soluble conductive polymer, while maintaining coating properties even when using a surface active agent capable of easily imparting coating properties to the resist at a low price. The antistatic agent having an improved coating properties by having the surface active agent contained is effective for the prevention of mixing in a chemically amplified resist, and a non-chemically amplified resist. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光、電子線あるいはイオン線等の荷電粒子線を用いたリソグラフィ技術においてレジストの被覆材として用いることのできる帯電防止剤に関する。さらに詳しく言えば、化学増幅系レジストに適用した場合、レジストの膜減り現象またはかぶり現象を効果的に抑止できる帯電防止剤、その帯電防止剤を用いた帯電防止膜及びその帯電防止膜を被覆した被覆物品に関する。   The present invention relates to an antistatic agent that can be used as a coating material for a resist in lithography technology using charged particle beams such as light, electron beams, or ion beams. More specifically, when applied to a chemically amplified resist, an antistatic agent capable of effectively suppressing resist film reduction phenomenon or fogging phenomenon, an antistatic film using the antistatic agent, and an antistatic film are coated. The present invention relates to a coated article.

化学増幅系レジストは、光、電子線あるいはイオン線等の荷電粒子線を用いたリソグラフィの共通技術として必要不可欠の材料になってきているが、使用環境の影響を受け易く、取り扱いの難しいレジストであることが知られている。   Chemically amplified resists have become an indispensable material as a common lithography technology using charged particle beams such as light, electron beams, or ion beams, but they are easily affected by the usage environment and are difficult to handle. It is known that there is.

化学増幅系レジストを水溶性の被覆材料で被覆する場合、露光により生成した酸が被覆材料により中和される、あるいは、露光していないのに被覆材料に含まれる酸成分がレジスト表層を侵食し露光されたと同じ状態となってしまう等の問題があった。このように、被覆材料中の僅かの酸成分でレジストの感度に大きく影響を与える。この現象は、ポジ型レジストでは膜減りとなって現われ、ネガ型レジストでは難溶化層の形成あるいは不溶化層の形成となって現われる。   When a chemically amplified resist is coated with a water-soluble coating material, the acid generated by exposure is neutralized by the coating material, or the acid component contained in the coating material erodes the resist surface layer even though it is not exposed. There was a problem such as being in the same state as the exposure. Thus, a slight acid component in the coating material greatly affects the sensitivity of the resist. This phenomenon appears as a film loss in a positive resist and as a hardly soluble layer or an insoluble layer in a negative resist.

このような現象を防止する方法として、被覆材料水溶液に弱酸とアミンとを含む緩衝液を使用してpH低下を抑制する方法(特許文献1;特開平11−189746号公報)、被覆材料水溶液をフッ素化脂肪族スルホン酸またはフッ素化脂肪族カルボン酸を含む組成物とする方法(特許文献2;特開2003−29410号公報)等が提案されている。   As a method for preventing such a phenomenon, a method of suppressing a decrease in pH by using a buffer solution containing a weak acid and an amine in an aqueous coating material solution (Patent Document 1; JP-A-11-189746), an aqueous coating material solution A method for preparing a composition containing a fluorinated aliphatic sulfonic acid or a fluorinated aliphatic carboxylic acid (Patent Document 2; JP-A-2003-29410) has been proposed.

また、化学増幅系レジストを製膜した後の表面は疎水性であり、界面活性剤を添加するなどの方法で界面活性性を付与しないと帯電防止剤を塗布することが困難になるという問題がある。帯電防止剤はレジスト上に被覆させて用いるため、平坦性、均一性が求められる。そこで、塗布性を向上させる目的で界面活性剤や、バインダーポリマーを含有させることが従来から提案されている。例えば、特許文献3(特開平6−3813)では、スルホン化ポリアニリンを含んでなる組成物に、成分として溶媒に可溶な高分子化合物、及び/又は界面活性剤を含んでなるパターン形成用導電性組成物が報告されている。これには、平坦化、塗布性及び導電性などが向上するとある。しかしながら、塗布性を与えるために界面活性剤を用いるとミキシング層が形成されるなど、レジスト特性に悪影響を及ぼす。そこで、界面活性剤を用いない化学増幅系レジスト向けの帯電防止剤として、含窒素官能基及び末端疎水性基を有する高分子化合物を用いることによる化学増幅系レジストへの影響低減について提案されている(特許文献4;特開2002−226721号公報)。また、特許文献5(特開平8−109351)では、チャージアップ防止効果のある組成物に、バインダーポリマーとして水溶性高分子、水系でエマルジョンを形成する高分子化合物を用いることができることが示されている。   In addition, the surface after the chemically amplified resist is formed is hydrophobic, and there is a problem that it becomes difficult to apply an antistatic agent unless surface activity is imparted by a method such as adding a surfactant. is there. Since the antistatic agent is used by coating on a resist, flatness and uniformity are required. Therefore, it has been conventionally proposed to contain a surfactant or a binder polymer for the purpose of improving the coating property. For example, in Patent Document 3 (Japanese Patent Laid-Open No. 6-3813), a conductive material for pattern formation comprising a composition comprising sulfonated polyaniline and a polymer compound soluble in a solvent and / or a surfactant as components. Sex compositions have been reported. This may improve planarization, coatability, and conductivity. However, if a surfactant is used to give coatability, it adversely affects the resist properties such as the formation of a mixing layer. Therefore, as an antistatic agent for chemically amplified resists that do not use a surfactant, a proposal has been made to reduce the influence on chemically amplified resists by using a polymer compound having a nitrogen-containing functional group and a terminal hydrophobic group. (Patent Document 4; JP 2002-226721 A). Patent Document 5 (Japanese Patent Application Laid-Open No. 8-109351) shows that a water-soluble polymer as a binder polymer and a polymer compound that forms an emulsion in an aqueous system can be used in a composition having an effect of preventing charge-up. Yes.

レジストの帯電防止剤は、加工時に一時的に導電性を付与する目的で使用するため、不溶化せずに水、アルカリ水等で容易に剥離できることが求められる。水溶性高分子のうち、エステル基を有するものは、加水分解等により酸を発生してレジストに影響を与える場合があり、適さない。また架橋性末端を有するものは、工程中に不溶化して、剥離ができなくなる可能性が在る。塩基性を有する水溶性ポリマーは、スルホン酸基を有する水溶性導電性高分子と併用することにより、沈殿が生じることがあり、好ましくない。   Since the antistatic agent for resist is used for the purpose of temporarily imparting electrical conductivity during processing, it is required that it can be easily removed with water, alkaline water or the like without being insolubilized. Among water-soluble polymers, those having an ester group are not suitable because they may generate an acid by hydrolysis or the like and affect the resist. Moreover, what has a crosslinkable terminal may become insolubilized during a process, and there exists a possibility that peeling will become impossible. A water-soluble polymer having basicity is not preferred because precipitation may occur when used in combination with a water-soluble conductive polymer having a sulfonic acid group.

近年の半導体デバイスの進歩は目覚しく、レジスト加工精度の向上に伴って、帯電防止剤の平坦性、均一性、レジスト現像後のレジスト解像性能への要求はさらに高まっている。従来の方法では帯電防止剤の塗布性が不十分であったり、従来許されていた帯電防止剤に含まれる界面活性剤などの添加剤によるレジスト形状への影響が半導体製造の品質にかかわるようになってきている。すなわち、近年、100nm以下のレジストの微細加工においては数nmオーダーのレジスト形状の管理を行っているが、帯電防止剤によるレジストへの僅かな影響であってもこのような微細加工レベルではレジスト形状の矩形性を著しく損ねたりする。また、現像工程を経てパターニングされたレジストは、引き続きドライエッチング工程により基板にパターンが転写されるが、半導体デバイスの最小回路線幅の微細化に合わせてパターニングされたレジストの倒壊防止を目的に、レジストパターンの適正なアスペクト比となるようレジストの薄膜化が進んでおり、レジスト形状の変化はエッチング時のパターン転写に大きく影響を及ぼす。つまり、半導体デバイス作製技術の進歩に伴い、化学増幅系レジストの性能維持に対する帯電防止剤への要求は益々厳しくなっており、さらなるレジストへの影響を低減した帯電防止膜が要望されている。また、非化学増幅系レジストにおいても、10nmオーダーの超微細加工に無機レジストが使われることもあり、膜減りを起こすことがある。   In recent years, the progress of semiconductor devices has been remarkable, and with the improvement of resist processing accuracy, the demands on the flatness and uniformity of the antistatic agent and the resist resolution performance after resist development have further increased. In the conventional method, the coating property of the antistatic agent is insufficient, and the influence on the resist shape due to the additive such as the surfactant contained in the antistatic agent that has been permitted in the past affects the quality of the semiconductor manufacturing. It has become to. That is, in recent years, in the fine processing of a resist of 100 nm or less, the resist shape is managed on the order of several nm. However, even if the antistatic agent has a slight influence on the resist, the resist shape is not improved at such a fine processing level. The rectangularity of the is significantly impaired. In addition, the resist patterned through the development process is subsequently transferred to the substrate by the dry etching process, but for the purpose of preventing collapse of the resist patterned in accordance with the miniaturization of the minimum circuit line width of the semiconductor device, The resist is becoming thinner so that the resist pattern has an appropriate aspect ratio, and the change in the resist shape greatly affects the pattern transfer during etching. In other words, with the advance of semiconductor device fabrication technology, the demand for antistatic agents for maintaining the performance of chemically amplified resists has become increasingly severe, and there is a demand for antistatic films that further reduce the impact on resists. In addition, non-chemically amplified resists may use an inorganic resist for ultrafine processing on the order of 10 nm, which may cause film loss.

特開平11−189746号公報JP 11-189746 A 特開2003−29410号公報JP 2003-29410 A 特開平6-3813号公報JP-A-6-3813 特開2002−226721号公報JP 2002-226721 A 特開平8-109351号公報JP-A-8-109351

本発明は、化学増幅系レジストにおけるかぶりや膜減り現象防止に優れた帯電防止剤、該帯電防止剤を用いた帯電防止膜及び被覆物品を提供することを目的とする。   An object of the present invention is to provide an antistatic agent excellent in prevention of fogging and film reduction phenomenon in a chemically amplified resist, an antistatic film using the antistatic agent, and a coated article.

本発明者らは、上記課題を解決するため鋭意研究を重ねた結果、水溶性高分子、特に、ポリペプチド結合を有する水溶性高分子化合物またはポリビニル構造を有する特定の水溶性高分子を水溶性導電性高分子と併用することにより、安価で簡単にレジストへの塗布性を付与できる界面活性剤を用いても、塗布性を維持しながら、レジストへの影響(レジストの溶解やレジストの現像の結果生じるレジストのかぶりや膜べり現象)を抑止できることを見出し、かかる知見に基いて本発明を完成するに至った。また、界面活性剤を含有させることにより塗布性を向上させた帯電防止剤は、化学増幅系レジストに対してばかりでなく、微細加工用の非化学増幅系レジストに対しても現像不良、現像時間の変化などのミキシングを起こす場合があるが、今回発明の帯電防止剤は、化学増幅系レジストに対するミキシング抑制に効果があるばかりでなく、このような非化学増幅系レジストに対するミキシング抑制にも効果があることを見出した。   As a result of intensive studies to solve the above problems, the present inventors have made water-soluble polymers, particularly water-soluble polymer compounds having a polypeptide bond or specific water-soluble polymers having a polyvinyl structure, water-soluble. Even when using surfactants that can be applied to resists easily and inexpensively by using in combination with conductive polymers, the effect on resists (resist dissolution and resist development) is maintained while maintaining coatability. The inventors have found that resist fogging and film slipping phenomenon as a result can be suppressed, and the present invention has been completed based on such knowledge. In addition, an antistatic agent whose coating property is improved by containing a surfactant is not only developed not only for chemically amplified resists but also for non-chemically amplified resists for microfabrication. The antistatic agent of the present invention is not only effective in suppressing mixing for chemically amplified resists, but also effective in suppressing mixing for such non-chemically amplified resists. I found out.

すなわち、本発明は以下の帯電防止剤、帯電防止膜及び帯電防止膜被覆物品、並びに帯電防止膜を用いるパターン形成方法に関する。
1.水溶性導電性高分子、溶媒及び水溶性高分子を含む帯電防止剤。
2.水溶性高分子がポリペプチド構造を有する水溶性高分子である前記1に記載の帯電防止剤。
3.水溶性高分子が式(10)

Figure 2008095060
(式中、P1は、次式P1(1)
Figure 2008095060
または次式P1(2)
Figure 2008095060
を表し、P1が前記P1(1)のとき、P2は次式−C(=O)−を表し、かつZはメチレン基−CH(−R)−を表していて、このとき式(10)は、アミノ酸残基(10)a
Figure 2008095060
(式中、R,R’は、アミノ酸残基を構成する置換基を表わし、R’が水素原子のときは、Rは独立してアミノ酸残基を構成する置換基を表し、R’が水素原子でないときは、RとR’は協力して、水酸基で置換されていてもよい含窒素環を形成して、アミノ酸残基(10)aはアミノ酸残基(10)a’
Figure 2008095060
(式中、Waは、式−(CRab)n−で示されるポリメチレン基を表し、置換基Ra,Rbはそれぞれ独立して水素原子、アルキル基、または水酸基を表わし、nは2〜8の整数を表す。)であってもよい。)で示される繰り返し構造を示し、
1が前記P1(2)のとき、Z=−O−、またはZ=−N(−Q)−であり、
前記Z=−O−のとき、P2=アルキル基であって、式(10)は、アルコキシエチレン残基(10)b
Figure 2008095060
で示される繰り返し構造を示し、
前記Z=−N(−Q)−のとき、P2とQとは協力してラクタム環基を形成して、式(10)は、アミドエチレン残基(10)c
Figure 2008095060
(式中、Wcは式−(CRcd)n−で示されるポリメチレン基を表し、置換基Rc,Rdはそれぞれ独立して水素原子、またはアルキル基を表わし、nは2〜8の整数を表す。)で示される繰り返し構造を示す。)で示される化学構造を繰り返し構造として有する、前記1に記載の帯電防止剤。
4.水溶性高分子が、前記式(10)a、(10)b、または(10)cで示される繰り返し構造のうち、少なくとも1種を分子内に有する水溶性高分子である前記1に記載の帯電防止剤。
5.水溶性高分子がアミノ酸残基(10)a
Figure 2008095060
を繰り返し構造とするポリペプチド構造を有する水溶性高分子である前記1〜4のいずれか1項に記載の帯電防止剤。
6.水溶性高分子が、式(10)’
Figure 2008095060
(式中、Y=−O−のとき、P2=アルキル基であって、式(10)’は、アルコキシエチレン残基(10)b
Figure 2008095060
で示される繰り返し構造を示し、
Y=−N(−Q)−のとき、P2とQとは協力してラクタム環基を形成して、式(10)’は、アミドエチレン残基(10)c
Figure 2008095060
(式中、Wcは式−(CRcd)n−で示されるポリメチレン基を表し、置換基Rc,Rdはそれぞれ独立して水素原子、またはアルキル基を表わし、nは2〜8の整数を表す。)で示される繰り返し構造を示す。)で示されるポリビニル構造を繰り返し構造として有する水溶性高分子である前記1、3または4に記載の帯電防止剤。
7.ポリペプチド構造を有する水溶性高分子が、タンパク質加水分解物である前記2〜5のいずれか1項に記載の帯電防止剤。
8.水溶性高分子が、ポリペプチド、ポリビニルピロリドン、ポリビニルカプロラクタム、ポリビニルアルキルエーテルからなる群のうち、少なくとも1種の水溶性高分子である前記1、3、または4に記載の帯電防止剤。
9.水溶性高分子が、ポリビニルピロリドンである前記8に記載の帯電防止剤。
10.水溶性高分子が、重量平均分子量100000以上のポリビニルピロリドンである前記9に記載の帯電防止剤。
11.更に、界面活性剤を含有する前記1〜10のいずれか1項に記載の帯電防止剤。
12.水溶性導電性高分子0.1〜20質量%、ポリペプチド構造を有する水溶性高分子0.0001〜10質量%及び溶媒70.0〜99.8質量%を含む前記1、2、3、4、5、または7に記載の帯電防止剤。
13.水溶性導電性高分子0.1〜20質量%、ポリビニル構造を有する水溶性高分子0.0001〜10質量%及び溶媒70.0〜99.8質量%を含む前記1、3、4、6、8、9、または10に記載の帯電防止剤。
14.水溶性導電性高分子0.1〜20質量%、ポリペプチド構造を有する水溶性高分子を0.0001〜10質量%、界面活性剤0.0001〜2質量%及び溶媒68.0〜99.8質量%含む前記11に記載の帯電防止剤。
15.水溶性導電性高分子0.1〜20質量%、ポリビニル構造を有する水溶性高分子を0.0001〜10質量%、界面活性剤0.0001〜2質量%及び溶媒68.0〜99.8質量%含む前記11に記載の帯電防止剤。
16.水溶性導電性高分子がブレンステッド酸基またはその塩を有するπ共役系導電性高分子である前記1〜15のいずれか1項に記載の帯電防止剤。
17.ブレンステッド酸基がスルホン酸基である前記16に記載の帯電防止剤。
18.水溶性導電性高分子が、下記式(1)
Figure 2008095060
(式中、m、nは、それぞれ独立して、0または1を表わす。Xは、S、N−R1(R1は水素原子、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和の炭化水素基、フェニル基及び置換フェニル基からなる群から選択される基を表わす。)、またはOのいずれかを表わし、Aは、−B−SO3 -+で表わされる置換基を少なくとも1つ有し、かつその他の置換基を有していてもよい炭素数1〜4のアルキレンまたはアルケニレン基(二重結合は2つ以上有していてもよい。)を表わし、Bは、−(CH2p−(O)q−(CH2r−を表わし、p及びrは、それぞれ独立して、0または1〜3の整数を表わし、qは0または1を表わす。M+は、水素イオン、アルカリ金属イオン、または第4級アンモニウムイオンを表わす。)で示される化学構造を含む前記17に記載の帯電防止剤。
19.水溶性導電性高分子が、下記式(2)
Figure 2008095060
(式中、R2〜R4は、それぞれ独立して、水素原子、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和の炭化水素基、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和のアルコキシ基、水酸基、ハロゲン原子、ニトロ基、シアノ基、トリハロメチル基、フェニル基、置換フェニル基、または−B−SO3 -+基を表わす。Bは、−(CH2p−(O)q−(CH2r−を表わし、p及びrは、それぞれ独立して、0または1〜3の整数を表わし、qは0または1を表わす。M+は、水素イオン、アルカリ金属イオン、または第4級アンモニウムイオンを表わす。)で示される化学構造を含む前記17に記載の帯電防止剤。
20.水溶性導電性高分子が、下記式(3)
Figure 2008095060
(式中、R5は、水素原子、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和の炭化水素基、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和のアルコキシ基、水酸基、ハロゲン原子、ニトロ基、シアノ基、トリハロメチル基、フェニル基、置換フェニル基、または−B−SO3 -+基を表わし、Bは、−(CH2p−(O)q−(CH2r−を表わし、p及びrは、それぞれ独立して、0または1〜3の整数を表わし、qは0または1を表わす。M+は、水素イオン、アルカリ金属イオン、または第4級アンモニウムイオンを表わす。)で示される化学構造を含む前記17に記載の帯電防止剤。
21.水溶性導電性高分子が、下記式(4)
Figure 2008095060
(式中、R6とR7は、それぞれ独立して、水素原子、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和の炭化水素基、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和のアルコキシ基、水酸基、ハロゲン原子、ニトロ基、シアノ基、トリハロメチル基、フェニル基、置換フェニル基、または−B−SO3 -+基を表わし、R8は、水素原子、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和の炭化水素基、フェニル基及び置換フェニル基からなる群から選択される一価の基を表わし、Bは、−(CH2p−(O)q−(CH2r−を表わし、p及びrは、それぞれ独立して、0または1〜3の整数を表わし、qは0または1を表わす。M+は、水素イオン、アルカリ金属イオン、または第4級アンモニウムイオンを表わす。)で示される化学構造を含む前記17に記載の帯電防止剤。
22.水溶性導電性高分子が、5−スルホイソチアナフテン−1,3−ジイルを含む重合体である前記19に記載の帯電防止剤。
23.前記1〜22のいずれか1項に記載の帯電防止剤を用いて得られる帯電防止膜。
24.前記23に記載の帯電防止膜で被覆して得られる被覆物品。
25.被覆表面が下地基板に塗布した感光性組成物もしくは感荷電粒子線組成物である前記24に記載の被覆物品。
26.前記23に記載の帯電防止膜を用いることを特徴とするパターン形成方法。 That is, the present invention relates to the following antistatic agent, antistatic film and antistatic film-coated article, and a pattern forming method using the antistatic film.
1. An antistatic agent comprising a water-soluble conductive polymer, a solvent, and a water-soluble polymer.
2. 2. The antistatic agent according to 1 above, wherein the water-soluble polymer is a water-soluble polymer having a polypeptide structure.
3. The water-soluble polymer is of formula (10)
Figure 2008095060
(Where P 1 is the following formula P 1 (1)
Figure 2008095060
Or the following formula P 1 (2)
Figure 2008095060
When P 1 is P 1 (1), P 2 represents the following formula —C (═O) —, and Z represents a methylene group —CH (—R) —, where (10) is an amino acid residue (10) a
Figure 2008095060
(In the formula, R and R ′ represent a substituent constituting an amino acid residue, and when R ′ is a hydrogen atom, R independently represents a substituent constituting an amino acid residue, and R ′ represents a hydrogen atom. When not an atom, R and R ′ cooperate to form a nitrogen-containing ring optionally substituted with a hydroxyl group, and amino acid residue (10) a is converted to amino acid residue (10) a ′.
Figure 2008095060
(Wherein W a represents a polymethylene group represented by the formula — (CR a R b ) n—, and the substituents R a and R b each independently represent a hydrogen atom, an alkyl group, or a hydroxyl group, and n Represents an integer of 2 to 8. ) Showing the repeating structure
When P 1 is P 1 (2), Z = —O— or Z = —N (—Q) —,
When Z = —O—, P 2 = alkyl group, and the formula (10) is an alkoxyethylene residue (10) b
Figure 2008095060
The repeating structure shown by
When Z = —N (—Q) —, P 2 and Q cooperate to form a lactam ring group, and the formula (10) is an amidoethylene residue (10) c
Figure 2008095060
Wherein W c represents a polymethylene group represented by the formula — (CR c R d ) n—, the substituents R c and R d each independently represent a hydrogen atom or an alkyl group, and n represents 2 to 2 Represents an integer of 8). 2. The antistatic agent according to 1 above, which has a chemical structure represented by
4). 2. The water-soluble polymer according to 1 above, wherein the water-soluble polymer is a water-soluble polymer having in the molecule at least one of the repeating structures represented by the formula (10) a, (10) b, or (10) c. Antistatic agent.
5. Water-soluble polymer is amino acid residue (10) a
Figure 2008095060
5. The antistatic agent according to any one of 1 to 4, which is a water-soluble polymer having a polypeptide structure having a repeating structure.
6). The water-soluble polymer is represented by the formula (10) ′
Figure 2008095060
(In the formula, when Y = —O—, P 2 = alkyl group, and the formula (10) ′ represents an alkoxyethylene residue (10) b
Figure 2008095060
The repeating structure shown by
When Y = —N (—Q) —, P 2 and Q cooperate to form a lactam ring group, and the formula (10) ′ represents an amidoethylene residue (10) c
Figure 2008095060
Wherein W c represents a polymethylene group represented by the formula — (CR c R d ) n—, the substituents R c and R d each independently represent a hydrogen atom or an alkyl group, and n represents 2 to 2 Represents an integer of 8). 5. The antistatic agent according to 1, 3, or 4, which is a water-soluble polymer having a polyvinyl structure represented by (2) as a repeating structure.
7). 6. The antistatic agent according to any one of 2 to 5, wherein the water-soluble polymer having a polypeptide structure is a protein hydrolysate.
8). 5. The antistatic agent according to 1, 3, or 4, wherein the water-soluble polymer is at least one water-soluble polymer from the group consisting of polypeptide, polyvinyl pyrrolidone, polyvinyl caprolactam, and polyvinyl alkyl ether.
9. 9. The antistatic agent according to 8 above, wherein the water-soluble polymer is polyvinyl pyrrolidone.
10. 10. The antistatic agent according to 9, wherein the water-soluble polymer is polyvinyl pyrrolidone having a weight average molecular weight of 100,000 or more.
11. Furthermore, antistatic agent of any one of said 1-10 containing surfactant.
12 8. The 1, 2, 3, 4, 5, or 7 comprising 0.1 to 20% by mass of a water-soluble conductive polymer, 0.0001 to 10% by mass of a water-soluble polymer having a polypeptide structure and 70.0 to 99.8% by mass of a solvent. Antistatic agent.
13. In the above 1, 3, 4, 6, 8, 9, or 10 containing 0.1 to 20% by mass of water-soluble conductive polymer, 0.0001 to 10% by mass of water-soluble polymer having a polyvinyl structure and 70.0 to 99.8% by mass of solvent The antistatic agent as described.
14 The charging according to 11 above, comprising 0.1 to 20% by mass of a water-soluble conductive polymer, 0.0001 to 10% by mass of a water-soluble polymer having a polypeptide structure, 0.0001 to 2% by mass of a surfactant and 68.0 to 99.8% by mass of a solvent. Inhibitor.
15. The antistatic material according to 11 above, comprising 0.1 to 20% by mass of a water-soluble conductive polymer, 0.0001 to 10% by mass of a water-soluble polymer having a polyvinyl structure, 0.0001 to 2% by mass of a surfactant, and 68.0 to 99.8% by mass of a solvent. Agent.
16. 16. The antistatic agent according to any one of 1 to 15, wherein the water-soluble conductive polymer is a π-conjugated conductive polymer having a Bronsted acid group or a salt thereof.
17. 17. The antistatic agent according to 16 above, wherein the Bronsted acid group is a sulfonic acid group.
18. The water-soluble conductive polymer is represented by the following formula (1)
Figure 2008095060
(In the formula, m and n each independently represents 0 or 1. X represents S, N—R 1 (R 1 is a hydrogen atom, linear or branched saturated having 1 to 20 carbon atoms) or unsaturated hydrocarbon group, a group selected from phenyl and the group consisting of substituted phenyl group), or represents one of O, a is, -B-SO 3 -. substituted represented by M + Represents an alkylene or alkenylene group having 1 to 4 carbon atoms which may have at least one group and may have other substituents (which may have two or more double bonds); Represents — (CH 2 ) p — (O) q — (CH 2 ) r —, p and r each independently represent an integer of 0 or 1-3, and q represents 0 or 1 .M + represents a hydrogen ion, an alkali metal ion or a quaternary ammonium ion The antistatic agent according to the 17, including a chemical structure represented by).
19. The water-soluble conductive polymer is represented by the following formula (2)
Figure 2008095060
(In the formula, R 2 to R 4 each independently represent a hydrogen atom, a linear or branched saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, or a linear structure having 1 to 20 carbon atoms. Or a branched saturated or unsaturated alkoxy group, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a trihalomethyl group, a phenyl group, a substituted phenyl group, or a —B—SO 3 M + group, where B is - (CH 2) p - ( O) q - (CH 2) r - represents, p and r each independently represents 0 or an integer of 1 to 3, q represents 0 or 1 .M 18. The antistatic agent according to 17 above, which comprises a chemical structure represented by: + represents a hydrogen ion, an alkali metal ion, or a quaternary ammonium ion.
20. The water-soluble conductive polymer is represented by the following formula (3)
Figure 2008095060
(In the formula, R 5 represents a hydrogen atom, a linear or branched saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, or a linear or branched saturated or unsaturated group having 1 to 20 carbon atoms. It represents M + group, B is - - alkoxy group, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a trihalomethyl group, a phenyl group, a substituted phenyl group or -B-SO 3, (CH 2 ) p - ( O) q — (CH 2 ) r —, p and r each independently represent an integer of 0 or 1 to 3, q represents 0 or 1. M + represents a hydrogen ion, an alkali metal 18. The antistatic agent according to 17 above, which comprises a chemical structure represented by an ion or a quaternary ammonium ion.
21. The water-soluble conductive polymer is represented by the following formula (4)
Figure 2008095060
(In the formula, R 6 and R 7 are each independently a hydrogen atom, a linear or branched saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, or a straight chain having 1 to 20 carbon atoms. or branched, saturated or unsaturated alkoxy group, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a trihalomethyl group, a phenyl group, a substituted phenyl group or -B-SO 3, - represents M + group, R 8 is Represents a monovalent group selected from the group consisting of a hydrogen atom, a straight-chain or branched saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, a phenyl group and a substituted phenyl group; (CH 2 ) p — (O) q — (CH 2 ) r —, wherein p and r each independently represent an integer of 0 or 1-3, and q represents 0 or 1. M + Is hydrogen ion, alkali metal ion, or quaternary ammonia The antistatic agent according to the 17 containing a chemical structure represented by representing the ion.).
22. 20. The antistatic agent as described in 19 above, wherein the water-soluble conductive polymer is a polymer containing 5-sulfoisothianaphthene-1,3-diyl.
23. 23. An antistatic film obtained by using the antistatic agent according to any one of 1 to 22.
24. 24. A coated article obtained by coating with the antistatic film as described in 23 above.
25. 25. The coated article according to 24, wherein the coated surface is a photosensitive composition or a charged particle beam composition coated on a base substrate.
26. 24. A pattern forming method using the antistatic film as described in 23 above.

