[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008084656A - X-ray irradiation type ionizer - Google Patents

X-ray irradiation type ionizer Download PDF

Info

Publication number
JP2008084656A
JP2008084656A JP2006262399A JP2006262399A JP2008084656A JP 2008084656 A JP2008084656 A JP 2008084656A JP 2006262399 A JP2006262399 A JP 2006262399A JP 2006262399 A JP2006262399 A JP 2006262399A JP 2008084656 A JP2008084656 A JP 2008084656A
Authority
JP
Japan
Prior art keywords
ray
irradiation window
irradiation
insulator
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006262399A
Other languages
Japanese (ja)
Other versions
JP4839475B2 (en
Inventor
Jun Kawai
潤 河合
Yoshinori Hosokawa
好則 細川
Shigeo Okamoto
茂雄 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
X-RAY PRECISION Inc
Kyoto University NUC
Original Assignee
X-RAY PRECISION Inc
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by X-RAY PRECISION Inc, Kyoto University NUC filed Critical X-RAY PRECISION Inc
Priority to JP2006262399A priority Critical patent/JP4839475B2/en
Publication of JP2008084656A publication Critical patent/JP2008084656A/en
Application granted granted Critical
Publication of JP4839475B2 publication Critical patent/JP4839475B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Elimination Of Static Electricity (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an X-ray irradiation type ionizer utilizing X-ray. <P>SOLUTION: In the X-ray irradiation type ionizer 1 equipped with a gas supply exhaust port capable of supplying and exhausting an outside gas and an irradiation window 3 capable of transmitting the X-ray in an airtight cabinet 4 in which the interior can be retained to have a low pressure airtight state, this X-ray irradiation type ionizer 1 is equipped with an insulator 5 arranged and installed inside the airtight cabinet 4 nearly in parallel to the irradiation window 3 and a filamentary electrode 6 which is arranged and installed between the insulator 5 and the irradiation window 3 so as to oppose to the insulator 5, applies voltage to the insulator 5 and electrifies its surface. According to necessity, it is equipped with a protecting member 7 for preventing scattering of the X-ray and protecting the irradiation window 3 which protrudes to the outside along the peripheral part of the irradiation window 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、X線を利用した、X線照射型イオナイザに関する。   The present invention relates to an X-ray irradiation ionizer using X-rays.

電子デバイス、例えば液晶パネルやプラズマディスプレイパネル等の製造工程においてはクーンルーム下で行われており、これらの製造工程において静電気が発生した際には、電子デバイスを構成する絶縁体が電気的に破壊されて絶縁性を失う、いわゆる絶縁破壊の問題や、電子デバイスを構成する半導体回路に空気中を浮遊する微粒子が吸引付着して短絡を引き起こす問題等につながり、このような静電気に起因する問題が、電子デバイス等の歩留まりを低下させる大きな原因となっている。その他にも、粉体梱包作業時や、液晶ディスプレイに用いられる光学フィルムの製造ラインにおける該光学フィルムの搬送工程においても、静電気による不純物の混入等に起因する問題が生じている。   In the manufacturing process of electronic devices such as liquid crystal panels and plasma display panels, it is performed under a coon room. When static electricity is generated in these manufacturing processes, the insulator constituting the electronic device is electrically destroyed. This leads to problems such as so-called dielectric breakdown, loss of insulation and so-called dielectric breakdown, and problems that attract and attract fine particles floating in the air to semiconductor circuits constituting electronic devices, causing short circuits. This is a major cause of decreasing the yield of electronic devices and the like. In addition, problems caused by contamination of impurities due to static electricity also occur during the powder packing operation and in the process of transporting the optical film in the optical film production line used for the liquid crystal display.

これらの静電気に起因する問題を未然に防止すべく、静電気を除電するための除電装置が必要となるが、これらに使用される除電装置としては、繊維やワイヤーの先端などに高電圧を印加した際に生じるコロナ放電を利用したコロナ放電式イオナイザが使用されている。また、図6に示すような、従来のX線式イオナイザ100においても、一方に流入口101が、また他方に照射口102が形成される筒体の流路シールド部103と、流路シールド部103内にX線を照射するX線照射装置104と、流路シールド部103の流入口101側に配置され、流路シールド部103内へ矢印105方向へ送風する送風部106と、を備え、X線の最も照射口102側にある照射領域限界線107と、流路シールド部103の照射口102の開口面と、が略平行であって、他は流入口101側へ近づくようにX線を流路シールド部103内壁へ向けて照射してX線照射領域108を形成し、このX線照射領域内108で生成したイオンを照射口102から被除電物109へ照射するものが考案されている(例えば、特許文献1)。そして、それらに用いられる従来のX線発生装置は、金属ターゲットに熱電子を衝突させることでX線を発生させる熱電子加速式X線管が多く採用されている。   In order to prevent these problems caused by static electricity, a static eliminator is required to neutralize static electricity, but as the static eliminator used for these, a high voltage was applied to the tip of fibers or wires. Corona discharge ionizers that use corona discharge that occurs during the process are used. In addition, in the conventional X-ray ionizer 100 as shown in FIG. 6, a cylindrical flow path shield part 103 having an inflow port 101 on one side and an irradiation port 102 on the other side, and a flow path shield part 103, an X-ray irradiation device 104 that irradiates X-rays, and a blower unit 106 that is disposed on the inlet 101 side of the flow path shield unit 103 and blows air into the flow path shield unit 103 in the direction of the arrow 105, The irradiation region limit line 107 closest to the irradiation port 102 side of the X-ray and the opening surface of the irradiation port 102 of the flow path shield part 103 are substantially parallel, and the other X-rays approach the inlet 101 side. Is radiated toward the inner wall of the flow path shield part 103 to form an X-ray irradiation region 108, and ions generated in the X-ray irradiation region 108 are radiated from the irradiation port 102 to the object to be neutralized 109. (For example, Patent Document 1). And the conventional X-ray generator used for them employ | adopts many thermionic acceleration type | mold X-ray tubes which generate | occur | produce X-rays by colliding a thermoelectron with a metal target.

