[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008086077A - 鉄道車両駆動制御装置 - Google Patents

鉄道車両駆動制御装置 Download PDF

Info

Publication number
JP2008086077A
JP2008086077A JP2006260815A JP2006260815A JP2008086077A JP 2008086077 A JP2008086077 A JP 2008086077A JP 2006260815 A JP2006260815 A JP 2006260815A JP 2006260815 A JP2006260815 A JP 2006260815A JP 2008086077 A JP2008086077 A JP 2008086077A
Authority
JP
Japan
Prior art keywords
overcurrent
current
power conversion
detection means
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006260815A
Other languages
English (en)
Inventor
Hideyuki Shimizu
秀幸 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006260815A priority Critical patent/JP2008086077A/ja
Publication of JP2008086077A publication Critical patent/JP2008086077A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

【課題】平滑コンデンサへの過渡的な電流を不必要に過電流検出して電動機回路開閉器を
開放することを防止できる鉄道車両駆動制御装置を提供することを目的とする。
【解決手段】電源電圧を任意の電圧と任意の周波数のn相交流電圧(nは交流の相数を表
す任意の数)に変換して車両を駆動する永久磁石電動機に交流電力を供給する電力変換手
段と、前記電力変換手段の各相のアームまたはスイッチング素子に流れる電流を検出する
電流検出手段と、前記電流検出手段の出力を入力として過電流を検出する過電流検出手段
を備え、前記過電流検出手段は、前記電流検出手段の出力と比較して過電流を検出する電
流の判別値について、前記電力変換手段が動作している場合と停止している場合とで、過
電流を検出する電流の判別値を変更することを特徴とする鉄道車両駆動制御装置。
【選択図】図1