本発明の帯電防止剤は、化学増幅系レジスト表面に塗布し、被覆帯電防止膜を形成する際に化学増幅系レジストの品質変化(例えば、かぶり、膜減り、Tトップや肩落ち等のレジストの形状変化)を起こすことがないので、パターンを精度良く形成することができ、帯電防止効果により荷電粒子線を用いた描画工程で位置ズレを防止することができるため、より良い精度でパターンを形成することができる。また、本発明の帯電防止剤は、化学増幅系レジスト表面に塗布して用いて、現像不良、現像時間の変化などのミキシングを抑制する効果があるばかりでなく、非化学増幅系レジストに対するミキシング抑制にも効果がある。   The antistatic agent of the present invention is applied to the surface of a chemically amplified resist, and when a coated antistatic film is formed, the quality of the chemically amplified resist changes (for example, fogging, film reduction, T top, shoulder drop, etc.) The pattern can be formed with high accuracy because the pattern can be formed with high accuracy, and positional displacement can be prevented in the drawing process using charged particle beams due to the antistatic effect. can do. In addition, the antistatic agent of the present invention is applied to the surface of a chemically amplified resist and used to suppress mixing such as development failure and change in development time, as well as suppressing mixing of non-chemically amplified resist. Is also effective.

本発明に係る帯電防止剤は、水溶性導電性高分子、溶媒及び水溶性高分子、特に、ポリペプチド結合を有する水溶性高分子化合物、なかでも前記式(10)aで示されるアミノ酸残基を繰り返し構造として有する水溶性高分子、および前記式(10)bで示されるアルコキシエチレン残基を繰り返し構造として有する水溶性高分子、および前記式(10)cで示されるアミドエチレン残基を繰り返し構造として有する水溶性高分子、および、これらの式(10)a、(10)b、および(10)cで示される繰り返し残基のうち少なくとも1種を繰り返し構造として有する水溶性高分子を含む、前記式(10)で示される構造を繰り返し構造として有する水溶性高分子を含む組成物であり、更に界面活性剤を含んでいてもよい。   The antistatic agent according to the present invention comprises a water-soluble conductive polymer, a solvent and a water-soluble polymer, particularly a water-soluble polymer compound having a polypeptide bond, particularly an amino acid residue represented by the formula (10) a A water-soluble polymer having a repeating structure, a water-soluble polymer having an alkoxyethylene residue represented by the formula (10) b as a repeating structure, and an amideethylene residue represented by the formula (10) c. A water-soluble polymer having a structure, and a water-soluble polymer having at least one of the repeating residues represented by formulas (10) a, (10) b, and (10) c as a repeating structure And a composition containing a water-soluble polymer having a structure represented by the formula (10) as a repeating structure, and may further contain a surfactant.

本発明の帯電防止剤を物品に塗布した後、放置または乾燥すれば、帯電防止剤に含まれる溶媒が揮発等によって減少し、流動性の無くなった半固体あるいは固体となる。この流動性のなくなった膜体を帯電防止膜と呼ぶ。   If the antistatic agent of the present invention is applied to an article and then allowed to stand or dry, the solvent contained in the antistatic agent is reduced by volatilization or the like, resulting in a semi-solid or solid with no fluidity. The film body that has lost its fluidity is called an antistatic film.

(I)水溶性導電性高分子
本発明で使用される水溶性導電性高分子としては、例えば、ブレンステッド酸基またはその塩を有するπ共役系導電性高分子が挙げられる。該ブレンステッド酸基は、π電子共役主鎖に直接結合していてもよいし、もしくはスペーサー(例えば、アルキレン側鎖あるいはオキシアルキレン側鎖)を介して結合していてもよく、結合形態は高分子の一次構造には制限されない。
ブレンステッド酸基としては、例えばスルホン酸基、カルボン酸基などが挙げられ、スルホン酸基が好ましい。
(I) Water-soluble conductive polymer Examples of the water-soluble conductive polymer used in the present invention include π-conjugated conductive polymers having a Bronsted acid group or a salt thereof. The Bronsted acid group may be directly bonded to the π-electron conjugated main chain, or may be bonded via a spacer (for example, an alkylene side chain or an oxyalkylene side chain). The primary structure of the molecule is not limited.
Examples of the Bronsted acid group include a sulfonic acid group and a carboxylic acid group, and a sulfonic acid group is preferable.

水溶性導電性高分子の具体例としては、ポリ(イソチアナフテンスルホン酸)、ポリ(チオフェンアルキルスルホン酸)、ポリ(ピロールアルキルスルホン酸)、ポリ(アニリンスルホン酸)、ポリ(アニリンアルカンスルホン酸)、ポリ(アニリンチオアルカンスルホン酸)等、あるいはこれらの重合体のスルホン酸基または塩を有する繰り返し単位を含む共重合体、またはこれらの各種塩構造体及び置換誘導体等の自己ドープ型導電性高分子を挙げることができる。   Specific examples of the water-soluble conductive polymer include poly (isothianaphthenesulfonic acid), poly (thiophenealkylsulfonic acid), poly (pyrrolealkylsulfonic acid), poly (anilinesulfonic acid), and poly (anilinealkanesulfonic acid). ), Poly (aniline thioalkane sulfonic acid), etc., or copolymers containing repeating units having sulfonic acid groups or salts of these polymers, or various salt structures and substituted derivatives thereof. There may be mentioned polymers.

また、前記共重合体におけるスルホン酸基を含む繰り返し単位は、重合体の全繰り返し単位の50〜100モル%が好ましく、80〜100モル%がさらに好ましい。   Moreover, the repeating unit containing a sulfonic acid group in the copolymer is preferably 50 to 100 mol%, more preferably 80 to 100 mol% of all repeating units of the polymer.

本発明に用いる共重合体は、他のπ共役系化学構造からなる繰り返し単位を含む共重合体であってもよく、2〜5種の繰り返し単位からなる共重合体組成であってもよい。
なお、本発明にいう「繰り返し単位を含む共重合体」は、必ずしもその単位を連続して含む共重合体に限定されず、π共役系主鎖に基づく所望の導電性が発現される限りにおいてランダムコポリマーのようにπ共役系主鎖に不規則、不連続に繰り返し単位を含む重合体でもよい。
The copolymer used in the present invention may be a copolymer containing a repeating unit composed of another π-conjugated chemical structure, or may be a copolymer composition composed of 2 to 5 kinds of repeating units.
The “copolymer containing repeating units” referred to in the present invention is not necessarily limited to a copolymer containing the units continuously, as long as desired conductivity based on the π-conjugated main chain is expressed. A polymer containing a repeating unit discontinuously and discontinuously in the π-conjugated main chain such as a random copolymer may be used.

水溶性導電性高分子におけるスルホン酸基またはその塩を含む繰り返し単位の例として、下記式(1)、(2)、(3)及び(4)で示される化学構造が挙げられる。

Figure 2008095060
式(1)中、m、nは、それぞれ独立して、0または1を表わす。Xは、S、N−R1、またはOのいずれかを表わし、R1は水素原子、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和の炭化水素基、フェニル基及び置換フェニル基からなる群から選択される基を表わし、Aは、−B−SO3 -+で表わされる置換基を少なくとも1つ有し、かつその他の置換基を有していてもよい炭素数1〜4のアルキレンまたはアルケニレン基(二重結合は2つ以上有していてもよい。)を表わし、Bは、−(CH2p−(O)q−(CH2r−を表わし、p及びrは、それぞれ独立して、0または1〜3の整数を表わし、qは0または1を表わす。M+は、水素イオン、アルカリ金属イオンまたは第4級アンモニウムイオンを表わす。 Examples of the repeating unit containing a sulfonic acid group or a salt thereof in the water-soluble conductive polymer include chemical structures represented by the following formulas (1), (2), (3) and (4).
Figure 2008095060
In formula (1), m and n each independently represents 0 or 1. X represents S, N—R 1 , or O, and R 1 represents a hydrogen atom, a linear or branched saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, a phenyl group, and a substituent. represents a group selected from the group consisting of phenyl group, a is, -B-SO 3 - at least one having a substituent represented by M +, and the number of carbon atoms, which may have other substituents 1-4 represents an alkylene or alkenylene group (which may have two or more double bonds), and B represents — (CH 2 ) p — (O) q — (CH 2 ) r —. , P and r each independently represents an integer of 0 or 1 to 3, and q represents 0 or 1. M + represents a hydrogen ion, an alkali metal ion or a quaternary ammonium ion.

アルキレンまたはアルケニレン基の他の置換基としては、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和の炭化水素基、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和のアルコキシ基、水酸基、ハロゲン原子、ニトロ基、シアノ基、トリハロメチル基、フェニル基、及び置換フェニル基から選ばれる1種以上である。
1が表わす置換フェニル基及び上記の置換フェニル基の置換基としては、例えば炭素数1〜8のアルキル基、炭素数1〜8のアルコキシ基、ハロゲン原子等が挙げられ、置換フェニル基はこれら置換基から選ばれる1〜5個の基で置換されたフェニル基である。
Other substituents for the alkylene or alkenylene group include linear or branched saturated or unsaturated hydrocarbon groups having 1 to 20 carbon atoms, linear or branched saturated or unsaturated groups having 1 to 20 carbon atoms. One or more selected from a saturated alkoxy group, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a trihalomethyl group, a phenyl group, and a substituted phenyl group.
Examples of the substituted phenyl group represented by R 1 and the above substituted phenyl group include an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a halogen atom, and the like. It is a phenyl group substituted with 1 to 5 groups selected from substituents.

Figure 2008095060
式(2)中、R2〜R4は、それぞれ独立して、水素原子、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和の炭化水素基、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和のアルコキシ基、水酸基、ハロゲン原子、ニトロ基、シアノ基、トリハロメチル基、フェニル基、置換フェニル基、または−B−SO3 -+基を表わし、B及びM+は前記と同じ意味を表わす。
Figure 2008095060
In formula (2), R 2 to R 4 each independently represent a hydrogen atom, a linear or branched saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, and a straight chain having 1 to 20 carbon atoms. linear or branched, saturated or unsaturated alkoxy group, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a trihalomethyl group, a phenyl group, a substituted phenyl group or -B-SO 3, - represents M + group, B And M + represent the same meaning as described above.

2、R3またはR4が表わす置換フェニル基の置換基としては、例えば炭素数1〜8のアルキル基、炭素数1〜8のアルコキシ基、ハロゲン原子等が挙げられ、複数基が置換していてもよい。 Examples of the substituent of the substituted phenyl group represented by R 2 , R 3, or R 4 include an alkyl group having 1 to 8 carbon atoms, an alkoxy group having 1 to 8 carbon atoms, a halogen atom, and the like. It may be.

2、R3及びR4が表わす炭化水素基及びアルコキシ基中の任意のエチレン基は、カルボニル基(−CO−)、オキシ基(−O−)、カルボニルオキシ基(−COO−または−OCO−)、アミノカルボニル基(−NH2−CO−または−CO−NH2−)、アミノスルホニル基(−NH2−SO2−または−SO2−NH2−)、スルファニル基(−S−)、スルフィニル基(−S(O)−)、スルホニル基(−SO2−)、スルホニルオキシ基(−SO2−O−または−O−SO2−)、またはイミノ基(−NH−)に置き換わっていてもよい。 Any ethylene group in the hydrocarbon group and alkoxy group represented by R 2 , R 3 and R 4 is a carbonyl group (—CO—), an oxy group (—O—), a carbonyloxy group (—COO— or —OCO). −), Aminocarbonyl group (—NH 2 —CO— or —CO—NH 2 —), aminosulfonyl group (—NH 2 —SO 2 — or —SO 2 —NH 2 —), sulfanyl group (—S—) , A sulfinyl group (—S (O) —), a sulfonyl group (—SO 2 —), a sulfonyloxy group (—SO 2 —O— or —O—SO 2 —), or an imino group (—NH—) It may be.

具体的には、アルキルカルボニルアルキル基、アルコキシアルキル基、アルコキシアルコキシ基、アルコキシカルボニル基、アルコキシカルボニルアルキル基、アシルオキシ基、アシルオキシアルキル基、アルキルアミノカルボニル基、アルキルアミノカルボニルアルキル基、アルキルカルボニルアミノ基、アルキルカルボニルアミノアルキル基、アルキルアミノスルホニル基、アルキルアミノスルホニルアルキル基、アルキルスルホニルアミノ基、アルキルスルホニルアミノアルキル基、アルキルチオ基、アルキルチオアルキル基、アルキルスルフィニル基、アルキルスルフィニルアルキル基、アルキルスルホニル基、アルキルスルホニルアルキル基、アルキルスルホニルオキシ基、アルキルスルホニルオキシアルキル基、アルキルアミノ基、及び上記のアルキル部分が置換されていてもよいフェニル基に置き換わったものが挙げられる。フェニル基の置換基としては、R2〜R4が表わす置換フェニル基の置換基と同様である。 Specifically, alkylcarbonylalkyl group, alkoxyalkyl group, alkoxyalkoxy group, alkoxycarbonyl group, alkoxycarbonylalkyl group, acyloxy group, acyloxyalkyl group, alkylaminocarbonyl group, alkylaminocarbonylalkyl group, alkylcarbonylamino group, Alkylcarbonylaminoalkyl group, alkylaminosulfonyl group, alkylaminosulfonylalkyl group, alkylsulfonylamino group, alkylsulfonylaminoalkyl group, alkylthio group, alkylthioalkyl group, alkylsulfinyl group, alkylsulfinylalkyl group, alkylsulfonyl group, alkylsulfonyl Alkyl group, alkylsulfonyloxy group, alkylsulfonyloxyalkyl group, alkylamino , And the alkyl moiety of the above include those replaced by a phenyl group which may be substituted. The substituent for the phenyl group is the same as the substituent for the substituted phenyl group represented by R 2 to R 4 .

Figure 2008095060
式(3)中、R5は、前記のR2〜R4と同様の意味を表わし、B及びM+は前記と同じ意味を表わす。
Figure 2008095060
In formula (3), R 5 represents the same meaning as R 2 to R 4 described above, and B and M + represent the same meaning as described above.

Figure 2008095060
式(4)中、R6とR7は、それぞれ独立して、前記のR2〜R4と同様の意味を表わし、B及びM+は前記と同じ意味を表わし、R8は、水素原子、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和の炭化水素基、フェニル基及び置換フェニル基からなる群から選択される基を表わす。R8が表わす置換フェニル基の置換基は、R2〜R4が表わす置換フェニル基の置換基と同様である。
Figure 2008095060
In formula (4), R 6 and R 7 each independently represent the same meaning as R 2 to R 4 above, B and M + represent the same meaning as described above, and R 8 represents a hydrogen atom Represents a group selected from the group consisting of a linear or branched, saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, a phenyl group, and a substituted phenyl group. The substituent of the substituted phenyl group represented by R 8 is the same as the substituent of the substituted phenyl group represented by R 2 to R 4 .

式(1)〜式(4)の定義において飽和または不飽和の炭化水素基とは、炭素原子と水素原子からなる基をいい、例えばアルキル基、アルケニル基、アルキニル基、シクロアルキル基、シクロアルケニル基、シクロアルキニル基、芳香族炭素環及びこれらの基中の1つまたは複数の水素原子が他の基により置換された基が挙げられる。   In the definitions of the formulas (1) to (4), the saturated or unsaturated hydrocarbon group means a group consisting of a carbon atom and a hydrogen atom. For example, an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, a cycloalkenyl group. Groups, cycloalkynyl groups, aromatic carbocycles and groups in which one or more hydrogen atoms in these groups have been replaced by other groups.

2〜R5としては、水素原子、炭素数1〜20の直鎖状もしくは分岐状のアルキル基、及び炭素数1〜20の直鎖状もしくは分岐状のアルコキシ基が好ましく、水素原子及び炭素数1〜20の直鎖状もしくは分岐状のアルコキシ基がさらに好ましい。R6またはR7としては、水素原子、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和炭化水素基、フェニル基、及び置換フェニル基が好ましい。 R 2 to R 5 are preferably a hydrogen atom, a linear or branched alkyl group having 1 to 20 carbon atoms, and a linear or branched alkoxy group having 1 to 20 carbon atoms. A linear or branched alkoxy group having 1 to 20 is more preferable. R 6 or R 7 is preferably a hydrogen atom, a linear or branched saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, a phenyl group, or a substituted phenyl group.

2〜R7の特に好ましい例としては、水素原子、アルキル基、アルケニル基、アルコキシ基、アルコキシアルキル基、カルボニル基含有基、アルコキシアルコキシ基、アルコキシカルボニル基、アシルオキシ基、フェニル基、置換フェニル基、及びスルホン酸基が挙げられる。これらの置換基の具体例としては、メチル、エチル、プロピル、アリル、イソプロピル、ブチル、ペンチル、ヘキシル、ヘプチル、オクチル、ノニル、デシル、ウンデシル、ドデシル、テトラデシル、ヘキサデシル等のアルキル基、ビニル、1−プロピニル、1−ブテニル等のアルケニル基、エトキシエチル、メトキシエチル、メトキシエトキシエチル等のアルコキシアルキル基、アセトニル、フェナシル等のカルボニル基含有基、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、ペンチルオキシ、ヘキシルオキシ、オクチルオキシ、ドデシルオキシ等のアルコキシ基、メトキシエトキシ、メトキシエトキシエトキシ等のアルコキシアルコキシ基、メトキシカルボニル、エトキシカルボニル、ブトキシカルボニル等のアルコキシカルボニル基、アセトキシ、ブチロイルオキシ等のアシルオキシ基、フェニル、フルオロフェニル、クロロフェニル、ブロモフェニル、メチルフェニル、メトキシフェニル等の、ハロゲン原子、アルキル基、アルコキシ基などの置換基を有していてもよいフェニル基などが挙げられる。 Particularly preferred examples of R 2 to R 7 include a hydrogen atom, an alkyl group, an alkenyl group, an alkoxy group, an alkoxyalkyl group, a carbonyl group-containing group, an alkoxyalkoxy group, an alkoxycarbonyl group, an acyloxy group, a phenyl group, and a substituted phenyl group. And sulfonic acid groups. Specific examples of these substituents include methyl, ethyl, propyl, allyl, isopropyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, alkyl groups such as dodecyl, tetradecyl, hexadecyl, vinyl, 1- Alkenyl groups such as propynyl and 1-butenyl, alkoxyalkyl groups such as ethoxyethyl, methoxyethyl and methoxyethoxyethyl, carbonyl group-containing groups such as acetonyl and phenacyl, methoxy, ethoxy, propoxy, isopropoxy, butoxy, pentyloxy and hexyl Alkoxy groups such as oxy, octyloxy and dodecyloxy, alkoxyalkoxy groups such as methoxyethoxy and methoxyethoxyethoxy, and alkoxy groups such as methoxycarbonyl, ethoxycarbonyl and butoxycarbonyl A phenyl group which may have a substituent such as a halogen atom, an alkyl group, an alkoxy group, such as a carbonyl group, an acyloxy group such as acetoxy, butyroyloxy, phenyl, fluorophenyl, chlorophenyl, bromophenyl, methylphenyl, methoxyphenyl, etc. Etc.

前記式(1)〜(4)において、Bの好ましい例としては、単結合、メチレン、エチレン、プロピレン、ブチレン、ペンチレン、ヘキシレン、アリーレン、ブタジエニレン、オキシメチレン、オキシエチレン、オキシプロピレン、メチレンオキシエチレン、エチレンオキシエチレン等が挙げられる。特に好ましいBとしては、単結合、エチレン、プロピレン、オキシエチレン、エチレンオキシエチレンである。   In the formulas (1) to (4), preferable examples of B include a single bond, methylene, ethylene, propylene, butylene, pentylene, hexylene, arylene, butadienylene, oxymethylene, oxyethylene, oxypropylene, methyleneoxyethylene, And ethyleneoxyethylene. Particularly preferred B is a single bond, ethylene, propylene, oxyethylene, or ethyleneoxyethylene.

+が表わすカチオンは2種以上が混在していてもよい。
アルカリ金属イオンの例としては、例えばNa+、Li+及びK+が挙げられる。
Two or more kinds of cations represented by M + may be mixed.
Examples of alkali metal ions include Na + , Li + and K + .

第4級アンモニウムイオンは、N(R9)(R10)(R11)(R12+で示される。R9〜R12はそれぞれ独立して水素原子、炭素数1〜30の直鎖状もしくは分岐状の置換または非置換アルキル基、または置換もしくは非置換アリール基を表わし、アルコキシ基、ヒドロキシル基、オキシアルキレン基、チオアルキレン基、アゾ基、アゾベンゼン基、p−ジフェニレンオキシ基等の炭素、水素以外の元素を含む基を含むアルキルまたはアリール基でもよい。 The quaternary ammonium ion is represented by N (R 9 ) (R 10 ) (R 11 ) (R 12 ) + . R 9 to R 12 each independently represents a hydrogen atom, a linear or branched substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, or a substituted or unsubstituted aryl group, an alkoxy group, a hydroxyl group, an oxy group It may be an alkyl or aryl group containing a group containing an element other than carbon and hydrogen, such as an alkylene group, a thioalkylene group, an azo group, an azobenzene group, and a p-diphenyleneoxy group.