特開平2005−243325号公報Japanese Patent Laid-Open No. 2005-243325

しかし、前述のコロナ放電式イオナイザにおいては、コロナ放電が生じる際に、人体に有害なオゾンや、人体及び電子機器に影響を及ぼす電磁ノイズが生じたり、度重なる使用により電極部分が劣化磨耗し、それらが粉塵となる可能性があると共に、除電性能が不安定になる等の問題が生じる。さらに、コロナ放電式イオナイザにおいては、発生したイオンを風により送る必要があるため、粉体梱包等の気流の乱れにより弊害を受ける分野において使用することができず、その用途が制限される。また、図6に示すX線を利用したイオナイザにおいても、送風部を備えたものであり、前述のコロナ放電式イオナイザと同様に、その用途が制限される。そして、従来のX線を発生させる熱電子加速式X線管を構成するカソード又はフィラメント等の熱電子源は、高真空下で加熱蒸発したり、真空封じされた外囲体中に残留したガスイオンが衝突することにより、経時的に劣化して熱電子放射量が少なくなるが、外囲体が真空封じされているため、カソードやフィラメントを取り出して交換することができず、カソードやフィラメントが通常1年程度で寿命に達すると、熱電子加速式X線管自体をその都度交換しなければならないためコストアップ及び管理の煩雑化につながる。さらに、従来のX線発生装置は、使用者が発生したX線を暴露する可能性があり、安全性にも問題があった。   However, in the corona discharge ionizer described above, when corona discharge occurs, ozone harmful to the human body and electromagnetic noise affecting the human body and electronic equipment are generated, and the electrode part deteriorates and wears due to repeated use, There is a possibility that they may become dust, and problems such as unstable static elimination performance occur. Furthermore, in the corona discharge type ionizer, the generated ions need to be sent by wind, and therefore cannot be used in a field that is adversely affected by turbulence of air current such as powder packing, and its application is limited. Moreover, the ionizer using the X-ray shown in FIG. 6 is also provided with a blower, and its use is limited in the same manner as the corona discharge ionizer described above. A thermoelectron source such as a cathode or a filament constituting a thermoelectron accelerated X-ray tube that generates conventional X-rays is a gas that is heated and evaporated under a high vacuum or remains in a vacuum-sealed envelope. When the ions collide, the amount of thermionic radiation deteriorates with time, but the envelope is sealed in a vacuum, so the cathode and filament cannot be removed and replaced. Usually, when the lifetime is reached in about one year, the thermionic acceleration type X-ray tube itself must be replaced each time, leading to cost increase and complicated management. Furthermore, the conventional X-ray generator has a possibility of exposing the X-ray generated by the user, and has a problem in safety.

この発明は上記のような種々の課題を解決することを目的としてなされたものであって、使用者がX線を暴露することがなく、また、イオナイザの小型化、及びメンテナンスの容易化を可能とし、さらに、効率的に被除電物を除電することができる、X線照射型イオナイザを提供する。   The present invention has been made for the purpose of solving the various problems as described above, and does not expose the user to X-rays. Further, the ionizer can be miniaturized and maintenance can be facilitated. Furthermore, an X-ray irradiation type ionizer that can efficiently neutralize the object to be neutralized is provided.

上記目的を達成するために、請求項1記載のX線照射型イオナイザは、内部が低圧気密状態に保持可能な気密筺体に外部の気体を給排可能な気体給排口とX線を透過可能な照射窓とを具備するX線照射型イオナイザにおいて、該気密筺体内部に前記照射窓と略平行に配設された絶縁体と、該絶縁体と前記照射窓の間に該絶縁体と対向するように配設されて該絶縁体に電圧を印加してその表面を帯電させる繊条電極と、を具備することによって、前記照射窓の外側の気体をイオン化することを特徴としている。   In order to achieve the above object, the X-ray irradiation ionizer according to claim 1 is capable of transmitting X-rays through a gas supply / exhaust port through which an external gas can be supplied to and discharged from an airtight housing that can be maintained in a low-pressure airtight state. In an X-ray irradiation ionizer comprising an irradiation window, an insulator disposed substantially parallel to the irradiation window inside the hermetic housing, and the insulator is disposed between the insulator and the irradiation window And a filament electrode that charges the surface of the insulator by applying a voltage to the insulator to ionize the gas outside the irradiation window.

請求項2記載のX線照射型イオナイザは、前記照射窓がアルミニウムであることを特徴としている。   The X-ray irradiation ionizer according to claim 2 is characterized in that the irradiation window is made of aluminum.

請求項3記載のX線照射型イオナイザは、前記照射窓の周縁部にX線の飛散を防止すると共に該照射窓を保護するための保護部材を備えたことを特徴としている。   According to a third aspect of the present invention, the X-ray irradiation ionizer includes a protective member for preventing scattering of X-rays and protecting the irradiation window at a peripheral portion of the irradiation window.

請求項4記載のX線照射型イオナイザは、前記保護部材が前記照射窓の周縁部に沿って外側へ突出する枠体であることを特徴としている。   The X-ray irradiation ionizer according to claim 4 is characterized in that the protective member is a frame body that protrudes outward along the peripheral edge of the irradiation window.

請求項1記載のX線照射型イオナイザは、該気密筺体内部に前記照射窓と略平行に配設された絶縁体と、該絶縁体と前記照射窓の間に該絶縁体と対向するように配設されて該絶縁体に電圧を印加してその表面を帯電させる繊条電極とを具備している。これにより、X線の照射領域が広くなり、周囲の気体のイオン化を効率よく行うことができるという利点がある。また、絶縁体を帯電させ、X線を発生させることで、低い印加電圧で、高真空とせずとも高い強度のX線を発生することができる。   The X-ray irradiation type ionizer according to claim 1, wherein an insulator disposed substantially parallel to the irradiation window inside the hermetic housing, and the insulator is disposed between the insulator and the irradiation window. And a filament electrode for applying a voltage to the insulator to charge the surface thereof. Accordingly, there is an advantage that the X-ray irradiation area is widened and the surrounding gas can be efficiently ionized. Further, by charging the insulator and generating X-rays, it is possible to generate high-intensity X-rays at a low applied voltage without using a high vacuum.