Description

本発明は、電動機を駆動源とした鉄道車両の駆動を制御するための、鉄道車両駆動制御装
置に関するものである。
従来技術の鉄道車両駆動制御装置の構成を図49に示す。
1は直流電源である架線、2は集電器、3は直流回路遮断器、4は直流回路開閉器、5は
充電用開閉器、6は充電回路抵抗器、7は平滑リアクトル、8は車輪、9は帰線であるレ
ール、10は電力変換手段、12はチョッパ回路である第2の電力変換回路、13A、1
3Bはチョッパ回路のスイッチング素子、15は平滑コンデンサ、16は直流電圧検出手
段、21は車両を駆動する永久磁石電動機、22はインバータ回路である第1の電力変換
回路、23U〜23Zはインバータ回路のスイッチング素子、25は電力変換手段と永久
磁石電動機との間の回路の電動機回路開閉器、26U、26Wは電動機回路に流れる電流
を検出するための電流検出手段である。
チョッパ回路である第2の電力変換回路12は、スイッチング素子13A〜13Bを内蔵
しており、この2個のスイッチング素子を任意にON・OFF動作させることによって、
電源である架線から供給される直流電圧を任意の電圧の直流電圧に変換する機能を有して
いる。スイッチング素子13Aが設けられている第2の電力変換回路12の入力側直流回
路正側端と出力側直流回路正側端の回路の部分、および、スイッチング素子13Bが設け
られている第2の電力変換回路12の入力側直流回路正側端と直流回路負側端の回路の部
分を、第2の電力変換回路12のアームと呼称する。
インバータ回路である第1の電力変換回路22は、スイッチング素子23U〜23Zを内
蔵しており、この6個のスイッチング素子を任意にON・OFF動作させることによって
、直流電圧を任意の電圧と任意の周波数の3相交流電圧に変換する機能を有している。ス
イッチング素子23U〜23Zが設けられている回路の部分、つまり第1の電力変換回路
22の図49における記号PとUの間、PとVの間、PとWの間、NとUの間、NとVの
間、NとWの間の部分を、第1の電力変換回路22のアームと呼称する。第1の電力変換
回路22の電源である直流電圧は第2の電力変換回路12によって供給される。
永久磁石電動機21には、電力変換手段10からU相電流Iu、V相電流Iv、W相電流
Iwの3相交流電力が供給される。またこのとき、それぞれの永久磁石電動機21の各端
子には線間電圧Vuv、Vvw、Vwuが印加される。
直流回路遮断器3は、機能的には開閉器の一種であり、直流電源である架線と鉄道車両駆
動制御装置との間の回路の接続・切り離しをおこなう。
充電用開閉器5と充電回路抵抗器6は、電力変換回路を起動する前に第1の電力変換回路
22と第2の電力変換回路12の間の中間直流回路に設けた平滑コンデンサ15を充電す
るためのものである。
平滑コンデンサ15は、第2の電力変換回路12から出力されて第1の電力変換回路22
に供給される直流電圧を安定させる作用を持つ。
電動機回路開閉器25は、電力変換手段10と永久磁石電動機21との間の3相交流回路
に設けられており、電力変換手段10と永久磁石電動機21との間の3相交流回路を投入
・開放するためのものである。
ここで、電動機回路開閉器25は、鉄道車両を駆動する電動機として従来の誘導電動機に
代えて永久磁石電動機を適用する場合には、従来の誘導電動機用の鉄道車両駆動制御装置
に対して追加が必須になる部品である。
鉄道車両の場合、鉄道車両駆動制御装置が故障しても故障が発生した場所で停車したまま
でいることは同じ路線を走行する他の列車の運転を妨げる事になるので、最寄の駅まで、
または修理をおこなう車庫まで故障した列車を回送できる必要があるという、鉄道車両と
しての特殊な技術的要請がある。永久磁石電動機は、鉄道車両の駆動用電動機として従来
利用されていた誘導電動機と比較して電動機の効率が高いという長所を有している反面、
永久磁石電動機が回転していると永久磁石の磁束によって永久磁石電動機の端子に誘起電
圧が発生する。鉄道車両駆動制御装置の電力変換手段が内蔵しているスイッチング素子が
短絡モードで故障すると、永久磁石電動機の端子が短絡されて閉回路が構成されることに
なる。このため、永久磁石電動機が回転すると誘起電圧によって永久磁石電動機から故障
した電力変換手段に電流が流れ込み、損傷をさらに拡大してしまう。またこのとき、永久
磁石電動機と故障した電力変換手段との間の閉回路に流れる電流のために永久磁石電動機
にブレーキ力が発生する。よって、鉄道車両を回送することができなくなる。このため、
例えば、電力変換手段10と永久磁石電動機21の間に設けた電流検出手段26U、26
Wによって電力変換手段10の出力電流に異常を検出するか、または直流電圧検出器16
によって平滑コンデンサ15に対する直流電圧に異常を検出するなどの方法によって、電
力変換手段が故障したことを保護機能が検出した場合に永久磁石電動機21と電力変換手
段10との間の回路を開放する必要がある。このために、例えば特許文献1に示すような
方式が提案され、電力変換手段と永久磁石電動機との間の回路に開閉器を設けている。
図50は、図49に示した従来技術の鉄道車両駆動制御装置の開閉器を投入・開放するた
めの制御部と制御回路の構成を示した図である。
101は制御回路電源、102は制御回路電源グラウンド、103は制御部である。
制御部103は、充電用開閉器5の投入と開放をおこなう充電用開閉器投入指令信号と、
直流回路開閉器4の投入と開放をおこなう交流回路開閉器投入指令信号と、電動機回路開
閉器25の投入と開放をおこなう電動機回路開閉器投入指令信号とを出力する。
継電器106aは、充電用開閉器5の駆動操作コイル105に電源を供給する制御回路で
あり制御部103からの充電用開閉器投入指令信号によって投入される。
継電器106bは、直流回路開閉器4の駆動操作コイル104に電源を供給する制御回路
であり制御部103からの直流回路開閉器投入指令信号によって投入される。
継電器106cは、電動機回路開閉器25の駆動操作コイル125に電源を供給する制御
回路であり制御部103からの電動機回路開閉器投入指令信号によって投入される。
鉄道車両駆動制御装置の運転を開始する場合や、走行中に保護機能が保護検知したために
一旦鉄道車両駆動制御装置を停止した後に再度運転を開始する場合には、まず、充電用開
閉器5を投入して中間直流回路に設けた平滑コンデンサ15を充電する。充電用開閉器5
が投入されると、スイッチング素子13Aの逆並列ダイオードを経由して充電回路抵抗器
6で制限された電流によって平滑コンデンサ15が充電される。平滑コンデンサ15の充
電が完了した後に直流回路開閉器4が投入され、また電動機回路開閉器25が投入される
とともに、充電用開閉器5が開放される。
直流回路開閉器4と電動機回路開閉器25を投入するタイミングについては、充電回路抵
抗器6の抵抗値と平滑コンデンサ15の静電容量から予め求められる充電時間を考慮して
、充電用開閉器5を投入した後に前記の充電時間が経過したことで、直流回路開閉器4と
電動機回路開閉器25を投入するとともに充電用開閉器5を開放する。または別の方式と
して、直流電圧検出器16の検出値を監視して平滑コンデンサ15の電圧が予め設定され
た閾値を超えたときに直流回路開閉器4と電動機回路開閉器25を投入するとともに充電
用開閉器5を開放しても良い。
直流回路開閉器4と電動機回路開閉器25が投入されて鉄道車両駆動制御装置の回路が
構成された後、第1の電力変換回路22と第2の電力変換回路12はそれぞれが内蔵する
スイッチング素子のON・OFF動作を開始して起動する。
特開平8−182105号公報
しかしながら、従来の鉄道車両駆動制御装置では、鉄道車両駆動制御装置の運転を開始
する場合に、次のような問題があった。
永久磁石電動機は、回転子の回転にともなってその端子に永久磁石の磁束による誘起電
圧を発生する。つまり、鉄道車両の走行中には永久磁石電動機の端子には誘起電圧が発生
している。
走行中に鉄道車両駆動制御装置の運転を開始する場合に、平滑コンデンサに予め充電さ
れている直流電圧Vdcが、永久磁石電動機の端子間の誘起電圧の尖頭値Vm(図51参
照)以上である時には、電動機回路開閉器を投入する瞬間に電力変換手段と永久磁石電動
機との間の回路に電流が流れることは無いため問題は起こらない。
一方、走行中に鉄道車両駆動制御装置の運転を開始する場合に、平滑コンデンサに予め
充電されている直流電圧Vdcが永久磁石電動機の端子間の誘起電圧の尖頭値Vmよりも
小さい時には、電動機回路開閉器を投入する瞬間に、回転している永久磁石電動機の端子
間の誘起電圧によって、永久磁石電動機から電力変換手段の第1の電力変換回路が内蔵し
ているスイッチング素子の逆並列ダイオードを介して、その逆並列ダイオードで整流され
た直流電圧まで平滑コンデンサを充電する過渡電流が流れる。この過渡電流の例を図52
に示す。なおこの過渡電流は実際は永久磁石電動機の回転子の回転にともなって誘起され
る交流電圧による電流であるが、図52では過渡電流の大きさとして直流量で表現してあ
る。この過渡電流によって鉄道車両駆動制御装置の保護機能が過電流を検出すると、制御
部は過電流になった回路の電動機回路開閉器を開放することとなり、鉄道車両駆動制御装
置を起動することができない。
工場などで使用される電動機を駆動する電力変換装置は、電動機が回転中に保護検知して
電力変換装置が停止した場合は、電動機が停止してから電力変換装置を再起動させる方法
をとることが可能である。
一方、鉄道車両の場合は、走行中に鉄道車両駆動制御装置が保護検知して停止した場合に
、いったん鉄道車両を停車させてから鉄道車両駆動制御装置を再起動させる方法は、同じ
路線を走行している他の車両の運転の妨げとなるので、鉄道車両をいったん停車させるこ
となく鉄道車両駆動制御装置を再起動できることが望ましい。つまり、鉄道車両駆動制御
装置では、車両の走行中つまり永久磁石電動機の回転中においても、鉄道車両駆動制御装
置を正常に起動できなくてはならないという鉄道車両特有の技術的課題がある。
また、鉄道車両駆動制御装置の電源は、一般的には架線(または、き電線)によって車両
に供給され、この電源電圧(架線電圧)は同じ路線を走行する他の車両の運転状態(加速
、または電力回生ブレーキ)や、または電源つまり変電所の負荷状態によって大きく変動
し、例として定格電圧の1割から2割程度の大きさの電圧が急変することもある。
鉄道車両駆動制御装置の電力変換手段が停止中に電源電圧が急上昇した場合には、平滑コ
ンデンサに充電されている電圧と、急上昇した電源電圧との差電圧のために、電源側(架
線側)から平滑コンデンサへ、過渡電流が流れる。この例を図53に示す。
鉄道車両駆動制御装置は、この電源電圧(架線電圧)の変動に対しても、不必要な保護検
知をすることなく運転できなくてはならないという技術的課題がある。
本発明はこの技術的課題に鑑みてなされたもので、鉄道車両駆動制御装置が内蔵している
平滑コンデンサへの過渡的な電流を不必要に過電流検出して電動機回路開閉器を開放する
ことを防止できる鉄道車両駆動制御装置を提供することを目的とする。
かかる課題を解決するために、本発明の請求項1に記載の鉄道車両駆動制御装置は、電
源電圧を任意の電圧と任意の周波数のn相交流電圧(nは交流の相数を表す任意の数)に
変換して車両を駆動する永久磁石電動機に交流電力を供給する電力変換手段と、前記電力
変換手段の各相のアームまたはスイッチング素子に流れる電流を検出する電流検出手段と
、前記電流検出手段の出力を入力として過電流を検出する過電流検出手段を備え、前記過
電流検出手段は、前記電流検出手段の出力と比較して過電流を検出する電流の判別値につ
いて、前記電力変換手段が動作している場合と停止している場合とで、過電流を検出する
電流の判別値を変更することを特徴とする。
また、本発明の請求項2に記載の鉄道車両駆動制御装置は、電源電圧を任意の電圧と任
意の周波数のn相交流電圧(nは交流の相数を表す任意の数)に変換して車両を駆動する
永久磁石電動機に交流電力を供給する電力変換手段と、前記電力変換手段と前記永久磁石
電動機との間の回路の電流を検出する電流検出手段と、前記電流検出手段の出力を入力と
して前記電力変換手段の過電流を検出する過電流検出手段を備え、前記過電流検出手段は
、前記電流検出手段の出力と比較して過電流を検出する電流の判別値について、前記電力
変換手段が動作している場合と停止している場合とで、過電流を検出する電流の判別値を
変更することを特徴とする。
また、本発明の請求項3に記載の鉄道車両駆動制御装置は、電源電圧を任意の電圧と任意
の周波数のn相交流電圧(nは交流の相数を表す任意の数)に変換して車両を駆動する永
久磁石電動機に交流電力を供給する電力変換手段と、前記電力変換手段の各相のアームま
たはスイッチング素子に流れる電流を検出する電流検出手段と、前記電流検出手段の出力
を入力として過電流を検出する過電流検出手段を備え、前記過電流検出手段は、前記電流
検出手段の出力と比較して過電流を検出する電流の判別値について、前記アームまたはス
イッチング素子に流れる電流の方向で異なる判別値とすることを特徴とする。
また、本発明の請求項5に記載の鉄道車両駆動制御装置は、電源電圧を任意の電圧と任意
の周波数のn相交流電圧(nは交流の相数を表す任意の数)に変換して車両を駆動する交
流電動機に交流電力を供給する電力変換手段を備え、前記電力変換手段には、直流電圧を
任意の電圧と任意の周波数のn相交流電圧に変換して出力する第1の電力変換回路と、直
流または交流の電源電圧を任意の直流電圧に変換して前記第1の電力変換回路に電力を供
給する第2の電力変換回路が内蔵されており、前記第2の電力変換回路のアームまたはス
イッチング素子に流れる電流を検出する電流検出手段と、前記電流検出手段の出力を入力
として過電流を検出する過電流検出手段を備え、前記過電流検出手段は、前記電流検出手
段の出力と比較して過電流を検出する電流の判別値について、前記電力変換手段が動作し
ている場合と停止している場合とで、過電流を検出する電流の判別値を変更することを特
徴とする。
また、本発明の請求項6に記載の鉄道車両駆動制御装置は、電源電圧を任意の電圧と任意
の周波数の交流電圧に変換して車両を駆動する交流電動機に電力を供給する電力変換手段
と、前記電力変換手段と電源との間の回路に流れる電流を検出する電流検出手段と、前記
電流検出手段の出力を入力として過電流を検出する過電流検出手段を備え、前記過電流検
出手段は、前記電流検出手段の出力と比較して過電流を検出する電流の判別値について、
前記電力変換手段が動作している場合と停止している場合とで、過電流を検出する電流の
判別値を変更することを特徴とする。
また、本発明の請求項10に記載の鉄道車両駆動制御装置は、電源電圧を任意の電圧と任
意の周波数のn相交流電圧(nは交流の相数を表す任意の数)に変換して車両を駆動する
交流電動機に交流電力を供給する電力変換手段を備え、前記電力変換手段には、直流電圧
を任意の電圧と任意の周波数のn相交流電圧に変換して出力する第1の電力変換回路と、
直流または交流の電源電圧を任意の直流電圧に変換して前記第1の電力変換回路に電力を
供給する第2の電力変換回路が内蔵されており、前記第2の電力変換回路のアームまたは
スイッチング素子に流れる電流を検出する電流検出手段と、前記電流検出手段の出力を入
力として過電流を検出する過電流検出手段を備え、前記過電流検出手段は、前記電流検出
手段の出力と比較して過電流を検出する電流の判別値について、前記アームまたはスイッ
チング素子に流れる電流の方向で異なる判別値とすることを特徴とする。
また、本発明の請求項12に記載の鉄道車両駆動制御装置は、電源電圧を任意の電圧と任
意の周波数のn相交流電圧(nは交流の相数を表す任意の数)に変換して車両を駆動する
永久磁石電動機に交流電力を供給する電力変換手段と、当該電気車制御装置内を流れる電
流を検出する電流検出手段と、前記電流検出手段の出力に基づき過電流を検出することを
特徴とする。
本発明によれば、平滑コンデンサへの過渡的な電流を不必要に過電流検出して電動機回路
開閉器を開放することを防止できる鉄道車両駆動制御装置を提供することが出来る。
(第1の実施の形態)
以下、本発明の実施の形態を図に基づいて説明する。図1は、本発明の第1の実施の形態
の鉄道車両駆動制御装置の構成を示している。図1の各構成要素を以下に説明する。1は
直流電源である架線、2は集電器、3は直流回路遮断器、4は直流回路開閉器、5は充電
用開閉器、6は充電回路抵抗器、7は平滑リアクトル、8は車輪、9は帰線であるレール
、10は電力変換手段、12はチョッパ回路である第2の電力変換回路、13A、13B
はチョッパ回路のスイッチング素子、15は平滑コンデンサ、16は直流電圧検出手段、
21は車両を駆動する永久磁石電動機、22はインバータ回路である第1の電力変換回路
、23U〜23Zはインバータ回路のスイッチング素子、24U〜24Zはインバータ回
路の各アームに流れる電流を検出するための電流検出手段、25は電力変換手段と永久磁
石電動機との間の回路の電動機回路開閉器である。
第2の電力変換回路12はチョッパ回路であり、スイッチング素子13Aと13Bを内蔵
しており、この2個のスイッチング素子を任意にON・OFF動作させることによって、
直流電源(架線1)から供給される直流電圧を任意の大きさの電圧の直流電圧に昇圧して
変換する機能を有している。スイッチング素子13Aが設けられている第2の電力変換回
路12の入力側直流回路正側端と出力側直流回路正側端の回路の部分、および、スイッチ
ング素子13Bが設けられている第2の電力変換回路12の入力側直流回路正側端と直流
回路負側端の回路の部分を、第2の電力変換回路12のアームと呼称する。第2の電力変
換回路12で昇圧された直流電圧は、第1の電力変換回路22の電源として供給される。
図1では、第1の電力変換回路が内蔵するスイッチング素子13Aと13Bは、適用例と
して、逆並列に接続されたダイオードを内蔵したIGBT(絶縁ゲートバイポーラトラン
ジスタ)として記載しているが、電流を導通(ON)・阻止(OFF)する機能を有した
素子であれば種類はIGBTに限定されない。また、ダイオードを内蔵しないIGBTを
適用してこれと逆並列に別構成要素のダイオードを接続した回路構成としても良い。
第1の電力変換回路22はインバータ回路であり、スイッチング素子23U〜23Zを内
蔵しており、この6個のスイッチング素子を任意にON・OFF動作させることによって
、直流電圧を任意の電圧と任意の周波数の3相交流電圧に変換する機能を有している。ス
イッチング素子23U〜23Zが設けられている回路の部分、つまり第1の電力変換回路
22の図1における記号PとUの間、PとVの間、PとWの間、NとUの間、NとVの間
、NとWの間の部分を、第1の電力変換回路22のアームと呼称する。図1では、スイッ
チング素子23U〜23Zは、適用例として、逆並列に接続されたダイオードを内蔵した
IGBT(絶縁ゲートバイポーラトランジスタ)として記載しているが、電流を導通(O