第4級アンモニウムイオンとしては、例えばNH4 +、NH(CH33 +、NH(C653 +、N(CH32(CH2OH)(CH2−Z)+等(ただし、Zは化学式量が600以下の任意の置換基を表し、例えば、フェノキシ基、p−ジフェニレンオキシ基、p−アルコキシジフェニレンオキシ基、p−アルコキシフェニルアゾフェノキシ基等が挙げられる)の非置換またはアルキル置換もしくはアリール置換型カチオンが用いられる。なお、特定カチオンに変換するために、通常のイオン交換樹脂を用いてもよい。 Examples of quaternary ammonium ions include NH 4 + , NH (CH 3 ) 3 + , NH (C 6 H 5 ) 3 + , N (CH 3 ) 2 (CH 2 OH) (CH 2 —Z) + and the like. (However, Z represents an arbitrary substituent having a chemical formula weight of 600 or less, and examples thereof include a phenoxy group, a p-diphenyleneoxy group, a p-alkoxydiphenyleneoxy group, and a p-alkoxyphenylazophenoxy group.) Or an unsubstituted or alkyl-substituted cation. In addition, in order to convert into a specific cation, you may use a normal ion exchange resin.

9〜R12のアルキル基中の任意のエチレン基は、カルボニル基(−CO−)、オキシ基(−O−)、カルボニルオキシ基(−COO−または−OCO−)、アミノカルボニル基(−NH2−CO−または−CO−NH2−)、アミノスルホニル基(−NH2−SO2−または−SO2−NH2−)、スルファニル基(−S−)、スルフィニル基(−S(O)−)、スルホニル基(−SO2−)、スルホニルオキシ基(−SO2−O−または−O−SO2−)、またはイミノ基(−NH−)に置き換わっていてもよい。 An arbitrary ethylene group in the alkyl group represented by R 9 to R 12 is a carbonyl group (—CO—), an oxy group (—O—), a carbonyloxy group (—COO— or —OCO—), an aminocarbonyl group (— NH 2 —CO— or —CO—NH 2 —), aminosulfonyl group (—NH 2 —SO 2 — or —SO 2 —NH 2 —), sulfanyl group (—S—), sulfinyl group (—S (O )-), A sulfonyl group (—SO 2 —), a sulfonyloxy group (—SO 2 —O— or —O—SO 2 —), or an imino group (—NH—) may be substituted.

式(1)、(2)または(3)で示される化学構造の好ましい具体例としては、5−(3’−プロパンスルホ)−4,7−ジオキシシクロヘキサ[2,3−c]チオフェン−1,3−ジイル、5−(2’−エタンスルホ)−4,7−ジオキシシクロヘキサ[2,3−c]チオフェン−1,3−ジイル、5−スルホイソチアナフテン−1,3−ジイル、4−スルホイソチアナフテン−1,3−ジイル、4−メチル−5−スルホイソチアナフテン−1,3−ジイル、6−メチル−5−スルホイソチアナフテン−1,3−ジイル、6−メチル−4−スルホイソチアナフテン−1,3−ジイル、5−メチル−4−スルホイソチアナフテン−1,3−ジイル、6−エチル−5−スルホイソチアナフテン−1,3−ジイル、6−プロピル−5−スルホイソチアナフテン−1,3−ジイル、6−ブチル−5−スルホイソチアナフテン−1,3−ジイル、6−ヘキシル−5−スルホイソチアナフテン−1,3−ジイル、6−デシル−5−スルホイソチアナフテン−1,3−ジイル、6−メトキシ−5−スルホイソチアナフテン−1,3−ジイル、6−エトキシ−5−スルホイソチアナフテン−1,3−ジイル、6−クロロ−5−スルホイソチアナフテン−1,3−ジイル、6−ブロモ−5−スルホイソチアナフテン−1,3−ジイル、6−トリフルオロメチル−5−スルホイソチアナフテン−1,3−ジイル、5−(スルホメタン)イソチアナフテン−1,3−ジイル、5−(2’−スルホエタン)イソチアナフテン−1,3−ジイル、5−(2’−スルホエトキシ)イソチアナフテン−1,3−ジイル、5−(2’−(2”−スルホエトキシ)メタン)−イソチアナフテン−1,3−ジイル、5−(2’−(2”−スルホエトキシ)エタン)−イソチアナフテン−1,3−ジイル等、もしくはそれらのリチウム塩、ナトリウム塩、アンモニウム塩、メチルアンモニウム塩、エチルアンモニウム塩、ジメチルアンモニウム塩、ジエチルアンモニウム塩、トリメチルアンモニウム塩、トリエチルアンモニウム塩、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩等が挙げられる。   Preferable specific examples of the chemical structure represented by the formula (1), (2) or (3) include 5- (3′-propanesulfo) -4,7-dioxycyclohexa [2,3-c] thiophene. -1,3-diyl, 5- (2′-ethanesulfo) -4,7-dioxycyclohexa [2,3-c] thiophene-1,3-diyl, 5-sulfoisothianaphthene-1,3- Diyl, 4-sulfoisothianaphthene-1,3-diyl, 4-methyl-5-sulfoisothianaphthene-1,3-diyl, 6-methyl-5-sulfoisothianaphthene-1,3-diyl, 6 -Methyl-4-sulfoisothianaphthene-1,3-diyl, 5-methyl-4-sulfoisothianaphthene-1,3-diyl, 6-ethyl-5-sulfoisothianaphthene-1,3-diyl, 6-propyl-5-sulfoiso Naphthene-1,3-diyl, 6-butyl-5-sulfoisothianaphthene-1,3-diyl, 6-hexyl-5-sulfoisothianaphthene-1,3-diyl, 6-decyl-5-sulfoiso Thianaphthene-1,3-diyl, 6-methoxy-5-sulfoisothianaphthene-1,3-diyl, 6-ethoxy-5-sulfoisothianaphthene-1,3-diyl, 6-chloro-5-sulfo Isothianaphthene-1,3-diyl, 6-bromo-5-sulfoisothianaphthene-1,3-diyl, 6-trifluoromethyl-5-sulfoisothianaphthene-1,3-diyl, 5- (sulfomethane ) Isothianaphthene-1,3-diyl, 5- (2′-sulfoethane) isothianaphthene-1,3-diyl, 5- (2′-sulfoethoxy) isothianaphthene-1,3-di 5- (2 ′-(2 ″ -sulfoethoxy) methane) -isothianaphthene-1,3-diyl, 5- (2 ′-(2 ″ -sulfoethoxy) ethane) -isothianaphthene-1, 3-diyl or the like, or lithium salt, sodium salt, ammonium salt, methylammonium salt, ethylammonium salt, dimethylammonium salt, diethylammonium salt, trimethylammonium salt, triethylammonium salt, tetramethylammonium salt, tetraethylammonium salt, etc. Is mentioned.

式(4)で示される化学構造の好ましい具体例としては、2−スルホ−1,4−イミノフェニレン、3−メチル−2−スルホ−1,4−イミノフェニレン、5−メチル−2−スルホ−1,4−イミノフェニレン、6−メチル−2−スルホ−1,4−イミノフェニレン、5−エチル−2−スルホ−1,4−イミノフェニレン、5−ヘキシル−2−スルホ−1,4−イミノフェニレン、3−メトキシ−2−スルホ−1,4−イミノフェニレン、5−メトキシ−2−スルホ−1,4−イミノフェニレン、6−メトキシ−2−スルホ−1,4−イミノフェニレン、5−エトキシ−2−スルホ−1,4−イミノフェニレン、2−スルホ−N−メチル−1,4−イミノフェニレン、2−スルホ−N−エチル−1,4−イミノフェニレン等、もしくはそのリチウム塩、ナトリウム塩、アンモニウム塩、メチルアンモニウム塩、エチルアンモニウム塩、ジメチルアンモニウム塩、ジエチルアンモニウム塩、トリメチルアンモニウム塩、トリエチルアンモニウム塩、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩等が挙げられる。   Preferred specific examples of the chemical structure represented by the formula (4) include 2-sulfo-1,4-iminophenylene, 3-methyl-2-sulfo-1,4-iminophenylene, 5-methyl-2-sulfo- 1,4-iminophenylene, 6-methyl-2-sulfo-1,4-iminophenylene, 5-ethyl-2-sulfo-1,4-iminophenylene, 5-hexyl-2-sulfo-1,4-imino Phenylene, 3-methoxy-2-sulfo-1,4-iminophenylene, 5-methoxy-2-sulfo-1,4-iminophenylene, 6-methoxy-2-sulfo-1,4-iminophenylene, 5-ethoxy 2-sulfo-1,4-iminophenylene, 2-sulfo-N-methyl-1,4-iminophenylene, 2-sulfo-N-ethyl-1,4-iminophenylene, or the like Umushio, sodium salts, ammonium salts, methyl ammonium salts, ethyl ammonium salts, dimethyl ammonium salts, diethyl ammonium salts, trimethylammonium salts, triethylammonium salts, tetramethylammonium salts, tetraethylammonium salts and the like.

また、本発明において使用できる、上記式(1)〜(4)以外の水溶性導電性高分子の具体例としては、ポリ(カルバゾール−N−アルカンスルホン酸)、ポリ(フェニレン−オキシアルカンスルホン酸)、ポリ(フェニレンビニレン−アルカンスルホン酸)、ポリ(フェニレンビニレン−オキシアルカンスルホン酸)、ポリ(アニリン−N−アルカンスルホン酸)、ポリ(チオフェンアルキルカルボン酸)、ポリ(チオフェンオキシアルキルカルボン酸)、ポリ(ポリピロールアルキルカルボン酸)、ポリ(ピロールオキシアルキルカルボン酸)、ポリ(カルバゾール−N−アルキルカルボン酸)、ポリ(フェニレン−オキシアルキルカルボン酸)、ポリ(フェニレンビニレン−アルキルカルボン酸)、ポリ(フェニレンビニレン−オキシアルキルカルボン酸)、ポリ(アニリン−N−アルキルカルボン酸)またはこれらの置換誘導体、6−スルホナフト[2,3−c]チオフェン−1,3−ジイル等、もしくはそれらのリチウム塩、ナトリウム塩、アンモニウム塩、メチルアンモニウム塩、エチルアンモニウム塩、ジメチルアンモニウム塩、ジエチルアンモニウム塩、トリメチルアンモニウム塩、トリエチルアンモニウム塩、テトラメチルアンモニウム塩、テトラエチルアンモニウム塩等が挙げられる。   Specific examples of water-soluble conductive polymers other than the above formulas (1) to (4) that can be used in the present invention include poly (carbazole-N-alkanesulfonic acid) and poly (phenylene-oxyalkanesulfonic acid). ), Poly (phenylene vinylene-alkanesulfonic acid), poly (phenylene vinylene-oxyalkanesulfonic acid), poly (aniline-N-alkanesulfonic acid), poly (thiophenealkylcarboxylic acid), poly (thiopheneoxyalkylcarboxylic acid) , Poly (polypyrrolealkylcarboxylic acid), poly (pyrroleoxyalkylcarboxylic acid), poly (carbazole-N-alkylcarboxylic acid), poly (phenylene-oxyalkylcarboxylic acid), poly (phenylenevinylene-alkylcarboxylic acid), poly (Phenylene vinylene-oxy Alkyl carboxylic acid), poly (aniline-N-alkyl carboxylic acid) or substituted derivatives thereof, 6-sulfonaphtho [2,3-c] thiophene-1,3-diyl, etc., or lithium salts, sodium salts, ammonium salts thereof Methyl ammonium salt, ethyl ammonium salt, dimethyl ammonium salt, diethyl ammonium salt, trimethyl ammonium salt, triethyl ammonium salt, tetramethyl ammonium salt, tetraethyl ammonium salt and the like.

本発明に用いられる水溶性導電性高分子の分子量としては、主鎖を構成する繰り返し単位数(重合度)で5〜2000、好ましくは10〜1000である。   The molecular weight of the water-soluble conductive polymer used in the present invention is 5 to 2000, preferably 10 to 1000, in terms of the number of repeating units (degree of polymerization) constituting the main chain.

本発明に用いる水溶性導電性高分子の特に好ましい具体例としては、5−スルホイソチアナフテン−1,3−ジイルの重合体、5−スルホイソチアナフテン−1,3−ジイルを80モル%以上含有するランダム共重合体、5−スルホイソチアナフテン−1,3−ジイルとイソチアナフテン−1,3−ジイルとの共重合体、ポリ(3−(3−チエニル)エタンスルホン酸)、ポリ(3−(3−チエニル)プロパンスルホン酸)、ポリ(2−(3−チエニル)オキシエタンスルホン酸)、2−スルホ−1,4−イミノフェニレンを50モル%以上含有するランダムコポリマー、2−スルホ−1,4−イミノフェニレンと1,4−イミノフェニレンとの共重合体、またはこれらの重合体のリチウム塩、ナトリウム塩、アンモニウム塩、トリエチルアンモニウム塩等が挙げられる。   As a particularly preferred specific example of the water-soluble conductive polymer used in the present invention, a polymer of 5-sulfoisothianaphthene-1,3-diyl, 80 mol% of 5-sulfoisothianaphthene-1,3-diyl is used. A random copolymer, a copolymer of 5-sulfoisothianaphthene-1,3-diyl and isothianaphthene-1,3-diyl, poly (3- (3-thienyl) ethanesulfonic acid), Random copolymer containing 50 mol% or more of poly (3- (3-thienyl) propanesulfonic acid), poly (2- (3-thienyl) oxyethanesulfonic acid), 2-sulfo-1,4-iminophenylene, 2 -Copolymer of sulfo-1,4-iminophenylene and 1,4-iminophenylene, or lithium salt, sodium salt, ammonium salt, triethylammonium of these polymers Moniumu salts and the like.

(II)溶媒
本発明で用いる溶媒は、水と混和し水溶性高分子および水溶性導電性高分子を溶解するものである。溶媒の具体例としては、水、1,4−ジオキサンやテトラヒドロフラン等のエーテル類、ジメチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート等のカーボネート類、アセトニトリルやベンゾニトリル等のニトリル類、メタノール、エタノール、プロパノール、イソプロパノールなどのアルコール類、N、N−ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドンなどの非プロトン性極性溶媒、硫酸等の鉱酸、酢酸などの有機酸等が挙げられる。これらの溶媒は、単独で、または2種以上の混合溶媒として用いることができる。
(II) Solvent The solvent used in the present invention is a solvent that is miscible with water and dissolves the water-soluble polymer and the water-soluble conductive polymer. Specific examples of the solvent include water, ethers such as 1,4-dioxane and tetrahydrofuran, carbonates such as dimethyl carbonate, diethyl carbonate, ethylene carbonate and propylene carbonate, nitriles such as acetonitrile and benzonitrile, methanol, ethanol, Examples include alcohols such as propanol and isopropanol, aprotic polar solvents such as N, N-dimethylformamide, dimethyl sulfoxide and N-methyl-2-pyrrolidone, mineral acids such as sulfuric acid, and organic acids such as acetic acid. These solvents can be used alone or as a mixed solvent of two or more.

(III)水溶性高分子
本発明で使用する水溶性高分子としては、ポリペプチド構造を有する水溶性高分子、および
式(10)

Figure 2008095060
(式中、P1は、次式P1(1)
Figure 2008095060
または次式P1(2)
Figure 2008095060
を表し、P1が前記P1(1)のとき、P2は次式−C(=O)−を表し、かつZはメチレン基−CH(−R)−を表していて、このとき式(10)は、アミノ酸残基(10)a
Figure 2008095060
(式中、R,R’は、アミノ酸残基を構成する置換基を表わし、R’が水素原子のときはRは独立してアミノ酸残基を構成する置換基を表し、R’が水素原子でないときは、RとR’は協力して、水酸基で置換されていてもよい含窒素環を形成して、アミノ酸残基(10)aはアミノ酸残基(10)a’
Figure 2008095060
(式中、Waは、式−(CRab)n−で示されるポリメチレン基を表し、置換基Ra,Rbはそれぞれ独立して水素原子、アルキル基、または水酸基を表わし、nは2〜8の整数を表す。)であってもよく、式(10)a’は、好ましくは式(10)a”
Figure 2008095060
(式中、Wは、いずれかの炭素原子が水酸基で置換されていてもよいエチレン基を表す。)であってもよい。)で示される繰り返し構造(ポリペプチド構造)を示し、
1が前記P1(2)のとき、Z=−O−、またはZ=−N(−Q)−であり、
前記Z=−O−のとき、P2=アルキル基であって、式(10)は、アルコキシエチレン残基(10)b
Figure 2008095060
で示される繰り返し構造(ポリビニルアルキルエーテル構造)を示し、
前記Z=−N(−Q)−のとき、P2とQとは協力してラクタム環基を形成して、式(10)は、アミドエチレン残基
Figure 2008095060
(式中、Wcは式−(CRcd)n−で示されるポリメチレン基を表し、置換基Rc,Rdはそれぞれ独立して水素原子、またはアルキル基を表わし、nは2〜8の整数を表す。)で示される繰り返し構造を示し、式(10)cのうち、次式(10)c’
Figure 2008095060
(ただし、nは、1〜7の整数を表す。)で示される繰り返し構造(ポリビニルラクタム構造)が好ましい。)で示される化学構造を繰り返し構造として有する水溶性高分子が好ましい。 (III) Water-soluble polymer The water-soluble polymer used in the present invention includes a water-soluble polymer having a polypeptide structure, and a formula (10)
Figure 2008095060
(Where P 1 is the following formula P 1 (1)
Figure 2008095060
Or the following formula P 1 (2)
Figure 2008095060
When P 1 is P 1 (1), P 2 represents the following formula —C (═O) —, and Z represents a methylene group —CH (—R) —, where (10) is an amino acid residue (10) a
Figure 2008095060
(In the formula, R and R ′ represent a substituent constituting an amino acid residue, and when R ′ is a hydrogen atom, R independently represents a substituent constituting an amino acid residue, and R ′ represents a hydrogen atom. Otherwise, R and R ′ cooperate to form a nitrogen-containing ring optionally substituted with a hydroxyl group, and amino acid residue (10) a is converted to amino acid residue (10) a ′.
Figure 2008095060
Wherein W a represents a polymethylene group represented by the formula — (CR a R b ) n—, and the substituents R a and R b each independently represent a hydrogen atom, an alkyl group, or a hydroxyl group, and n Represents an integer of 2 to 8.), and the formula (10) a ′ is preferably the formula (10) a ″.
Figure 2008095060
(Wherein, W represents an ethylene group in which any carbon atom may be substituted with a hydroxyl group). ) Shows a repeating structure (polypeptide structure)
When P 1 is P 1 (2), Z = —O— or Z = —N (—Q) —,
When Z = —O—, P 2 = alkyl group, and the formula (10) is an alkoxyethylene residue (10) b
Figure 2008095060
The repeating structure (polyvinyl alkyl ether structure) shown by
When Z = —N (—Q) —, P 2 and Q cooperate to form a lactam ring group, and the formula (10) is an amidoethylene residue.
Figure 2008095060
Wherein W c represents a polymethylene group represented by the formula — (CR c R d ) n—, the substituents R c and R d each independently represent a hydrogen atom or an alkyl group, and n represents 2 to 2 8 represents an integer of 8), and of formula (10) c, the following formula (10) c ′
Figure 2008095060
(However, n represents the integer of 1-7.) The repeating structure (polyvinyl lactam structure) shown by this is preferable. The water-soluble polymer having a chemical structure represented by

[ポリペプチド構造を有する水溶性高分子]
本発明で使用するポリペプチド構造を有する水溶性高分子は、前記アミノ酸残基(10)a

Figure 2008095060
を繰り返し構造とするポリペプチド構造を有する水溶性高分子を含み、これらは、各種タンパク質を加水分解して得る方法、任意のアミノ酸やオリゴペプチドなどから合成する方法、微生物等の生物を用い生産する方法等により得ることができる。各種タンパク質を加水分解する場合、使用するタンパク質は、天然に広く存在し容易に入手し得る天然由来物が好ましく、例えば、ケラチンやコラーゲンといったタンパク質は繊維性タンパク質で、生体を形成する構造タンパク質でもある。任意のアミノ酸からポリペプチドを合成する例としては、2個のアミノ酸分子またはその誘導体(例えば酸クロリドにしたものなど)間の縮合を繰り返して一つ一つのアミノ酸残基(例えば式(10)aで示されるアミノ酸残基など)をペプチド結合させる方法、精製アミノ酸N−カルボキシ無水物を重合する方法、ポリスチレンフィルムのような高分子に反応基をつけて1種類のアミノ酸を結合させ、そのアミノ酸を反応し易い構造に変えてから、また次の別のアミノ酸を結合させていくというメリーフィールドの固相合成方法が挙げられる。なお、アミノ酸残基(10)aとしては、グリシン(Gly)、アラニン(Ala)、バリン(Val)、ロイシン(Leu)、イソロイシン(Ile)、セリン(Ser)、トレオニン(Thr)、アスパラギン酸(Asp)、アスパラギン(Asn)、グルタミン酸(Glu)、グルタミン(Gln)、システイン(Cys)、メチオニン(Met)、リシン(Lys)、アルギニン(Arg)、ヒスチジン(His)、フェニルアラニン(Phe)、チロシン(Tyr)、トリプトファン(Trp)、プロリン(Pro)、3−ヒドロキシプロリン(3Hyp)、4−ヒドロキシプロリン(4Hyp)のアミノ酸残基(前記例示のアミノ酸について括弧内にそのアミノ酸残基の3文字略号を示した。)などが挙げられる。 [Water-soluble polymer having a polypeptide structure]
The water-soluble polymer having a polypeptide structure used in the present invention is the amino acid residue (10) a.
Figure 2008095060
Water-soluble polymers having a polypeptide structure with a repeating structure, these are produced by hydrolyzing various proteins, synthesized from any amino acid, oligopeptide, etc., and produced using organisms such as microorganisms It can be obtained by a method or the like. In the case of hydrolyzing various proteins, the protein used is preferably a natural product that exists widely in nature and can be easily obtained. For example, proteins such as keratin and collagen are fibrous proteins and are structural proteins that form living bodies. . As an example of synthesizing a polypeptide from an arbitrary amino acid, condensation between two amino acid molecules or a derivative thereof (for example, an acid chloride) is repeated to form individual amino acid residues (for example, the formula (10) a A method of polymerizing purified amino acid N-carboxyanhydride, attaching a reactive group to a polymer such as a polystyrene film, and binding one type of amino acid. One example is Maryfield's solid-phase synthesis method in which the structure is changed to an easily reactive structure and then another amino acid is bound. The amino acid residue (10) a includes glycine (Gly), alanine (Ala), valine (Val), leucine (Leu), isoleucine (Ile), serine (Ser), threonine (Thr), aspartic acid ( Asp), asparagine (Asn), glutamic acid (Glu), glutamine (Gln), cysteine (Cys), methionine (Met), lysine (Lys), arginine (Arg), histidine (His), phenylalanine (Phe), tyrosine ( Tyr), tryptophan (Trp), proline (Pro), 3-hydroxyproline (3Hyp), 4-hydroxyproline (4Hyp) amino acid residues Etc.).

タンパク質の加水分解物としては、例えば、牛皮由来ゼラチン、豚皮由来ゼラチン、魚皮由来ゼラチンや魚鱗などに多く含まれるコラーゲンの加水分解物である加水分解コラーゲンや、羊毛や羽毛などに多く含まれるケラチンの加水分解物である加水分解ケラチンなどや、乳などに多く含まれるカゼインの加水分解物である加水分解カゼインなど動物性タンパク質由来の加水分解物がある。また、絹糸からはシルクを由来とする加水分解シルク、大豆タンパクを由来とする加水分解カゼイン、コンキオリンや小麦タンパクなど、植物性タンパク質の加水分解物が挙げられる。   Examples of protein hydrolysates include hydrolyzed collagen, which is a hydrolyzate of collagen that is abundant in cow skin-derived gelatin, pig skin-derived gelatin, fish skin-derived gelatin, fish scales, and the like, and is often contained in wool and feathers. There are hydrolysates derived from animal proteins, such as hydrolyzed keratin, which is a hydrolyzate of keratin, and hydrolyzed casein, which is a hydrolyzate of casein that is abundant in milk. Examples of the silk thread include hydrolysates of vegetable proteins such as hydrolyzed silk derived from silk, hydrolyzed casein derived from soybean protein, conchiolin, and wheat protein.

ポリペプチド構造を有する水溶性高分子は前記各種アミノ酸を含むことから、化学修飾を容易に行うことができる。本発明においては、化学修飾を行なった種々の誘導体も使用することができる。化学修飾の具体例としては、ポリペプチド末端アミノ基の4級アンモニウムカチオン化及びシリル化や、末端カルボキシル基のエステル化などが挙げられる。4級アンモニウムカチオン化は、ポリペプチド末端アミノ基だけでなく、リシンやヒスチジンなどの塩基性アミノ酸の側鎖に誘導することができる。また、溶媒可溶化や界面活性効果を付与する目的で、各種脂肪酸を縮合させることもできる。   Since the water-soluble polymer having a polypeptide structure contains the various amino acids, chemical modification can be easily performed. In the present invention, various derivatives subjected to chemical modification can also be used. Specific examples of the chemical modification include quaternary ammonium cationization and silylation of a terminal amino group of a polypeptide and esterification of a terminal carboxyl group. Quaternary ammonium cationization can be induced not only on the terminal amino group of the polypeptide but also on the side chain of basic amino acids such as lysine and histidine. Moreover, various fatty acids can also be condensed for the purpose of solubilizing the solvent and imparting a surface active effect.