請求項2記載のX線照射型イオナイザは、前記照射窓がアルミニウムであるので、該アルミニウムの吸収端により、光子エネルギー約1560eV以上のX線はカットされ、光子エネルギー約1560eV未満のX線が該照射窓から照射される。これにより、照射窓から照射されるX線は、該照射窓から離反する方向に数センチ進行した後空気中において吸収され、すなわち、短期間のうちに効率的に空気中の気体分子を電離させることができるため、対象物を効率的に除電することができると共に、使用者がX線を暴露する危険性がない。   In the X-ray irradiation ionizer according to claim 2, since the irradiation window is made of aluminum, X-rays having a photon energy of about 1560 eV or more are cut by the absorption edge of the aluminum, and X-rays having a photon energy of less than about 1560 eV are Irradiated from the irradiation window. Thereby, X-rays irradiated from the irradiation window are absorbed in the air after traveling several centimeters in a direction away from the irradiation window, that is, ionize gas molecules in the air efficiently in a short period of time. Therefore, the object can be discharged efficiently, and there is no risk that the user will be exposed to X-rays.

請求項3記載のX線照射型イオナイザは、前記照射窓の周縁部にX線の飛散を防止すると共に該照射窓を保護するための保護部材を備えている。そのことにより、使用者がX線を暴露することなく安全に使用することができ、また、照射窓を物理的衝撃から保護することができる。   According to a third aspect of the present invention, the X-ray irradiation ionizer includes a protective member for preventing the X-ray from scattering at the periphery of the irradiation window and protecting the irradiation window. As a result, the user can use it safely without exposing X-rays, and the irradiation window can be protected from physical impact.

請求項4記載のX線照射型イオナイザは、前記保護部材が前記照射窓の周縁部に沿って外側へ突出する枠体あるので、より確実に、使用者がX線を暴露することなく安全に使用することができ、また、照射窓を物理的衝撃から保護することができる。   In the X-ray irradiation type ionizer according to claim 4, since the protective member is a frame body that protrudes outward along the peripheral edge of the irradiation window, the user can be surely and safely exposed without exposing the X-ray. It can be used and the irradiation window can be protected from physical impact.

この発明のX線照射型イオナイザ1の最良の実施形態について、以下図に基づいて説明する。この発明のX線照射型イオナイザ1は、外部の気体を給排可能な気体給排口2とX線を透過可能な照射窓3とを、その内部が低圧気密状態に保持可能な気密筺体4に具備するX線照射型イオナイザ1において、該気密筺体4内部に前記照射窓3と略平行に配設された絶縁体5と、該絶縁体5と前記照射窓3の間に該絶縁体5と対向するように配設されて該絶縁体5に電圧を印加してその表面を帯電させる繊条電極6と、を具備し、必要に応じて、前記照射窓3の周縁部に沿って外側へ突出する、X線の飛散を防止すると共に該照射窓3を保護するための保護部材7を備えている。   BEST MODE FOR CARRYING OUT THE INVENTION The best embodiment of the X-ray irradiation ionizer 1 of the present invention will be described with reference to the drawings. The X-ray irradiation ionizer 1 of the present invention has an airtight housing 4 capable of maintaining a gas supply / exhaust port 2 through which external gas can be supplied and discharged and an irradiation window 3 through which X-rays can pass through in a low-pressure airtight state. In the X-ray irradiation ionizer 1 provided in FIG. 1, an insulator 5 disposed substantially parallel to the irradiation window 3 in the hermetic housing 4, and the insulator 5 between the insulator 5 and the irradiation window 3. And a filament electrode 6 which is arranged so as to face the insulator 5 and charges the surface by applying a voltage to the insulator 5, and, if necessary, along the peripheral edge of the irradiation window 3. A protective member 7 for preventing X-ray scattering and protecting the irradiation window 3 is provided.

気密筺体4は、外部の気体を給排可能な気体給排口2と、X線を透過可能な照射窓3を備えており、その内部は低圧気密状態に保持されている。そして、気密筺体4は、X線透過率が低い、例えば鉛、金、銅若しくは真鍮等の密度の高い部材や、それらを含有した部材を用いることが好ましいが、X線を遮蔽できるものであればその他の部材であってもよく、該気密筺体4の厚さも使用する部材に応じて設計することができる。また、気密筺体4は、気体給排口2以外から気体が、出入りすることがなくその内部を気密状態に保持する筺体であり、気体給排口2を設けた例えばガラス製の気密容器を前述のようなX線透過率の低い部材で覆うようにして構成されていてもよい。さらに、本願実施例において気密筺体4の形状は略直方体となっているが、この形状に限定されるものではなく、その形状は、内部に上述の部材が収納でき、気密筺体4内部を低圧気密状態に保持する際に、その圧力に耐え得るものであれば、球状であってもよく、又は、その他の形状であってもよい。   The airtight housing 4 includes a gas supply / exhaust port 2 through which external gas can be supplied and discharged, and an irradiation window 3 through which X-rays can be transmitted, and the inside thereof is held in a low-pressure airtight state. The hermetic casing 4 is preferably made of a member having a low X-ray transmittance, such as lead, gold, copper, or brass, or a member containing them, although it can shield X-rays. Other members may be used, and the thickness of the airtight casing 4 can also be designed according to the member to be used. Further, the airtight housing 4 is a housing that keeps the inside of the airtight state without gas entering and exiting from other than the gas supply / exhaust port 2, and the airtight container made of, for example, glass provided with the gas supply / exhaust port 2 is described above. It may be configured to cover with a member having a low X-ray transmittance. Further, in the embodiment of the present invention, the shape of the airtight casing 4 is a substantially rectangular parallelepiped, but is not limited to this shape, and the shape can accommodate the above-described members inside, and the inside of the airtight casing 4 is low-pressure airtight. As long as it can withstand the pressure when it is held in a state, it may be spherical or other shapes.