N)・阻止(OFF)する機能を有した素子であれば種類はIGBTに限定されない。ま
た、ダイオードを内蔵しないIGBTを適用してこれと逆並列に別構成要素のダイオード
を接続した回路構成としても良い。
第1の電力変換回路22の電源である直流電圧は第2の電力変換回路12によって供給さ
れる。
第1の電力変換回路22のスイッチング素子のON・OFF動作の方法および第2の電力
変換回路12のスイッチング素子のON・OFF動作の方法については例えばパルス幅変
調方式などがあるが、周知の技術であるとともにどの方式を適用しても本発明の鉄道車両
駆動制御装置の実施の形態には影響しないため説明を省略する。
平滑コンデンサ15は、第2の電力変換回路12から出力されて第1の電力変換回路22
に供給される直流電圧を安定させる作用を持つ。
永久磁石電動機21は、その回転子が歯車などを介して駆動用車輪の車軸と接続されるか
、または回転子が駆動用車輪の車軸と直接接続されて鉄道車両を駆動するためのもので、
例えば永久磁石同期電動機や永久磁石補助形リラクタンス電動機であり、永久磁石を利用
し、それ故にその回転により誘起電圧を発生する方式の電動機である。永久磁石電動機2
1には電力変換手段10からU相電流Iu、V相電流Iv、W相電流Iwの3相交流電力
が供給される。またこのとき、永久磁石電動機21のそれぞれの端子には線間電圧Vuv
、Vvw、Vwuが印加される。
直流回路遮断器3は、機能的には開閉器の一種であり、直流電源である架線と電力変換手
段10との回路の接続・切り離しをおこなう。
充電用開閉器5と充電回路抵抗器6は、電力変換手段10を起動する前に第2の電力変換
回路12と第1の電力変換回路22の間の中間直流回路に設けた平滑コンデンサ15を充
電するためのものある。
平滑リアクトル7は、架線1から電力変換手段10への電流を平滑する機能を有する。
電力変換手段10を起動する前に充電用開閉器5が投入され、第2の電力変換回路12が
内蔵しているスイッチング素子13Aの逆並列ダイオードを経由して充電回路抵抗器6で
制限された電流によって平滑コンデンサ15を充電する。平滑コンデンサ15の充電が完
了した後に直流回路開閉器4が投入され架線1と電力変換手段10が接続される。架線1
と電力変換手段10の間の回路が接続されるとともに充電用開閉器5が開放される。直流
回路開閉器4を投入するタイミングについては、例えば、充電回路抵抗器6の抵抗値と平
滑コンデンサ15の静電容量から求められる充電時間を考慮して、充電用開閉器5を投入
した後に前記の充電時間が経過したことで直流回路開閉器4を投入する。
電動機回路開閉器25は、電力変換手段10と永久磁石電動機21との間の回路を投入・
開放するためのものである。図1では、電動機回路開閉器の接触子は例として電力変換手
段10と永久磁石電動機21との間の3相交流回路の全ての相に接触子を設けた記載にし
てあるが、電動機回路開閉器25は永久磁石電動機21との間の3相回路を流れる電流を
防止するためのものであるから、3相のうちのいずれか2相に接触子を設けても良い。
図2は、図1に示した本発明の第1の実施の形態の鉄道車両駆動制御装置の制御部と制御
回路および過電流検出手段の構成例を示した図である。図2では、本発明の実施の形態の
動作を理解しやすくするために、制御部103へ入力および制御部103から出力される
信号として、本発明の実施の形態の動作の説明に関係する信号のみを記載している。
101は制御回路電源、102は制御回路電源グラウンド、103は制御部である。
124U〜124Zは電流検出手段24U〜24Zの検出値にあたる出力信号である。
116は直流電圧検出手段16の検出値にあたる出力信号である。
継電器106aは、充電用開閉器5の駆動操作コイル105に電源を供給する制御回路で
あり制御部103が出力する充電用開閉器投入指令信号によって投入される。
継電器106bは、直流回路開閉器4の駆動操作コイル104に電源を供給する制御回路
であり制御部103が出力する直流回路開閉器投入指令信号によって投入される。
継電器106cは、電動機回路開閉器25の駆動操作コイル125に電源を供給する制御
回路であり制御部103が出力する電動機回路開閉器投入指令信号によって投入される。
制御部103は、鉄道車両駆動制御装置を起動する場合に、充電用開閉器投入指令信号お
よび直流回路開閉器投入指令信号を前述の手順で出力しこれら開閉器を投入するとともに
、電動機回路開閉器投入指令信号を出力して電動機回路開閉器を投入する。さらに第1の
電力変換回路22の各スイッチング素子をON・OFF動作させるためのゲート信号12
3U〜123Zと、第2の電力変換回路12の各スイッチング素子13A、13BをON
・OFF動作させるためのゲート信号113A、113B、およびゲートスタート信号1
07を出力する。
また、制御部103は、保護機能が電力変換手段の故障を検出した場合は、これら開閉器
の投入指令信号をオフして各開閉器の接触子を開放するとともに、各スイッチング素子へ
のゲート信号の出力を停止する。
過電流検出手段108は、鉄道車両駆動制御装置の保護機能の一つとして動作するもの
で、電流検出手段からの出力信号124U〜124Zを入力として、過電流信号109を
制御部103へ出力する。
図3は過電流検出手段108の機能を説明する図である。例として電流検出手段124
Uの出力信号に対する過電流の判別処理について説明する。
過電流検出手段108は、電流検出手段の出力信号である電流の大きさと、予め設定さ
れている過電流を検出する電流の判別値とを比較して、電流の大きさが過電流判別値Is
et以上であると過電流を検出して過電流信号109を出力する。過電流判別値Iset
は、ゲートスタート信号107が0(電力変換回路のスイッチング素子が全てOFF状態
)である時はIset1の値が設定され、ゲートスタート信号107が1(電力変換回路
のスイッチング素子がON・OFF動作中)である時はIset2の値が設定されること
が本発明の特徴である。
ここで、図1に示した鉄道車両駆動制御装置はスイッチング素子に逆並列接続されたダイ
オードを内蔵したIGBTを適用した例であるが、この場合のスイッチング素子の電流耐
量は、スイッチング素子がON・OFF動作している場合(電力変換回路が動作している
場合)はIGBTの電流耐量Itmaxで制約される。一方、永久磁石電動機は回転中に
永久磁石磁束による誘起電圧を発生するので、スイッチング素子が全てOFF状態の場合
(電力変換回路が停止状態の場合)は、前述のように平滑コンデンサの端子電圧Vdcよ
りも永久磁石電動機の誘起電圧Vmが大きい場合に永久磁石電動機21から平滑コンデン
サ15へ流れる過渡電流(平滑コンデンサ15を充電する電流)は、図4のように各アー
ムのダイオードを経て流れるので、スイッチング素子の電流耐量はダイオードの順方向電
流の電流耐量Idmaxで制約される。
IGBTの電流耐量Itmaxとダイオードの順方向電流の電流耐量Idmaxの大き
さが異なる場合、従来の鉄道車両駆動制御装置では、スイッチング素子を保護する目的の
過電流を判別する電流値を、電力変換回路の動作中・停止中に関わらず、常にItmax
とIdmaxの小さい方の値以下に設定していた。
IGBTの電流耐量Itmaxとダイオードの順方向電流の電流耐量Idmaxの大き
さが異なっている場合で、
Idmax > Itmax (式1)
であるとき、本発明を適用した鉄道車両駆動制御装置では、電力変換回路が動作中の過電
流判別値をItmax以下であるIset2の値に設定し、電力変換回路が停止中の過電
流判別値をIdmax以下であるIset1の値に設定することができる。この機能によ
り、電力変換回路の停止中にスイッチング素子に流れる電流の制限を従来に比べて緩和で
き、不必要に保護を検出して電動機回路開閉器25を開放することを防止することが可能
になる。
図5は本発明の第1の実施の形態の鉄道車両駆動制御装置の過電流検出手段108の別
の構成例を示した図である。過電流検出手段108は、電流検出手段の出力信号である電
流の大きさの最大値と、予め設定されている過電流を検出する電流の判別値とを比較して
、電流の大きさが過電流判別値Iset以上であると過電流を検出して過電流信号109
を出力する。その他の構成要素および動作は、前述の図3の説明と同様である。
図1から図5で示した構成によって、本発明の第1の実施の形態の鉄道車両駆動制御装置
においては、走行中に永久磁石電動機が回転して誘起電圧を発生している状態において電
動機回路開閉器を投入する場合に、平滑コンデンサへの過渡的な電流を不必要に過電流検
出して電動機回路開閉器を再度開放することを防止でき、鉄道車両駆動制御装置を円滑に
起動することが可能になる。
なお、図1に示した鉄道車両駆動制御装置では、電流検出手段24U〜24Zは、各スイ
ッチング素子23U〜23Zの3相交流回路側に設けているが、電流検出手段24U〜2
4Zは第1の電力変換回路22の各アームに流れる電流を検出するためのものであるから
、図6に示した構成例のように、各アームのスイッチング素子23U、23V、23Wと
中間直流回路の正側回路との間、またスイッチング素子23X、23Y、23Zと中間直
流回路の負側回路との間に設けても良い。
また、図1および図6に示した鉄道車両駆動制御装置では、電流検出手段24U〜24Z
は、各スイッチング素子23U〜23Zと別の構成要素で設けているが、電流検出手段2
4U〜24Zを各スイッチング素子23U〜23Zに内蔵した構成としても良い。
さらに、図1に示した鉄道車両駆動制御装置の説明では、電動機回路開閉器25の動作機
構がノーマルオープン(駆動操作コイルが無加圧のとき、接触子が開放状態になる機構)
の場合で説明している。電動機回路開閉器25の動作機構がノーマルクローズ(駆動操作
コイルが無加圧のとき、接触子が投入状態になる機構)の場合は、制御部103から出力
される電動機回路開閉器投入指令信号が反転し、信号が無いとき電動機回路開閉器25が
投入状態となり、信号が有るとき電動機回路開閉器25が開放状態となる。その他の部分
の本発明の実施の形態の各構成要素の動作は前述の説明と同様である。
(第2の実施の形態)
本発明の第2の実施の形態の鉄道車両駆動制御装置の構成を図7に示す。本発明の第2の
実施の形態の鉄道車両駆動制御装置は、前述の本発明の第1の実施の形態の鉄道車両駆動
制御装置に対して、過電流検出手段108の構成と動作が異なる。
過電流検出手段108は、電流検出手段24U〜24Zが検出した電流の大きさである
出力信号124U〜124Zと、予め設定されている過電流を検出する電流の判別値とを
比較して、電流の大きさが過電流判別値以上であると過電流を検出して過電流信号109
を出力する。
過電流判別値は、即過電流を検出する判別値Isetと、予め設定された時素Tset1
を経過したことを条件として過電流を検出する判別値IsetDが備えられている。即過
電流を検出する判別値Isetは、ゲートスタート信号107が0(電力変換回路のスイ
ッチング素子が全てOFF状態)である時はIset1の値が設定され、ゲートスタート
信号107が1(電力変換回路のスイッチング素子がON・OFF動作中)である時はI
set2の値が設定される。また、時素Tset1を経過したことを条件として過電流を
検出する判別値IsetDは、ゲートスタート信号107が0である時はIset3の値
が設定され、ゲートスタート信号107が1である時はIset4の値が設定される。
IGBTの電流耐量Itmaxについて、短時間の電流に対する電流耐量ItmaxSと
連続した電流に対する電流耐量ItmaxCが異なる場合、およびダイオードの順方向電
流の電流耐量Idmaxについて、短時間の電流に対する電流耐量IdmaxSと連続し
た電流に対する電流耐量IdmaxCが異なる場合で、
ItmaxS > ItmaxC (式2)
IdmaxS > IdmaxC
の性能を有している場合、本発明を適用した鉄道車両駆動制御装置では、即過電流を検出
する判別値Isetについて、電力変換回路が停止中はIdmaxS以下であるIset
1の値に設定し、電力変換回路が動作中はItmaxS以下であるIset2の値に設定
することができる。また、時素をもって過電流を検出する判別値IsetDについて、電
力変換回路が停止中はIdmaxC以下であるIset3の値に設定し、電力変換回路が
動作中はItmaxC以下であるIset4の値に設定することができる。この機能によ
り、電力変換回路に適用するスイッチング素子の電流耐量の性能を最大限に利用可能とな
り、スイッチング素子に流れる電流の制限を従来に比べて緩和でき、不必要に保護を検出
して電動機回路開閉器25を開放することを防止することができる。
その他の構成要素と動作については、本発明の第1の実施の形態の鉄道車両駆動制御装
置と同様であり、本発明の効果を同様に得ることができる。
(第3の実施の形態)
本発明の第3の実施の形態の鉄道車両駆動制御装置の構成を図8と図9に示す。本発明の
第3の実施の形態の鉄道車両駆動制御装置は、前述の本発明の第1の実施の形態の鉄道車
両駆動制御装置に対して、ゲートスタート信号107が無いことと過電流検出手段108
の構成と動作が異なる。
過電流検出手段108は、電流検出手段24U〜24Zが検出した電流の大きさである
出力信号124U〜124Zと、予め設定されている過電流を検出する電流の判別値とを
比較して、電流の大きさが過電流判別値以上であると過電流を検出して過電流信号109
を出力する。
過電流判別値は、スイッチング素子に流れる正方向電流の大きさと比較する判別値Ise
tFと、スイッチング素子に流れる負方向電流の大きさと比較するIsetRが備えられ
ていることが特徴である。IGBTが導通状態(ON)の時に流れる電流方向を正方向と
し、逆並列に接続されたダイオードの順方向電流の方向を負方向としたとき、IGBTの
電流耐量Itmaxとダイオードの順方向電流の電流耐量Idmaxの大きさが異なって
いる場合で、
Idmax > Itmax (式3)
であるとき、本発明を適用した鉄道車両駆動制御装置では、過電流を検出する判別値を、
正方向電流と比較する判別値にItmax以下であるIsetFの値に設定し、負方向電
流と比較する判別値にIdmax以下であるIsetRの値に設定することができる。こ
の機能により、電力変換回路のスイッチング素子に流れる電流の制限を従来に比べて緩和
でき、不必要に保護を検出して電動機回路開閉器25を開放することを防止することが可
能になる。
その他の構成要素と動作については、本発明の第1の実施の形態の鉄道車両駆動制御装
置と同様であり、本発明の効果を同様に得ることができる。
(第4の実施の形態)
本発明の第4の実施の形態の鉄道車両駆動制御装置の構成を図10に示す。本発明の第4
の実施の形態の鉄道車両駆動制御装置は、前述の本発明の第3の実施の形態の鉄道車両駆
動制御装置に対して、過電流検出手段108の構成と動作が異なる。
過電流検出手段108は、電流検出手段24U〜24Zが検出した電流の大きさである
出力信号124U〜124Zと、予め設定されている過電流を検出する電流の判別値とを
比較して、電流の大きさが過電流判別値以上であると過電流を検出して過電流信号109
を出力する。
過電流判別値は、スイッチング素子に流れる正方向電流の大きさと比較する判別値Ise
tFと、スイッチング素子に流れる負方向電流の大きさと比較して即過電流を検出するI
setR1と、スイッチング素子に流れる負方向電流の大きさと比較して予め設定された
時素Tset1が経過したことを条件として過電流を検出するIsetR2が備えられて
いることが特徴である。IGBTが導通状態(ON)の時に流れる電流方向を正方向とし
、逆並列に接続されたダイオードの順方向電流の方向を負方向としたとき、IGBTの電
流耐量Itmaxとダイオードの順方向電流の電流耐量Idmaxの大きさが異なってい
る場合で、かつ、ダイオードの順方向電流の短時間の電流に対する電流耐量IdmaxS
と連続した電流に対する電流耐量IdmaxCの大きさが異なっている場合で、
IdmaxS > IdmaxC > Itmax (式4)
のとき、本発明を適用した鉄道車両駆動制御装置では、過電流を検出する判別値を、正方
向電流と比較する判別値にItmax以下であるIsetFの値に設定し、負方向電流と
比較して即過電流を検出する判別値にIdmaxS以下であるIsetR1の値に設定し
、負方向電流と比較して時素をもって過電流を検出する判別値にIdmaxC以下である
IsetR2の値に設定することができる。この機能により、スイッチング素子の電流耐
量の性能を最大限に利用して電力変換回路のスイッチング素子に流れる電流の制限を従来
に比べて緩和でき、不必要に保護を検出して電動機回路開閉器25を開放することを防止
することが可能になる。
その他の構成要素と動作については、本発明の第3の実施の形態の鉄道車両駆動制御装
置と同様であり、本発明の効果を同様に得ることができる。
(第5の実施の形態)
本発明の第5の実施の形態の鉄道車両駆動制御装置の構成を図11に示す。本発明の第5
の実施の形態の鉄道車両駆動制御装置は、図1に示した本発明の第1の実施の形態の鉄道
車両駆動制御装置と比較して、直流回路開閉器4、充電用開閉器5、充電回路抵抗器6の
構成が異なっており、直流回路開閉器4を充電回路抵抗器6と並列に接続し、充電用開閉
器5をこれらと直列となるように接続した構成になっている。充電用開閉器5は、平滑コ
ンデンサ15の充電が完了した後も投入したままとなる。その他の部分の本発明の実施の
形態の構成要素と、各構成要素の動作は、本発明の第1の実施の形態の鉄道車両駆動制御
装置同様であり、本発明の効果を同様に得ることができる。
なお、本発明の第5の実施の形態の鉄道車両駆動制御装置の構成において、電流検出手
段24U〜24Zを図6に示した鉄道車両駆動制御装置と同様に構成しても良い。
さらに、本発明の第5の実施の形態の鉄道車両駆動制御装置の構成において、過電流検
出手段108を、本発明の第2から第4の実施の形態の鉄道車両駆動制御装置と同様に構
成しても良い。
(第6の実施の形態)
本発明の第6の実施の形態の鉄道車両駆動制御装置の構成を図12に示す。本発明の第6
の実施の形態の鉄道車両駆動制御装置は、図1に示した本発明の第1の実施の形態の鉄道
車両駆動制御装置と比較して、電動機回路開閉器25について、第1の電動機回路開閉器
25Aと、第2の電動機回路開閉器25Bをその接触子をそれぞれの相に対して直列に設
けた構成となっている。この構成の場合、図1と図2における電動機回路開閉器25と、
電動機回路開閉器駆動操作コイル125と、継電器106cと、電動機回路開閉器投入指
令信号が、それぞれ、図13に示したように、第1の電動機回路開閉器25Aと第2の電
動機回路開閉器25Bに対応して2組ずつで構成されることになる。その他の構成要素と
動作は図1から図3と図5および図6に示した本発明の第1の実施の形態の鉄道車両駆動