[ポリビニル構造を繰り返し構造として有する水溶性高分子]
本発明で用いるポリビニル構造を繰り返し構造として有する水溶性高分子としては、特に好適なものとして、前記式(10)’

Figure 2008095060
(式中、Y=−O−のとき、P2=アルキル基であって、式(10)’は、アルコキシエチレン残基(10)b
Figure 2008095060
で示される繰り返し構造(ポリビニルアルキルエーテル構造)を示し、
Y=−N(−Q)−のとき、P2とQとは協力してラクタム環基を形成して、式(10)’は、アミドエチレン残基
Figure 2008095060
(式中、Wcは式−(CRcd)n−で示されるポリメチレン基を表し、置換基Rc,Rdはそれぞれ独立して水素原子、またはアルキル基を表わし、nは2〜8の整数を表す。)で示される繰り返し構造を示し、式(10)cのうち、次式(10)c’
Figure 2008095060
(ただし、nは、1〜7の整数を表す。)で示される繰り返し構造(ポリビニルラクタム構造)が好ましい。)で示される化学構造(ポリビニル構造)を繰り返し構造として有する水溶性高分子が好ましい。 [Water-soluble polymer having a polyvinyl structure as a repeating structure]
As the water-soluble polymer having a polyvinyl structure as a repeating structure used in the present invention, as the particularly preferable one, the above formula (10) ′
Figure 2008095060
(In the formula, when Y = —O—, P 2 = alkyl group, and the formula (10) ′ represents an alkoxyethylene residue (10) b
Figure 2008095060
The repeating structure (polyvinyl alkyl ether structure) shown by
When Y = —N (—Q) —, P 2 and Q cooperate to form a lactam ring group, and the formula (10) ′ is an amidoethylene residue.
Figure 2008095060
Wherein W c represents a polymethylene group represented by the formula — (CR c R d ) n—, the substituents R c and R d each independently represent a hydrogen atom or an alkyl group, and n represents 2 to 2 8 represents an integer of 8), and of formula (10) c, the following formula (10) c ′
Figure 2008095060
(However, n represents the integer of 1-7.) The repeating structure (polyvinyl lactam structure) shown by this is preferable. A water-soluble polymer having a chemical structure (polyvinyl structure) represented by a

本発明に係るポリビニル構造を繰り返し構造として有する水溶性高分子の製法は特に限定しないが、例えば、対応するビニル基を有するモノマーの少なくとも1種を、過酸化物、亜硫酸塩、アゾ触媒、フッ化ホウ素、塩化アルミニウムなどの重合触媒を用いて重合させることにより、目的の水溶性高分子を得ることができる。すなわち、例えば、前記式(20)

Figure 2008095060
で示されるビニル基を有するモノマーの1種または2種以上を単独でまたは複数を、前記カチオン系重合触媒を用いて重合または共重合させることによっても、式(10)’
Figure 2008095060
で示される繰り返し構造(ポリビニル構造)を有する水溶性高分子を製造することができる。 The method for producing a water-soluble polymer having a polyvinyl structure as a repeating structure according to the present invention is not particularly limited. For example, at least one monomer having a corresponding vinyl group is converted into a peroxide, a sulfite, an azo catalyst, a fluoride. The target water-soluble polymer can be obtained by polymerization using a polymerization catalyst such as boron or aluminum chloride. That is, for example, the equation (20)
Figure 2008095060
Or by polymerizing or copolymerizing one or more of the monomers having a vinyl group represented by formula (10) ′ singly or plurally using the cationic polymerization catalyst.
Figure 2008095060
The water-soluble polymer which has the repeating structure (polyvinyl structure) shown by can be manufactured.

すなわち、本発明で特に好ましく用いられるポリビニル構造を繰り返し構造として有する水溶性高分子(10)’は、式(20)

Figure 2008095060
(式中、Y=−O−のとき、P2=アルキル基であって、式(20)は、ビニルアルキルエーテル(20)b
Figure 2008095060
を示し、
Y=−N(−Q)−のとき、P2とQとは協力してラクタム環基を形成して、式(20)は、N−ビニルラクタム(20)c
Figure 2008095060
(式中、Wcは式−(CRcd)n−で示されるポリメチレン基を表し、置換基Rc,Rdはそれぞれ独立して水素原子、またはアルキル基を表わし、nは2〜8の整数を表す。)を示し、式(20)cのうち、次式(20)c’
Figure 2008095060
(ただし、nは、1〜7の整数を表す。)が好ましい。)で示されるビニル基を有するモノマーの少なくとも1種を重合させることによっても得ることができる。得られる目的の水溶性高分子は、式(10)’
Figure 2008095060
(式中、Y=−O−のとき、P2=アルキル基であって、式(10)’は、アルコキシエチレン残基(10)b
Figure 2008095060
で示される繰り返し構造(ポリビニルアルキルエーテル構造)を示し、
Y=−N(−Q)−のとき、P2とQとは協力してラクタム環基を形成して、式(10)’は、
アミドエチレン残基
Figure 2008095060
(式中、Wcは式−(CRcd)n−で示されるポリメチレン基を表し、置換基Rc,Rdはそれぞれ独立して水素原子、またはアルキル基を表わし、nは2〜8の整数を表す。)で示される繰り返し構造を示し、式(10)cのうち、次式(10)c’
Figure 2008095060
(ただし、nは、1〜7の整数を表す。)で示される繰り返し構造(ポリビニルラクタム構造)が好ましい。)で示される化学構造(ポリビニル構造)を繰り返し構造として有する水溶性高分子が好ましい。 That is, the water-soluble polymer (10) ′ having a polyvinyl structure as a repeating structure particularly preferably used in the present invention has the formula (20)
Figure 2008095060
(In the formula, when Y = —O—, P 2 = alkyl group, and the formula (20) is a vinyl alkyl ether (20) b
Figure 2008095060
Indicate
When Y = -N (-Q)-, P 2 and Q cooperate to form a lactam ring group, and the formula (20)
Figure 2008095060
Wherein W c represents a polymethylene group represented by the formula — (CR c R d ) n—, the substituents R c and R d each independently represent a hydrogen atom or an alkyl group, and n represents 2 to 2 Represents an integer of 8), and of the formula (20) c, the following formula (20) c ′
Figure 2008095060
(However, n represents an integer of 1 to 7). It can also be obtained by polymerizing at least one monomer having a vinyl group represented by The target water-soluble polymer obtained is represented by the formula (10) ′
Figure 2008095060
(In the formula, when Y = —O—, P 2 = alkyl group, and the formula (10) ′ represents an alkoxyethylene residue (10) b
Figure 2008095060
The repeating structure (polyvinyl alkyl ether structure) shown by
When Y = -N (-Q)-, P 2 and Q cooperate to form a lactam ring group, and the formula (10) '
Amidoethylene residue
Figure 2008095060
Wherein W c represents a polymethylene group represented by the formula — (CR c R d ) n—, the substituents R c and R d each independently represent a hydrogen atom or an alkyl group, and n represents 2 to 2 8 represents an integer of 8), and of formula (10) c, the following formula (10) c ′
Figure 2008095060
(However, n represents the integer of 1-7.) The repeating structure (polyvinyl lactam structure) shown by this is preferable. A water-soluble polymer having a chemical structure (polyvinyl structure) represented by a

前記アルキル基P2、Ra、Rb、Rc、およびRdとしては、炭素数1〜20の直鎖状または分岐状の鎖状または環状アルキル基が好ましく、その具体例としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、テトラデシル基、ヘキサデシル基等の直鎖状または分岐状の鎖状アルキル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基等の環状アルキル基が挙げられ、これらのうち、炭素数1〜8のアルキル基が好ましく、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基等の炭素数1〜4の低級アルキル基がより好ましい。前記N−ビニルラクタム(20)cおよび前記アミドエチレン残基(10)cのラクタム環基を形成するメチレン基−(CH2)n−のnは、1〜7の整数が好ましく、1〜5の整数がより好ましい。 The alkyl groups P 2 , R a , R b , R c , and R d are preferably a linear or branched chain or cyclic alkyl group having 1 to 20 carbon atoms. Specific examples thereof include methyl Group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, Linear or branched chain alkyl group such as decyl group, undecyl group, dodecyl group, tetradecyl group, hexadecyl group, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, etc. A cyclic alkyl group is mentioned, Among these, a C1-C8 alkyl group is preferable, and a methyl group, an ethyl group, n-propyl group, i-propyl group, n- Butyl group, i- butyl group, sec- butyl group, more preferably a lower alkyl group having 1 to 4 carbon atoms a t- butyl group and the like. Methylene group forming the N- vinyllactam (20) c and the amidoethylene residue (10) c lactam ring - (CH 2) n- of n is preferably an integer of 1 to 7, 1 to 5 An integer of is more preferable.

前記P2とQとが協力して形成するラクタム環基のうち、特に好ましいラクタム環基(n=n)

Figure 2008095060
の具体例としては、
n=1のラクタム環基(β−プロピオラクタム基)
Figure 2008095060
n=2のラクタム環基(γ−ブチロラクタム基=ビニルピロリドンまたはその重合体のラクタム環基)
Figure 2008095060
n=3のラクタム環基(δ−バレロラクタム基)
Figure 2008095060
n=4のラクタム環基(ε-カプロラクタム基=ビニルカプロラクタムまたはその重合体のラクタム環基)
Figure 2008095060
n=5のラクタム環基
Figure 2008095060
などが挙げられる。 Of the lactam ring groups formed by the cooperation of P 2 and Q, particularly preferred lactam ring groups (n = n)
Figure 2008095060
As a specific example of
n = 1 lactam ring group (β-propiolactam group)
Figure 2008095060
n = 2 lactam ring group (γ-butyrolactam group = vinylpyrrolidone or a lactam ring group of a polymer thereof)
Figure 2008095060
n = 3 lactam ring group (δ-valerolactam group)
Figure 2008095060
n = 4 lactam ring group (ε-caprolactam group = vinyl caprolactam or lactam ring group of a polymer thereof)
Figure 2008095060
n = 5 lactam ring group
Figure 2008095060
Etc.

前記ポリビニル構造を繰り返し構造として有する特に好適な水溶性高分子の具体例としては、ポリビニルピロリドン、ポリビニルカプロラクタム、およびそれらの共重合体、または、ポリビニルメチルエーテル、ポリビニルエチルエーテル、およびそれらの共重合体などが挙げられる。共重合体の共重合比は任意である。用いられる高分子は水溶性であればよいが、当該水溶性高分子の重量平均分子量の好ましい範囲はモノマーの種類により異なるが、通常、1000〜2,000,000の範囲であることが望ましく、より好ましくは5000〜2,000,000の範囲である。分子量が低いと充分な効果が得られないおそれがあるばかりか、レジストを溶解するおそれがある。2,000,000を超えると溶解させることが困難になる場合があったり、溶解後の組成物の粘度上昇により塗布が困難になる場合がある。ポリビニルピロリドンは、通常、重量平均分子量が100,000以上、好ましくは800,000〜2,000,000の範囲、より好ましくは、1,000,000〜1,800,000のものを用いる。100,000未満では、所望の効果が得られないおそれがある。   Specific examples of the particularly preferable water-soluble polymer having the polyvinyl structure as a repeating structure include polyvinyl pyrrolidone, polyvinyl caprolactam, and a copolymer thereof, or polyvinyl methyl ether, polyvinyl ethyl ether, and a copolymer thereof. Etc. The copolymerization ratio of the copolymer is arbitrary. The polymer to be used may be water-soluble, but the preferred range of the weight average molecular weight of the water-soluble polymer varies depending on the type of monomer, but it is usually desirable to be in the range of 1000 to 2,000,000, more preferably 5000. It is in the range of ~ 2,000,000. If the molecular weight is low, a sufficient effect may not be obtained, and the resist may be dissolved. If it exceeds 2,000,000, it may be difficult to dissolve, or application may be difficult due to an increase in viscosity of the composition after dissolution. As the polyvinyl pyrrolidone, those having a weight average molecular weight of 100,000 or more, preferably in the range of 800,000 to 2,000,000, more preferably 1,000,000 to 1,800,000 are used. If it is less than 100,000, the desired effect may not be obtained.

本発明に係る前記ポリビニル構造を繰り返し構造として有する特定の水溶性高分子は、これらを界面活性剤と併用して含有させることにより、良塗布性を維持しながら、ミキシングを防止することができる。これら、本発明に係る前記ポリビニル構造を繰り返し構造として有する特定の水溶性高分子のミキシング抑制の効果には容量依存性が認められ、通常、組成物全体に対し0.0001〜10%の範囲、より好ましくは0.01〜2質量%の範囲で用いられる。少なすぎると、ミキシング抑制効果が不十分となるおそれがあり、多すぎると、導電性ポリマーの比率が下がることによって導電性の低下を招くおそれがある。具体的には、例えば、ポリビニルピロリドン、ポリビニルカプロラクタム、およびそれらの重合体、および共重合体などの前記ポリビニルラクタム構造を有する水溶性高分子には、ミキシング抑制効果が認められ、ポリビニルピロリドンの場合は、分子量に依存して、分子量が大きいほどミキシング抑制効果が大きくなる傾向がある。また、前記ポリビニルアルキルエーテル構造を有する水溶性高分子にも、同様のミキシング抑制効果が認められる。なお、本発明に係る前記ポリビニル構造を有する水溶性高分子を含有しても、レジストへの影響は認められない。これに対して、水溶性高分子として、ポリアクリル酸、ポリアクリルアミド、ポリスチレンスルホン酸を用いるときは、その分子量の大小にかかわらず、ミキシングを抑制しない。すなわち、導電性高分子に界面活性剤、およびこれらの水溶性高分子を含有させると、塗布性は向上するが、レジストへのミキシングが起こり、ネガレジストの場合、現像時間が延長する。また、ポリビニルイミダゾール、ポリアリルアミン、ポリエチレンイミンなどの塩基性残基を有する水溶性ポリマーは、スルホン酸基を有する水溶性導電性高分子と併用することにより、沈殿が生じることがあり、好ましくない。   The specific water-soluble polymer having the polyvinyl structure as a repeating structure according to the present invention can prevent mixing while maintaining good coatability by containing these in combination with a surfactant. These volume-dependent effects of the specific water-soluble polymer having the polyvinyl structure as a repeating structure according to the present invention have a volume dependency, and are usually in the range of 0.0001 to 10% with respect to the entire composition, more preferably. Is used in the range of 0.01 to 2% by mass. If the amount is too small, the effect of suppressing mixing may be insufficient. If the amount is too large, the ratio of the conductive polymer may decrease, leading to a decrease in conductivity. Specifically, for example, the water-soluble polymer having the polyvinyl lactam structure such as polyvinyl pyrrolidone, polyvinyl caprolactam, and polymers and copolymers thereof has a mixing suppressing effect. Depending on the molecular weight, the mixing suppression effect tends to increase as the molecular weight increases. Moreover, the same mixing suppression effect is recognized also by the water-soluble polymer which has the said polyvinyl alkyl ether structure. In addition, even if it contains the water-soluble polymer which has the said polyvinyl structure based on this invention, the influence on a resist is not recognized. On the other hand, when polyacrylic acid, polyacrylamide, or polystyrene sulfonic acid is used as the water-soluble polymer, mixing is not suppressed regardless of the molecular weight. That is, when a surfactant and these water-soluble polymers are contained in the conductive polymer, the coating property is improved, but mixing with the resist occurs, and in the case of a negative resist, the development time is extended. In addition, a water-soluble polymer having a basic residue such as polyvinylimidazole, polyallylamine, or polyethyleneimine is not preferable because it may cause precipitation when used in combination with a water-soluble conductive polymer having a sulfonic acid group.

今回発明の帯電防止剤、特に、前記ポリペプチド構造を有する水溶性高分子または前記ポリビニル構造を繰り返し構造として有する特定の水溶性高分子を用いた帯電防止剤は、化学増幅系レジストに対するミキシング抑制ばかりでなく、非化学増幅系レジストに対するミキシング抑制にも効果がある。すなわち、例えば、前記ポリペプチド構造を有する水溶性高分子または前記ポリビニル構造を繰り返し構造として有する特定の水溶性高分子を用いた帯電防止剤は、ネガ型化学増幅系レジストに対してミキシング抑制効果を示すばかりでなく、非化学増幅系レジストに対してもミキシング抑制効果を示す。さらに、前記ポリビニル構造を繰り返し構造として有する特定の水溶性高分子を用いた帯電防止剤、または前記ポリペプチド構造を有する水溶性高分子を用いた場合は、ポジ型化学増幅系レジストの膜減りが小さい。また、本発明の帯電防止剤は、化学増幅系レジストおよび非化学増幅系レジストにおいても低接触角化したまま界面活性剤によるレジストへの影響を抑制できる。   The antistatic agent of the present invention, in particular, the antistatic agent using the water-soluble polymer having the polypeptide structure or the specific water-soluble polymer having the polyvinyl structure as a repeating structure, only suppresses mixing of the chemically amplified resist. In addition, it is effective in suppressing mixing with non-chemically amplified resists. That is, for example, an antistatic agent using a water-soluble polymer having the polypeptide structure or a specific water-soluble polymer having the polyvinyl structure as a repeating structure has a mixing suppression effect on a negative chemical amplification resist. In addition to this, it also shows a mixing suppression effect for non-chemically amplified resists. Further, when an antistatic agent using a specific water-soluble polymer having the polyvinyl structure as a repeating structure or a water-soluble polymer having the polypeptide structure is used, the film thickness of the positive chemical amplification resist is reduced. small. Further, the antistatic agent of the present invention can suppress the influence of the surfactant on the resist while maintaining a low contact angle even in chemically amplified resists and non-chemically amplified resists.

これらの、前記ポリペプチド構造を有する水溶性高分子、または前記ポリビニル構造を繰り返し構造として有する特定の水溶性高分子は、化学増幅系レジストとミキシングを起こさない。さらに、帯電防止剤中に後述する界面活性剤などのレジストとミキシングを起こす化合物を含有していても、これらの、前記ポリペプチド構造を有する水溶性高分子、または前記ポリビニル構造を繰り返し構造として有する特定の水溶性高分子が含まれることにより耐レジストミキシング抑制特性を付与することができる。   These water-soluble polymers having the polypeptide structure or specific water-soluble polymers having the polyvinyl structure as a repeating structure do not cause mixing with the chemically amplified resist. Furthermore, even if the antistatic agent contains a compound that causes mixing with a resist such as a surfactant described later, the water-soluble polymer having the polypeptide structure or the polyvinyl structure is included as a repeating structure. By including a specific water-soluble polymer, resist mixing resistance can be imparted.

(IV)界面活性剤
本発明で使用できる界面活性剤は界面活性効果を発現する化合物であれば特に限定されず、アニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤及びノニオン性界面活性剤のいずれもが使用可能である。
(IV) Surfactant The surfactant that can be used in the present invention is not particularly limited as long as it is a compound that exhibits a surfactant effect, and is an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic interface. Any activator can be used.

アニオン性界面活性剤の具体例としては、アルキルエーテルカルボン酸、直鎖アルキルベンゼンスルホン酸、α−オレフィンスルホン酸、アルカンスルフォネート、ジアルキルスルホコハク酸、ナフタレンスルホン酸ホルムアルデヒド縮合物、アルキル硫酸エステル、ポリオキシエチレンアルキルエーテル硫酸エステル、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル、高級アルコールリン酸エステル、高級アルコール酸化エチレン付加物リン酸エステル、アシル−N−メチルタウリンなどが挙げられ、その塩類も用いることができる。   Specific examples of the anionic surfactant include alkyl ether carboxylic acid, linear alkylbenzene sulfonic acid, α-olefin sulfonic acid, alkane sulfonate, dialkyl sulfosuccinic acid, naphthalene sulfonic acid formaldehyde condensate, alkyl sulfate ester, polyoxy Examples thereof include ethylene alkyl ether sulfate, polyoxyethylene alkylphenyl ether sulfate, higher alcohol phosphate, higher alcohol ethylene oxide adduct phosphate, acyl-N-methyltaurine, and salts thereof.

カチオン性界面活性剤の具体例としては、モノアルキルアンモニウム、ジアルキルアンモニウム、エトキシ化アンモニウム、4級アミン、アルキルアミン酢酸などが挙げられ、その塩類も用いることができる。   Specific examples of the cationic surfactant include monoalkylammonium, dialkylammonium, ethoxylated ammonium, quaternary amine, alkylamine acetic acid and the like, and salts thereof can also be used.

両性界面活性剤の具体例としては、ラウリルジメチルアミノ酢酸ベタイン、ステアリルジメチルアミノ酢酸ベタイン、ラウリルジメチルアミンオキサイド、2−アルキル−N−カルボキシメチル−N−ヒドロキシエチルイミダゾリニウムベタイン、ラウリン酸アミドプロピルベタイン、ラウリルヒドロキシスルホベタイン、アラニン類などが挙げられ、その塩類も用いることができる。   Specific examples of amphoteric surfactants include lauryldimethylaminoacetic acid betaine, stearyldimethylaminoacetic acid betaine, lauryldimethylamine oxide, 2-alkyl-N-carboxymethyl-N-hydroxyethylimidazolinium betaine, amidopropyl betaine laurate , Lauryl hydroxysulfobetaine, alanines and the like, and salts thereof can also be used.

ノニオン性界面活性剤の具体例としては、グリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、蔗糖脂肪酸エステル、ポリエチレングリコール脂肪酸エステル、ポリオキシエチレンアルキルエーテル、アルキルグリセリルエーテル、ポリオキシエチレンアルキルフェニルエ-テル、ポリオキシエチレンポリオキシプロピレンエーテル、ポリオキシアルキレンアルキルエーテル、アセチレングリコール、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、アルキルグリセリルエーテル、脂肪酸アルキレンオキサイド付加物、ポリオキシエチレン硬化ヒマシ油、脂肪酸アルカノールアミド、脂肪酸アミドアルキレンオキサイド付加物、アミンEO付加物、アミンPO付加物などが挙げられる。   Specific examples of the nonionic surfactant include glycerin fatty acid ester, propylene glycol fatty acid ester, sorbitan fatty acid ester, sucrose fatty acid ester, polyethylene glycol fatty acid ester, polyoxyethylene alkyl ether, alkyl glyceryl ether, polyoxyethylene alkylphenyl ether Tellurium, polyoxyethylene polyoxypropylene ether, polyoxyalkylene alkyl ether, acetylene glycol, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, alkyl glyceryl ether, fatty acid alkylene oxide adduct, polyoxyethylene hydrogenated castor oil, Fatty acid alkanolamide, fatty acid amide alkylene oxide adduct, amine EO adduct, Examples include amine PO adducts.

これらの界面活性剤は、単独で使用するか、または2種以上を混合して使用することができる。好ましくはアニオン性界面活性剤及び両性界面活性剤の少なくとも1種の界面活性剤であり、さらに、両性界面活性剤、ノニオン性界面活性剤またはカチオン性界面活性剤や水溶性高分子などの界面活性効果をもつ化合物を混合して使用することもできる。   These surfactants can be used alone or in admixture of two or more. Preferably, the surfactant is at least one of an anionic surfactant and an amphoteric surfactant, and further, a surfactant such as an amphoteric surfactant, a nonionic surfactant, a cationic surfactant, or a water-soluble polymer. It is also possible to use a mixture of compounds having an effect.

(V)配合量
本発明の帯電防止剤の各成分の配合量としては、水溶性導電性高分子0.1〜20質量%、前記ポリペプチド構造を有する水溶性高分子、または前記ポリビニル構造を繰り返し構造として有する特定の水溶性高分子0.0001〜10質量%及び溶媒70.0〜99.8質量%が好ましい。さらに好ましくは、水溶性導電性高分子0.2〜5質量%、前記ポリペプチド構造を有する水溶性高分子、または前記ポリビニル構造を繰り返し構造として有する特定の水溶性高分子0.01〜2質量%及び溶媒が93〜99.7質量%である。
(V) Blending amount The blending amount of each component of the antistatic agent of the present invention is a water-soluble conductive polymer of 0.1 to 20% by mass, a water-soluble polymer having the polypeptide structure, or a repeating structure of the polyvinyl structure. The specific water-soluble polymer 0.0001 to 10% by mass and the solvent 70.0 to 99.8% by mass are preferable. More preferably, the water-soluble conductive polymer is 0.2 to 5% by mass, the water-soluble polymer having the polypeptide structure, or the specific water-soluble polymer having the polyvinyl structure as a repeating structure is 0.01 to 2% by mass and the solvent. It is 93-99.7 mass%.

また、界面活性剤を含む組成では、水溶性導電性高分子0.1〜20質量%、前記ポリペプチド構造を有する水溶性高分子、または前記ポリビニル構造を繰り返し構造として有する特定の水溶性高分子を0.0001〜10質量%、界面活性剤0.0001〜2質量%及び溶媒68.0〜99.8質量%が好ましい。さらに好ましくは、水溶性導電性高分子0.2〜5質量%、前記ポリペプチド構造を有する水溶性高分子、または前記ポリビニル構造を繰り返し構造として有する特定の水溶性高分子0.01〜2質量%、界面活性剤0.0001〜10質量%及び溶媒83〜99.7質量%である。   Further, in the composition containing the surfactant, 0.0001 to 20% by mass of the water-soluble conductive polymer, the water-soluble polymer having the polypeptide structure, or the specific water-soluble polymer having the polyvinyl structure as a repeating structure is 0.0001. -10 mass%, surfactant 0.0001-2 mass%, and solvent 68.0-99.8 mass% are preferable. More preferably, the water-soluble conductive polymer is 0.2 to 5% by mass, the water-soluble polymer having the polypeptide structure, or the specific water-soluble polymer having the polyvinyl structure as a repeating structure is 0.01 to 2% by mass, the surface activity. 0.0001 to 10% by mass of the agent and 83 to 99.7% by mass of the solvent.