気体給排口2は外部の気体を給排可能とするものである。そして、本願実施例においては、図1に示すように、気密筺体4の長手方向の一端部に、該気体給排口2を設けている。そして気密筺体4内部を減圧する際には、気体給排口2に接続された圧力調節機能を有する減圧ポンプ8用いて、適宜圧力を調節する。そして、気密筺体4の圧力は例えば、2.0×10−2〜5.0×10−2TorrとすることがX線の発生効率がよく、安定してX線が発生するため好ましいが、それらの圧力よりも高く、若しくは低くてもよい。 The gas supply / exhaust port 2 can supply and discharge external gas. In the embodiment of the present application, as shown in FIG. 1, the gas supply / exhaust port 2 is provided at one end of the airtight casing 4 in the longitudinal direction. When the pressure inside the airtight housing 4 is reduced, the pressure is adjusted as appropriate by using a pressure reducing pump 8 connected to the gas supply / exhaust port 2 and having a pressure adjusting function. And it is preferable that the pressure of the airtight housing 4 is, for example, 2.0 × 10 −2 to 5.0 × 10 −2 Torr because X-ray generation efficiency is high and X-rays are stably generated. It may be higher or lower than those pressures.

また、圧力調節機能を有しない減圧ポンプ8を使用する際には、気体給排口2は、気密筺体4内部の気体を外部へ排出する排出口と、気密筺体4外部の気体を内部へ給入する給入口にそれぞれ分けられていてもよい(図示せず)。そして、気密筺体4内部を減圧する際には、排出口に接続された減圧ポンプ8を用いて気密筺体4内部の気体を外部へ排出する。そして、圧力が目的の圧力よりも減少した際には、必要に応じて給入口から気密筺体4外部の気体を給入することにより、該気密筺体4内部の圧力を調節する。また、これらの気体給排口2の数及び取付位置は本願実施例に限定されるものではなく適宜選択することができる。   Moreover, when using the pressure reduction pump 8 which does not have a pressure control function, the gas supply / exhaust port 2 has the discharge port which discharges | emits the gas inside the airtight housing | casing 4 outside, and the gas outside the airtight housing | casing 4 inside. Each may be divided into inlets (not shown). And when decompressing the inside of the airtight housing 4, the gas inside the airtight housing 4 is exhausted to the outside using the decompression pump 8 connected to the discharge port. When the pressure decreases below the target pressure, the pressure inside the hermetic casing 4 is adjusted by supplying the gas outside the hermetic casing 4 from the inlet as necessary. Moreover, the number and attachment position of these gas supply / exhaust ports 2 are not limited to an Example of this application, and can be selected suitably.

照射窓3は、発生したX線を透過させ、空気中に該X線を照射するためのものである。これらの材料は、X線を透過するものであれば特に限定されるものではないが、マグネシウムやシリコンを含有する金属膜や、ポリイミド等の樹脂膜を適宜使用することができる。しかし、成形性、材料コスト、X線の透過率等を考慮すると、アルミニウムを使用するのが好ましい。   The irradiation window 3 is for transmitting the generated X-rays and irradiating the X-rays in the air. These materials are not particularly limited as long as they transmit X-rays, but a metal film containing magnesium or silicon, or a resin film such as polyimide can be used as appropriate. However, in consideration of moldability, material cost, X-ray transmittance, etc., it is preferable to use aluminum.

ここで、本願実施例においては、照射窓3に、図4に示すようなX線透過率を示す厚さ約10μmのアルミニウムを使用している。そして、発生したX線が、厚さ約10μmのアルミニウムの照射窓3を透過した際には、図4に示すように、アルミニウムの吸収端により光子エネルギー約1560eV以上のX線が吸収される。これにより、人体に悪影響を及ぼす、光子エネルギーの高いX線を照射窓3によりカットすることができ、光子エネルギー約1560eV未満のX線を取り出すことができる。さらに、図4に示すように、発生したX線が、厚さ約10μmのアルミニウムを透過した後の、光子エネルギー約1560eV付近のX線透過率も約0.35程度となっているため、空気をはじめとした気体をイオン化するために十分なX線強度も得ることができる。そして、照射窓3に用いる厚さ約10μmのアルミニウムは、例えば、厚さ約10μmのアルミニウム箔をガラス等の基板に貼り付けて使用してもよく、また、真空蒸着等によりガラス等の基板上に厚さ約10μmとなるように形成してもよい。さらに、気密筺体4が、上述のように気体給排口2を設けた例えばガラス製の気密容器をX線透過率の低い部材により覆うようにして構成されている場合には、該気密容器の内部に照射窓3が設けられていてもよく、これら照射窓3は、発生したX線が該照射窓3を介して該X線が照射されるような位置であれば、取付方法及びその位置は、本願実施例に限定されるものではない。そして、本願実施例のようにアルミニウムの照射窓3を使用すれば、従来用いられてきた人体に有害なベリリウムを用いる必要がなく、使用者にとっても安全である。   Here, in the embodiment of the present application, the irradiation window 3 is made of aluminum having a thickness of about 10 μm and showing an X-ray transmittance as shown in FIG. When the generated X-rays pass through the aluminum irradiation window 3 having a thickness of about 10 μm, the X-rays having a photon energy of about 1560 eV or more are absorbed by the absorption edge of the aluminum as shown in FIG. As a result, X-rays having high photon energy that adversely affect the human body can be cut by the irradiation window 3, and X-rays having a photon energy of less than about 1560 eV can be extracted. Further, as shown in FIG. 4, since the generated X-rays are transmitted through aluminum having a thickness of about 10 μm, the X-ray transmittance in the vicinity of photon energy of about 1560 eV is about 0.35. X-ray intensity sufficient to ionize gases such as can be obtained. The aluminum having a thickness of about 10 μm used for the irradiation window 3 may be used, for example, by attaching an aluminum foil having a thickness of about 10 μm to a substrate such as glass. The thickness may be about 10 μm. Furthermore, when the airtight housing 4 is configured to cover a gastight container made of, for example, glass having the gas supply / exhaust port 2 as described above with a member having a low X-ray transmittance, The irradiation window 3 may be provided in the inside, and these irradiation windows 3 are the mounting method and its position as long as the generated X-ray is a position where the X-ray is irradiated through the irradiation window 3. Is not limited to the embodiments of the present application. If the aluminum irradiation window 3 is used as in the present embodiment, it is not necessary to use beryllium which is harmful to the human body, which is conventionally used, and it is safe for the user.