制御装置と同様であり、本発明の効果を同様に得ることができる。
なお、図12では、第1の電動機回路開閉器25Aと第2の電動機回路開閉器25Bの接
触子は例として第1の電力変換回路22と永久磁石電動機21との間の3相交流回路の全
ての相に接触子を設けた記載にしてあるが、第1の電動機回路開閉器25Aと第2の電動
機回路開閉器25Bは3相交流回路を流れる電流を防止するためのものであるから、3相
のうちのいずれか2相に接触子を設けても良い。
また、本発明の第6の実施の形態の鉄道車両駆動制御装置の構成において、電流検出手段
24U〜24Zを図6に示した鉄道車両駆動制御装置と同様に構成しても良い。
さらに、本発明の第6の実施の形態の鉄道車両駆動制御装置の構成において、過電流検
出手段108を、本発明の第2から第4の実施の形態の鉄道車両駆動制御装置と同様に構
成しても良い。
また、本発明の第6の実施の形態の鉄道車両駆動制御装置の構成において、直流回路開
閉器4、充電用開閉器5、充電回路抵抗器6の構成を図11に示した本発明の第5の実施
の形態の鉄道車両駆動制御装置と同様に構成しても良い。
(第7の実施の形態)
本発明の第7の実施の形態の鉄道車両駆動制御装置の構成を図14に示す。本構成は、鉄
道車両駆動制御装置はインバータ回路である第1の電力変換回路と永久磁石電動機と電流
検出手段と電動機回路開閉器を組み合わせて1単位の駆動群として構成しており、第2の
電力変換回路12が1台に対してこの駆動群を2組有した構成であり、以下それぞれ第1
駆動群と第2駆動群と呼称して説明する。
図14において、31は第1駆動群の永久磁石電動機、32は第1駆動群のインバータ
回路、34U〜34Wは第1駆動群の電流検出手段、35は第1駆動群の電動機回路開閉
器、41は第2駆動群の永久磁石電動機、42は第2駆動群のインバータ回路、44U〜
44Wは第2駆動群の電流検出手段、45は第2駆動群の電動機回路開閉器である。
図15は本発明の第7の実施の形態の鉄道車両駆動制御装置の制御部と制御回路の構成例
を示した図である。本図では、本発明の実施の形態の動作を理解しやすくするために、制
御部103へ入力および制御部103から出力される信号として、本発明の実施の形態の
動作の説明に関係する信号のみを記載している。
134U〜134Wは第1駆動群の電流検出手段34U〜34Wの検出値にあたる出力信
号、144U〜144Wは第2駆動群の電流検出手段44U〜44Wの検出値にあたる出
力信号、133U〜133Zは第1駆動群のインバータ回路の各スイッチング素子をON
・OFF動作させるためのゲート信号、143U〜143Zは第2駆動群のインバータ回
路の各スイッチング素子をON・OFF動作させるためのゲート信号である。
継電器106eは、第1駆動群の電動機回路開閉器35の駆動操作コイル135に電源を
供給する制御回路であり制御部103が出力する第1駆動群の電動機回路開閉器投入指令
信号によって投入される。
継電器106fは、第2駆動群の電動機回路開閉器45の駆動操作コイル145に電源を
供給する制御回路であり制御部103が出力する第2駆動群の電動機回路開閉器投入指令
信号によって投入される。
過電流検出手段108には、第1駆動群の電流検出手段34U〜34Wの検出値にあたる
出力信号134U〜134Wと、第2駆動群の電流検出手段44U〜44Wの検出値にあ
たる出力信号144U〜144Wおよび、ゲートスタート信号107が入力され、図3ま
たは図5に示した本発明の第1の実施の形態の過電流検出手段108と同様に、各アーム
の電流検出値に対して過電流判別値との比較によって過電流を検出し、そのOR論理によ
って過電流信号109が出力される。
その他の構成要素および動作については図2および図3に示した本発明の第1の実施の形
態の鉄道車両駆動制御装置の制御部と制御回路の構成例と同様であり、本発明の効果を同
様に得ることができる。
なお、図14に示した鉄道車両駆動制御装置では、駆動群を第1駆動群と第2駆動群の2
組を備えて1台の鉄道車両駆動制御装置が駆動制御をおこなう永久磁石電動機の数を2台
の構成として説明しているが、永久磁石電動機の数を2台から3台や4台に増やした場合
は、図14の構成にさらに駆動群として第3駆動群、第4駆動群を追加した構成となる。
これは駆動群の数が増加したのみで、本発明の実施の形態における各構成要素の動作は同
様であり、本発明の効果を同様に得ることができる。
また、図14では、第1駆動群の電動機回路開閉器35と第2駆動群の電動機回路開閉器
45の接触子は例として永久磁石電動機31,41への3相交流回路の全ての相に接触子
を設けた記載にしてあるが、電動機回路開閉器35、45は3相交流回路を流れる電流を
防止するためのものであるから、3相のうちのいずれか2相に接触子を設けても良い。
さらに、図14に示した第1駆動群の電動機回路開閉器35と第2駆動群の電動機回路
開閉器45は、前述の図8に示した本発明の第6の実施の形態の鉄道車両駆動制御装置と
同様に、それぞれの永久磁石電動機に対応する3相回路に、第1の電動機回路開閉器と第
2の電動機回路開閉器の2つを直列に設けて構成しても良い。
また、図14に示した鉄道車両駆動制御装置の構成において、電流検出手段34U〜34
Z、44U〜44Zを図6に示した鉄道車両駆動制御装置と同様に構成しても良い。
さらに、図14に示した鉄道車両駆動制御装置の構成において、過電流検出手段108
の内部の構成を、本発明の第2から第4の実施の形態の鉄道車両駆動制御装置と同様に構
成しても良い。
また、図14に示した鉄道車両駆動制御装置の構成において、直流回路開閉器4、充電
用開閉器5、充電回路抵抗器6の構成を図11に示した本発明の第5の実施の形態の鉄道
車両駆動制御装置と同様に構成しても良い。
(第8の実施の形態)
本発明の第8の実施の形態の鉄道車両駆動制御装置の構成を図16に示す。本発明の第8
の実施の形態の鉄道車両駆動制御装置は、本発明の第1の実施の形態の鉄道車両駆動制御
装置と比較して、第2の電力変換回路12を有しておらず、平滑リアクトル7と平滑コン
デンサ15が接続された構成である。
図17は、本発明の第8の実施の形態の鉄道車両駆動制御装置の制御部と制御回路および
過電流検出手段の構成例を示した図である。図2と比較すると、第2の電力変換回路12
のスイッチング素子13A、13Bへのゲート信号113A、113Bが無い構成になっ
ている。
その他の構成要素および動作については図1から図3と図5および図6に示した本発明の
第1の実施の形態の鉄道車両駆動制御装置の制御部と制御回路の構成例と同様であり、本
発明の効果を同様に得ることができる。
なお、図16では、電動機回路開閉器25の接触子は例として永久磁石電動機21への3
相交流回路の全ての相に接触子を設けた記載にしてあるが、電動機回路開閉器25は3相
交流回路を流れる電流を防止するためのものであるから、3相のうちのいずれか2相に接
触子を設けても良い。
また、図16に示した電動機回路開閉器25は、前述の本発明の第6の実施の形態の鉄
道車両駆動制御装置と同様に、それぞれの永久磁石電動機に対応する3相回路に、第1の
電動機回路開閉器と第2の電動機回路開閉器の2つを直列に設けて構成しても良い。
また、図16に示した鉄道車両駆動制御装置の構成において、電流検出手段24U〜24
Zを図6に示した鉄道車両駆動制御装置と同様に構成しても良い。
さらに、図16に示した鉄道車両駆動制御装置の構成において、過電流検出手段108
の内部の構成を、本発明の第2から第4の実施の形態の鉄道車両駆動制御装置と同様に構
成しても良い。
また、図16に示した鉄道車両駆動制御装置の構成において、直流回路開閉器4、充電
用開閉器5、充電回路抵抗器6の構成を図11に示した本発明の第5の実施の形態の鉄道
車両駆動制御装置と同様に構成しても良い。
さらに、図16に示した鉄道車両駆動制御装置の構成において、永久磁石電動機21と
第1の電力変換回路22と電動機回路開閉器25について、本発明の第7の実施の形態の
鉄道車両駆動制御装置と同様に、複数の駆動群で構成しても良い。
(第9の実施の形態)
本発明の第9の実施の形態の鉄道車両駆動制御装置の構成を図18に示す。前述の本発
明の第1から第8の実施の形態の鉄道車両駆動制御装置の構成は、鉄道車両駆動制御装置
の電源(架線)が直流電圧の場合の構成例であるが、本発明の第9の実施の形態の鉄道車
両駆動制御装置の構成は、鉄道車両駆動制御装置の電源(架線)が交流電圧の場合の構成
例である。
図19は本発明の第9の実施の形態の鉄道車両駆動制御装置の制御部と制御回路および
過電流検出手段の構成例である。
61は交流電源である架線、62は交流回路遮断器、63は変圧器の1次巻線、64は
変圧器の2次巻線、66は交流回路開閉器、69は交流電流検出手段、12はコンバータ
回路である第2の電力変換回路、13U〜13Yはコンバータ回路のスイッチング素子で
ある。継電器106gは、交流回路開閉器66の駆動操作コイル166に電源を供給する
制御回路であり制御部103が出力する交流回路開閉器投入指令信号によって投入される
コンバータ回路である第2の電力変換回路12は、スイッチング素子13U〜13Yを内
蔵しており、この4個のスイッチング素子をゲート信号113U〜113Yによって任意
にON・OFF動作させることによって、変圧器2次巻線64から供給される電力変換手
段10の電源である交流電圧を任意の大きさの電圧の直流電圧に変換する機能を有してい
る。図18では、スイッチング素子13U〜13Yは、適用例として、逆並列に接続され
たダイオードを内蔵したIGBTとして記載しているが、電流を導通(ON)・阻止(O
FF)する機能を有した素子であれば種類はIGBTに限定されない。また、ダイオード
を内蔵しないIGBTを適用してこれと逆並列に別構成要素のダイオードを接続した回路
構成としても良い。
インバータ回路である第1の電力変換回路22の電源である直流電圧は第2の電力変換回
路12によって供給される。
コンバータ回路である第2の電力変換回路12のスイッチング素子のON・OFF動作の
方法については例えばパルス幅変調方式などがあるが、周知の技術であるとともにどの方
式を適用しても本発明の鉄道車両駆動制御装置の実施の形態には影響しないため説明を省
略する。
充電用開閉器5と充電回路抵抗器6は、電力変換手段10を起動する前に中間直流回路の
平滑コンデンサ15を充電するためのものある。電力変換手段10を起動する前に充電用
開閉器5が投入され、第2の電力変換回路12が内蔵しているスイッチング素子13U〜
13Yの逆並列ダイオードを経由して充電回路抵抗器6で制限された電流によって平滑コ
ンデンサ15を充電する。平滑コンデンサ15の充電が完了した後に交流回路開閉器66
が投入され変圧器2次巻線64と第2の電力変換回路12との間の交流回路が接続される
とともに充電用開閉器5が開放される。交流回路開閉器66を投入するタイミングについ
ては、充電回路抵抗器6の抵抗値と平滑コンデンサ15の静電容量から求められる充電時
間を考慮して、充電用開閉器5を投入した後に前記の充電時間が経過したことで交流回路
開閉器66を投入する。または別の方式として、直流電圧検出器16の検出値を監視して
平滑コンデンサ15の電圧が予め設定された閾値を超えたときに交流回路開閉器66を投
入する方式としても良い。
その他の構成要素およびその動作については、本発明の第1の実施の形態の鉄道車両駆
動制御装置の制御部と制御回路の構成例と同様であり、本発明の効果を同様に得ることが
できる。
(第10の実施の形態)
図20は、本発明の第10の実施の形態の鉄道車両駆動制御装置を示す図である。前述の
図18に示した鉄道車両駆動制御装置の構成における充電用開閉器5は充電回路抵抗器6
と直列に構成しているが、本図に示す鉄道車両駆動制御装置の構成では、変圧器2次巻線
64と第2の電力変換回路12との間の交流回路の交流回路開閉器66と反対側の相に充
電用開閉器5を設けた構成にしたものである。この構成の場合には、図18に示した鉄道
車両駆動制御装置とは、充電用開閉器5が平滑コンデンサ15の充電が完了した後も投入
したまま(開放しない)になることが動作として異なる。充電用開閉器5と交流回路開閉
器66がともに投入されることで、変圧器2次巻線64と第2の電力変換回路12との間
の回路が接続されることになる。
その他の構成要素と動作は前述の本発明の第9の実施の形態の鉄道車両駆動制御装置と同
様である。
(第11の実施の形態)
本発明の第11の実施の形態の鉄道車両駆動制御装置の構成を図21に示す。図18に示
した鉄道車両駆動制御装置の構成と比較して充電回路抵抗器6が無い代わりに、変圧器3
次巻線65と充電回路昇圧変圧器67と充電用整流回路68を設けた構成例である。
変圧器3次巻線65は変圧器2次巻線64よりも小さい電圧を出力する巻線である。充
電回路昇圧変圧器67は、変圧器3次巻線65の交流電圧を昇圧するためのものである。
充電用整流回路68は、充電回路昇圧変圧器67の出力を整流して中間直流回路に直流電
圧を供給するためのものである。
電力変換手段10を起動する前に平滑コンデンサ15を充電する場合、充電用開閉器5
を投入して変圧器3次巻線65と充電回路昇圧変圧器67とを接続することにより、充電
用整流回路68を経て平滑コンデンサ15が充電される。平滑コンデンサ15の充電が完
了後、充電用開閉器5を開放して、交流回路開閉器66を投入する。
図21に示す構成の鉄道車両駆動制御装置では、充電用開閉器5は変圧器3次巻線65と
接続された電圧の低い回路に設けられており、充電用開閉器5が低電圧用の簡易で低廉な
開閉器で構成することが可能になる特徴がある。
その他の構成要素および動作については、図18に示した本発明の第9の実施の形態の
鉄道車両駆動制御装置と同様である。
前述の第2から第8の実施の形態の鉄道車両駆動制御装置においても、電源である架線
が交流電圧の場合には、図18と図20および図21と同様に、交流回路遮断器62、1
次巻線63および2次巻線64を有する変圧器、交流回路開閉器66等を設けて構成し、
第2の電力変換回路12をコンバータ回路とすることで、同様に鉄道車両駆動制御装置を
構成することができる。
(第12の実施の形態)
図22は、本発明の第12の実施の形態の鉄道車両駆動制御装置の構成を示している。本
発明の第12の実施の形態の鉄道車両駆動制御装置は、前述の本発明の第1の実施の形態
の鉄道車両駆動制御装置の構成と比較して、電流検出手段の構成が異なっており、電流検
出手段24U〜24Wを、第1の電力変換回路22と永久磁石電動機21との間の電動機
回路の各相に設けている。
図23と図24は、図22に示した本発明の第12の実施の形態の鉄道車両駆動制御装置
の制御部と制御回路および過電流検出手段の構成例を示した図である。本図では、本発明
の実施の形態の動作を理解しやすくするために、制御部103へ入力および制御部103
から出力される信号として、本発明の実施の形態の動作の説明に関係する信号のみを記載
している。
124U〜124Wは電流検出手段24U〜24Wの検出値にあたる出力信号である。
過電流検出手段108は、電流検出手段の出力信号である電流の大きさと、予め設定さ
れている過電流を検出する電流の判別値とを比較して、電流の大きさが過電流判別値Is
et以上であると過電流を検出して過電流信号109を出力する。過電流判別値Iset
は、ゲートスタート信号107が0(電力変換回路のスイッチング素子が全てOFF状態
)である時はIset1の値が設定され、ゲートスタート信号107が1(電力変換回路
のスイッチング素子がON・OFF動作中)である時はIset2の値が設定される。
図25は本発明の第12の実施の形態の鉄道車両駆動制御装置の過電流検出手段108
の別の構成例を示した図である。過電流検出手段108は、電流検出手段の出力信号であ
る電流の大きさの最大値と、予め設定されている過電流を検出する電流の判別値とを比較
して、電流の大きさが過電流判別値Iset以上であると過電流を検出して過電流信号1
09を出力する。その他の構成要素および動作は、前述の図24の説明と同様である。
その他の構成要素と動作については、前述の本発明の第1の実施の形態の鉄道車両駆動制
御装置と同様である。
なお、図22に示した鉄道車両駆動制御装置では、電流検出手段24U〜24Wは、第1
の電力変換回路22と電動機回路開閉器25との間の回路に設けているが、電流検出手段
24U〜24Wは電動機回路に流れる電流を検出するためのものであるから、電動機回路
開閉器25と永久磁石電動機21との間に設けても良い。
(第13の実施の形態)
本発明の第13の実施の形態の鉄道車両駆動制御装置の構成を図26に示す。本発明の第
13の実施の形態の鉄道車両駆動制御装置は、前述の本発明の第12の実施の形態の鉄道
車両駆動制御装置に対して、過電流検出手段108の構成と動作が異なる。
過電流検出手段108は、電流検出手段24U〜24Wが検出した電流の大きさである
出力信号124U〜124Wと、予め設定されている過電流を検出する電流の判別値とを
比較して、電流の大きさが過電流判別値以上であると過電流を検出して過電流信号109
を出力する。
過電流判別値は、即過電流を検出する判別値Isetと、予め設定された時素Tset1
を経過したことを条件として過電流を検出する判別値IsetDが備えられている。即過
電流を検出する判別値Isetは、ゲートスタート信号107が0(電力変換回路のスイ
ッチング素子が全てOFF状態)である時はIset1の値が設定され、ゲートスタート
信号107が1(電力変換回路のスイッチング素子がON・OFF動作中)である時はI
set2の値が設定される。また、時素Tset1を経過したことを条件として過電流を
検出する判別値IsetDは、ゲートスタート信号107が0である時はIset3の値
が設定され、ゲートスタート信号107が1である時はIset4の値が設定される。
その他の構成要素と動作については、本発明の第1の実施の形態の鉄道車両駆動制御装
置と同様であり、本発明の効果を同様に得ることができる。
なお、本発明の第12と第13の実施の形態の鉄道車両駆動制御装置の構成において、
図22の電動機回路開閉器25の接触子は例として永久磁石電動機21への3相交流回路
の全ての相に接触子を設けた記載にしてあるが、電動機回路開閉器25は3相交流回路を
流れる電流を防止するためのものであるから、3相のうちのいずれか2相に接触子を設け
ても良い。
また、図22に示した電動機回路開閉器25は、前述の本発明の第6の実施の形態の鉄
道車両駆動制御装置と同様に、それぞれの永久磁石電動機に対応する3相回路に、第1の
電動機回路開閉器と第2の電動機回路開閉器の2つを直列に設けて構成しても良い。
さらに、図22に示した鉄道車両駆動制御装置の構成において、直流回路開閉器4、充
電用開閉器5、充電回路抵抗器6の構成を図11に示した本発明の第5の実施の形態の鉄
道車両駆動制御装置と同様に構成しても良い。
さらに、図22に示した鉄道車両駆動制御装置の構成において、永久磁石電動機21と