前記ポリペプチド構造を有する水溶性高分子、または前記ポリビニル構造を繰り返し構造として有する特定の水溶性高分子の量が0.0001質量%未満では、レジストへのミキシング層形成抑制効果は期待できない。また、10質量%を超えると導電性が低下するおそれがあるので好ましくない。本発明で使用される、前記ポリペプチド構造を有する水溶性高分子、または前記ポリビニル構造を繰り返し構造として有する特定の水溶性高分子の水溶性とは、上記効果が発現する添加量において溶解するものをいう。   When the amount of the water-soluble polymer having the polypeptide structure or the specific water-soluble polymer having the polyvinyl structure as a repeating structure is less than 0.0001% by mass, the effect of suppressing the mixing layer formation on the resist cannot be expected. Moreover, since there exists a possibility that electroconductivity may fall when it exceeds 10 mass%, it is unpreferable. The water solubility of the water-soluble polymer having the polypeptide structure or the specific water-soluble polymer having the polyvinyl structure as a repeating structure used in the present invention is dissolved in an addition amount that exhibits the above effect. Say.

(VI)用途
本発明の帯電防止剤は、非化学増幅系レジスト及び化学増幅系レジストのいずれに対しても使用することができる。また、ポジ型レジスト及びネガ型レジストのいずれにも使用することができる。
(VI) Applications The antistatic agent of the present invention can be used for both non-chemically amplified resists and chemically amplified resists. Further, it can be used for both positive resists and negative resists.

非化学増幅系レジストに対しては、塗布性に優れた帯電防止剤として有効である。非化学増幅系レジストの具体例としては、ノボラック樹脂等のフェノール系樹脂、ポリメチルメタクリレート樹脂、ポリアクリレート樹脂等のアクリル系樹脂、α−メチルスチレンとα−クロロアクリル酸との共重合体系等やカリックスアレーンが挙げられる。
その他には、非化学増幅系レジストには無機系のレジストもあるが、具体例としては、ヒドロジェンシルセスキオキサン(HSQ)をメチルイソブチルケトンなどの溶剤に溶かしたものがある。HSQはフラッシュメモリーなどの半導体デバイスの層間絶縁膜として使用されており、レジストは表面疎水性が強い。このレジストは、帯電防止剤によってレジストミキシングを起こすことがある。
For non-chemically amplified resists, it is effective as an antistatic agent with excellent coating properties. Specific examples of non-chemically amplified resists include phenolic resins such as novolak resins, acrylic resins such as polymethyl methacrylate resins and polyacrylate resins, copolymer systems of α-methylstyrene and α-chloroacrylic acid, etc. An example is calix arene.
In addition, non-chemically amplified resists include inorganic resists, but specific examples include those obtained by dissolving hydrogensilsesquioxane (HSQ) in a solvent such as methyl isobutyl ketone. HSQ is used as an interlayer insulating film of a semiconductor device such as a flash memory, and the resist has a strong surface hydrophobicity. This resist may cause resist mixing by an antistatic agent.

化学増幅系レジストに対しては、本発明の帯電防止膜と化学増幅系レジストとの接触面のミキシング層の形成防止がより効果的に認められる。化学増幅系レジストの具体例としては、フェノール樹脂系、アクリル樹脂系、アジド化合物系等の感光性樹脂、ポリメタクリレート樹脂系、ポリビニルフェノール系やポリヒドロキシスチレン系、α−メチルスチレンとα−クロロアクリル酸との共重合体系等の感荷電粒子線樹脂が挙げられる。   For a chemically amplified resist, it is more effectively recognized that the mixing layer on the contact surface between the antistatic film of the present invention and the chemically amplified resist is prevented from forming. Specific examples of the chemically amplified resist include photosensitive resins such as phenol resin, acrylic resin, and azide compound, polymethacrylate resin, polyvinylphenol and polyhydroxystyrene, α-methylstyrene and α-chloroacryl. Examples thereof include charged particle beam resins such as a copolymer system with an acid.

また、前記非化学増幅系レジスト及び化学増幅系レジスト中には感光剤、アジド化合物、架橋剤、溶解阻害剤、酸発生剤等の添加剤が加えられてもよい。   Further, additives such as a photosensitizer, an azide compound, a crosslinking agent, a dissolution inhibitor, and an acid generator may be added to the non-chemical amplification resist and the chemical amplification resist.

本発明の帯電防止剤は、溶液中に含まれる水溶性導電性高分子のブレンステッド酸及びその他添加剤の中和にM+−OH-(式中、M+は前記と同じ意味であり、水素イオン、アルカリ金属イオンまたは第4級アンモニウムイオンを表わす。)で示される化合物を使用することができる。この化合物の添加量を変えることにより、帯電防止剤のpHを酸性〜アルカリ性の間で任意に調整することができる。
本発明の帯電防止剤のpHとしては、pH2〜9が好ましく、pH3〜8がさらに好ましい。化学増幅系レジストを用いる場合には、pH2未満だとプロトン濃度が高くレジストの現像性能に悪影響を及ぼす可能性がある。pH9を超えると水溶性導電性高分子が脱ドープを起こしてしまい電気伝導度が低下するおそれがある。
The antistatic agent of the present invention is M + -OH for neutralization of Bronsted acid of water-soluble conductive polymer and other additives contained in the solution (wherein M + has the same meaning as above, Represents a hydrogen ion, an alkali metal ion or a quaternary ammonium ion). By changing the addition amount of this compound, the pH of the antistatic agent can be arbitrarily adjusted between acidic and alkaline.
The pH of the antistatic agent of the present invention is preferably pH 2-9, and more preferably pH 3-8. When a chemically amplified resist is used, if the pH is less than 2, the proton concentration is high and there is a possibility of adversely affecting the developing performance of the resist. If the pH exceeds 9, the water-soluble conductive polymer may be undoped and the electrical conductivity may be lowered.

本発明の帯電防止剤をレジスト表面に塗布して、帯電防止膜を形成する。帯電防止剤をレジスト表面に塗布する方法としては、回転塗布法が好ましいが、その他の方法、例えばディッピング法(浸漬法)、吹付け法、バーコーター法等を用いてもよい。塗布後に室温下風乾、もしくはオーブンやホットプレートでレジストが塗布された基材を加熱処理することにより帯電防止膜が形成される。なお、不活性ガス雰囲気中で加熱処理を行うと溶媒性除去のためにより好ましい。   The antistatic agent of the present invention is applied to the resist surface to form an antistatic film. As a method of applying the antistatic agent to the resist surface, a spin coating method is preferable, but other methods such as a dipping method (dipping method), a spraying method, a bar coater method, and the like may be used. After the application, the antistatic film is formed by air-drying at room temperature or by heat-treating the substrate on which the resist is applied with an oven or a hot plate. Note that heat treatment in an inert gas atmosphere is more preferable for removing the solvent.

本発明の帯電防止膜が被覆された物品としては、例えば、帯電防止膜とレジストが積層された状態の基板などが挙げられる。基板材料としては、シリコンウエハー、ガリウム砒素ウエハー、インジウムリンウエハー等の化合物半導体ウエハー、石英基板、ガラス基板、磁性体基板等が挙げられる。また、レジストを用いないでイオンビームなどで造形する場合など、加工したい材料に被覆することもできる。   Examples of the article coated with the antistatic film of the present invention include a substrate in which an antistatic film and a resist are laminated. Examples of the substrate material include a compound semiconductor wafer such as a silicon wafer, a gallium arsenide wafer, and an indium phosphide wafer, a quartz substrate, a glass substrate, and a magnetic substrate. Moreover, it can also coat | cover with the material to process, such as when shape | molding with an ion beam etc., without using a resist.

なお、本発明の物品には、半導体製造過程及びフォトマスク、レチクル、ステンシルマスク、ナノインプリントのテンプレート等の製造過程において一時的に存在する基板も含まれる。   The article of the present invention includes a substrate that temporarily exists in a semiconductor manufacturing process and a manufacturing process of a photomask, a reticle, a stencil mask, a nanoimprint template, and the like.

以下、実施例及び比較例を挙げて本発明を更に説明するが、本発明は以下の例により何等制限されるものではない。なお、水溶液のpHは、ガラス電極式水素イオン濃度計pH METER F−13((株)堀場製作所製)にて測定した。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is further demonstrated, this invention is not restrict | limited at all by the following examples. The pH of the aqueous solution was measured with a glass electrode type hydrogen ion concentration meter pH METER F-13 (manufactured by Horiba, Ltd.).

[水溶性導電性高分子]
・ポリ(5−スルホイソチアナフテン−1,3−ジイル):
ポリ(5−スルホイソチアナフテン−1,3−ジイル)を、特開平7−48436号公報に記載の方法を参考にして合成及び精製した。得られた水溶性導電性高分子は、重合体繰返し単位のスルホン酸基による置換率をアルカリによる中和滴定で求めたところ、スルホン酸置換体組成がほぼ100モル%(モル分率で1.0)の重合体であった。分子量は、GPC測定から数平均分子量が18000であった(ポリスチレンスルホン酸ナトリウム換算)。得られたポリ(5−スルホイソチアナフテン−1,3−ジイル)は、0.1wt%水溶液となるよう調製し、1wt%となるよう、ミリポア社製ペリコンXL(膜タイプBiomax−10)により濃縮した。この操作を5回繰り返し実施することで精製した。
・ポリ(3−(3−チエニル)プロパンスルホン酸):
ポリ(3−(3−チエニル)プロパンスルホン酸)は、第39回高分子学会予稿集(Polymer Preprints Japan)第39巻.561頁(1990年)記載の方法を用いて合成した。分子量は、GPC測定から重量平均分子量が100000であった(プルラン換算)。得られたポリ(3−(3−チエニル)プロパンスルホン酸)は、0.1wt%水溶液となるよう調製し、1wt%となるよう、ミリポア社製ペリコンXL(膜タイプBiomax−10)により濃縮した。この操作を5回繰り返し実施することで精製した。
・ポリ(アニリン−3−スルホン酸):
ポリ(アニリン−3−スルホン酸)は、J.Am.Chem.Soc.,112.2800頁(1990年)を参考にして合成した。分子量は、GPC測定から重量平均分子量が20000であった(プルラン換算)。得られたポリ(アニリン−3−スルホン酸)は、0.1wt%水溶液となるよう調製し、1wt%となるよう、ミリポア社製ペリコンXL(膜タイプBiomax−10)により濃縮した。この操作を5回繰り返し実施することで精製した。
[Water-soluble conductive polymer]
Poly (5-sulfoisothianaphthene-1,3-diyl):
Poly (5-sulfoisothianaphthene-1,3-diyl) was synthesized and purified with reference to the method described in JP-A-7-48436. The obtained water-soluble conductive polymer had a sulfonic acid substitution product composition of almost 100 mol% (1.0 mol fraction) when the substitution rate of the polymer repeating unit by the sulfonic acid group was determined by neutralization titration with alkali. It was a polymer. As for the molecular weight, the number average molecular weight was 18000 from the GPC measurement (in terms of sodium polystyrene sulfonate). The obtained poly (5-sulfoisothianaphthene-1,3-diyl) was prepared to be a 0.1 wt% aqueous solution and concentrated with Millipore Pericon XL (membrane type Biomax-10) so as to be 1 wt%. did. It refine | purified by repeating this operation 5 times.
Poly (3- (3-thienyl) propanesulfonic acid):
Poly (3- (3-thienyl) propanesulfonic acid) is the 39th Polymer Society of Japan Preliminary Proceedings (Vol. 39, Polymer Preprints Japan). It was synthesized using the method described on page 561 (1990). As for the molecular weight, the weight average molecular weight was 100000 from GPC measurement (in pullulan conversion). The obtained poly (3- (3-thienyl) propanesulfonic acid) was prepared to be a 0.1 wt% aqueous solution, and concentrated with Pellicon XL (membrane type Biomax-10) manufactured by Millipore to be 1 wt%. It refine | purified by repeating this operation 5 times.
Poly (aniline-3-sulfonic acid):
Poly (aniline-3-sulfonic acid) is described in J. Org. Am. Chem. Soc. , 112.2800 pages (1990). As for molecular weight, the weight average molecular weight was 20000 from GPC measurement (in pullulan conversion). The obtained poly (aniline-3-sulfonic acid) was prepared to be a 0.1 wt% aqueous solution, and was concentrated with Pellicon XL (membrane type Biomax-10) manufactured by Millipore so as to be 1 wt%. It refine | purified by repeating this operation 5 times.

[ポリペプチド構造を有する水溶性高分子]
・加水分解コラーゲン(添加剤A):プロモイスW−42SP(Mn:1000)
・加水分解コラーゲン(添加剤B):プロモイスW−32(Mn:400)
・加水分解コラーゲン(添加剤C):プロモイスW−52P(Mn:2000)
・加水分解ケラチン(添加剤D):プロモイスWK−H(Mn:1000)
・加水分解ケラチン(添加剤E):プロモイスWK−L(Mn:4000)
・加水分解シルク(添加剤F):プロモイスSILK−700SP(Mn:350)
・加水分解シルク(添加剤G):プロモイスSILK−1000P(Mn:1000)
各添加剤の分子量は数平均分子量(Mn)で示しており、添加剤A〜Fは総窒素量及びアミノ酸窒素量をもとに計算したもの、添加剤Gはゲルろ過分析により測定したものである。上記のポリペプチド構造を有する水溶性高分子は、全て成和化成(株)社製である。
[Water-soluble polymer having a polypeptide structure]
Hydrolyzed collagen (additive A): Promois W-42SP (Mn: 1000)
Hydrolyzed collagen (additive B): Promois W-32 (Mn: 400)
Hydrolyzed collagen (additive C): Promois W-52P (Mn: 2000)
Hydrolyzed keratin (additive D): Promois WK-H (Mn: 1000)
Hydrolyzed keratin (additive E): Promois WK-L (Mn: 4000)
Hydrolyzed silk (additive F): Promois SILK-700SP (Mn: 350)
Hydrolyzed silk (additive G): Promois SILK-1000P (Mn: 1000)
The molecular weight of each additive is shown by the number average molecular weight (Mn), the additives A to F are calculated based on the total nitrogen amount and amino acid nitrogen amount, and the additive G is measured by gel filtration analysis. is there. All the water-soluble polymers having the above polypeptide structure are manufactured by Seiwa Kasei Co., Ltd.

[ポリビニル構造を繰り返し構造として有する水溶性高分子]
・ポリビニルメチルエーテル(添加剤H):アルドリッチ社製ポリ(メチルビニルエーテル)50%水溶液
・ポリビニルピロリドン(添加剤I):アルドリッチ社製(Mw1300000)
・ビニルピロリドン/ビニルカプロラクタム共重合体(添加剤J):BASF社製LuvitecVPC55K65W
・ポリビニルカプロラクタム(添加剤K):BASF社製Luvicap EGを限外濾過膜により精製して作製した。
・ポリビニルピロリドン(添加剤L):アルドリッチ社製(Mw55,000)
・ポリスチレンスルホン酸アンモニウム塩(添加剤M):アルドリッチ社製(Mw200,000)
・ポリアクリルアミド(添加剤N):アルドリッチ社製(Mw10,000)
・ポリアクリル酸(添加剤O):アルドリッチ社製(Mw250,000)
なお、限外濾過膜による精製は、ミリポア社製ペリコンXL(膜タイプBiomax-5)を用い、BASF社製Luvicap EGに対し、精製水での希釈、濃縮を繰り返して、精製水以外の溶剤を除去することにより行った。
[Water-soluble polymer having a polyvinyl structure as a repeating structure]
・ Polyvinyl methyl ether (additive H): 50% aqueous solution of poly (methyl vinyl ether) manufactured by Aldrich ・ Polyvinylpyrrolidone (additive I): manufactured by Aldrich (Mw 1300000)
Vinyl pyrrolidone / vinyl caprolactam copolymer (additive J): Lustec VPC55K65W manufactured by BASF
Polyvinylcaprolactam (additive K): produced by purifying Luvicap EG manufactured by BASF with an ultrafiltration membrane.
-Polyvinylpyrrolidone (Additive L): Aldrich (Mw55,000)
Polystyrene sulfonate ammonium salt (Additive M): Aldrich (Mw200,000)
・ Polyacrylamide (Additive N): Aldrich (Mw10,000)
・ Polyacrylic acid (Additive O): Aldrich (Mw250,000)
For purification using an ultrafiltration membrane, Millipore Pellicon XL (membrane type Biomax-5) is used, and BASF Luvicap EG is repeatedly diluted and concentrated with purified water to remove solvents other than purified water. This was done by removing.

[界面活性剤]
・ドデシルベンゼンスルホン酸(添加剤P):花王(株)社製ペレックスFS
・アルキルジフェニルエーテルジスルホン酸(添加剤Q):花王(株)社製ペレックスSSH(アルキルジフェニルエーテルジスルホン酸ナトリウム)をカチオン型イオン交換樹脂(オルガノ(株)社製アンバーライトIR−120B)により脱ナトリウムすることにより作製。
[Surfactant]
・ Dodecylbenzenesulfonic acid (additive P): Perex FS manufactured by Kao Corporation
・ Alkyl diphenyl ether disulfonic acid (additive Q): Detoxification of Perex SSH (sodium alkyl diphenyl ether disulfonate) manufactured by Kao Corporation with a cationic ion exchange resin (Amberlite IR-120B manufactured by Organo Corporation) Made by.

実施例1
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、加水分解コラーゲン(添加剤A)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表1に示す。
Example 1
By dissolving 0.6 parts by mass of poly (5-sulfoisothianaphthene-1,3-diyl) and 0.2 parts by mass of hydrolyzed collagen (additive A) in water to make the total amount 80 parts by mass, adding ammonia water After adjusting to pH 4.5, water was further added to prepare an antistatic agent in a total amount of 100 parts by mass.
Using the obtained antistatic agent, contact angle measurement with a negative chemical amplification resist (contact angle measurement A), development time measurement of a negative chemical amplification resist (measurement condition B), charging by the following methods The surface resistance of the inhibitor was measured (measurement condition F). The results are shown in Table 1.

実施例2
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.025質量部、加水分解コラーゲン(添加剤A)0.1質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表1に示す。
Example 2
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 parts by mass, dodecylbenzenesulfonic acid (additive P) 0.025 parts by mass, hydrolyzed collagen (additive A) 0.1 parts by mass are dissolved in water, and the total amount Was adjusted to pH 4.5 by adding ammonia water, and water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the obtained antistatic agent, contact angle measurement with a negative chemical amplification resist (contact angle measurement A), development time measurement of a negative chemical amplification resist (measurement condition B), charging by the following methods The surface resistance of the inhibitor was measured (measurement condition F). The results are shown in Table 1.

実施例3
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.025質量部、加水分解コラーゲン(添加剤A)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B及びB−2)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表1及び表2に示す。
Example 3
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 parts by mass, dodecylbenzenesulfonic acid (additive P) 0.025 parts by mass, hydrolyzed collagen (additive A) 0.2 parts by mass are dissolved in water, and the total amount Was adjusted to pH 4.5 by adding ammonia water, and water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification system resist (contact angle measurement A) and the development time measurement of the negative type chemical amplification system resist (measurement conditions B and B−) are as follows. 2) The surface resistance of the antistatic agent was measured (measurement condition F). The results are shown in Tables 1 and 2.

実施例4
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、アルキルジフェニルエーテルジスルホン酸(添加剤Q)0.05質量部、加水分解コラーゲン(添加剤A)0.1質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表1に示す。
Example 4
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 part by mass, alkyldiphenyl ether disulfonic acid (additive Q) 0.05 part by mass, hydrolyzed collagen (additive A) 0.1 part by mass are dissolved in water, and the total amount Was adjusted to pH 4.5 by adding ammonia water, and water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the obtained antistatic agent, contact angle measurement with a negative chemical amplification resist (contact angle measurement A), development time measurement of a negative chemical amplification resist (measurement condition B), charging by the following methods The surface resistance of the inhibitor was measured (measurement condition F). The results are shown in Table 1.

実施例5
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、アルキルジフェニルエーテルジスルホン酸(添加剤Q)0.05質量部、加水分解コラーゲン(添加剤A)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ポジ型化学増幅系レジストに対する接触角の測定(接触角測定B)、ネガ型化学増幅系レジストの現像時間測定(測定条件B)、ポジ型化学増幅系レジストの膜減り測定(測定条件E)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表1及び表7に示す。
Example 5
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 part by mass, alkyldiphenyl ether disulfonic acid (additive Q) 0.05 part by mass, hydrolyzed collagen (additive A) 0.2 part by mass are dissolved in water, and the total amount Was adjusted to pH 4.5 by adding ammonia water, and water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the obtained antistatic agent, contact angle measurement with a negative chemical amplification resist (contact angle measurement A) and contact angle measurement with a positive chemical amplification resist (contact angle measurement B) by the following methods The development time measurement of the negative chemical amplification system resist (measurement condition B), the film loss measurement of the positive chemical amplification system resist (measurement condition E), and the measurement of the surface resistance of the antistatic agent (measurement condition F) were performed. The results are shown in Tables 1 and 7.

実施例6
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.025質量部、加水分解コラーゲン(添加剤B)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B−2)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表2に示す。
Example 6
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 parts by mass, dodecylbenzenesulfonic acid (additive P) 0.025 parts by mass, hydrolyzed collagen (additive B) 0.2 parts by mass are dissolved in water, and the total amount Was adjusted to pH 4.5 by adding ammonia water, and water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification resist (contact angle measurement A) and the development time measurement of the negative chemical amplification resist (measurement condition B-2) by the following methods The surface resistance of the antistatic agent was measured (measurement condition F). The results are shown in Table 2.

実施例7
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.025質量部、加水分解コラーゲン(添加剤C)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B−2)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表2に示す。
Example 7
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 parts by mass, dodecylbenzenesulfonic acid (additive P) 0.025 parts by mass, hydrolyzed collagen (additive C) 0.2 parts by mass dissolved in water Was adjusted to pH 4.5 by adding ammonia water, and water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification resist (contact angle measurement A) and the development time measurement of the negative chemical amplification resist (measurement condition B-2) by the following methods The surface resistance of the antistatic agent was measured (measurement condition F). The results are shown in Table 2.

実施例8
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.025質量部、加水分解ケラチン(添加剤D)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B−2)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表2に示す。
Example 8
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 parts by mass, dodecylbenzenesulfonic acid (additive P) 0.025 parts by mass, hydrolyzed keratin (additive D) 0.2 parts by mass are dissolved in water, and the total amount Was adjusted to pH 4.5 by adding ammonia water, and water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification resist (contact angle measurement A) and the development time measurement of the negative chemical amplification resist (measurement condition B-2) by the following methods The surface resistance of the antistatic agent was measured (measurement condition F). The results are shown in Table 2.

実施例9
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.025質量部、加水分解ケラチン(添加剤E)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B−2)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表2に示す。
Example 9
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 parts by mass, dodecylbenzenesulfonic acid (additive P) 0.025 parts by mass, hydrolyzed keratin (additive E) 0.2 parts by mass are dissolved in water, and the total amount Was adjusted to pH 4.5 by adding ammonia water, and water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification resist (contact angle measurement A) and the development time measurement of the negative chemical amplification resist (measurement condition B-2) by the following methods The surface resistance of the antistatic agent was measured (measurement condition F). The results are shown in Table 2.

実施例10
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.025質量部、加水分解シルク(添加剤F)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B−2)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表2に示す。
Example 10
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 part by mass, dodecylbenzenesulfonic acid (additive P) 0.025 part by mass, hydrolyzed silk (additive F) 0.2 part by mass are dissolved in water, and the total amount Was adjusted to pH 4.5 by adding ammonia water, and further water was added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification resist (contact angle measurement A) and the development time measurement of the negative chemical amplification resist (measurement condition B-2) by the following methods The surface resistance of the antistatic agent was measured (measurement condition F). The results are shown in Table 2.

実施例11
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.025質量部、加水分解シルク(添加剤G)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B−2)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表2に示す。
Example 11
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 parts by mass, dodecylbenzenesulfonic acid (additive P) 0.025 parts by mass, hydrolyzed silk (additive G) 0.2 parts by mass are dissolved in water, and the total amount Was adjusted to pH 4.5 by adding ammonia water, and water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification resist (contact angle measurement A) and the development time measurement of the negative chemical amplification resist (measurement condition B-2) by the following methods The surface resistance of the antistatic agent was measured (measurement condition F). The results are shown in Table 2.

実施例12
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ポリビニルメチルエーテル(添加剤H)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表3に示す。
Example 12
By dissolving 0.6 parts by mass of poly (5-sulfoisothianaphthene-1,3-diyl) and 0.2 parts by mass of polyvinyl methyl ether (additive H) in water, the total amount is 80 parts by mass, and adding ammonia water. After adjusting to pH 4.5, water was further added to prepare an antistatic agent in a total amount of 100 parts by mass.
Using the obtained antistatic agent, contact angle measurement with a negative chemical amplification resist (contact angle measurement A), development time measurement of a negative chemical amplification resist (measurement condition B), charging by the following methods The surface resistance of the inhibitor was measured (measurement condition F). The results are shown in Table 3.