そして、照射窓3は、取外し自在(図示せず)となっているため、内部の繊条電極6、絶縁体5等の消耗部材の交換を容易に行うことができる。これにより、従来の真空封じされた熱電子加速式X線管における、前述のような各消耗部材を単体で交換することができず、該熱電子加速式X線管自体を交換しなければいけないという問題を解決することができる。さらに、照射窓3自体が、発生したX線により劣化する、若しくは物理的な衝撃により破損する可能性もあるが、その際にも、容易に照射窓3を交換することができる。また、前述した各部材の交換は、例えば気密筺体4の側面や、その他の場所に開口部を設け(図示せず)、該開口部から行うようにしてもよい。   And since the irradiation window 3 becomes detachable (not shown), consumable members, such as the internal filament electrode 6 and the insulator 5, can be replaced easily. As a result, in the conventional vacuum-sealed thermoelectron accelerated X-ray tube, the above-described consumable members cannot be replaced alone, and the thermoelectron accelerated X-ray tube itself must be replaced. Can be solved. Furthermore, there is a possibility that the irradiation window 3 itself deteriorates due to the generated X-rays or is damaged by a physical impact, but in this case, the irradiation window 3 can be easily replaced. In addition, the above-described replacement of each member may be performed, for example, by providing an opening (not shown) on the side surface of the airtight casing 4 or other places (not shown).

絶縁体5は、気密筺体4内部に照射窓3と略平行に配設されており、例えば、ニオブ酸リチウム(LiNbO)等の無機絶縁体結晶や、ポリテトラフルオロエチレン等の有機絶縁材料を使用することができる。また、その他、Nacl,ガラス(SiO),NiF等の絶縁体を使用することができるが、これらの材料に限定されるものではない。そして、これらの絶縁体に電圧を印加した際に、絶縁破壊が生じない程度の厚みに形成してなるものである。 The insulator 5 is disposed substantially in parallel with the irradiation window 3 inside the hermetic casing 4. For example, an inorganic insulator crystal such as lithium niobate (LiNbO 3 ) or an organic insulating material such as polytetrafluoroethylene is used. Can be used. In addition, insulators such as Nacl, glass (SiO 2 ), NiF 2 can be used, but are not limited to these materials. And when it applies a voltage to these insulators, it forms in the thickness which does not produce a dielectric breakdown.

繊条電極6は、絶縁体5と照射窓3の間に該絶縁体5と対向するように配設されて該絶縁体5に電圧を印加してその表面を帯電させるものである。また、本実施例においては、図3に示すように、X線照射領域を広げるために、導線9を介して外部電圧電源(図示せず)と電気的に接続される、前記気密筺体4の両端に設けられた端部電極10間を、略直線状の繊条電極6を用いて電気的に接続している。そして、その際には、前記絶縁体5は、前述の略直線状の繊条電極6と対向するように配設され、また、その形状が略矩形の絶縁体5を用いている。そして、端部電極10や繊条電極6に用いられる材料には、酸化等の化学反応しにくい例えばタングステンや、金、白金等の、一般に使用される導電材料が用いられ、該繊条電極6の形状及び配置は、本願実施例に用いられるような略直線状に限定されるものではなく、その他、円形や曲線状であってもよい。そして、その際には、該繊条電極6と対応して絶縁体5の形状も変化させる。   The filament electrode 6 is disposed between the insulator 5 and the irradiation window 3 so as to face the insulator 5, and a voltage is applied to the insulator 5 to charge the surface thereof. Further, in this embodiment, as shown in FIG. 3, in order to widen the X-ray irradiation region, the airtight housing 4 that is electrically connected to an external voltage power source (not shown) through the conductor 9. The end electrodes 10 provided at both ends are electrically connected using a substantially linear filament electrode 6. In this case, the insulator 5 is disposed so as to face the above-described substantially linear filament electrode 6, and the insulator 5 having a substantially rectangular shape is used. The material used for the end electrode 10 and the filament electrode 6 is a commonly used conductive material such as tungsten, gold, or platinum that is difficult to chemically react such as oxidation, and the filament electrode 6. The shape and arrangement are not limited to a substantially linear shape as used in the embodiments of the present application, and may be circular or curved. At that time, the shape of the insulator 5 is also changed corresponding to the filament electrode 6.

また、X線を発生させる際には、繊条電極6に例えば、1.0〜2.0kVの電圧を印加し、気密筺体4内部の圧力を例えば、2.0×10−2〜5.0×10−2Torrに減圧することで、絶縁体5に分極が生じ、該絶縁体5表面が帯電する。そして、繊条電極6から発生した電子が、気密筺体4内の残留ガスと衝突等を繰り返すことでX線が発生するのである。このように絶縁体の帯電現象を利用することで、低い印加電圧で且つ、高真空にすることなく効率的にX線を発生させることができるのである。 When X-rays are generated, for example, a voltage of 1.0 to 2.0 kV is applied to the filament electrode 6, and the pressure inside the hermetic casing 4 is set to, for example, 2.0 × 10 −2 to 5. By reducing the pressure to 0 × 10 −2 Torr, polarization occurs in the insulator 5 and the surface of the insulator 5 is charged. The electrons generated from the filament electrode 6 repeatedly collide with the residual gas in the hermetic enclosure 4 to generate X-rays. Thus, by utilizing the charging phenomenon of the insulator, it is possible to efficiently generate X-rays with a low applied voltage and without a high vacuum.