第1の電力変換回路22と電動機回路開閉器25について、本発明の第7の実施の形態の
鉄道車両駆動制御装置と同様に、複数の駆動群で構成しても良い。
また、本発明の第12と第13の実施の形態の鉄道車両駆動制御装置においても、電源で
ある架線が交流電圧の場合には、前述の図18と図20および図21と同様に、交流回路
遮断器62、1次巻線63および2次巻線64を有する変圧器、交流回路開閉器66等を
設けて構成し、第2の電力変換回路12をコンバータ回路とすることで、同様に鉄道車両
駆動制御装置を構成することができる。
(第14の実施の形態)
図27は、本発明の第14の実施の形態の鉄道車両駆動制御装置の構成を示している。本
発明の第14の実施の形態の鉄道車両駆動制御装置は、前述の本発明の第1の実施の形態
の鉄道車両駆動制御装置に対して、電流検出手段と過電流検出手段の構成と動作が異なる
図27において、14Aは第2の電力変換回路12のスイッチング素子13Aを有するア
ームに流れる電流を検出するための電流検出手段である。26Uと26Wは第1の電力変
換手段22と永久磁石電動機21との間の回路の電流を検出するための電動機電流検出手
段である。その他の構成要素は、本発明の第1の実施の形態の鉄道車両駆動制御装置の構
成要素と同一の要素について同一の符号を記載しており、その構成要素と動作は同様であ
る。
第2の電力変換回路12はチョッパ回路であり、スイッチング素子13Aと13Bを内蔵
しており、この2個のスイッチング素子を任意にON・OFF動作させることによって、
電源の直流電圧を任意の電圧の直流電圧に昇圧して変換する機能を有している。図27で
は、スイッチング素子13A、13Bは、適用例として、逆並列に接続されたダイオード
を内蔵したIGBTとして記載しているが、電流を導通(ON)・阻止(OFF)する機
能を有した素子であれば種類はIGBTに限定されない。また、ダイオードを内蔵しない
IGBTを適用してこれと逆並列に別構成要素のダイオードを接続した回路構成としても
良い。
図28と図29は、本発明の第14の実施の形態の鉄道車両駆動制御装置の制御部103
と制御回路および過電流検出手段108の構成を示す図である。過電流検出手段108は
、電流検出手段14Aが検出した電流の大きさである出力信号114Aと、予め設定され
ている過電流を検出する電流の判別値とを比較して、電流の大きさが過電流判別値以上で
あると過電流を検出して過電流信号109を出力する。
過電流検出手段108は、電流検出手段の出力信号である電流の大きさと、予め設定さ
れている過電流を検出する電流の判別値とを比較して、電流の大きさが過電流判別値Is
et以上であると過電流を検出して過電流信号109を出力する。過電流判別値Iset
は、ゲートスタート信号107が0(電力変換回路のスイッチング素子が全てOFF状態
)である時はIset1の値が設定され、ゲートスタート信号107が1(電力変換回路
のスイッチング素子がON・OFF動作中)である時はIset2の値が設定される。
鉄道車両駆動制御装置の電力変換回路の停止中に、電源である架線電圧が急上昇した場合
、平滑コンデンサ15の電圧Vdcと架線電圧Vsとの差電圧のために、図30のように
、スイッチング素子13Aのダイオードを経て平滑コンデンサ15へ過渡電流が流れる。
IGBTの電流耐量Itmaxとダイオードの順方向電流の電流耐量Idmaxの大き
さが異なる場合、従来の鉄道車両駆動制御装置では、スイッチング素子を保護する目的の
過電流を判別する電流値を、電力変換回路の動作中・停止中に関わらず、常にItmax
とIdmaxの小さい方の値以下に設定していた。
IGBTの電流耐量Itmaxとダイオードの順方向電流の電流耐量Idmaxの大き
さが異なっている場合で、前述の式1のようにIdmax>Itmaxであるとき、本発
明を適用した鉄道車両駆動制御装置では、電力変換回路が動作中の過電流判別値をItm
ax以下であるIset2の値に設定し、電力変換回路が停止中の過電流判別値をIdm
ax以下であるIset1の値に設定することができる。この機能により、電力変換回路
の停止中にスイッチング素子に流れる電流の制限を従来に比べて緩和でき、不必要に保護
を検出して直流回路開閉器4を開放することを防止することが可能になる。
なお、図27に示した鉄道車両駆動制御装置では、電流検出手段14Aは、各スイッチン
グ素子13Aと別の構成要素で設けているが、電流検出手段14Aをスイッチング素子1
3Aに内蔵した構成としても良い。
その他の構成要素と動作については、前述の本発明の第1の実施の形態の鉄道車両駆動制
御装置と同様である。
(第15の実施の形態)
本発明の第15の実施の形態の鉄道車両駆動制御装置の構成を図31に示す。本発明の第
15の実施の形態の鉄道車両駆動制御装置は、前述の本発明の第14の実施の形態の鉄道
車両駆動制御装置に対して、過電流検出手段108の構成と動作が異なる。
過電流判別値は、即過電流を検出する判別値Isetと、予め設定された時素Tset1
を経過したことを条件として過電流を検出する判別値IsetDが備えられている。即過
電流を検出する判別値Isetは、ゲートスタート信号107が0(電力変換回路のスイ
ッチング素子が全てOFF状態)である時はIset1の値が設定され、ゲートスタート
信号107が1(電力変換回路のスイッチング素子がON・OFF動作中)である時はI
set2の値が設定される。また、時素Tset1を経過したことを条件として過電流を
検出する判別値IsetDは、ゲートスタート信号107が0である時はIset3の値
が設定され、ゲートスタート信号107が1である時はIset4の値が設定される。
IGBTの電流耐量Itmaxについて、短時間の電流に対する電流耐量ItmaxSと
連続した電流に対する電流耐量ItmsxCが異なる場合、およびダイオードの順方向電
流の電流耐量Idmaxについて、短時間の電流に対する電流耐量IdmaxSと連続し
た電流に対する電流耐量IdmaxCが異なる場合で、前述の式2のような性能を有して
いる場合、本発明を適用した鉄道車両駆動制御装置では、即過電流を検出する判別値Is
etについて、電力変換回路が停止中はIdmaxS以下であるIset1の値に設定し
、電力変換回路が動作中はItmaxS以下であるIset2の値に設定することができ
る。また、時素をもって過電流を検出する判別値IsetDについて、電力変換回路が停
止中はIdmaxC以下であるIset3の値に設定し、電力変換回路が動作中はItm
axC以下であるIset4の値に設定することができる。この機能により、第2の電力
変換回路12に適用するスイッチング素子13Aの電流耐量の性能を最大限に利用可能と
なり、スイッチング素子13Aに流れる電流の制限を従来に比べて緩和でき、不必要に保
護を検出して直流回路開閉器4を開放することを防止することができる。
その他の構成要素と動作については、本発明の第14の実施の形態の鉄道車両駆動制御
装置と同様であり、本発明の効果を同様に得ることができる。
(第16の実施の形態)
本発明の第16の実施の形態の鉄道車両駆動制御装置の構成を図32と図33に示す。本
発明の第16の実施の形態の鉄道車両駆動制御装置は、前述の本発明の第14の実施の形
態の鉄道車両駆動制御装置に対して、ゲートスタート信号107が無い点と過電流検出手
段108の構成と動作が異なる。
過電流判別値は、スイッチング素子13Aに流れる正方向電流の大きさと比較する判別値
IsetFと、スイッチング素子13Aに流れる負方向電流の大きさと比較するIset
Rが備えられていることが特徴である。IGBTが導通状態(ON)の時に流れる電流方
向を正方向とし、逆並列に接続されたダイオードの順方向電流の方向を負方向としたとき
、IGBTの電流耐量Itmaxとダイオードの順方向電流の電流耐量Idmaxの大き
さが異なっている場合で、前述の式3の性能を有している場合、本発明を適用した鉄道車
両駆動制御装置では、過電流を検出する判別値を、正方向電流と比較する判別値にItm
ax以下であるIsetFの値に設定し、負方向電流と比較する判別値にIdmax以下
であるIsetRの値に設定することができる。この機能により、第2の電力変換回路1
2のスイッチング素子13Aに流れる電流の制限を従来に比べて緩和でき、不必要に保護
を検出して直流回路開閉器4を開放することを防止することが可能になる。
その他の構成要素と動作については、本発明の第14の実施の形態の鉄道車両駆動制御
装置と同様であり、本発明の効果を同様に得ることができる。
(第17の実施の形態)
本発明の第17の実施の形態の鉄道車両駆動制御装置の構成を図34に示す。本発明の第
17の実施の形態の鉄道車両駆動制御装置は、前述の本発明の第16の実施の形態の鉄道
車両駆動制御装置に対して、過電流検出手段108の構成と動作が異なる。
過電流判別値は、スイッチング素子13Aに流れる正方向電流の大きさと比較する判別値
IsetFと、スイッチング素子13Aに流れる負方向電流の大きさと比較して即過電流
を検出するIsetR1と、スイッチング素子13Aに流れる負方向電流の大きさと比較
して予め設定された時素Tset1が経過したことを条件として過電流を検出するIse
tR2が備えられていることが特徴である。IGBTが導通状態(ON)の時に流れる電
流方向を正方向とし、逆並列に接続されたダイオードの順方向電流の方向を負方向とした
とき、IGBTの電流耐量Itmaxとダイオードの順方向電流の電流耐量Idmaxの
大きさが異なっている場合で、かつ、ダイオードの順方向電流の短時間の電流に対する電
流耐量IdmaxSと連続した電流に対する電流耐量IdmaxCの大きさが異なってい
る場合で、前述の式4の性能を有している場合、本発明を適用した鉄道車両駆動制御装置
では、過電流を検出する判別値を、正方向電流と比較する判別値にItmax以下である
IsetFの値に設定し、負方向電流と比較して即過電流を検出する判別値にIdmax
S以下であるIsetR1の値に設定し、負方向電流と比較して時素をもって過電流を検
出する判別値にIdmaxC以下であるIsetR2の値に設定することができる。この
機能により、スイッチング素子13Aの電流耐量の性能を最大限に利用して第2の電力変
換回路12のスイッチング素子13Aに流れる電流の制限を従来に比べて緩和でき、不必
要に保護を検出して直流回路開閉器4を開放することを防止することが可能になる。
その他の構成要素と動作については、本発明の第14の実施の形態の鉄道車両駆動制御
装置と同様であり、本発明の効果を同様に得ることができる。
なお、本発明の第14から第17の実施の形態の鉄道車両駆動制御装置で示した、電流
検出手段14Aおよび過電流検出手段108の構成は、前述の本発明の第1から第8の実
施の形態の鉄道車両駆動制御装置の構成に追加の構成要素として設けて、鉄道車両駆動制
御装置を構成することが可能である。
(第18の実施の形態)
本発明の第18の実施の形態の鉄道車両駆動制御装置の構成を図35に示す。前述の本
発明の第9の実施の形態の鉄道車両駆動制御装置の構成と比較して、電流検出手段と過電
流検出手段の構成が異なっている。
図36と図37は本発明の第18の実施の形態の鉄道車両駆動制御装置の制御部と制御
回路および過電流検出手段の構成例である。
12はコンバータ回路である第2の電力変換回路、13U〜13Yはコンバータ回路の
スイッチング素子、14U〜14Yはコンバータ回路のスイッチング素子に流れる電流を
検出するための電流検出手段、26Uと26Wは第1の電力変換手段22と永久磁石電動
機21との間の回路の電流を検出するための電動機電流検出手段である。
コンバータ回路である第2の電力変換回路12は、スイッチング素子13U〜13Yを内
蔵しており、この4個のスイッチング素子をゲート信号113U〜113Yによって任意
にON・OFF動作させることによって、変圧器2次巻線64から供給される電力変換手
段10の電源である交流電圧を任意の大きさの電圧の直流電圧に変換する機能を有してい
る。図14では、スイッチング素子13U〜13Yは、適用例として、逆並列に接続され
たダイオードを内蔵したIGBTとして記載しているが、電流を導通(ON)・阻止(O
FF)する機能を有した素子であれば種類はIGBTに限定されない。また、ダイオード
を内蔵しないIGBTを適用してこれと逆並列に別構成要素のダイオードを接続した回路
構成としても良い。
過電流検出手段108は、電流検出手段14U〜14Yが検出した電流の大きさである出
力信号114U〜114Yと、予め設定されている過電流を検出する電流の判別値とを比
較して、電流の大きさが過電流判別値以上であると過電流を検出して過電流信号109を
出力する。
過電流検出手段108は、電流検出手段の出力信号である電流の大きさと、予め設定さ
れている過電流を検出する電流の判別値とを比較して、電流の大きさが過電流判別値Is
et以上であると過電流を検出して過電流信号109を出力する。過電流判別値Iset
は、ゲートスタート信号107が0(電力変換回路のスイッチング素子が全てOFF状態
)である時はIset1の値が設定され、ゲートスタート信号107が1(電力変換回路
のスイッチング素子がON・OFF動作中)である時はIset2の値が設定される。
鉄道車両駆動制御装置の電力変換回路の停止中に、電源である架線電圧が急上昇した場合
、平滑コンデンサ15の電圧Vdcと架線電圧Vsとの差電圧のために、スイッチング素
子13U〜13Yのダイオードを経て平滑コンデンサ15へ過渡電流が流れる。
IGBTの電流耐量Itmaxとダイオードの順方向電流の電流耐量Idmaxの大き
さが異なっている場合で、前述の式1の性能を有する場合、本発明を適用した鉄道車両駆
動制御装置では、電力変換回路が動作中の過電流判別値をItmax以下であるIset
2の値に設定し、電力変換回路が停止中の過電流判別値をIdmax以下であるIset
1の値に設定することができる。この機能により、第2の電力変換回路12の停止中にス
イッチング素子13U〜13Yに流れる電流の制限を従来に比べて緩和でき、不必要に保
護を検出して交流回路開閉器66を開放することを防止することが可能になる。
図38は本発明の第18の実施の形態の鉄道車両駆動制御装置の過電流検出手段108
の別の構成例を示した図である。過電流検出手段108は、電流検出手段の出力信号であ
る電流の大きさの最大値と、予め設定されている過電流を検出する電流の判別値とを比較
して、電流の大きさの最大値が過電流判別値Iset以上であると過電流を検出して過電
流信号109を出力する。その他の構成要素および動作は、前述の図37の説明と同様で
ある。
なお、図35に示した鉄道車両駆動制御装置では、電流検出手段14U〜14Yは、各ス
イッチング素子13U〜13Yと別の構成要素で設けているが、電流検出手段14U〜1
4Yをスイッチング素子13U〜13Yに内蔵した構成としても良い。
また、図35に示した鉄道車両駆動制御装置では、電流検出手段14U〜14Yは、各ス
イッチング素子13U〜13Yの交流回路側に設けているが、電流検出手段14U〜14
Yは第2の電力変換回路12の各アームに流れる電流を検出するためのものであるから、
図39に示した構成例のように、各アームのスイッチング素子13U、13Vと中間直流
回路の正側回路との間、またスイッチング素子13X、13Yと中間直流回路の負側回路
との間に設けても良い。
その他の構成要素と動作については、前述の本発明の第9の実施の形態の鉄道車両駆動制
御装置と同様である。
(第19の実施の形態)
本発明の第19の実施の形態の鉄道車両駆動制御装置の過電流検出手段108の構成を図
40に示す。本発明の第19の実施の形態の鉄道車両駆動制御装置は、前述の本発明の第
18の実施の形態の鉄道車両駆動制御装置に対して、過電流検出手段108の構成と動作
が異なる。
過電流判別値は、即過電流を検出する判別値Isetと、予め設定された時素Tset1
を経過したことを条件として過電流を検出する判別値IsetDが備えられている。即過
電流を検出する判別値Isetは、ゲートスタート信号107が0(電力変換回路のスイ
ッチング素子が全てOFF状態)である時はIset1の値が設定され、ゲートスタート
信号107が1(電力変換回路のスイッチング素子がON・OFF動作中)である時はI
set2の値が設定される。また、時素Tset1を経過したことを条件として過電流を
検出する判別値IsetDは、ゲートスタート信号107が0である時はIset3の値
が設定され、ゲートスタート信号107が1である時はIset4の値が設定される。
IGBTの電流耐量Itmaxについて、短時間の電流に対する電流耐量ItmaxSと
連続した電流に対する電流耐量ItmaxCが異なる場合、およびダイオードの順方向電
流の電流耐量Idmaxについて、短時間の電流に対する電流耐量IdmaxSと連続し
た電流に対する電流耐量IdmaxCが異なる場合で、前述の式2の性能を有している場
合、本発明を適用した鉄道車両駆動制御装置では、即過電流を検出する判別値Isetに
ついて、電力変換回路が停止中はIdmaxS以下であるIset1の値に設定し、電力
変換回路が動作中はItmaxS以下であるIset2の値に設定することができる。ま
た、時素をもって過電流を検出する判別値IsetDについて、電力変換回路が停止中は
IdmaxC以下であるIset3の値に設定し、電力変換回路が動作中はItmaxC
以下であるIset4の値に設定することができる。
その他の構成要素と動作については、本発明の第18の実施の形態の鉄道車両駆動制御
装置と同様であり、本発明の効果を同様に得ることができる。
(第20の実施の形態)
本発明の第20の実施の形態の鉄道車両駆動制御装置の構成を図41と図42に示す。本
発明の第20の実施の形態の鉄道車両駆動制御装置は、前述の本発明の第18の実施の形
態の鉄道車両駆動制御装置に対して、ゲートスタート信号107が無い点と過電流検出手
段108の構成と動作が異なる。
過電流判別値は、スイッチング素子13U〜13Yに流れる正方向電流の大きさと比較す
る判別値IsetFと、スイッチング素子13U〜13Yに流れる負方向電流の大きさと
比較するIsetRが備えられていることが特徴である。IGBTが導通状態(ON)の
時に流れる電流方向を正方向とし、逆並列に接続されたダイオードの順方向電流の方向を
負方向としたとき、IGBTの電流耐量Itmaxとダイオードの順方向電流の電流耐量
Idmaxの大きさが異なっている場合で、前述の式3の性能を有している場合、本発明
を適用した鉄道車両駆動制御装置では、過電流を検出する判別値を、正方向電流と比較す
る判別値にItmax以下であるIsetFの値に設定し、負方向電流と比較する判別値
にIdmax以下であるIsetRの値に設定することができる。
その他の構成要素と動作については、本発明の第18の実施の形態の鉄道車両駆動制御
装置と同様であり、本発明の効果を同様に得ることができる。
(第21の実施の形態)