実施例13〜24
実施例12と同様に、表3に示した、ポリビニル構造を繰り返し構造として有する水溶性高分子(添加剤H〜K)、界面活性剤(添加剤P,Q)を用いて帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件C)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表3に示す。
Examples 13-24
As in Example 12, an antistatic agent was prepared using a water-soluble polymer (additives H to K) having a polyvinyl structure as a repeating structure and surfactants (additives P and Q) shown in Table 3. did.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification system resist (contact angle measurement A), the development time measurement of the negative chemical amplification system resist (measurement condition C), and charging by the following methods The surface resistance of the inhibitor was measured (measurement condition F). The results are shown in Table 3.

実施例25
ポリ(3−(3−チエニル)プロパンスルホン酸))0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.025質量部、加水分解コラーゲン(添加剤A)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B−2)を行った。結果を表4に示す。
Example 25
Poly (3- (3-thienyl) propanesulfonic acid)) 0.6 parts by mass, dodecylbenzenesulfonic acid (additive P) 0.025 parts by mass, hydrolyzed collagen (additive A) 0.2 parts by mass are dissolved in water, After adjusting the pH to 4.5 by adding ammonia water to 80 parts by mass, water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification resist (contact angle measurement A) and the development time measurement of the negative chemical amplification resist (measurement condition B-2) by the following methods Went. The results are shown in Table 4.

実施例26
スルホン化ポリアニリン0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.025質量部、加水分解コラーゲン(添加剤A)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B−2)を行った。結果を表4に示す。
Example 26
Dissolve 0.6 parts by mass of sulfonated polyaniline, 0.025 parts by mass of dodecylbenzenesulfonic acid (additive P), 0.2 parts by mass of hydrolyzed collagen (additive A) in water to make the total amount 80 parts by mass, and add ammonia water. After adjusting the pH to 4.5, water was further added to prepare an antistatic agent in a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification resist (contact angle measurement A) and the development time measurement of the negative chemical amplification resist (measurement condition B-2) by the following methods Went. The results are shown in Table 4.

実施例27
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.05質量部、加水分解コラーゲン(添加剤A)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A−2)、ネガ型化学増幅系レジストの現像時間測定(測定条件C)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表5に示す。
Example 27
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 part by mass, dodecylbenzenesulfonic acid (additive P) 0.05 part by mass, hydrolyzed collagen (additive A) 0.2 part by mass are dissolved in water, and the total amount Was adjusted to pH 4.5 by adding ammonia water, and water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the resulting antistatic agent, measurement of the contact angle to the negative chemically amplified resist (contact angle measurement A-2) and development time measurement of the negative chemically amplified resist (measurement condition C) by the following methods The surface resistance of the antistatic agent was measured (measurement condition F). The results are shown in Table 5.

実施例28
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.05質量部、ポリビニルメチルエーテル(添加剤H)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A−2)、ネガ型化学増幅系レジストの現像時間測定(測定条件C)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表5に示す。
Example 28
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 parts by mass, dodecylbenzenesulfonic acid (additive P) 0.05 parts by mass, polyvinyl methyl ether (additive H) 0.2 parts by mass are dissolved in water, and the total amount Was adjusted to pH 4.5 by adding ammonia water, and water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the resulting antistatic agent, measurement of the contact angle to the negative chemically amplified resist (contact angle measurement A-2) and development time measurement of the negative chemically amplified resist (measurement condition C) by the following methods The surface resistance of the antistatic agent was measured (measurement condition F). The results are shown in Table 5.

実施例29
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.1質量部、加水分解コラーゲン(添加剤A)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にて、ネガ型非化学増幅系レジストに対する接触角の測定(接触角測定A−3)、ネガ型非化学増幅系レジストの現像時間測定(測定条件D)を行った。結果を表6に示す。
Example 29
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 part by mass, dodecylbenzenesulfonic acid (additive P) 0.1 part by mass, hydrolyzed collagen (additive A) 0.2 part by mass are dissolved in water, and the total amount Was adjusted to pH 4.5 by adding ammonia water, and water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative non-chemical amplification resist (contact angle measurement A-3) and the development time measurement of the negative non-chemical amplification resist (measurement) by the following methods Condition D) was performed. The results are shown in Table 6.

実施例30
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.1質量部、ポリビニルメチルエーテル(添加剤H)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にて、ネガ型非化学増幅系レジストに対する接触角の測定(接触角測定A−3)、ネガ型非化学増幅系レジストの現像時間測定(測定条件D)を行った。結果を表6に示す。
Example 30
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 part by mass, dodecylbenzenesulfonic acid (additive P) 0.1 part by mass, polyvinyl methyl ether (additive H) 0.2 part by mass are dissolved in water, and the total amount Was adjusted to pH 4.5 by adding ammonia water, and water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative non-chemical amplification resist (contact angle measurement A-3) and the development time measurement of the negative non-chemical amplification resist (measurement) by the following methods Condition D) was performed. The results are shown in Table 6.

比較例1
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部を水に溶解し全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、実施例1と同様の方法によりネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表1に示す。
Comparative Example 1
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 parts by mass is dissolved in water to a total amount of 80 parts by mass, adjusted to pH 4.5 by adding aqueous ammonia, and then water is added to the total amount. The antistatic agent was prepared at 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification resist (contact angle measurement A) and the development time measurement of the negative chemical amplification resist (measurement condition B) in the same manner as in Example 1. ) And measurement of the surface resistance of the antistatic agent (measurement condition F). The results are shown in Table 1.

比較例2
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.025質量部を水に溶解し全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。得られた帯電防止剤を用いて、実施例1と同様の方法によりネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B及びB−2)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表1及び表2に示す。
Comparative Example 2
By dissolving 0.6 parts by mass of poly (5-sulfoisothianaphthene-1,3-diyl) and 0.025 parts by mass of dodecylbenzenesulfonic acid (Additive P) in water to a total amount of 80 parts by mass and adding aqueous ammonia After adjusting to pH 4.5, water was further added to prepare an antistatic agent in a total amount of 100 parts by mass. Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification resist (contact angle measurement A) and the development time measurement of the negative chemical amplification resist (measurement condition B) in the same manner as in Example 1. And B-2), the surface resistance of the antistatic agent was measured (measurement condition F). The results are shown in Tables 1 and 2.

比較例3
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、アルキルジフェニルエーテルジスルホン酸(添加剤Q)0.050質量部を水に溶解し全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。得られた帯電防止剤を用いて、実施例5と同様の方法によりネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ポジ型化学増幅系レジストに対する接触角の測定(接触角測定A−4)、ネガ型化学増幅系レジストの現像時間測定(測定条件B)、ポジ型化学増幅系レジストの膜減り測定(測定条件E)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表1及び表7に示す。
Comparative Example 3
By dissolving 0.6 part by mass of poly (5-sulfoisothianaphthene-1,3-diyl) and 0.050 part by mass of alkyldiphenyl ether disulfonic acid (additive Q) in water to a total amount of 80 parts by mass and adding aqueous ammonia After adjusting to pH 4.5, water was further added to prepare an antistatic agent in a total amount of 100 parts by mass. Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification resist (contact angle measurement A) and the contact angle measurement with respect to the positive chemical amplification resist (contact angle) in the same manner as in Example 5. Measurement A-4), negative chemical amplification resist development time measurement (measurement condition B), positive chemical amplification resist film thickness measurement (measurement condition E), antistatic agent surface resistance measurement (measurement condition F) ) The results are shown in Tables 1 and 7.

比較例4〜7
実施例12の添加剤Hに代えて、表3に示した水溶性高分子(添加剤L〜O)、界面活性剤(添加剤P)を用いて帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表3に示す。
Comparative Examples 4-7
An antistatic agent was prepared using the water-soluble polymer (additives L to O) and the surfactant (additive P) shown in Table 3 instead of the additive H of Example 12.
Using the obtained antistatic agent, contact angle measurement with a negative chemical amplification resist (contact angle measurement A), development time measurement of a negative chemical amplification resist (measurement condition B), charging by the following methods The surface resistance of the inhibitor was measured (measurement condition F). The results are shown in Table 3.

比較例8
ポリ(3−(3−チエニル)プロパンスルホン酸)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.025質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B−2)を行った。結果を表4に示す。
Comparative Example 8
Poly (3- (3-thienyl) propanesulfonic acid) 0.6 part by mass, dodecylbenzenesulfonic acid (additive P) 0.025 part by mass are dissolved in water, the total amount is 80 parts by mass, and ammonia water is added to adjust pH 4 After adjusting to 0.5, water was further added to prepare an antistatic agent in a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification resist (contact angle measurement A) and the development time measurement of the negative chemical amplification resist (measurement condition B-2) by the following methods Went. The results are shown in Table 4.

比較例9
スルホン化ポリアニリン0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.025質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)、ネガ型化学増幅系レジストの現像時間測定(測定条件B−2)を行った。結果を表4に示す。
Comparative Example 9
0.6 parts by mass of sulfonated polyaniline and 0.025 parts by mass of dodecylbenzenesulfonic acid (additive P) are dissolved in water to make a total amount of 80 parts by mass. After adjusting to pH 4.5 by adding ammonia water, water is further added. The antistatic agent was prepared in a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative chemical amplification resist (contact angle measurement A) and the development time measurement of the negative chemical amplification resist (measurement condition B-2) by the following methods Went. The results are shown in Table 4.

比較例10
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.05質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にてネガ型化学増幅系レジストに対する接触角の測定(接触角測定A−2)、ネガ型化学増幅系レジストの現像時間測定(測定条件C)、帯電防止剤の表面抵抗の測定(測定条件F)を行った。結果を表5に示す。
Comparative Example 10
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 parts by mass and dodecylbenzenesulfonic acid (additive P) 0.05 parts by mass are dissolved in water, the total amount is 80 parts by mass, and ammonia water is added. After adjusting the pH to 4.5, water was further added to prepare an antistatic agent in a total amount of 100 parts by mass.
Using the resulting antistatic agent, measurement of the contact angle to the negative chemically amplified resist (contact angle measurement A-2) and development time measurement of the negative chemically amplified resist (measurement condition C) by the following methods The surface resistance of the antistatic agent was measured (measurement condition F). The results are shown in Table 5.

比較例11
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、ドデシルベンゼンスルホン酸(添加剤P)0.1質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にて、ネガ型非化学増幅系レジストに対する接触角の測定(接触角測定A−3)、ネガ型非化学増幅系レジストの現像時間測定(測定条件D)を行った。結果を表6に示す。
Comparative Example 11
To dissolve 0.6 parts by mass of poly (5-sulfoisothianaphthene-1,3-diyl) and 0.1 parts by mass of dodecylbenzenesulfonic acid (Additive P) in water, make the total amount 80 parts by mass and add ammonia water. After adjusting the pH to 4.5, water was further added to prepare an antistatic agent in a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative non-chemical amplification resist (contact angle measurement A-3) and the development time measurement of the negative non-chemical amplification resist (measurement) by the following methods Condition D) was performed. The results are shown in Table 6.

比較例12
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法にて、ネガ型非化学増幅系レジストに対する接触角の測定(接触角測定A−3)、ネガ型非化学増幅系レジストの現像時間測定(測定条件D)を行った。結果を表6に示す。
Comparative Example 12
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 parts by mass is dissolved in water, the total amount is 80 parts by mass, adjusted to pH 4.5 by adding aqueous ammonia, and then water is added, An antistatic agent was prepared in a total amount of 100 parts by mass.
Using the obtained antistatic agent, the contact angle measurement with respect to the negative non-chemical amplification resist (contact angle measurement A-3) and the development time measurement of the negative non-chemical amplification resist (measurement) by the following methods Condition D) was performed. The results are shown in Table 6.

各物性の測定方法及び評価方法は以下の通りである。以下において、帯電防止膜及びレジスト膜の回転塗布による作製、超純水による帯電防止膜の剥離、現像後の現像液の振り切りなどは、スピンナー1H−III(協栄セミコンダクター(株)社製)を用いた。また、レジスト膜厚及び帯電防止膜厚は、それぞれ膜に幅約1mmの溝を掘り、触針式段差計Dektak−3030(日本真空(株)社製)にてその段差を測定することで求めた。   The measurement method and evaluation method of each physical property are as follows. In the following, spinner 1H-III (manufactured by Kyoei Semiconductor Co., Ltd.) is used for spin coating of antistatic film and resist film, peeling of antistatic film with ultrapure water, and shaking off developer after development. Using. Further, the resist film thickness and the antistatic film thickness are obtained by digging a groove having a width of about 1 mm in each film and measuring the step with a stylus type step gauge Dektak-3030 (manufactured by Nippon Vacuum Co., Ltd.). It was.

1)ネガ型化学増幅系レジストに対する接触角の測定(接触角測定A)
接触角は、協和界面科学(株)社製DM−500接触角測定装置にて測定した。接触角測定は、レジスト膜表面に帯電防止剤の液滴作成後、30秒後にその液滴とレジスト膜との接触角を読み取った。レジスト膜は、4×4cmのシリコンウェハー上にネガ型化学増幅系レジスト0.2mL滴下後、直ちにスピンナーを用いて、1500rpmにて回転塗布し、プリベークをホットプレートにて105℃、90秒間行い溶媒を除去することにより作製した。ネガ型化学増幅系レジストは、ロームアンドハース電子材料社製マイクロポジット SAL−601−SR2 E−ビームレジストを用いた。
1) Contact angle measurement for negative chemical amplification resist (contact angle measurement A)
The contact angle was measured with a DM-500 contact angle measuring device manufactured by Kyowa Interface Science Co., Ltd. In the contact angle measurement, the contact angle between the droplet and the resist film was read 30 seconds after the droplet of the antistatic agent was formed on the resist film surface. The resist film was dropped on a 4 × 4 cm silicon wafer by 0.2 mL of a negative chemical amplification resist, and immediately applied by spin coating at 1500 rpm using a spinner, and pre-baked on a hot plate at 105 ° C. for 90 seconds to remove the solvent. It was produced by removing. The negative chemical amplification type resist used was Microposit SAL-601-SR2 E-beam resist manufactured by Rohm and Haas Electronic Materials.

1−2)ネガ型化学増幅系レジストに対する接触角の測定(接触角測定A−2)
接触角は、協和界面科学(株)社製DM−500接触角測定装置にて測定した。接触角測定は、レジスト膜表面に帯電防止剤の液滴作成後、30秒後にその液滴とレジスト膜との接触角を読み取った。レジスト膜は、4×4cmのシリコンウェハー上にネガ型化学増幅系レジスト0.2mL滴下後、直ちにスピンナーを用いて、1500rpmにて回転塗布し、プリベークをホットプレートにて105℃、90秒間行い溶剤を除去することにより作製した。ネガ型化学増幅系レジストは、富士フィルムエレクトロニクスマテリアルズ社製 FEN−270レジストを用いた。
1-2) Measurement of contact angle to negative chemical amplification resist (contact angle measurement A-2)
The contact angle was measured with a DM-500 contact angle measuring device manufactured by Kyowa Interface Science Co., Ltd. In the contact angle measurement, the contact angle between the droplet and the resist film was read 30 seconds after the droplet of the antistatic agent was formed on the resist film surface. The resist film is 0.2 mL of a negative chemical amplification resist on a 4 × 4 cm silicon wafer, and then immediately spin-coated with a spinner at 1500 rpm, prebaked on a hot plate at 105 ° C. for 90 seconds, and then the solvent It was produced by removing. As the negative chemical amplification resist, FEN-270 resist manufactured by Fuji Film Electronics Materials Co., Ltd. was used.

1−3)非化学増幅系レジストに対する接触角の測定(接触角測定A−3)
接触角は、協和界面科学(株)社製DM−500接触角測定装置にて測定した。接触角測定は、レジスト膜表面に帯電防止剤の液滴作成後、30秒後にその液滴とレジスト膜との接触角を読み取った。レジスト膜は、4×4cmのシリコンウェハー上にネガ型非化学増幅系レジスト0.2mL滴下後、直ちにスピンナーを用いて、1500rpmにて回転塗布し、プリベークをホットプレートにて180℃、40分間行い溶剤を除去することにより作製した。非化学増幅系レジストは、ダウコーニング社製 Fox−12レジストを用いた。
1-3) Measurement of contact angle for non-chemically amplified resist (contact angle measurement A-3)
The contact angle was measured with a DM-500 contact angle measuring device manufactured by Kyowa Interface Science Co., Ltd. In the contact angle measurement, the contact angle between the droplet and the resist film was read 30 seconds after the droplet of the antistatic agent was formed on the resist film surface. The resist film was dropped on a 4 × 4 cm silicon wafer by 0.2 mL of a negative non-chemical amplification type resist, and immediately applied by spin coating at 1500 rpm using a spinner, and prebaked at 180 ° C. for 40 minutes on a hot plate. It was produced by removing. The non-chemically amplified resist used was Fox-12 resist manufactured by Dow Corning.

1−4)ポジ型化学増幅系レジストに対する接触角の測定(接触角測定A−4)
接触角は、協和界面科学(株)社製DM−500接触角測定装置にて測定した。接触角測定は、レジスト膜表面に帯電防止剤の液滴作成後、30秒後にその液滴とレジスト膜との接触角を読み取った。レジスト膜は、4×4cmのシリコンウェハー上にポジ型化学増幅系レジスト0.2mL滴下後、直ちにスピンナーを用いて、1500rpmにて回転塗布し、プリベークをホットプレートにて120℃、90秒間行い溶媒を除去することにより作製した。ポジ型化学増幅系レジストは、富士フィルムエレクトロニクスマテリアルズ社製 FEP−171レジストを用いた。
1-4) Measurement of contact angle for positive chemically amplified resist (contact angle measurement A-4)
The contact angle was measured with a DM-500 contact angle measuring device manufactured by Kyowa Interface Science Co., Ltd. In the contact angle measurement, the contact angle between the droplet and the resist film was read 30 seconds after the droplet of the antistatic agent was formed on the resist film surface. The resist film was dropped onto a 4 × 4 cm silicon wafer by 0.2 mL of a positive chemical amplification resist, and then immediately applied by spin coating at 1500 rpm using a spinner. It was produced by removing. As the positive chemical amplification resist, FEP-171 resist manufactured by Fuji Film Electronics Materials Co., Ltd. was used.

2)ネガ型化学増幅系レジストの現像時間測定(測定条件B)
ネガ型化学増幅系レジストの現像時間は、以下の手順で評価した。
(1)レジスト膜形成:4×4cmのシリコンウェハー上にネガ型化学増幅系レジスト0.2mL滴下後、直ちにスピンナーを用いて、1500rpmにて回転塗布し、プリベーク105℃、90秒間行い溶媒を除去することで膜厚約300nmのレジスト膜を得た。ネガ型化学増幅系レジストは、ロームアンドハース電子材料社製マイクロポジット SAL−601−SR2 E−ビームレジストを用いた。
(2)帯電防止膜形成:塗布された上記レジスト表面に帯電防止剤2mLを滴下し、10分経過後、スピンナー1H−III(協栄セミコンダクター(株)製)を用いて、800rpmにて回転塗布を行い、膜厚約20nmの帯電防止膜を形成した。
(3)ベーク処理:帯電防止膜とレジストが積層された基板をホットプレートにて、80℃、180秒間加熱後、空気中常温下で5分放置した。
(4)帯電防止膜の剥離:ベーク処理後の帯電防止膜表面に超純水10mLを滴下し、60秒間静置した後、800rpmにてスピンコーターで超純水に溶解した帯電防止剤を除去した。
(5)再ベーク処理:レジストのポストエクスポージャーベーク条件となる加熱を、110℃/60秒間行った後、空気中常温下で5分放置した。
(6)現像:現像液である2.38質量%テトラメチルアンモニウムヒドロキサイド水溶液2mLを、(5)で得られたレジスト表面に滴下し、現像液に接しているレジスト膜が基板上より消失する時間を現像時間として測定した。
2) Measurement of development time of negative chemically amplified resist (measurement condition B)
The development time of the negative chemically amplified resist was evaluated by the following procedure.
(1) Resist film formation: 0.2 mL of a negative chemical amplification resist is dropped on a 4 × 4 cm silicon wafer, and immediately spin-coated at 1500 rpm using a spinner, and the solvent is removed by pre-baking at 105 ° C. for 90 seconds. Thus, a resist film having a thickness of about 300 nm was obtained. The negative chemical amplification type resist used was Microposit SAL-601-SR2 E-beam resist manufactured by Rohm and Haas Electronic Materials.
(2) Antistatic film formation: 2 mL of an antistatic agent was dropped onto the coated resist surface, and after 10 minutes, spin coating was performed at 800 rpm using a spinner 1H-III (manufactured by Kyoei Semiconductor Co., Ltd.). And an antistatic film having a thickness of about 20 nm was formed.
(3) Baking treatment: A substrate on which an antistatic film and a resist were laminated was heated on a hot plate at 80 ° C. for 180 seconds, and then allowed to stand at room temperature in air for 5 minutes.
(4) Detachment of antistatic film: 10 mL of ultrapure water was dropped on the surface of the antistatic film after baking, and allowed to stand for 60 seconds, and then the antistatic agent dissolved in the ultrapure water was removed with a spin coater at 800 rpm. did.
(5) Re-bake treatment: After heating for resist post-exposure baking at 110 ° C./60 seconds, the resist was left in air at room temperature for 5 minutes.
(6) Development: 2 mL of a 2.38 mass% tetramethylammonium hydroxide aqueous solution that is a developer is dropped on the resist surface obtained in (5), and the time for the resist film in contact with the developer to disappear from the substrate is measured. Measured as development time.

2−2)ネガ型化学増幅系レジストの現像時間測定(測定条件B−2)
ネガ型化学増幅系レジストの現像時間は、2)(3)のベーク処理において80℃、180秒間の加熱に代えて75℃、60秒間の加熱とした以外は測定条件Bと同様にして測定した。
2-2) Development time measurement of negative chemically amplified resist (measurement condition B-2)
The development time of the negative type chemically amplified resist was measured in the same manner as in the measurement condition B except that the baking process of 2) and (3) was performed at 75 ° C. for 60 seconds instead of 80 ° C. for 180 seconds. .

3)ネガ型化学増幅系レジストの現像時間測定(測定条件C)
ネガ型化学増幅系レジストの現像時間は、以下の手順で評価した。
(1)レジスト膜形成:4×4cmのシリコンウェハー上にネガ型化学増幅系レジスト0.2mL滴下後、直ちにスピンナーを用いて、1000rpmにて回転塗布し、プリベーク120℃、90秒間行い溶剤を除去することで膜厚約300nmのレジスト膜を得た。ネガ型化学増幅系レジストは、富士フィルムエレクトロニクスマテリアルズ社製 FEN−270レジストを用いた。
(2)帯電防止膜形成:塗布された上記レジスト表面に帯電防止処理剤2mLを滴下し、10分経過後、スピンナー1H−III(協栄セミコンダクター(株)製)を用いて、800rpmにて回転塗布を行い、膜厚約20nmの帯電防止膜を形成した。
(3)ベーク処理:帯電防止膜とレジストが積層された基板をホットプレートにて、80℃、90秒間加熱後、空気中常温下で5分放置した。
(4)再ベーク処理:レジストのポストエクスポージャーベーク条件となる加熱を、110℃/90秒間行った後、空気中常温下で5分放置した。
(5)帯電防止膜の剥離:ベーク処理後の帯電防止膜表面に超純水10mLを滴下し、60秒間静置した後、800rpmにてスピンコーターで超純水に溶解した帯電防止剤を除去した。
(6)現像:現像液である2.38質量%テトラメチルアンモニウムヒドロキサイド水溶液2mLを、(5)で得られたレジスト表面に滴下し、現像液に接しているレジスト膜が基板上より消失する時間を現像時間として測定した。
3) Development time measurement of negative chemically amplified resist (measurement condition C)
The development time of the negative chemically amplified resist was evaluated by the following procedure.
(1) Resist film formation: 0.2 mL of negative chemical amplification resist is dropped on a 4 × 4 cm silicon wafer, and then immediately spin-coated using a spinner at 1000 rpm, and the solvent is removed by pre-baking at 120 ° C. for 90 seconds. As a result, a resist film having a thickness of about 300 nm was obtained. As the negative chemical amplification resist, FEN-270 resist manufactured by Fuji Film Electronics Materials Co., Ltd. was used.
(2) Antistatic film formation: 2 mL of antistatic treatment agent was dropped on the coated resist surface, and after 10 minutes, it was rotated at 800 rpm using a spinner 1H-III (manufactured by Kyoei Semiconductor Co., Ltd.). Application was performed to form an antistatic film having a thickness of about 20 nm.
(3) Baking treatment: A substrate on which an antistatic film and a resist were laminated was heated on a hot plate at 80 ° C. for 90 seconds, and then allowed to stand at room temperature in air for 5 minutes.
(4) Re-bake treatment: After heating for resist post-exposure baking at 110 ° C./90 seconds, the resist was left in air at room temperature for 5 minutes.
(5) Detachment of antistatic film: 10 mL of ultrapure water was dropped onto the surface of the antistatic film after baking, and left for 60 seconds, and then the antistatic agent dissolved in the ultrapure water was removed with a spin coater at 800 rpm. did.
(6) Development: 2 mL of a 2.38 mass% tetramethylammonium hydroxide aqueous solution that is a developer is dropped on the resist surface obtained in (5), and the time for the resist film in contact with the developer to disappear from the substrate is measured. Measured as development time.