保護部材7は、前記照射窓3から照射されるX線を作業者が暴露することのないように、X線の飛散を防止するものである。そして、本願実施例において、保護部材7は、図2、図3に示すように、照射窓3の周縁部に沿って外側へ突出するように設けられている。また、この保護部材7には、上述の気密筺体4と同様にX線を遮蔽できるような部材が使用される。   The protective member 7 prevents X-rays from scattering so that the operator does not expose the X-rays emitted from the irradiation window 3. In the embodiment of the present application, the protection member 7 is provided so as to protrude outward along the peripheral edge of the irradiation window 3 as shown in FIGS. In addition, as the protective member 7, a member that can shield X-rays is used similarly to the above-described airtight housing 4.

ここで、発生したX線が、厚さ約10μmのアルミニウムの照射窓3を透過した後には、光子エネルギー約1560eV未満のX線であり、該照射窓3から照射されるX線で最も光子エネルギーが高いものは光子エネルギー約1560eV付近のX線であることがわかる。これらを考慮すると、その光子エネルギー約1560eV付近のX線の、空気層を5cm通過した後の透過率が、図5から約1.0×10−3程度であり、そのほとんどが空気層により吸収され、同時に光子エネルギー約1560eV付近よりも光子エネルギーが低いX線も、そのほとんどが空気層により吸収されていることがわかる。すなわち、空気を効率的に電離すると共に、使用者がX線を暴露する危険性がないのである。 Here, after the generated X-rays are transmitted through the aluminum irradiation window 3 having a thickness of about 10 μm, they are X-rays having a photon energy of less than about 1560 eV, and the most photon energy among the X-rays irradiated from the irradiation window 3. It can be seen that the X-rays with a high photon energy are about 1560 eV. Considering these factors, the transmittance of X-rays having a photon energy of about 1560 eV after passing through the air layer by about 5 cm is about 1.0 × 10 −3 from FIG. 5, most of which is absorbed by the air layer. At the same time, it can be seen that most of the X-rays whose photon energy is lower than the vicinity of about 1560 eV are absorbed by the air layer. That is, the air is efficiently ionized and there is no risk that the user will be exposed to X-rays.

よって、本願実施例のように、厚さ約10μmのアルミニウムを照射窓3として用いた際、該照射窓3から5cm以上離れた場所においては、該照射窓3から照射されたX線が空気層によって、そのほとんどが吸収される。そのため、照射窓3から5cm以上離れた場所には保護部材7を設ける必要がなく、該保護部材7を取付ける際に、過剰に大きな保護部材7を設ける必要がない。結果として、照射窓3のX線透過率、及び周囲の気体のX線透過率を考慮した、保護部材7を照射窓3の周縁部に備えることで、装置全体として、小型で、軽量にすることができると共に、高い安全性を得ることができる。さらに、それだけではなく、保護部材7を設けることにより、外部からの物理的な衝撃から照射窓3を保護することもできる。   Therefore, when aluminum having a thickness of about 10 μm is used as the irradiation window 3 as in the embodiment of the present invention, the X-rays irradiated from the irradiation window 3 are air layers at a location 5 cm or more away from the irradiation window 3. Most of it is absorbed. Therefore, it is not necessary to provide the protective member 7 at a location 5 cm or more away from the irradiation window 3, and it is not necessary to provide an excessively large protective member 7 when the protective member 7 is attached. As a result, by providing the protective member 7 on the periphery of the irradiation window 3 in consideration of the X-ray transmittance of the irradiation window 3 and the X-ray transmittance of the surrounding gas, the entire apparatus is made small and light. And high safety can be obtained. Furthermore, by providing the protective member 7, the irradiation window 3 can be protected from a physical impact from the outside.

また、保護部材7の形状は、照射窓3を保護でき、使用者がX線を暴露することのない形状であればよく、それらが、本願実施例のように、照射窓3のX線透過率、及び周囲の気体のX線透過率を考慮し、設計されたものであれば、その形状が限定されるものではない。また、図4及び図5のグラフは、本願の実施例の1つであり、照射窓3のX線透過率、及び周囲の気体のX線透過率がこれらに限定されるものではなく、使用する照射窓3の材料、周囲の気体、及びその透過距離等によって変化するものであり、それらに応じて保護部材7を適宜設計することができる。   Moreover, the shape of the protection member 7 should just be a shape which can protect the irradiation window 3, and a user does not expose X-ray | X_line, These are X-ray transmissive of the irradiation window 3 like an Example of this application. The shape is not limited as long as it is designed in consideration of the rate and the X-ray transmittance of the surrounding gas. Moreover, the graph of FIG.4 and FIG.5 is one of the Examples of this application, The X-ray transmittance of the irradiation window 3 and the X-ray transmittance of surrounding gas are not limited to these, It uses It changes depending on the material of the irradiation window 3, the surrounding gas, the permeation distance, and the like, and the protection member 7 can be appropriately designed according to them.