本発明の第21の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成を図43に
示す。本発明の第21の実施の形態の鉄道車両駆動制御装置は、前述の本発明の第20の
実施の形態の鉄道車両駆動制御装置に対して、過電流検出手段108の構成と動作が異な
る。
過電流判別値は、スイッチング素子13U〜13Yに流れる正方向電流の大きさと比較す
る判別値IsetFと、スイッチング素子13U〜13Yに流れる負方向電流の大きさと
比較して即過電流を検出するIsetR1と、スイッチング素子13U〜13Yに流れる
負方向電流の大きさと比較して予め設定された時素Tset1が経過したことを条件とし
て過電流を検出するIsetR2が備えられていることが特徴である。IGBTが導通状
態(ON)の時に流れる電流方向を正方向とし、逆並列に接続されたダイオードの順方向
電流の方向を負方向としたとき、IGBTの電流耐量Itmaxとダイオードの順方向電
流の電流耐量Idmaxの大きさが異なっている場合で、かつ、ダイオードの順方向電流
の短時間の電流に対する電流耐量IdmaxSと連続した電流に対する電流耐量Idma
xCの大きさが異なっている場合で、前述の式4の性能を有している場合、本発明を適用
した鉄道車両駆動制御装置では、過電流を検出する判別値を、正方向電流と比較する判別
値にItmax以下であるIsetFの値に設定し、負方向電流と比較して即過電流を検
出する判別値にIdmaxS以下であるIsetR1の値に設定し、負方向電流と比較し
て時素をもって過電流を検出する判別値にIdmaxC以下であるIsetR2の値に設
定することができる。
その他の構成要素と動作については、本発明の第20の実施の形態の鉄道車両駆動制御
装置と同様であり、本発明の効果を同様に得ることができる。
なお、本発明の第18から第21の実施の形態の鉄道車両駆動制御装置で示した、電流
検出手段14U〜14Yおよび過電流検出手段108の構成は、前述の本発明の第9から
第11の実施の形態の鉄道車両駆動制御装置の構成に追加の構成要素として設けて、鉄道
車両駆動制御装置を構成することが可能である。
(第22の実施の形態)
本発明の第22の実施の形態の鉄道車両駆動制御装置の構成を図44に示す。前述の本
発明の第18の実施の形態の鉄道車両駆動制御装置の構成と比較して、電流検出手段と過
電流検出手段の構成が異なっている。
図45と図46は本発明の第22の実施の形態の鉄道車両駆動制御装置の制御部と制御
回路および過電流検出手段の構成例である。
14Vは変圧器2次巻線64と第2の電力変換回路の間の交流回路に流れる電流を検出
するための電流検出手段である。
過電流検出手段108は、電流検出手段14Vが検出した電流の大きさである出力信号1
14Vと、予め設定されている過電流を検出する電流の判別値とを比較して、電流の大き
さが過電流判別値以上であると過電流を検出して過電流信号109を出力する。
過電流検出手段108は、電流検出手段の出力信号である電流の大きさと、予め設定さ
れている過電流を検出する電流の判別値とを比較して、電流の大きさが過電流判別値Is
et以上であると過電流を検出して過電流信号109を出力する。過電流判別値Iset
は、ゲートスタート信号107が0(電力変換回路のスイッチング素子が全てOFF状態
)である時はIset1の値が設定され、ゲートスタート信号107が1(電力変換回路
のスイッチング素子がON・OFF動作中)である時はIset2の値が設定される。
鉄道車両駆動制御装置の電力変換回路の停止中に、電源である架線電圧が急上昇した場合
、平滑コンデンサ15の電圧Vdcと架線電圧Vsとの差電圧のために、スイッチング素
子13U〜13Yのダイオードを経て平滑コンデンサ15へ過渡電流が流れる。
IGBTの電流耐量Itmaxとダイオードの順方向電流の電流耐量Idmaxの大き
さが異なっている場合で、前述の式1の性能を有する場合、本発明を適用した鉄道車両駆
動制御装置では、電力変換回路が動作中の過電流判別値をItmax以下であるIset
2の値に設定し、電力変換回路が停止中の過電流判別値をIdmax以下であるIset
1の値に設定することができる。
また、図44に示した鉄道車両駆動制御装置では、電流検出手段14Vは、変圧器2次巻
線64と第2の電力変換回路12との間の交流回路の、交流回路開閉器66とは反対側の
相の回路に設けているが、電流検出手段14Vは交流回路に流れる電流を検出するための
ものであるから、交流回路開閉器66が設けられている側の相の回路に設けても良い。
その他の構成要素と動作については、前述の本発明の第18の実施の形態の鉄道車両駆動
制御装置と同様である。
(第23の実施の形態)
本発明の第23の実施の形態の鉄道車両駆動制御装置の構成を図47に示す。本発明の第
23の実施の形態の鉄道車両駆動制御装置は、前述の本発明の第22の実施の形態の鉄道
車両駆動制御装置に対して、過電流検出手段108の構成と動作が異なる。
過電流判別値は、即過電流を検出する判別値Isetと、予め設定された時素Tset1
を経過したことを条件として過電流を検出する判別値IsetDが備えられている。即過
電流を検出する判別値Isetは、ゲートスタート信号107が0(電力変換回路のスイ
ッチング素子が全てOFF状態)である時はIset1の値が設定され、ゲートスタート
信号107が1(電力変換回路のスイッチング素子がON・OFF動作中)である時はI
set2の値が設定される。また、時素Tset1を経過したことを条件として過電流を
検出する判別値IsetDは、ゲートスタート信号107が0である時はIset3の値
が設定され、ゲートスタート信号107が1である時はIset4の値が設定される。
IGBTの電流耐量Itmaxについて、短時間の電流に対する電流耐量ItmaxSと
連続した電流に対する電流耐量ItmaxCが異なる場合、およびダイオードの順方向電
流の電流耐量Idmaxについて、短時間の電流に対する電流耐量IdmaxSと連続し
た電流に対する電流耐量IdmaxCが異なる場合で、前述の式2のような性能を有して
いる場合、本発明を適用した鉄道車両駆動制御装置では、即過電流を検出する判別値Is
etについて、電力変換回路が停止中はIdmaxS以下であるIset1の値に設定し
、電力変換回路が動作中はItmaxS以下であるIset2の値に設定することができ
る。また、時素をもって過電流を検出する判別値IsetDについて、電力変換回路が停
止中はIdmaxC以下であるIset3の値に設定し、電力変換回路が動作中はItm
axC以下であるIset4の値に設定することができる。
その他の構成要素と動作については、本発明の第22の実施の形態の鉄道車両駆動制御
装置と同様であり、本発明の効果を同様に得ることができる。
なお、本発明の第22と第23の実施の形態の鉄道車両駆動制御装置で示した、電流検
出手段14Vおよび過電流検出手段108の構成は、前述の本発明の第9から第11の実
施の形態の鉄道車両駆動制御装置の構成に追加の構成要素として設けて、鉄道車両駆動制
御装置を構成することが可能である。
また、本発明の第14の実施の形態から第23の実施の形態の鉄道車両駆動制御装置の
説明では、車両を駆動する電動機を永久磁石電動機を適用した例として説明しているが、
本発明の第14の実施の形態から第23の実施の形態の鉄道車両駆動制御装置の特徴は、
第2の電力変換回路に流れる電流の過電流の検出方法に関するものであるから、誘導電動
機や界磁励磁形同期電動機などを車両駆動用電動機に適用した場合にも、本発明の効果を
同様に得ることができる。またこの場合、永久磁石を内蔵せずその回転に伴って誘起電圧
を発生しない電動機の場合は、電動機回路開閉器を設けない構成にすることも可能である
さらに、本発明の第1の実施の形態から第23の実施の形態の鉄道車両駆動制御装置では
、それぞれの実施の形態を示した図におけるインバータ回路である第1の電力変換回路2
2と、コンバータ回路である第2の電力変換回路12と、第1駆動群インバータ回路32
、第2駆動群インバータ回路42の内部回路について、それぞれ2レベル回路で構成した
例で示したが、例えば図48に示す鉄道車両駆動制御装置のようにコンバータ回路である
第2の電力変換回路12を中性点クランプ形の3レベル回路で構成した場合においても、
本発明の効果を同様に得ることができる。また、インバータ回路である第1の電力変換回
路を中性点クランプ形の3レベル回路で構成しても、またコンバータ回路とインバータ回
路の両方を中性点クランプ形の3レベル回路で構成しても良い。つまり、本発明の実施の
形態として示した図におけるコンバータ回路である第2の電力変換回路12は、交流電圧
を任意の大きさの電圧の直流電圧に変換するコンバータ回路であれば、その内部回路の構
成によらず適用可能であり、本発明の効果を同様に得ることができる。また同様に、本発
明の実施の形態として示した図におけるインバータ回路である第1の電力変換回路22と
第1駆動群インバータ回路32と第2駆動群インバータ回路42は、直流電圧を任意の大
きさの電圧と任意の周波数の交流電圧に変換するインバータ回路であれば、その内部回路
の構成によらず適用可能であり、本発明の効果を同様に得ることができる。
本発明に基づく鉄道車両駆動制御装置によれば、鉄道車両が走行中に鉄道車両駆動制御装
置を起動する場合に、永久磁石電動機が回転して誘起電圧を発生している状態において電
動機回路開閉器を投入するときに、鉄道車両駆動制御装置が内蔵している平滑コンデンサ
への過渡的な電流を不必要に過電流検出して電動機回路開閉器を開放することを防止でき
る鉄道車両駆動制御装置を実現できる。
また、本発明に基づく鉄道車両駆動制御装置によれば、電源電圧(架線電圧)が急上昇し
た場合に、架線側から平滑コンデンサへの過渡的な電流を不必要に過電流検出して電源側
回路の開閉器を開放することを防止できる鉄道車両駆動制御装置を実現できる。
さらに、鉄道車両駆動制御装置が内蔵する電力変換手段に適用するスイッチング素子が有
する電流耐量の性能および、電力変換手段のアームに適用するダイオードが有する電流耐
量の性能を最大限に利用することが可能になり、鉄道車両駆動制御装置の性能向上および
装置の小型化に寄与することができる。
本発明の第1の実施の形態の鉄道車両駆動制御装置の構成例を示す図 本発明の第1の実施の形態の鉄道車両駆動制御装置の制御部と制御回路および過電流検出手段の構成例を示す図 本発明の第1の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成例を示す図 鉄道車両駆動制御装置における、電動機回路開閉器を投入したときの過渡電流の例を示す図 本発明の第1の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成の別の例を示す図 本発明の第1の実施の形態の鉄道車両駆動制御装置の構成の別の例を示す図 本発明の第2の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成例を示す図 本発明の第3の実施の形態の鉄道車両駆動制御装置の制御部と制御回路および過電流検出手段の構成を示す図 本発明の第3の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成を示す図 本発明の第4の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成を示す図 本発明の第5の実施の形態の鉄道車両駆動制御装置の構成例を示す図 本発明の第6の実施の形態の鉄道車両駆動制御装置の構成例を示す図 本発明の第6の実施の形態の鉄道車両駆動制御装置の制御部と制御回路および過電流検出手段の構成例を示す図 本発明の第7の実施の形態の鉄道車両駆動制御装置の構成例を示す図 本発明の第7の実施の形態の鉄道車両駆動制御装置の制御部と制御回路および過電流検出手段の構成例を示す図 本発明の第8の実施の形態の鉄道車両駆動制御装置の構成例を示す図 本発明の第8の実施の形態の鉄道車両駆動制御装置の制御部と制御回路および過電流検出手段の構成例を示す図 本発明の第9の実施の形態の鉄道車両駆動制御装置の構成例を示す図 本発明の第9の実施の形態の鉄道車両駆動制御装置の制御部と制御回路および過電流検出手段の構成例を示す図 本発明の第10の実施の形態の鉄道車両駆動制御装置の構成例を示す図 本発明の第11の実施の形態の鉄道車両駆動制御装置の構成例を示す図 本発明の第12の実施の形態の鉄道車両駆動制御装置の構成例を示す図 本発明の第12の実施の形態の鉄道車両駆動制御装置の制御部と制御回路および過電流検出手段の構成例を示す図 本発明の第12の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成例を示す図 本発明の第12の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成の別の例を示す図 本発明の第13の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成例を示す図 本発明の第14の実施の形態の鉄道車両駆動制御装置の構成例を示す図 本発明の第14の実施の形態の鉄道車両駆動制御装置の制御部と制御回路および過電流検出手段の構成例を示す図 本発明の第14の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成例を示す図 鉄道車両駆動制御装置における、電源電圧(架線電圧)が急上昇したときの過渡電流の例を示す図 本発明の第15の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成例を示す図 本発明の第16の実施の形態の鉄道車両駆動制御装置の制御部と制御回路および過電流検出手段の構成例を示す図 本発明の第16の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成例を示す図 本発明の第17の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成例を示す図 本発明の第18の実施の形態の鉄道車両駆動制御装置の構成例を示す図 本発明の第18の実施の形態の鉄道車両駆動制御装置の制御部と制御回路および過電流検出手段の構成例を示す図 本発明の第18の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成例を示す図 本発明の第18の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成の別の例を示す図 本発明の第18の実施の形態の鉄道車両駆動制御装置の構成の別の例を示す図 本発明の第19の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成例を示す図 本発明の第20の実施の形態の鉄道車両駆動制御装置の制御部と制御回路および過電流検出手段の構成例を示す図 本発明の第20の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成例を示す図 本発明の第21の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成例を示す図 本発明の第22の実施の形態の鉄道車両駆動制御装置の構成例を示す図 本発明の第22の実施の形態の鉄道車両駆動制御装置の制御部と制御回路および過電流検出手段の構成例を示す図 本発明の第22の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成例を示す図 本発明の第23の実施の形態の鉄道車両駆動制御装置の過電流検出手段の構成例を示す図 本発明の第9の実施の形態の鉄道車両駆動制御装置において、コンバータ回路を中性点クランプ形3レベル回路とした場合の構成を示す図 従来技術の鉄道車両駆動制御装置の構成を示す図 従来技術の鉄道車両駆動制御装置の制御部と制御回路の構成を示す図 永久磁石電動機が回転している場合の、永久磁石電動機端子の誘起電圧の例を示す図 従来技術の鉄道車両駆動制御装置における、電動機回路開閉器を投入したときの過渡電流の例を示す図 従来技術の鉄道車両駆動制御装置における、電源電圧(架線電圧)が急上昇したときの過渡電流の例を示す図
符号の説明
1 直流電源(架線)
2 集電器
3 直流回路遮断器
4 直流回路開閉器
5 充電用開閉器
6 充電回路抵抗器
7 平滑リアクトル
8 車輪
9 レール(帰線)
10 電力変換手段
12 第2の電力変換回路
13A、13B チョッパ回路スイッチング素子
13U〜13Y コンバータ回路スイッチング素子
14A、14U〜Y 電流検出手段
15 平滑コンデンサ
16 直流電圧検出手段
21 永久磁石電動機
22 第1の電力変換回路
23U〜23Z インバータ回路スイッチング素子
24U〜24Z 電流検出手段
25 電動機回路開閉器
25A 第1の電動機回路開閉器
25B 第2の電動機回路開閉器
26U、26W 電動機電流検出手段
31 第1駆動群の永久磁石電動機
32 第1駆動群のインバータ
33U〜33Z 第1駆動群のインバータ回路スイッチング素子
34U〜34Z 第1駆動群の電流検出手段
35 第1駆動群の電動機回路開閉器
41 第2駆動群の永久磁石電動機
42 第2駆動群のインバータ
43U〜43Z 第2駆動群のインバータ回路スイッチング素子
44U〜44Z 第2駆動群の電流検出手段
45 第2駆動群の電動機回路開閉器
61 交流電源(架線)
62 交流回路遮断器
63 変圧器1次巻線
64 変圧器2次巻線
65 変圧器3次巻線
66 交流回路開閉器
67 充電回路昇圧変圧器
68 充電用整流回路
69 交流電流検出手段
101 制御回路電源
102 制御回路電源グラウンド
103 制御部
104 直流回路開閉器駆動操作コイル
105 充電用開閉器駆動操作コイル
106a〜106h 継電器
107 ゲートスタート信号
108 過電流検出手段
109 過電流信号
113A、113B チョッパ回路ゲート信号
113U〜113Y コンバータ回路ゲート信号
114A、114U〜Y 電流検出手段の出力信号
116 直流電圧検出手段の出力信号
123U〜123Z インバータ回路ゲート信号
124U〜124W 電流検出手段の出力信号
125 電動機回路開閉器駆動操作コイル
125A 第1の電動機回路開閉器駆動操作コイル
125B 第2の電動機回路開閉器駆動操作コイル
126U、126W 電動機電流検出手段の出力信号
133U〜133Z 第1駆動群のインバータ回路ゲート信号
134U〜134W 第1駆動群の電流検出手段の出力信号
135 第1駆動群の電動機回路開閉器駆動操作コイル
143U〜143Z 第2駆動群のインバータ回路ゲート信号
144U〜144W 第2駆動群の電流検出手段の出力信号
145 第2駆動群の電動機回路開閉器駆動操作コイル
169 交流電流検出手段の出力信号