4)ネガ型非化学増幅系レジストの現像時間測定(測定条件D)
ネガ型非化学増幅系レジストの現像時間は、以下の手順で評価した。
(1)レジスト膜形成:4×4cmのシリコンウェハー上にネガ型非化学増幅系レジスト0.2mL滴下後、直ちにスピンナーを用いて、1500rpmにて回転塗布し、プリベーク180℃、10分間行い溶媒を除去することで膜厚約200nmのレジスト膜を得た。ネガ型非化学増幅系レジストは、ダウコーニング社製 Fox−12レジストを用いた。
(2)帯電防止膜形成:塗布された上記レジスト表面に帯電防止処理剤2mLを滴下し、10分経過後、スピンナー1H−III(協栄セミコンダクター(株)製)を用いて、800rpmにて回転塗布を行い、膜厚約20nmの帯電防止膜を形成した。
(3)帯電防止膜の剥離:ベーク処理後の帯電防止膜表面に超純水10mLを滴下し、60秒間静置した後、800rpmにてスピンコーターで超純水に溶解した帯電防止剤を除去した。
(4)現像:現像液である2.38質量%テトラメチルアンモニウムヒドロキサイド水溶液2mLを、(3)で得られたレジスト表面に滴下し、現像液に接しているレジスト膜が基板上より消失する時間を現像時間として測定した。
本特許の実施例および比較例の帯電防止剤を使用しないで上記(1)のレジスト膜に、上記(4)の操作を行った場合、そのTMAH現像時間は60秒であった。
4) Development time measurement of negative type non-chemical amplification resist (Measurement condition D)
The development time of the negative type non-chemical amplification resist was evaluated by the following procedure.
(1) Resist film formation: After dropping 0.2 mL of negative non-chemical amplification resist on a 4 × 4 cm silicon wafer, immediately spin-apply at 1500 rpm using a spinner and remove the solvent by pre-baking at 180 ° C. for 10 minutes. As a result, a resist film having a thickness of about 200 nm was obtained. As the negative type non-chemical amplification resist, Fox-12 resist manufactured by Dow Corning was used.
(2) Antistatic film formation: 2 mL of antistatic treatment agent was dropped on the coated resist surface, and after 10 minutes, it was rotated at 800 rpm using a spinner 1H-III (manufactured by Kyoei Semiconductor Co., Ltd.). Application was performed to form an antistatic film having a thickness of about 20 nm.
(3) Detachment of antistatic film: 10 mL of ultrapure water was dropped on the surface of the antistatic film after baking, left standing for 60 seconds, and then the antistatic agent dissolved in the ultrapure water was removed with a spin coater at 800 rpm. did.
(4) Development: 2 mL of a 2.38 mass% tetramethylammonium hydroxide aqueous solution, which is a developer, is dropped on the resist surface obtained in (3), and the time for the resist film in contact with the developer to disappear from the substrate is measured. Measured as development time.
When the operation (4) was performed on the resist film (1) without using the antistatic agents of Examples and Comparative Examples of this patent, the TMAH development time was 60 seconds.

5)ポジ型化学増幅系レジストの膜べり測定(測定条件E)
ポジ型化学増幅系レジストの膜べり測定は、以下の手順で評価した。
(1)ポジ型レジスト膜形成:4×4cmのシリコンウェハー上にポジ型化学増幅系レジスト0.2mL滴下後、直ちにスピンナーを用いて、1500rpmにて回転塗布し、プリベーク120℃、90秒間行い溶媒を除去することで膜厚約300nmのレジスト膜を得た。ポジ型化学増幅系レジストには、富士フィルムエレクトロニクスマテリアルズ社製 FEP−171レジストを用いた。
(2)膜厚の測定:レジスト膜厚は、レジストに幅約1mmの溝を掘り、触針式段差計にて測定した。これをレジスト塗布直後の膜厚とした。
(3)帯電防止膜形成:塗布された上記レジスト表面に帯電防止剤2mLを滴下し、1分経過後、スピンナーを用いて、800rpmにて回転塗布を行い、膜厚約20nmの帯電防止膜を形成した。
(4)ベーク処理:帯電防止膜とレジストが積層された基板をホットプレートにて、80℃、90秒間加熱後、空気中常温下で5分放置した。
(5)再ベーク処理:レジストのポストエクスポージャーベーク条件となる加熱を、110℃/60秒間行った後、空気中常温下で5分放置した。
(6)帯電防止剤の剥離:再ベーク処理後の帯電防止膜表面に超純水10mLを滴下し、60秒間静置した後、800rpmにてスピンコーターで超純水に溶解した帯電防止剤を除去した。
(7)現像:現像液である2.38質量%テトラメチルアンモニウムヒドロキサイド水溶液2mLを、帯電防止膜除去後のレジスト表面に滴下し、室温で60秒間静置した後、200rpmにてスピンコーターで現像液を振り切りながら超純水10mLを滴下し、さらに800rpmでレジスト表面に残った水滴を振り切った。
(8)膜厚の再測定:現像後のレジスト膜厚は、レジストに掘った幅約1mmの溝を、触針式段差計にて再測定した。これを現像後のレジスト膜厚とした。
(9)膜べり値測定:(2)で測定した膜厚から(8)で測定した膜厚を引くことで、レジストの膜べり値とした。
5) Film thickness measurement of positive chemically amplified resist (measurement condition E)
The film slip measurement of the positive chemically amplified resist was evaluated by the following procedure.
(1) Formation of positive resist film: 0.2 mL of positive chemical amplification resist is dropped onto a 4 × 4 cm silicon wafer, and then immediately applied by spin coating at 1500 rpm using a spinner, and prebaked at 120 ° C. for 90 seconds. The resist film with a film thickness of about 300 nm was obtained by removing. As the positive chemically amplified resist, FEP-171 resist manufactured by Fuji Film Electronics Materials Co., Ltd. was used.
(2) Measurement of film thickness: The resist film thickness was measured by digging a groove having a width of about 1 mm in the resist and using a stylus type step gauge. This was the film thickness immediately after resist application.
(3) Antistatic film formation: 2 mL of an antistatic agent is dropped onto the coated resist surface, and after 1 minute, spin coating is performed at 800 rpm using a spinner to form an antistatic film having a film thickness of about 20 nm. Formed.
(4) Baking treatment: The substrate on which the antistatic film and the resist were laminated was heated on a hot plate at 80 ° C. for 90 seconds and then left in air at room temperature for 5 minutes.
(5) Re-bake treatment: After heating for resist post-exposure baking at 110 ° C./60 seconds, the resist was left in air at room temperature for 5 minutes.
(6) Detachment of antistatic agent: 10 mL of ultrapure water was dropped on the surface of the antistatic film after the re-bake treatment, left standing for 60 seconds, and then antistatic agent dissolved in ultrapure water with a spin coater at 800 rpm. Removed.
(7) Development: 2 mL of a 2.38 mass% tetramethylammonium hydroxide aqueous solution, which is a developer, is dropped on the resist surface after removal of the antistatic film, allowed to stand at room temperature for 60 seconds, and then developed with a spin coater at 200 rpm. While shaking off, 10 mL of ultrapure water was added dropwise, and water droplets remaining on the resist surface were further shaken off at 800 rpm.
(8) Re-measurement of film thickness: The resist film thickness after development was re-measured with a stylus type step gauge in a groove having a width of about 1 mm dug in the resist. This was taken as the resist film thickness after development.
(9) Measurement of film thickness value: The film thickness value of resist was obtained by subtracting the film thickness measured in (8) from the film thickness measured in (2).

6)帯電防止剤の表面抵抗の測定(測定条件F)
60×60mm四方のガラス基板(コーニング社製#1737)上に帯電防止剤2mLを滴下した後、スピンナーを用いて800rpmにて回転塗布し帯電防止剤の塗布膜を作製した。得られた、帯電防止剤の塗布膜を、表面抵抗測定器メガレスタMODEL HT−301(シシド静電気(株)社製)を用いて表面抵抗値を測定した。
6) Measurement of surface resistance of antistatic agent (measuring condition F)
2 mL of an antistatic agent was dropped onto a 60 × 60 mm square glass substrate (# 1737 manufactured by Corning), and then spin-coated at 800 rpm using a spinner to prepare an antistatic agent coating film. The resulting antistatic agent coating film was measured for surface resistance using a surface resistance measuring device Megaresta MODEL HT-301 (manufactured by Cicid Electric Co., Ltd.).

Figure 2008095060
Figure 2008095060

実施例1では、ポリペプチド構造を有する水溶性高分子を添加することで、比較例1に対して、現像時間を短くすることができる。実施例2から5では、界面活性剤により低接触角化でき良好な塗布性を付与することができ、かつポリペプチド構造を有する水溶性高分子を添加することで、ネガ型化学増幅系レジスト現像時間を短くすることができる。比較例1では、接触角が大きくスピンコートによる塗布では塗布不良が発生し、低接触角化しないと良好に塗布できない。比較例2および3では、界面活性剤の添加により、低接触角化でき塗布性が良好であり塗布不良は発生しなかったが、ネガ型化学増幅系レジストが現像液により溶解せず、現像不良が起こった。   In Example 1, the development time can be shortened compared to Comparative Example 1 by adding a water-soluble polymer having a polypeptide structure. In Examples 2 to 5, a negative chemical amplification resist development can be achieved by adding a water-soluble polymer having a polypeptide structure that can provide a low contact angle with a surfactant and give good coating properties. Time can be shortened. In Comparative Example 1, a contact angle is large and application by spin coating causes poor application, and it cannot be applied well unless the contact angle is lowered. In Comparative Examples 2 and 3, by adding a surfactant, the contact angle can be lowered and the coating property is good and the coating failure does not occur. However, the negative chemically amplified resist is not dissolved by the developer and the development failure Happened.

Figure 2008095060
Figure 2008095060

実施例1で用いたポリペプチド構造を有する水溶性高分子の分子量や由来するタンパク質原料の種類によらず、界面活性剤により低接触角化でき良好な塗布性を付与することができ、かつ、ネガ型化学増幅系レジスト現像時間を短くすることができる。   Regardless of the molecular weight of the water-soluble polymer having the polypeptide structure used in Example 1 and the type of protein raw material derived therefrom, the surfactant can have a low contact angle and can impart good coatability, and The negative chemical amplification resist development time can be shortened.

Figure 2008095060
添加剤H:ポリビニルメチルエーテル
添加剤I:ポリビニルピロリドン(Mw1300000)
添加剤J:ビニルピロリドン/ビニルカプロラクタム共重合体
添加剤K:ポリビニルカプロラクタム
添加剤L:ポリビニルピロリドン(Mw55,000)
添加剤M:ポリスチレンスルホン酸NH3(Mw200,000)
添加剤N:ポリアクリルアミド(Mw10,000)
添加剤O:ポリアクリル酸(Mw250,000)
Figure 2008095060
Additive H: Polyvinyl methyl ether Additive I: Polyvinylpyrrolidone (Mw 1300000)
Additive J: Vinylpyrrolidone / vinylcaprolactam copolymer additive K: Polyvinylcaprolactam additive L: Polyvinylpyrrolidone (Mw55,000)
Additive M: Polystyrenesulfonic acid NH 3 (Mw200,000)
Additive N: Polyacrylamide (Mw10,000)
Additive O: Polyacrylic acid (Mw250,000)

実施例12から14ではポリビニル構造を繰り返し構造として有する特定の水溶性高分子を含有することで、ネガ型化学増幅系レジスト現像時間を短くすることができる。
実施例15から24では、界面活性剤により低接触角化でき良好な塗布性を付与することができ、かつポリビニル構造を繰り返し構造として有する特定の水溶性高分子を含有することで、ネガ型化学増幅系レジスト現像時間を短くすることができる。
比較例4から7では、界面活性剤と水溶性高分子を含むことにより、低接触角化でき塗布性が良好であり塗布不良は発生しなかったが、ネガ型化学増幅系レジストが現像液により溶解ぜす、現像不良が起こった。
In Examples 12 to 14, the negative chemical amplification resist development time can be shortened by containing a specific water-soluble polymer having a polyvinyl structure as a repeating structure.
In Examples 15 to 24, by containing a specific water-soluble polymer having a polyvinyl structure as a repeating structure, the contact angle can be reduced by a surfactant and good coating properties can be imparted. The amplification system resist development time can be shortened.
In Comparative Examples 4 to 7, by containing a surfactant and a water-soluble polymer, the contact angle could be lowered and the coating property was good and no coating failure occurred. Dissolving and development failure occurred.

Figure 2008095060
Figure 2008095060

実施例25および26では、ポリペプチド構造を有する水溶性高分子(添加剤A)を添加することで、現像時間を短くすることができる。ポリ(5−スルホイソチアナフテン−1,3−ジイル)のみならず、ポリ(3−(3−チエニル)プロパンスルホン酸))およびスルホン化ポリアニリンにおいても、ポリペプチド構造を有する水溶性高分子またはポリビニル構造を繰り返し構造として有する特定の水溶性高分子を含有する帯電防止剤はレジストミキシングを起こしにくい。比較例8および9は、界面活性剤Pを含みレジスト基板に塗布できるが、ネガ型化学増幅系レジストが現像液により溶解せず、現像不良が起こった。     In Examples 25 and 26, the development time can be shortened by adding a water-soluble polymer (additive A) having a polypeptide structure. Not only poly (5-sulfoisothianaphthene-1,3-diyl) but also poly (3- (3-thienyl) propanesulfonic acid)) and sulfonated polyaniline, a water-soluble polymer having a polypeptide structure or An antistatic agent containing a specific water-soluble polymer having a polyvinyl structure as a repeating structure is unlikely to cause resist mixing. Comparative Examples 8 and 9 contained surfactant P and could be applied to a resist substrate, but the negative chemical amplification resist was not dissolved by the developer, resulting in poor development.

Figure 2008095060
Figure 2008095060

Figure 2008095060
Figure 2008095060

ポリペプチド構造を有する水溶性高分子またはポリビニル構造を繰り返し構造として有する特定の水溶性高分子を含有する帯電防止剤である実施例29および30のネガ型非化学増幅系レジストであるFox−12のTMAH現像時間と、帯電防止剤を使わない場合のTMAH現像時間はほぼ同等であるのに対して、比較例11のTMAH現像時間は短くなっており、ポリペプチド構造を有する水溶性高分子またはポリビニル構造を繰り返し構造として有する特定の水溶性高分子を含有する帯電防止剤によりレジストミキシングを抑制している。
実施例12は界面活性剤を含まないため、Fox−12に対する接触角は79°と高く、Fox−12へ塗布することが出来なかった。Fox-12のような塗布が困難なレジストには、界面活性剤が必要であり、レジストミキシングを防止するためには、ポリペプチド構造を有する水溶性高分子またはポリビニル構造を繰り返し構造として有する特定の水溶性高分子を含有する帯電防止剤が必要である。
Examples of Fox-12, a negative non-chemical amplification resist of Examples 29 and 30, which is an antistatic agent containing a water-soluble polymer having a polypeptide structure or a specific water-soluble polymer having a polyvinyl structure as a repeating structure The TMAH development time and the TMAH development time in the case where no antistatic agent is used are substantially the same, whereas the TMAH development time in Comparative Example 11 is shortened, and the water-soluble polymer having a polypeptide structure or polyvinyl Resist mixing is suppressed by an antistatic agent containing a specific water-soluble polymer having a structure as a repeating structure.
Since Example 12 did not contain a surfactant, the contact angle with Fox-12 was as high as 79 ° and could not be applied to Fox-12. A resist that is difficult to apply such as Fox-12 requires a surfactant. In order to prevent resist mixing, a water-soluble polymer having a polypeptide structure or a specific structure having a polyvinyl structure as a repeating structure is required. An antistatic agent containing a water-soluble polymer is required.

Figure 2008095060
Figure 2008095060

ポジ型化学増幅系レジストにおいてはレジストへの影響は膜減りとなって現れるところ、比較例3の帯電防止剤を用いると20nmの膜べり値があったが、実施例5で用いたポリペプチド構造を有する水溶性高分子を添加した帯電防止剤を用いることで膜べり値を16nmに低減できた。すなわち、本発明の帯電防止剤は、ポジ型化学増幅系レジストにおいても低接触角化したまま界面活性剤によるレジストへの影響を抑制できる。   In the positive chemical amplification resist, the influence on the resist appears as a film reduction. When the antistatic agent of Comparative Example 3 was used, the film shear value was 20 nm, but the polypeptide structure used in Example 5 The film shear value could be reduced to 16 nm by using an antistatic agent to which a water-soluble polymer having a water content was added. That is, the antistatic agent of the present invention can suppress the influence of the surfactant on the resist while maintaining a low contact angle even in a positive chemical amplification resist.

実施例31
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、アルキルジフェニルエーテルジスルホン酸(添加剤Q)0.075質量部、加水分解コラーゲン(添加剤A)0.2質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、下記の方法により電子線描画を行いレジストパターン形成評価を行った。
Example 31
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 part by mass, alkyldiphenyl ether disulfonic acid (additive Q) 0.075 part by mass, hydrolyzed collagen (additive A) 0.2 part by mass are dissolved in water, and the total amount Was adjusted to pH 4.5 by adding ammonia water, and water was further added to prepare an antistatic agent with a total amount of 100 parts by mass.
Using the obtained antistatic agent, electron beam drawing was performed by the following method to evaluate resist pattern formation.

電子線描画によるレジストパターン形成評価の方法は以下の通りである。
(1)レジスト膜形成:レジスト膜は、2×2cmシリコンウェハー上にネガ型化学増幅系レジスト0.2mL滴下し、スピンナーを用いて2000rpm、60秒にて回転塗布し作製した。塗布後、ホットプレートにてプリベーク105℃、60秒間行い溶媒を除去し、大気中常温下で5分間冷却することで膜厚約300nmのレジスト膜を得た。ネガ型化学増幅系レジストは、ロームアンドハース電子材料社製マイクロポジット SAL−601−SR2 E−ビームレジストを用いた。
(2)帯電防止膜形成:塗布された上記レジスト表面に帯電防止剤2mLを滴下し、10分経過後、スピンナーを用いて、1500rpmにて回転塗布を行い、レジスト上に膜厚約20nmの帯電防止膜を形成した。
(3)ベーク処理:帯電防止膜とレジストが積層された基板をホットプレートにて、75℃、180秒間加熱後、空気中常温下で10分放置した。
(4)電子線描画:電子線描画は、日本電子製JBX−6000FSを用いて行った。電子線露光は、電流量100pA、DOSE量5〜52.5μC/cm2の条件で、ラインアンドスペースデザイン(L/S)の細線を描画した。L/Sは、長さ50μm、ピッチ幅200nm、500nm、1000nmで、ラインとスペースが同じ幅となるデザインを設定した。
(5)帯電防止膜の剥離:ベーク処理後の帯電防止膜表面に純水中に30秒間静置した後に取り出し、窒素ガスにて乾燥することで、帯電防止膜を除去した。
(6)再ベーク処理:レジストのポストエクスポージャーベーク条件となる加熱を、115℃/60秒間行った後、空気中常温下で5分放置した。
(7)現像:現像液である2.38質量%テトラメチルアンモニウムヒドロキサイド水溶液に(6)で得られたレジスト付き基板を5分間浸漬し現像を行ない、さらに純水中に30秒間浸漬することで基板のリンスを行なった。
(8)現像で得られたレジストパターンをSEM観察することで、電子線描画によるレジストパターン形成評価を行った。
The resist pattern formation evaluation method by electron beam drawing is as follows.
(1) Resist film formation: A resist film was prepared by dropping 0.2 mL of a negative chemical amplification resist on a 2 × 2 cm silicon wafer and spin-coating it at 2000 rpm for 60 seconds using a spinner. After coating, the solvent was removed by pre-baking at 105 ° C. for 60 seconds on a hot plate, and the resist film having a film thickness of about 300 nm was obtained by cooling in the atmosphere at room temperature for 5 minutes. The negative chemical amplification type resist used was Microposit SAL-601-SR2 E-beam resist manufactured by Rohm and Haas Electronic Materials.
(2) Antistatic film formation: 2 mL of an antistatic agent was dropped on the coated resist surface, and after 10 minutes, spin coating was performed at 1500 rpm using a spinner to charge the resist with a film thickness of about 20 nm. A prevention film was formed.
(3) Baking treatment: The substrate on which the antistatic film and the resist were laminated was heated on a hot plate at 75 ° C. for 180 seconds and then left in air at room temperature for 10 minutes.
(4) Electron beam drawing: Electron beam drawing was performed using JBX-6000FS manufactured by JEOL. In electron beam exposure, fine lines of a line and space design (L / S) were drawn under the conditions of a current amount of 100 pA and a DOSE amount of 5 to 52.5 μC / cm 2 . L / S was set to have a length of 50 μm, a pitch width of 200 nm, 500 nm, and 1000 nm, and a line and space having the same width.
(5) Detachment of antistatic film: The antistatic film was removed by leaving it on the surface of the antistatic film after baking for 30 seconds after leaving it in pure water and drying it with nitrogen gas.
(6) Re-bake treatment: After heating for resist post-exposure baking conditions at 115 ° C./60 seconds, the resist was left at room temperature in air for 5 minutes.
(7) Development: The resist-coated substrate obtained in (6) is immersed in a 2.38 mass% tetramethylammonium hydroxide aqueous solution as a developer for 5 minutes for development, and further immersed in pure water for 30 seconds. Rinse.
(8) Resist pattern formation evaluation by electron beam drawing was performed by observing the resist pattern obtained by development by SEM.

比較例13
ポリ(5−スルホイソチアナフテン−1,3−ジイル)0.6質量部、アルキルジフェニルエーテルジスルホン酸(添加剤Q)0.075質量部を水に溶解し、全量を80質量部とし、アンモニア水を添加することでpH4.5に調整後、さらに水を加え、全量で100質量部として帯電防止剤を調製した。
得られた帯電防止剤を用いて、実施例31と同様の方法により電子線描画を行いレジストパターン形成評価を行った。
Comparative Example 13
Poly (5-sulfoisothianaphthene-1,3-diyl) 0.6 parts by mass and alkyl diphenyl ether disulfonic acid (additive Q) 0.075 parts by mass are dissolved in water, the total amount is 80 parts by mass, and ammonia water is added. After adjusting the pH to 4.5, water was further added to prepare an antistatic agent in a total amount of 100 parts by mass.
Using the resulting antistatic agent, electron beam drawing was performed in the same manner as in Example 31 to evaluate resist pattern formation.

その結果、比較例13で得られた帯電防止剤を用いた場合には、光学顕微鏡でのトップビュー観察において、電子線照射部分以外にもレジストの残存箇所が多く見られ、またL/Sパターンの描画箇所ではスペース部分がなく、所望するレジストパターンは得られなかった。一方、実施例31で得られた帯電防止剤を用いた場合には、所望するラインアンドスペースのレジストパターンが得られた。そして、レジスト断面をSEM観察したところ、最適DOSE量は、250μmL/Sでは10〜14μC/cm2であった。 As a result, when the antistatic agent obtained in Comparative Example 13 was used, in the top view observation with an optical microscope, there were many remaining resist portions in addition to the electron beam irradiated portions, and the L / S pattern There was no space in the drawing portion, and the desired resist pattern could not be obtained. On the other hand, when the antistatic agent obtained in Example 31 was used, a desired line and space resist pattern was obtained. When the resist cross section was observed by SEM, the optimum DOSE amount was 10 to 14 μC / cm 2 at 250 μmL / S.