本願実施例の、X線照射型イオナイザの、被除電物11を除電する際の動作について説明する。図1に示すように、略矩形の絶縁体5に、該絶縁体5と照射窓3の間に該絶縁体5と対向するように配設された略直線状の繊条電極6に、外部電圧電源(図示せず)を用いて、1.0〜2.0kVの電圧を印加する。そして、気体給排口2に接続された圧力調節機能を有する減圧ポンプ8を作動させ気密筺体4内部の圧力を2.0×10−2〜5.0×10−2Torrに減圧する。そうすることで、気密筺体4内部でX線が発生する。 An operation of the X-ray irradiation ionizer according to the embodiment of the present application when discharging the object to be discharged 11 will be described. As shown in FIG. 1, an approximately rectangular insulator 5 is connected to a substantially linear filament electrode 6 disposed between the insulator 5 and the irradiation window 3 so as to face the insulator 5. A voltage of 1.0 to 2.0 kV is applied using a voltage power source (not shown). Then, the pressure reducing pump 8 connected to the gas supply / exhaust port 2 and having a pressure adjusting function is operated to reduce the pressure inside the airtight casing 4 to 2.0 × 10 −2 to 5.0 × 10 −2 Torr. By doing so, X-rays are generated inside the airtight housing 4.

発生したX線は、照射窓3を介して空気中に照射されるが、厚さ約10μmのアルミニウムの照射窓3を介することで、図4に示すように、アルミニウムの吸収端により光子エネルギー約1560eV以上の高エネルギーのX線がカットされ、光子エネルギー約1560eV未満のX線が該照射窓3から照射される。そして、前述のように照射窓3から照射されたX線が、周囲の空気中の気体分子12に照射されることによって、それらの気体分子12がイオン化し、生成したそれらのイオンが、帯電した被除電物11の表面の電荷を打消すことで、帯電した被除電物11を除電することができる。すなわち、本願実施例のように例えば、正に帯電した被除電物11表面を、イオン化した気体分子12でその正電荷を打消すことにより除電を行うことができるのである。   The generated X-rays are irradiated into the air through the irradiation window 3. By passing through the aluminum irradiation window 3 having a thickness of about 10 μm, the photon energy is reduced by the absorption edge of aluminum as shown in FIG. High-energy X-rays of 1560 eV or higher are cut, and X-rays having a photon energy of less than about 1560 eV are emitted from the irradiation window 3. Then, as described above, the X-rays irradiated from the irradiation window 3 are irradiated to the gas molecules 12 in the surrounding air, so that the gas molecules 12 are ionized and the generated ions are charged. By neutralizing the charge on the surface of the object 11 to be discharged, the charged object 11 can be discharged. That is, as in the present embodiment, for example, the surface of the object 11 to be positively charged can be neutralized by canceling the positive charge with the ionized gas molecules 12.

また、イオン化した気体分子12は、空気の自然対流や拡散によって、被除電物11に到達するため、本願実施例において、照射窓3から5cm以上離れた場所においても該被除電物11を除電することができ、また、空気の対流に影響されない作業下においては、ファンなどによって風を送ることにより強制的にイオン化した気体分子12を被除電物11の方へ送ってもよい。   In addition, since the ionized gas molecules 12 reach the object to be neutralized 11 by natural convection and diffusion of air, in the present embodiment, the object to be neutralized 11 is neutralized even at a location 5 cm or more away from the irradiation window 3. In addition, under work that is not affected by air convection, the gas molecules 12 that are forcibly ionized by sending wind with a fan or the like may be sent toward the object to be neutralized 11.

上述のように、本願実施例によれば、絶縁体の帯電を利用したX線照射型イオナイザを用いることにより、低い印加電圧で、且つ高真空とすることなく該X線照射型イオナイザを駆動することができる。そのため、大掛かりな装置を必要とせず、設置スペースの狭い箇所において作業を行うことも可能である。また、広いX線照射領域を有するため効率的に気体をイオン化することができ、その際にも前述したような保護部材7を備えているため、使用者がX線を暴露することがなく安全である。また、電圧電源を乾電池とすることでさらに小型化することもできる。   As described above, according to the embodiment of the present invention, by using an X-ray irradiation type ionizer that utilizes charging of an insulator, the X-ray irradiation type ionizer is driven at a low applied voltage and without a high vacuum. be able to. Therefore, it is possible to work in a narrow installation space without requiring a large-scale device. In addition, since it has a wide X-ray irradiation region, it can efficiently ionize the gas, and since the protective member 7 as described above is provided at that time, it is safe without exposing the user to X-rays. It is. Further, it is possible to further reduce the size by using a dry battery as the voltage power source.

本発明は、X線を周囲の気体に照射し、該気体をイオン化することで、除電装置だけでなく、殺菌・滅菌装置としても利用することができる。   The present invention can be used not only as a static eliminator but also as a sterilization / sterilization apparatus by irradiating surrounding gas with X-rays and ionizing the gas.

本願実施例の上方断面図Upper sectional view of the embodiment of the present application 図1におけるA−A断面図AA sectional view in FIG. 図1におけるB−B断面図BB sectional view in FIG. 本願実施例に用いた照射窓のX線透過率のグラフGraph of X-ray transmittance of irradiation window used in this application example 本願実施例における空気層のX線透過率グラフX-ray transmittance graph of air layer in the embodiment of the present application 従来技術を示す図Diagram showing conventional technology

符号の説明Explanation of symbols

1 X線照射型イオナイザ
2 気体給排口
3 照射窓
4 気密筺体
5 絶縁体
6 繊条電極
7 保護部材
8 減圧ポンプ
9 導線
10 端部電極
11 被除電物
12 気体分子
DESCRIPTION OF SYMBOLS 1 X-ray irradiation type ionizer 2 Gas supply / exhaust port 3 Irradiation window 4 Airtight housing 5 Insulator 6 Filament electrode 7 Protective member 8 Depressurization pump 9 Conductor 10 End electrode 11 Electric discharge object 12 Gas molecule

Claims (4)