Claims (12)

  1. 電源電圧を任意の電圧と任意の周波数のn相交流電圧(nは交流の相数を表す任意の数)
    に変換して車両を駆動する永久磁石電動機に交流電力を供給する電力変換手段と、
    前記電力変換手段の各相のアームまたはスイッチング素子に流れる電流を検出する電流検
    出手段と、
    前記電流検出手段の出力を入力として過電流を検出する過電流検出手段を備え、
    前記過電流検出手段は、前記電流検出手段の出力と比較して過電流を検出する電流の判別
    値について、前記電力変換手段が動作している場合と停止している場合とで、過電流を検
    出する電流の判別値を変更することを特徴とする鉄道車両駆動制御装置。
  2. 電源電圧を任意の電圧と任意の周波数のn相交流電圧(nは交流の相数を表す任意の数)
    に変換して車両を駆動する永久磁石電動機に交流電力を供給する電力変換手段と、
    前記電力変換手段と前記永久磁石電動機との間の回路の電流を検出する電流検出手段と、
    前記電流検出手段の出力を入力として前記電力変換手段の過電流を検出する過電流検出手
    段を備え、
    前記過電流検出手段は、前記電流検出手段の出力と比較して過電流を検出する電流の判別
    値について、前記電力変換手段が動作している場合と停止している場合とで、過電流を検
    出する電流の判別値を変更することを特徴とする鉄道車両駆動制御装置。
  3. 電源電圧を任意の電圧と任意の周波数のn相交流電圧(nは交流の相数を表す任意の数)
    に変換して車両を駆動する永久磁石電動機に交流電力を供給する電力変換手段と、
    前記電力変換手段の各相のアームまたはスイッチング素子に流れる電流を検出する電流検
    出手段と、
    前記電流検出手段の出力を入力として過電流を検出する過電流検出手段を備え、
    前記過電流検出手段は、前記電流検出手段の出力と比較して過電流を検出する電流の判別
    値について、前記アームまたはスイッチング素子に流れる電流の方向で異なる判別値とす
    ることを特徴とする鉄道車両駆動制御装置。
  4. 前記請求項3に記載の鉄道車両駆動制御装置において、過電流検出手段は、電流検出手段
    の出力と比較して過電流を検出する電流の判別値について、電力変換手段の各相のアーム
    またはスイッチング素子に流れる電流の方向で異なる判別値を有し、さらに、少なくとも
    電流の一方向の判別値について、即過電流を検出する第1の判別値と、予め設定された時
    間を経過したことを条件に過電流を検出する第2の判別値とそれぞれ比較することを特徴
    とする鉄道車両駆動制御装置。
  5. 電源電圧を任意の電圧と任意の周波数のn相交流電圧(nは交流の相数を表す任意の数)
    に変換して車両を駆動する交流電動機に交流電力を供給する電力変換手段を備え、
    前記電力変換手段には、直流電圧を任意の電圧と任意の周波数のn相交流電圧に変換して
    出力する第1の電力変換回路と、直流または交流の電源電圧を任意の直流電圧に変換して
    前記第1の電力変換回路に電力を供給する第2の電力変換回路が内蔵されており、
    前記第2の電力変換回路のアームまたはスイッチング素子に流れる電流を検出する電流検
    出手段と、
    前記電流検出手段の出力を入力として過電流を検出する過電流検出手段を備え、
    前記過電流検出手段は、前記電流検出手段の出力と比較して過電流を検出する電流の判別
    値について、前記電力変換手段が動作している場合と停止している場合とで、過電流を検
    出する電流の判別値を変更することを特徴とする鉄道車両駆動制御装置。
  6. 電源電圧を任意の電圧と任意の周波数の交流電圧に変換して車両を駆動する交流電動機に
    交流電力を供給する電力変換手段と、
    前記電力変換手段と電源との間の回路に流れる電流を検出する電流検出手段と、
    前記電流検出手段の出力を入力として過電流を検出する過電流検出手段を備え、
    前記過電流検出手段は、前記電流検出手段の出力と比較して過電流を検出する電流の判別
    値について、前記電力変換手段が動作している場合と停止している場合とで、過電流を検
    出する電流の判別値を変更することを特徴とする鉄道車両駆動制御装置。
  7. 前記請求項1及び請求項2及び請求項5及び請求項6に記載の鉄道車両駆動制御装置にお
    いて、
    過電流検出手段は、電流検出手段の出力と比較して過電流を検出する電流の判別値につい
    て、電力変換手段が停止している場合は第1の判別値と比較し、電力変換手段が動作して
    いる場合は第2の判別値と比較することを特徴とする鉄道車両駆動制御装置。
  8. 前記請求項1及び請求項2及び請求項5及び請求項6に記載の鉄道車両駆動制御装置にお
    いて、
    過電流検出手段は、電流検出手段の出力と比較して過電流を検出する電流の判別値につい
    て、電力変換手段が動作している場合の判別値と、電力変換手段が停止している場合の判
    別値を有し、
    このうち少なくとも電力変換手段が停止している場合の判別値について、即過電流を検出
    する第1の判別値と、予め設定された時間を経過したことを条件に過電流を検出する第2
    の判別値とそれぞれ比較することを特徴とする鉄道車両駆動制御装置。
  9. 前記請求項1及び請求項2及び請求項5及び請求項6に記載の鉄道車両駆動制御装置にお
    いて、
    過電流検出手段は、電流検出手段の出力と比較して過電流を検出する電流の判別値につい
    て、電力変換手段が動作している場合は、即過電流を検出する第1の判別値と、予め設定
    された時間を経過したことを条件に過電流を検出する第2の判別値とそれぞれ比較し、
    電力変換手段が停止している場合は、即過電流を検出する第3の判別値と、予め設定され
    た時間を経過したことを条件に過電流を検出する第4の判別値とそれぞれ比較することを
    特徴とする鉄道車両駆動制御装置。
  10. 電源電圧を任意の電圧と任意の周波数のn相交流電圧(nは交流の相数を表す任意の数)
    に変換して車両を駆動する交流電動機に交流電力を供給する電力変換手段を備え、
    前記電力変換手段には、直流電圧を任意の電圧と任意の周波数のn相交流電圧に変換して
    出力する第1の電力変換回路と、直流または交流の電源電圧を任意の直流電圧に変換して
    前記第1の電力変換回路に電力を供給する第2の電力変換回路が内蔵されており、
    前記第2の電力変換回路のアームまたはスイッチング素子に流れる電流を検出する電流検
    出手段と、
    前記電流検出手段の出力を入力として過電流を検出する過電流検出手段を備え、
    前記過電流検出手段は、前記電流検出手段の出力と比較して過電流を検出する電流の判別
    値について、前記アームまたはスイッチング素子に流れる電流の方向で異なる判別値とす
    ることを特徴とする鉄道車両駆動制御装置。
  11. 前記請求項10に記載の鉄道車両駆動制御装置において、過電流検出手段は、電流検出手
    段の出力と比較して過電流を検出する電流の判別値について、電力変換手段の各相のアー
    ムまたはスイッチング素子に流れる電流の方向で異なる判別値を有し、さらに、少なくと
    も電流の一方向の判別値について、即過電流を検出する第1の判別値と、予め設定された
    時間を経過したことを条件に過電流を検出する第2の判別値とそれぞれ比較することを特
    徴とする鉄道車両駆動制御装置。
  12. 電源電圧を任意の電圧と任意の周波数のn相交流電圧(nは交流の相数を表す任意の数)
    に変換して車両を駆動する永久磁石電動機に交流電力を供給する電力変換手段と、
    当該電気車制御装置内を流れる電流を検出する電流検出手段と、
    前記電流検出手段の出力に基づき過電流を検出することを特徴とする鉄道車両駆動制御装
    置。
JP2006260815A 2006-09-26 2006-09-26 鉄道車両駆動制御装置 Pending JP2008086077A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260815A JP2008086077A (ja) 2006-09-26 2006-09-26 鉄道車両駆動制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006260815A JP2008086077A (ja) 2006-09-26 2006-09-26 鉄道車両駆動制御装置

Publications (1)

Publication Number Publication Date
JP2008086077A true JP2008086077A (ja) 2008-04-10

Family

ID=39356363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260815A Pending JP2008086077A (ja) 2006-09-26 2006-09-26 鉄道車両駆動制御装置

Country Status (1)

Country Link
JP (1) JP2008086077A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261128A (ja) * 2008-04-16 2009-11-05 Mitsubishi Electric Corp 車両用電力変換装置及び車両用駆動制御装置
JP2009261129A (ja) * 2008-04-16 2009-11-05 Mitsubishi Electric Corp 車両用電力変換装置及び車両用駆動制御装置
JP2009292239A (ja) * 2008-06-04 2009-12-17 Meidensha Corp 回生電力吸収装置
WO2011021265A1 (ja) * 2009-08-17 2011-02-24 三菱電機株式会社 電気車の電力変換装置
JP2011101483A (ja) * 2009-11-05 2011-05-19 Mitsubishi Electric Corp 車両用駆動電源装置
JP2011120475A (ja) * 2011-03-23 2011-06-16 Mitsubishi Electric Corp 電気車の電力変換装置
JP2011120476A (ja) * 2011-03-23 2011-06-16 Mitsubishi Electric Corp 電気車の電力変換装置
JP2011151911A (ja) * 2010-01-20 2011-08-04 Toyota Central R&D Labs Inc 電圧変換器
JP2011152040A (ja) * 2011-03-23 2011-08-04 Mitsubishi Electric Corp 電気車の電力変換装置
WO2011118019A1 (ja) 2010-03-26 2011-09-29 三菱電機株式会社 電力変換装置
WO2018078824A1 (ja) * 2016-10-28 2018-05-03 三菱電機株式会社 駆動装置、モータシステムおよび空気調和機

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207766A (ja) * 1992-01-23 1993-08-13 Mitsubishi Electric Corp 過電流保護方法及びその装置及び過電流検出装置
JPH07147124A (ja) * 1993-07-15 1995-06-06 Eaton Corp 過電流トリップ装置
JPH09247805A (ja) * 1996-03-06 1997-09-19 Toshiba Corp 電気車制御装置
JPH10239360A (ja) * 1997-02-28 1998-09-11 Fanuc Ltd 過電流検出回路
JPH11252706A (ja) * 1998-02-26 1999-09-17 Mitsubishi Electric Corp 電力変換装置
JP2005117797A (ja) * 2003-10-08 2005-04-28 Toshiba Corp 鉄道車両駆動制御装置
JP2005328619A (ja) * 2004-05-13 2005-11-24 Toshiba Corp 鉄道車両駆動制御装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05207766A (ja) * 1992-01-23 1993-08-13 Mitsubishi Electric Corp 過電流保護方法及びその装置及び過電流検出装置
JPH07147124A (ja) * 1993-07-15 1995-06-06 Eaton Corp 過電流トリップ装置
JPH09247805A (ja) * 1996-03-06 1997-09-19 Toshiba Corp 電気車制御装置
JPH10239360A (ja) * 1997-02-28 1998-09-11 Fanuc Ltd 過電流検出回路
JPH11252706A (ja) * 1998-02-26 1999-09-17 Mitsubishi Electric Corp 電力変換装置
JP2005117797A (ja) * 2003-10-08 2005-04-28 Toshiba Corp 鉄道車両駆動制御装置
JP2005328619A (ja) * 2004-05-13 2005-11-24 Toshiba Corp 鉄道車両駆動制御装置

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261128A (ja) * 2008-04-16 2009-11-05 Mitsubishi Electric Corp 車両用電力変換装置及び車両用駆動制御装置
JP2009261129A (ja) * 2008-04-16 2009-11-05 Mitsubishi Electric Corp 車両用電力変換装置及び車両用駆動制御装置
JP2009292239A (ja) * 2008-06-04 2009-12-17 Meidensha Corp 回生電力吸収装置
WO2011021265A1 (ja) * 2009-08-17 2011-02-24 三菱電機株式会社 電気車の電力変換装置
US9013125B2 (en) 2009-08-17 2015-04-21 Mitsubishi Electric Corporation Electric power converter of electric rolling stock
CN102470763B (zh) * 2009-08-17 2014-07-09 三菱电机株式会社 电气列车的电力变换装置
JP4713690B2 (ja) * 2009-08-17 2011-06-29 三菱電機株式会社 電気車の電力変換装置
JP2011101483A (ja) * 2009-11-05 2011-05-19 Mitsubishi Electric Corp 車両用駆動電源装置
JP2011151911A (ja) * 2010-01-20 2011-08-04 Toyota Central R&D Labs Inc 電圧変換器
WO2011118019A1 (ja) 2010-03-26 2011-09-29 三菱電機株式会社 電力変換装置
JP5036918B2 (ja) * 2010-03-26 2012-09-26 三菱電機株式会社 電力変換装置
CN102792577A (zh) * 2010-03-26 2012-11-21 三菱电机株式会社 功率变换装置
US20130043812A1 (en) * 2010-03-26 2013-02-21 Mitsubishi Electric Corporation Power conversion device
KR101308791B1 (ko) 2010-03-26 2013-09-17 미쓰비시덴키 가부시키가이샤 전력 변환 장치
US8975847B2 (en) 2010-03-26 2015-03-10 Mitsubishi Electric Corporation Power conversion device
JP2011152040A (ja) * 2011-03-23 2011-08-04 Mitsubishi Electric Corp 電気車の電力変換装置
JP2011120476A (ja) * 2011-03-23 2011-06-16 Mitsubishi Electric Corp 電気車の電力変換装置
JP2011120475A (ja) * 2011-03-23 2011-06-16 Mitsubishi Electric Corp 電気車の電力変換装置
WO2018078824A1 (ja) * 2016-10-28 2018-05-03 三菱電機株式会社 駆動装置、モータシステムおよび空気調和機
JPWO2018078824A1 (ja) * 2016-10-28 2019-03-22 三菱電機株式会社 駆動装置、モータシステムおよび空気調和機

Similar Documents

Publication Publication Date Title
JP2008086077A (ja) 鉄道車両駆動制御装置
JP6169203B1 (ja) 電動機制御装置および電動機制御方法
JP4647684B2 (ja) 電力変換装置
JP5849586B2 (ja) 3レベル電力変換回路システム
JP6256597B2 (ja) インバータ制御装置
EP3399645B1 (en) Motor driving device and refrigeration cycle application device
JP4752772B2 (ja) 交流電動機の巻線切替装置及びその巻線切替システム
US10404200B2 (en) AC-rotating-electric-machine control apparatus
CN102570936A (zh) 旋转机的控制装置、旋转机系统、车辆、电动汽车及发电系统
KR20120009486A (ko) 전력 변환 장치 및 전력 변환 장치의 콘덴서 전압의 제어 방법
JP5036918B2 (ja) 電力変換装置
JP4738080B2 (ja) 鉄道車両駆動制御装置
JP6307983B2 (ja) インバータ制御装置
JP6289597B1 (ja) 車両用電源装置および車両用電源装置の制御方法
JP2006311692A (ja) 鉄道車両駆動制御装置
JP5375051B2 (ja) インバータの放電装置
JP5481088B2 (ja) 鉄道車両駆動制御装置
JP2005253264A (ja) 電気車制御装置
JP2012090380A (ja) 車両用駆動制御装置
JP2008306780A (ja) 鉄道車両駆動制御装置
KR101771200B1 (ko) 전기자동차용 모터 제어장치
CN116073736A (zh) 电动机控制装置和电动机驱动系统
JP2009219225A (ja) 車両駆動システム
CN114389236A (zh) 功率转换装置
CN220067247U (zh) 一种封星电路、变频器及电梯

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120327