Claims (26)

水溶性導電性高分子、溶媒及び水溶性高分子を含む帯電防止剤。   An antistatic agent comprising a water-soluble conductive polymer, a solvent, and a water-soluble polymer. 水溶性高分子がポリペプチド構造を有する水溶性高分子である請求項1に記載の帯電防止剤。   The antistatic agent according to claim 1, wherein the water-soluble polymer is a water-soluble polymer having a polypeptide structure. 水溶性高分子が式(10)
Figure 2008095060
(式中、P1は、次式P1(1)
Figure 2008095060
または次式P1(2)
Figure 2008095060
を表し、P1が前記P1(1)のとき、P2は次式−C(=O)−を表し、かつZはメチレン基−CH(−R)−を表していて、このとき式(10)は、アミノ酸残基(10)a
Figure 2008095060
(式中、R,R’は、アミノ酸残基を構成する置換基を表わし、R’が水素原子のときは、Rは独立してアミノ酸残基を構成する置換基を表し、R’が水素原子でないときは、RとR’は協力して、水酸基で置換されていてもよい含窒素環を形成して、アミノ酸残基(10)aはアミノ酸残基(10)a’
Figure 2008095060
(式中、Waは、式−(CRab)n−で示されるポリメチレン基を表し、置換基Ra,Rbはそれぞれ独立して水素原子、アルキル基、または水酸基を表わし、nは2〜8の整数を表す。)であってもよい。)で示される繰り返し構造を示し、
1が前記P1(2)のとき、Z=−O−、またはZ=−N(−Q)−であり、
前記Z=−O−のとき、P2=アルキル基であって、式(10)は、アルコキシエチレン残基(10)b
Figure 2008095060
で示される繰り返し構造を示し、
前記Z=−N(−Q)−のとき、P2とQとは協力してラクタム環基を形成して、式(10)は、アミドエチレン残基(10)c
Figure 2008095060
(式中、Wcは式−(CRcd)n−で示されるポリメチレン基を表し、置換基Rc,Rdはそれぞれ独立して水素原子、またはアルキル基を表わし、nは2〜8の整数を表す。)で示される繰り返し構造を示す。)で示される化学構造を繰り返し構造として有する、請求項1に記載の帯電防止剤。
The water-soluble polymer is of formula (10)
Figure 2008095060
(Where P 1 is the following formula P 1 (1)
Figure 2008095060
Or the following formula P 1 (2)
Figure 2008095060
When P 1 is P 1 (1), P 2 represents the following formula —C (═O) —, and Z represents a methylene group —CH (—R) —, where (10) is an amino acid residue (10) a
Figure 2008095060
(In the formula, R and R ′ represent a substituent constituting an amino acid residue, and when R ′ is a hydrogen atom, R independently represents a substituent constituting an amino acid residue, and R ′ represents a hydrogen atom. When not an atom, R and R ′ cooperate to form a nitrogen-containing ring optionally substituted with a hydroxyl group, and amino acid residue (10) a is converted to amino acid residue (10) a ′.
Figure 2008095060
(Wherein W a represents a polymethylene group represented by the formula — (CR a R b ) n—, and the substituents R a and R b each independently represent a hydrogen atom, an alkyl group, or a hydroxyl group, and n Represents an integer of 2 to 8. ) Showing the repeating structure
When P 1 is P 1 (2), Z = —O— or Z = —N (—Q) —,
When Z = —O—, P 2 = alkyl group, and the formula (10) is an alkoxyethylene residue (10) b
Figure 2008095060
The repeating structure shown by
When Z = —N (—Q) —, P 2 and Q cooperate to form a lactam ring group, and the formula (10) is an amidoethylene residue (10) c
Figure 2008095060
Wherein W c represents a polymethylene group represented by the formula — (CR c R d ) n—, the substituents R c and R d each independently represent a hydrogen atom or an alkyl group, and n represents 2 to 2 Represents an integer of 8). The antistatic agent of Claim 1 which has a chemical structure shown by this as a repeating structure.
水溶性高分子が、前記式(10)a、(10)b、または(10)cで示される繰り返し構造のうち、少なくとも1種を分子内に有する水溶性高分子である請求項1に記載の帯電防止剤。   The water-soluble polymer is a water-soluble polymer having at least one of the repeating structures represented by the formula (10) a, (10) b, or (10) c in the molecule. Antistatic agent. 水溶性高分子がアミノ酸残基(10)a
Figure 2008095060
を繰り返し構造とするポリペプチド構造を有する水溶性高分子である請求項1〜4のいずれか1項に記載の帯電防止剤。
Water-soluble polymer is amino acid residue (10) a
Figure 2008095060
The antistatic agent according to any one of claims 1 to 4, which is a water-soluble polymer having a polypeptide structure having a repeating structure.
水溶性高分子が、式(10)’
Figure 2008095060
(式中、Y=−O−のとき、P2=アルキル基であって、式(10)’は、アルコキシエチレン残基(10)b
Figure 2008095060
で示される繰り返し構造を示し、
Y=−N(−Q)−のとき、P2とQとは協力してラクタム環基を形成して、式(10)’は、アミドエチレン残基(10)c
Figure 2008095060
(式中、Wcは式−(CRcd)n−で示されるポリメチレン基を表し、置換基Rc,Rdはそれぞれ独立して水素原子、またはアルキル基を表わし、nは2〜8の整数を表す。)で示される繰り返し構造を示す。)で示されるポリビニル構造を繰り返し構造として有する水溶性高分子である請求項1、3または4に記載の帯電防止剤。
The water-soluble polymer is represented by the formula (10) ′
Figure 2008095060
(In the formula, when Y = —O—, P 2 = alkyl group, and the formula (10) ′ represents an alkoxyethylene residue (10) b
Figure 2008095060
The repeating structure shown by
When Y = —N (—Q) —, P 2 and Q cooperate to form a lactam ring group, and the formula (10) ′ represents an amidoethylene residue (10) c
Figure 2008095060
Wherein W c represents a polymethylene group represented by the formula — (CR c R d ) n—, the substituents R c and R d each independently represent a hydrogen atom or an alkyl group, and n represents 2 to 2 Represents an integer of 8). The antistatic agent according to claim 1, 3 or 4, which is a water-soluble polymer having a polyvinyl structure represented by the formula (II) as a repeating structure.
ポリペプチド構造を有する水溶性高分子が、タンパク質加水分解物である請求項2〜5のいずれか1項に記載の帯電防止剤。   The antistatic agent according to any one of claims 2 to 5, wherein the water-soluble polymer having a polypeptide structure is a protein hydrolysate. 水溶性高分子が、ポリペプチド、ポリビニルピロリドン、ポリビニルカプロラクタム、ポリビニルアルキルエーテルからなる群のうち、少なくとも1種の水溶性高分子である請求項1、3、または4に記載の帯電防止剤。   The antistatic agent according to claim 1, 3, or 4, wherein the water-soluble polymer is at least one water-soluble polymer selected from the group consisting of polypeptides, polyvinyl pyrrolidone, polyvinyl caprolactam, and polyvinyl alkyl ethers. 水溶性高分子が、ポリビニルピロリドンである請求項8に記載の帯電防止剤。   The antistatic agent according to claim 8, wherein the water-soluble polymer is polyvinylpyrrolidone. 水溶性高分子が、重量平均分子量100000以上のポリビニルピロリドンである請求項9に記載の帯電防止剤。   The antistatic agent according to claim 9, wherein the water-soluble polymer is polyvinylpyrrolidone having a weight average molecular weight of 100,000 or more. 更に、界面活性剤を含有する請求項1〜10のいずれか1項に記載の帯電防止剤。   Furthermore, the antistatic agent of any one of Claims 1-10 containing surfactant. 水溶性導電性高分子0.1〜20質量%、ポリペプチド構造を有する水溶性高分子0.0001〜10質量%及び溶媒70.0〜99.8質量%を含む請求項1、2、3、4、5、または7に記載の帯電防止剤。   The water-soluble conductive polymer (0.1-20% by mass), the water-soluble polymer having a polypeptide structure (0.0001-10% by mass) and the solvent (70.0-99.8% by mass) according to claim 1, 2, 3, 4, 5, or 7 The antistatic agent as described. 水溶性導電性高分子0.1〜20質量%、ポリビニル構造を有する水溶性高分子0.0001〜10質量%及び溶媒70.0〜99.8質量%を含む請求項1、3、4、6、8、9、または10に記載の帯電防止剤。   The water-soluble conductive polymer is 0.1 to 20% by mass, the water-soluble polymer having a polyvinyl structure is 0.0001 to 10% by mass, and the solvent is 70.0 to 99.8% by mass. The claim 1, 3, 4, 6, 8, 9, or 10 The antistatic agent as described in. 水溶性導電性高分子0.1〜20質量%、ポリペプチド構造を有する水溶性高分子を0.0001〜10質量%、界面活性剤0.0001〜2質量%及び溶媒68.0〜99.8質量%含む請求項11に記載の帯電防止剤。   The water-soluble conductive polymer is 0.1 to 20% by mass, the water-soluble polymer having a polypeptide structure is 0.0001 to 10% by mass, the surfactant is 0.0001 to 2% by mass, and the solvent is 68.0 to 99.8% by mass. Antistatic agent. 水溶性導電性高分子0.1〜20質量%、ポリビニル構造を有する水溶性高分子を0.0001〜10質量%、界面活性剤0.0001〜2質量%及び溶媒68.0〜99.8質量%含む請求項11に記載の帯電防止剤。   The charge according to claim 11, comprising 0.1 to 20% by mass of a water-soluble conductive polymer, 0.0001 to 10% by mass of a water-soluble polymer having a polyvinyl structure, 0.0001 to 2% by mass of a surfactant and 68.0 to 99.8% by mass of a solvent. Inhibitor. 水溶性導電性高分子がブレンステッド酸基またはその塩を有するπ共役系導電性高分子である請求項1〜15のいずれか1項に記載の帯電防止剤。   The antistatic agent according to any one of claims 1 to 15, wherein the water-soluble conductive polymer is a π-conjugated conductive polymer having a Bronsted acid group or a salt thereof. ブレンステッド酸基がスルホン酸基である請求項16に記載の帯電防止剤。   The antistatic agent according to claim 16, wherein the Bronsted acid group is a sulfonic acid group. 水溶性導電性高分子が、下記式(1)
Figure 2008095060
(式中、m、nは、それぞれ独立して、0または1を表わす。Xは、S、N−R1(R1は水素原子、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和の炭化水素基、フェニル基及び置換フェニル基からなる群から選択される基を表わす。)、またはOのいずれかを表わし、Aは、−B−SO3 -+で表わされる置換基を少なくとも1つ有し、かつその他の置換基を有していてもよい炭素数1〜4のアルキレンまたはアルケニレン基(二重結合は2つ以上有していてもよい。)を表わし、Bは、−(CH2p−(O)q−(CH2r−を表わし、p及びrは、それぞれ独立して、0または1〜3の整数を表わし、qは0または1を表わす。M+は、水素イオン、アルカリ金属イオン、または第4級アンモニウムイオンを表わす。)で示される化学構造を含む請求項17に記載の帯電防止剤。
The water-soluble conductive polymer is represented by the following formula (1)
Figure 2008095060
(In the formula, m and n each independently represents 0 or 1. X represents S, N—R 1 (R 1 is a hydrogen atom, linear or branched saturated having 1 to 20 carbon atoms) or unsaturated hydrocarbon group, a group selected from phenyl and the group consisting of substituted phenyl group), or represents one of O, a is, -B-SO 3 -. substituted represented by M + Represents an alkylene or alkenylene group having 1 to 4 carbon atoms which may have at least one group and may have other substituents (which may have two or more double bonds); Represents — (CH 2 ) p — (O) q — (CH 2 ) r —, p and r each independently represent an integer of 0 or 1-3, and q represents 0 or 1 .M + represents a hydrogen ion, an alkali metal ion or a quaternary ammonium ion The antistatic agent according to claim 17 comprising a chemical structure represented by).
水溶性導電性高分子が、下記式(2)
Figure 2008095060
(式中、R2〜R4は、それぞれ独立して、水素原子、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和の炭化水素基、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和のアルコキシ基、水酸基、ハロゲン原子、ニトロ基、シアノ基、トリハロメチル基、フェニル基、置換フェニル基、または−B−SO3 -+基を表わす。Bは、−(CH2p−(O)q−(CH2r−を表わし、p及びrは、それぞれ独立して、0または1〜3の整数を表わし、qは0または1を表わす。M+は、水素イオン、アルカリ金属イオン、または第4級アンモニウムイオンを表わす。)で示される化学構造を含む請求項17に記載の帯電防止剤。
The water-soluble conductive polymer is represented by the following formula (2)
Figure 2008095060
(In the formula, R 2 to R 4 are each independently a hydrogen atom, a linear or branched saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, or a straight chain having 1 to 20 carbon atoms. Or a branched saturated or unsaturated alkoxy group, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a trihalomethyl group, a phenyl group, a substituted phenyl group, or a —B—SO 3 M + group, where B is - (CH 2) p - ( O) q - (CH 2) r - represents, p and r each independently represents 0 or an integer of 1 to 3, q represents 0 or 1 .M The antistatic agent according to claim 17, comprising a chemical structure represented by: + represents a hydrogen ion, an alkali metal ion, or a quaternary ammonium ion.
水溶性導電性高分子が、下記式(3)
Figure 2008095060
(式中、R5は、水素原子、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和の炭化水素基、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和のアルコキシ基、水酸基、ハロゲン原子、ニトロ基、シアノ基、トリハロメチル基、フェニル基、置換フェニル基、または−B−SO3 -+基を表わし、Bは、−(CH2p−(O)q−(CH2r−を表わし、p及びrは、それぞれ独立して、0または1〜3の整数を表わし、qは0または1を表わす。M+は、水素イオン、アルカリ金属イオン、または第4級アンモニウムイオンを表わす。)で示される化学構造を含む請求項17に記載の帯電防止剤。
The water-soluble conductive polymer is represented by the following formula (3)
Figure 2008095060
(In the formula, R 5 is a hydrogen atom, a linear or branched saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, or a linear or branched saturated or unsaturated group having 1 to 20 carbon atoms. It represents M + group, B is - - alkoxy group, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a trihalomethyl group, a phenyl group, a substituted phenyl group or -B-SO 3, (CH 2 ) p - ( O) q — (CH 2 ) r —, wherein p and r each independently represents an integer of 0 or 1 to 3, q represents 0 or 1. M + represents a hydrogen ion or an alkali metal The antistatic agent according to claim 17, comprising a chemical structure represented by: an ion or a quaternary ammonium ion.
水溶性導電性高分子が、下記式(4)
Figure 2008095060
(式中、R6とR7は、それぞれ独立して、水素原子、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和の炭化水素基、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和のアルコキシ基、水酸基、ハロゲン原子、ニトロ基、シアノ基、トリハロメチル基、フェニル基、置換フェニル基、または−B−SO3 -+基を表わし、R8は、水素原子、炭素数1〜20の直鎖状もしくは分岐状の飽和または不飽和の炭化水素基、フェニル基及び置換フェニル基からなる群から選択される一価の基を表わし、Bは、−(CH2p−(O)q−(CH2r−を表わし、p及びrは、それぞれ独立して、0または1〜3の整数を表わし、qは0または1を表わす。M+は、水素イオン、アルカリ金属イオン、または第4級アンモニウムイオンを表わす。)で示される化学構造を含む請求項17に記載の帯電防止剤。
The water-soluble conductive polymer is represented by the following formula (4)
Figure 2008095060
(In the formula, R 6 and R 7 are each independently a hydrogen atom, a linear or branched saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, or a straight chain having 1 to 20 carbon atoms. or branched, saturated or unsaturated alkoxy group, a hydroxyl group, a halogen atom, a nitro group, a cyano group, a trihalomethyl group, a phenyl group, a substituted phenyl group or -B-SO 3, - represents M + group, R 8 is Represents a monovalent group selected from the group consisting of a hydrogen atom, a straight-chain or branched saturated or unsaturated hydrocarbon group having 1 to 20 carbon atoms, a phenyl group and a substituted phenyl group; (CH 2 ) p — (O) q — (CH 2 ) r —, wherein p and r each independently represent an integer of 0 or 1-3, and q represents 0 or 1. M + Is hydrogen ion, alkali metal ion, or quaternary ammonia The antistatic agent according to claim 17 comprising a chemical structure represented by representing the ion.).
水溶性導電性高分子が、5−スルホイソチアナフテン−1,3−ジイルを含む重合体である請求項19に記載の帯電防止剤。   The antistatic agent according to claim 19, wherein the water-soluble conductive polymer is a polymer containing 5-sulfoisothianaphthene-1,3-diyl. 請求項1〜22のいずれか1項に記載の帯電防止剤を用いて得られる帯電防止膜。   The antistatic film obtained using the antistatic agent of any one of Claims 1-22. 請求項23に記載の帯電防止膜で被覆して得られる被覆物品。   A coated article obtained by coating with the antistatic film according to claim 23. 被覆表面が下地基板に塗布した感光性組成物もしくは感荷電粒子線組成物である請求項24に記載の被覆物品。   The coated article according to claim 24, wherein the coated surface is a photosensitive composition or a charged particle beam composition coated on a base substrate. 請求項23に記載の帯電防止膜を用いることを特徴とするパターン形成方法。   The pattern formation method using the antistatic film of Claim 23.
JP2007028883A 2006-02-08 2007-02-08 Antistatic agent, antistatic film and antistatic film coated article Active JP4964608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007028883A JP4964608B2 (en) 2006-02-08 2007-02-08 Antistatic agent, antistatic film and antistatic film coated article

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2006031587 2006-02-08
JP2006031587 2006-02-08
JP2006038436 2006-02-15
JP2006038436 2006-02-15
JP2006248758 2006-09-13
JP2006248758 2006-09-13
JP2007028883A JP4964608B2 (en) 2006-02-08 2007-02-08 Antistatic agent, antistatic film and antistatic film coated article

Related Child Applications (3)

Application Number Title Priority Date Filing Date
JP2008278239A Division JP4236697B1 (en) 2006-02-08 2008-10-29 Antistatic agent, antistatic film and antistatic film coated article
JP2008278238A Division JP4293567B2 (en) 2006-02-08 2008-10-29 Antistatic agent, antistatic film and antistatic film coated article
JP2009031403A Division JP4610020B2 (en) 2006-02-08 2009-02-13 Antistatic agent, antistatic film and antistatic film coated article

Publications (3)

Publication Number Publication Date
JP2008095060A true JP2008095060A (en) 2008-04-24
JP2008095060A5 JP2008095060A5 (en) 2008-12-18
JP4964608B2 JP4964608B2 (en) 2012-07-04

Family

ID=39378248

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007028883A Active JP4964608B2 (en) 2006-02-08 2007-02-08 Antistatic agent, antistatic film and antistatic film coated article

Country Status (1)

Country Link
JP (1) JP4964608B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021359A1 (en) * 2008-08-20 2010-02-25 日本電子株式会社 Method for improving resist sensitivity
JP2011170207A (en) * 2010-02-19 2011-09-01 Jeol Ltd Method for producing microstructure
JP2011175999A (en) * 2010-02-23 2011-09-08 Showa Denko Kk Method for improving resist sensitivity
JP2016080964A (en) * 2014-10-21 2016-05-16 三菱レイヨン株式会社 Method for forming resist pattern, method for producing patterned substrate, and patterned substrate
JP2016122028A (en) * 2014-12-24 2016-07-07 三菱レイヨン株式会社 Resist pattern formation method
JPWO2014017540A1 (en) * 2012-07-24 2016-07-11 三菱レイヨン株式会社 Conductor, conductive composition, and laminate
JP2016135839A (en) * 2014-04-23 2016-07-28 東ソー株式会社 Conductive polymer aqueous solution, conductive polymer film, and article coated therewith
JP2017039927A (en) * 2015-08-20 2017-02-23 三菱レイヨン株式会社 Conductive composition, conductor and method for forming resist pattern
CN114945635A (en) * 2020-01-29 2022-08-26 三菱化学株式会社 Conductive composition, resist coating material, resist, and method for forming resist pattern

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233365A (en) * 1993-09-24 1995-09-05 Eastman Kodak Co Antistatic composition
JPH0892279A (en) * 1994-09-21 1996-04-09 Agency Of Ind Science & Technol Straight-chain surfactin
JPH08201979A (en) * 1995-01-24 1996-08-09 Konica Corp Antistatic composition, plastic film with antistatic layer coated with same and silver halide photographic sensitive material
US5560870A (en) * 1992-06-17 1996-10-01 Fujitsu Limited Composition for forming an electrically conductive layer to be used in patterning
JPH0913011A (en) * 1995-06-28 1997-01-14 Teika Corp Polysaccharide-based antistatic agent
JPH0952712A (en) * 1995-08-17 1997-02-25 Mitsubishi Materials Corp Production of fine powder of antimony-doped tin oxide and transparent conductive coating material
JPH09241514A (en) * 1996-03-05 1997-09-16 Showa Denko Kk Water-soluble collagen composition
JPH10195422A (en) * 1997-01-09 1998-07-28 Mitsubishi Paper Mills Ltd Antistatic agent and antistatic film
JPH10306098A (en) * 1997-05-08 1998-11-17 Tadayuki Imanaka Chemosynthesis of cyclic lipopeptide compound and cyclic lipopeptide
JPH11189746A (en) * 1997-12-26 1999-07-13 Showa Denko Kk Antistatic treating agent, its utilization and article coated therewith
JP2002226721A (en) * 2001-01-29 2002-08-14 Mitsubishi Rayon Co Ltd Conductive composition, conductor, and method of forming it
JP2003140305A (en) * 2001-10-29 2003-05-14 Eastman Kodak Co Imaging member
JP2003261749A (en) * 2001-12-26 2003-09-19 Eastman Kodak Co Composition containing electronically conductive polymer particle
JP2004099678A (en) * 2002-09-06 2004-04-02 Showa Denko Kk Antistatic agent, antistatic film, and coated article
JP2005008837A (en) * 2003-06-23 2005-01-13 Ichimaru Pharcos Co Ltd Antistatic agent containing polyglutamic acid or salt thereof
WO2005113678A1 (en) * 2004-05-21 2005-12-01 Showa Denko K.K. Electroconductive composition and application thereof
JP2006077236A (en) * 2004-08-09 2006-03-23 Showa Denko Kk Antistatic agent, antistatic film, and article coated with the antistatic film

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5560870A (en) * 1992-06-17 1996-10-01 Fujitsu Limited Composition for forming an electrically conductive layer to be used in patterning
JPH07233365A (en) * 1993-09-24 1995-09-05 Eastman Kodak Co Antistatic composition
JPH0892279A (en) * 1994-09-21 1996-04-09 Agency Of Ind Science & Technol Straight-chain surfactin
JPH08201979A (en) * 1995-01-24 1996-08-09 Konica Corp Antistatic composition, plastic film with antistatic layer coated with same and silver halide photographic sensitive material
JPH0913011A (en) * 1995-06-28 1997-01-14 Teika Corp Polysaccharide-based antistatic agent
JPH0952712A (en) * 1995-08-17 1997-02-25 Mitsubishi Materials Corp Production of fine powder of antimony-doped tin oxide and transparent conductive coating material
JPH09241514A (en) * 1996-03-05 1997-09-16 Showa Denko Kk Water-soluble collagen composition
JPH10195422A (en) * 1997-01-09 1998-07-28 Mitsubishi Paper Mills Ltd Antistatic agent and antistatic film
JPH10306098A (en) * 1997-05-08 1998-11-17 Tadayuki Imanaka Chemosynthesis of cyclic lipopeptide compound and cyclic lipopeptide
JPH11189746A (en) * 1997-12-26 1999-07-13 Showa Denko Kk Antistatic treating agent, its utilization and article coated therewith
JP2002226721A (en) * 2001-01-29 2002-08-14 Mitsubishi Rayon Co Ltd Conductive composition, conductor, and method of forming it
JP2003140305A (en) * 2001-10-29 2003-05-14 Eastman Kodak Co Imaging member
JP2003261749A (en) * 2001-12-26 2003-09-19 Eastman Kodak Co Composition containing electronically conductive polymer particle
JP2004099678A (en) * 2002-09-06 2004-04-02 Showa Denko Kk Antistatic agent, antistatic film, and coated article
JP2005008837A (en) * 2003-06-23 2005-01-13 Ichimaru Pharcos Co Ltd Antistatic agent containing polyglutamic acid or salt thereof
WO2005113678A1 (en) * 2004-05-21 2005-12-01 Showa Denko K.K. Electroconductive composition and application thereof
JP2006077236A (en) * 2004-08-09 2006-03-23 Showa Denko Kk Antistatic agent, antistatic film, and article coated with the antistatic film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178281B2 (en) 2008-08-20 2012-05-15 Showa Denko K.K. Method for improving sensitivity of resist
JP5291713B2 (en) * 2008-08-20 2013-09-18 日本電子株式会社 Resist sensitivity improvement method
WO2010021359A1 (en) * 2008-08-20 2010-02-25 日本電子株式会社 Method for improving resist sensitivity
JP2011170207A (en) * 2010-02-19 2011-09-01 Jeol Ltd Method for producing microstructure
JP2011175999A (en) * 2010-02-23 2011-09-08 Showa Denko Kk Method for improving resist sensitivity
US11145432B2 (en) 2012-07-24 2021-10-12 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
JPWO2014017540A1 (en) * 2012-07-24 2016-07-11 三菱レイヨン株式会社 Conductor, conductive composition, and laminate
US12073956B2 (en) 2012-07-24 2024-08-27 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
US10096395B2 (en) 2012-07-24 2018-10-09 Mitsubishi Chemical Corporation Conductor, conductive composition and laminate
JP2016135839A (en) * 2014-04-23 2016-07-28 東ソー株式会社 Conductive polymer aqueous solution, conductive polymer film, and article coated therewith
JP2016080964A (en) * 2014-10-21 2016-05-16 三菱レイヨン株式会社 Method for forming resist pattern, method for producing patterned substrate, and patterned substrate
JP2016122028A (en) * 2014-12-24 2016-07-07 三菱レイヨン株式会社 Resist pattern formation method
JP7087265B2 (en) 2015-08-20 2022-06-21 三菱ケミカル株式会社 Method for Forming Conductive Composition, Conductor and Resist Pattern
JP2017039927A (en) * 2015-08-20 2017-02-23 三菱レイヨン株式会社 Conductive composition, conductor and method for forming resist pattern
CN114945635A (en) * 2020-01-29 2022-08-26 三菱化学株式会社 Conductive composition, resist coating material, resist, and method for forming resist pattern

Also Published As

Publication number Publication date
JP4964608B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4293567B2 (en) Antistatic agent, antistatic film and antistatic film coated article
JP4964608B2 (en) Antistatic agent, antistatic film and antistatic film coated article
US9023247B2 (en) Antistatic treatment agent, and antistatic film, coated article and pattern forming method using the agent
JP5291713B2 (en) Resist sensitivity improvement method
JP4947683B2 (en) Antistatic agent, antistatic film and antistatic film coated article
JP4040938B2 (en) Antistatic treatment agent, antistatic film and coated article

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081029

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081029

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20081029

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100104

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Ref document number: 4964608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350