内部が低圧気密状態に保持可能な気密筺体に外部の気体を給排可能な気体給排口とX線を透過可能な照射窓とを具備するX線照射型イオナイザにおいて、
該気密筺体内部に前記照射窓と略平行に配設された絶縁体と、
該絶縁体と前記照射窓の間に該絶縁体と対向するように配設されて該絶縁体に電圧を印加してその表面を帯電させる繊条電極と、
を具備することによって、前記照射窓の外側の気体をイオン化することを特徴とするX線照射型イオナイザ。
In an X-ray irradiation ionizer comprising a gas supply / exhaust port through which an external gas can be supplied / discharged and an irradiation window through which X-rays can pass through an airtight housing that can be maintained in a low-pressure airtight state.
An insulator disposed substantially parallel to the irradiation window inside the hermetic housing;
A filament electrode disposed between the insulator and the irradiation window so as to face the insulator and applying a voltage to the insulator to charge its surface;
An X-ray irradiation ionizer characterized by ionizing the gas outside the irradiation window.
前記照射窓がアルミニウムであることを特徴とする請求項1記載のX線照射型イオナイザ。   2. The X-ray irradiation ionizer according to claim 1, wherein the irradiation window is made of aluminum. 前記照射窓の周縁部にX線の飛散を防止すると共に該照射窓を保護するための保護部材を備えたことを特徴とする請求項2記載のX線照射型イオナイザ。   The X-ray irradiation ionizer according to claim 2, further comprising a protective member for preventing the scattering of X-rays and protecting the irradiation window at a peripheral portion of the irradiation window. 前記保護部材が前記照射窓の周縁部に沿って外側へ突出する枠体であることを特徴とする請求項3記載のX線照射型イオナイザ。   The X-ray irradiation ionizer according to claim 3, wherein the protective member is a frame body that protrudes outward along the peripheral edge of the irradiation window.
JP2006262399A 2006-09-27 2006-09-27 X-ray irradiation ionizer Expired - Fee Related JP4839475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006262399A JP4839475B2 (en) 2006-09-27 2006-09-27 X-ray irradiation ionizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006262399A JP4839475B2 (en) 2006-09-27 2006-09-27 X-ray irradiation ionizer

Publications (2)

Publication Number Publication Date
JP2008084656A true JP2008084656A (en) 2008-04-10
JP4839475B2 JP4839475B2 (en) 2011-12-21

Family

ID=39355296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006262399A Expired - Fee Related JP4839475B2 (en) 2006-09-27 2006-09-27 X-ray irradiation ionizer

Country Status (1)

Country Link
JP (1) JP4839475B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096678A (en) * 2008-10-17 2010-04-30 Soda Kogyo:Kk Device and method of ionization
CN101945526A (en) * 2010-09-16 2011-01-12 四川虹欧显示器件有限公司 Anti-static device and method for repairing PDP module
KR101538945B1 (en) * 2014-01-13 2015-07-29 (주) 브이에스아이 Ion blower having a shielding layer and a low-voltage X-ray tube
WO2017072929A1 (en) * 2015-10-30 2017-05-04 アドバンスド・コンポジット株式会社 X-ray type static eliminator, computer program, and injection molding device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296596A (en) * 1988-05-25 1989-11-29 Hitachi Ltd Plasma x-ray generating device
JPH0745225A (en) * 1993-06-18 1995-02-14 Hamamatsu Photonics Kk X-ray generating tube
JP2000047457A (en) * 1998-07-31 2000-02-18 Ricoh Co Ltd Charging device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01296596A (en) * 1988-05-25 1989-11-29 Hitachi Ltd Plasma x-ray generating device
JPH0745225A (en) * 1993-06-18 1995-02-14 Hamamatsu Photonics Kk X-ray generating tube
JP2000047457A (en) * 1998-07-31 2000-02-18 Ricoh Co Ltd Charging device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010096678A (en) * 2008-10-17 2010-04-30 Soda Kogyo:Kk Device and method of ionization
CN101945526A (en) * 2010-09-16 2011-01-12 四川虹欧显示器件有限公司 Anti-static device and method for repairing PDP module
CN101945526B (en) * 2010-09-16 2013-04-10 四川虹欧显示器件有限公司 Anti-static device and method for repairing PDP module
KR101538945B1 (en) * 2014-01-13 2015-07-29 (주) 브이에스아이 Ion blower having a shielding layer and a low-voltage X-ray tube
WO2017072929A1 (en) * 2015-10-30 2017-05-04 アドバンスド・コンポジット株式会社 X-ray type static eliminator, computer program, and injection molding device

Also Published As

Publication number Publication date
JP4839475B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
KR100912981B1 (en) Ionized Air Flow Discharge Type Non-Dusting Ionizer
JP3827708B2 (en) Static eliminator using soft X-ray
JP2007234437A (en) Plasma discharge type static eliminator
JPH07251026A (en) Method for destroying pollutant by using low energy electron beam
JP4839475B2 (en) X-ray irradiation ionizer
EP1542238B1 (en) Aerosol particle charging equipment
KR101221939B1 (en) System for photo Ionizing with high efficiency
US7710707B2 (en) Flexible soft X-ray ionizer
JP2016520959A (en) X-ray generator, X-ray generator and high voltage generator constituting the same
KR101538945B1 (en) Ion blower having a shielding layer and a low-voltage X-ray tube
JP2015069734A (en) Excimer lamp device and irradiation processing apparatus
JP2008077980A (en) Ionic mobility meter and ionic mobility measuring method
KR100330190B1 (en) Apparatus for eliminating static electricity using soft x-ray
CN1316545C (en) Static electricity preventing device using flexible x-ray and method for making its flexible x-ray tubes
KR101178783B1 (en) System for Photo Ionizer using the Soft X-ray
KR20160128501A (en) Heat sink using ionic wind
JP4451540B2 (en) Light irradiation type static eliminator with cooling function
JP4426003B2 (en) Ion carrier ionization apparatus and method
JP2006260948A (en) Ionizer equipped with x-ray generator
JP6743517B2 (en) Ion generating method and ion generating device
JP7086653B2 (en) Water treatment equipment
JP2008288158A (en) Static electricity eliminator
JP2001176691A (en) Chamber type ion-carrying ionizing device and ionizing method
KR20240090546A (en) electronic cleaning device
JP2005056744A (en) Static eliminator using alpha ray

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110915

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees