[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008080246A - Method for pretreating hydrogen production catalyst and method for producing hydrogen for fuel cell - Google Patents

Method for pretreating hydrogen production catalyst and method for producing hydrogen for fuel cell Download PDF

Info

Publication number
JP2008080246A
JP2008080246A JP2006263263A JP2006263263A JP2008080246A JP 2008080246 A JP2008080246 A JP 2008080246A JP 2006263263 A JP2006263263 A JP 2006263263A JP 2006263263 A JP2006263263 A JP 2006263263A JP 2008080246 A JP2008080246 A JP 2008080246A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogen
oxidation
reforming
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006263263A
Other languages
Japanese (ja)
Inventor
Mitsuru Osawa
満 大澤
Tetsuya Fukunaga
哲也 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2006263263A priority Critical patent/JP2008080246A/en
Publication of JP2008080246A publication Critical patent/JP2008080246A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for improving the activity of a catalyst for reforming a hydrocarbon to produce a hydrogen-containing gas and a method for efficiently producing hydrogen for a fuel cell. <P>SOLUTION: A method for pretreating a hydrogen production catalyst is characterized in that the catalyst which contains Ni, Mg, Al and at least one noble metal element selected from Pt, Pd, Ir, Rh and Ru and is used for reforming the hydrocarbon to produce the hydrogen-containing gas, is subjected to reduction-oxidation repeating treatment as activation pretreatment. The method for producing hydrogen for the fuel cell is characterized in that the pretreatment method is applied to the catalyst to be used when the hydrocarbon is reformed to produce the hydrogen-containing gas. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水素製造触媒の前処理方法および燃料電池用水素の製造方法に関する。さらに詳しくは、本発明は、炭化水素を改質して水素含有ガスを製造する触媒の活性を向上させるために、同触媒に活性化前処理として、還元−酸化の繰り返し処理を施す方法、および炭化水素を改質して水素含有ガスを製造するに際し、使用する触媒に前記活性化前処理を施し、効率よく燃料電池用水素を製造する方法に関するものである。   The present invention relates to a pretreatment method for a hydrogen production catalyst and a method for producing hydrogen for a fuel cell. More specifically, the present invention relates to a method for subjecting the catalyst to a reduction-oxidation repeated treatment as a pretreatment for activation in order to improve the activity of the catalyst for reforming hydrocarbons to produce a hydrogen-containing gas, and The present invention relates to a method for efficiently producing hydrogen for fuel cells by reforming hydrocarbons to produce a hydrogen-containing gas by subjecting the catalyst to be used to the pretreatment for activation.

近年、環境問題から新エネルギー技術が脚光を浴びており、この新エネルギー技術の一つとして燃料電池が注目を集めている。この燃料電池は、水素と酸素を電気化学的に反応させることにより、化学エネルギーを電気エネルギーに変換させるものであって、エネルギーの利用効率が高いという特徴を有しており、民生用、産業用または自動車用等として、実用化研究が積極的になされている。
この燃料電池には、使用する電解質の種類に応じて、リン酸型、溶融炭酸塩型、固体酸化物型および固体高分子型等のタイプが知られている。一方、水素源としては、メタノールおよびメタンを主体とする液化天然ガス、この天然ガスを主成分とする都市ガス、天然ガスを原料とする合成液体燃料、さらには、石油系のLPG、ナフサおよび灯油等の石油系炭化水素の使用の研究がなされている。
これらの石油系炭化水素を用いて水素を製造する場合、一般に、同炭化水素に対して、触媒の存在下に水蒸気改質処理、自己熱改質処理、部分酸化改質処理などがなされている。
In recent years, new energy technology has attracted attention due to environmental problems, and fuel cells are attracting attention as one of the new energy technologies. This fuel cell converts chemical energy into electrical energy by electrochemically reacting hydrogen and oxygen, and has a feature of high energy use efficiency. In addition, research into practical use has been actively conducted for automobiles and the like.
For this fuel cell, types such as a phosphoric acid type, a molten carbonate type, a solid oxide type and a solid polymer type are known depending on the type of electrolyte used. On the other hand, as a hydrogen source, liquefied natural gas mainly composed of methanol and methane, city gas mainly composed of this natural gas, synthetic liquid fuel using natural gas as a raw material, petroleum LPG, naphtha and kerosene Studies on the use of petroleum hydrocarbons such as
When hydrogen is produced using these petroleum hydrocarbons, steam reforming treatment, autothermal reforming treatment, partial oxidation reforming treatment, etc. are generally performed on the hydrocarbon in the presence of a catalyst. .

このような炭化水素の改質触媒として、従来ルテニウム系触媒やニッケル系触媒が知られており、そして、ハイドロタルサイト(多孔性複合水酸化物の水和物)を経由して調製された触媒は、活性が高いことも知られている。
ハイドロタルサイト経由で調製された炭化水素改質触媒としては、例えば(1)ハイドロタルサイトを前駆体として、その構成元素(Mg、Al)の一部を活性金属である貴金属(RhまたはRu)または遷移金属元素で置換、焼成し、活性金属種を内部から表面に染み出させて高分散化した金属微粒子担持炭化水素改質用触媒(例えば、特許文献1参照)、(2)マグネシウムとアルミニウムとニッケルを含む、ハイドロタルサイト経由で調製した改質触媒(例えば、特許文献2および3参照)、(3)ハイドロタルサイトの層間にRuをイオン交換により導入し、それを焼成したのち、還元により活性化してなる改質触媒(例えば、特許文献4参照)、(4)マグネシウムとアルミニウムとニッケル、鉄を含む、ハイドロタルサイト経由で調製したアンモニアの副生を抑えた自己熱改質触媒(例えば、特許文献5参照)、(5)ハイドロタルサイト状層状化合物を焼成することにより調製された、Ru、Pt、Pd、RhおよびIrの中から選ばれる少なくとも1種の金属を含むメタン含有ガス改質触媒(例えば、特許文献6参照)、(6)ハイドロタルサイト経由で調製したマグネシウム、アルミニウム、ニッケルおよびルテニウムを構成元素とする炭化水素分解用触媒(例えば、特許文献7参照)、および
(7)ハイドロタルサイト経由で調製したマグネシウム、アルミニウム、ニッケルを構成元素とし、かつアルカリ金属(Naを除く)、アルカリ土類金属(Mgを除く)、Zn、Co、Ce、Cr、FeおよびLaの中から選ばれる少なくとも1種の元素を含有する触媒(例えば、特許文献8参照)が開示されている。
Ruthenium-based catalysts and nickel-based catalysts have been known as such hydrocarbon reforming catalysts, and catalysts prepared via hydrotalcite (porous composite hydroxide hydrate) Is also known to have high activity.
As the hydrocarbon reforming catalyst prepared via hydrotalcite, for example, (1) noble metal (Rh or Ru) in which hydrotalcite is a precursor and a part of its constituent elements (Mg, Al) is an active metal Alternatively, a metal fine particle-supported hydrocarbon reforming catalyst (see, for example, Patent Document 1), which is substituted with a transition metal element and baked to exude an active metal species from the inside to the surface to be highly dispersed, (2) magnesium and aluminum Reforming catalyst prepared via hydrotalcite containing nickel and nickel (see, for example, Patent Documents 2 and 3), (3) Ru is introduced between the layers of hydrotalcite by ion exchange, calcined, and then reduced (4) via hydrotalcite containing magnesium, aluminum, nickel and iron Autothermal reforming catalyst with reduced by-product of ammonia prepared (for example, see Patent Document 5), (5) Ru, Pt, Pd, Rh and Ir prepared by calcining a hydrotalcite layered compound A methane-containing gas reforming catalyst containing at least one metal selected from the above (for example, see Patent Document 6), (6) Carbonization containing magnesium, aluminum, nickel and ruthenium prepared via hydrotalcite as constituent elements Catalysts for hydrogenolysis (see, for example, Patent Document 7), and (7) Magnesium, aluminum and nickel prepared via hydrotalcite as constituent elements, and alkali metals (except for Na), alkaline earth metals (Mg Catalyst) containing at least one element selected from Zn, Co, Ce, Cr, Fe and La (excluding) If, see Patent Document 8) have been disclosed.

しかしながら、前記(1)の改質触媒においては、前駆体であるハイドロタルサイトの構成元素を貴金属元素で置換する記載はあるが、還元−酸化の繰り返しについての記載はない。(2)の改質触媒においては、貴金属元素の含有については記載がない。(3)の改質触媒においては、焼成温度および還元温度について、それぞれ300〜1300℃、好ましくは500〜1100℃および400〜1300℃、好ましくは500〜1000℃と記載されているが、還元−酸化の繰り返しについての記載はない。(4)の自己熱改質触媒においては、金、銀、白金、パラジウム、ロジウム、イリジウム、レニウム、銅、マンガン、クロム、バナジウム、チタンの担持、400〜1500℃での焼成および650〜1100℃での還元についての記載はあるが、還元−酸化の繰り返しについての記載はない。
前記(5)の改質触媒においては、焼成処理を,400〜1200℃で5〜10時間、好ましくは500〜1000℃で5〜10時間行うことが記載されているが、還元についての記載がない。また、Ru、Pt、Pd、RhおよびIrは、炭素析出が生じにくい金属であることが記載されているが、還元−酸化の繰り返しについての記載はない。(6)の炭化水素分解用触媒においては、焼成温度(400〜1600℃)、および還元温度(700〜1100℃)が記載されてあり、また、微粒子NiとRuの存在により、低温高活性で耐コーキング性にも優れると記載されているが、還元−酸化の繰り返しについての記載はない。(7)の触媒においては、Ruを含有した触媒についての記載および耐酸化性、低温活性、耐コーキング性に優れるとの記載があり、また、焼成温度(400〜1600℃)および還元温度(700〜1100℃)についての記載があるが、還元−酸化の繰り返しについての記載はない。
さらに、このような従来の炭化水素改質触媒は、その活性については、必ずしも十分に満足し得るとは言えなかった。
However, in the reforming catalyst (1), there is a description that the constituent element of the hydrotalcite that is a precursor is replaced with a noble metal element, but there is no description about the repetition of reduction-oxidation. In the reforming catalyst (2), there is no description about the content of noble metal elements. In the reforming catalyst of (3), the firing temperature and the reduction temperature are 300 to 1300 ° C., preferably 500 to 1100 ° C. and 400 to 1300 ° C., preferably 500 to 1000 ° C., respectively. There is no description of repeated oxidation. In the autothermal reforming catalyst of (4), gold, silver, platinum, palladium, rhodium, iridium, rhenium, copper, manganese, chromium, vanadium, titanium are supported, calcined at 400 to 1500 ° C, and 650 to 1100 ° C. However, there is no description about the repetition of reduction-oxidation.
In the reforming catalyst (5), it is described that the calcination treatment is performed at 400 to 1200 ° C. for 5 to 10 hours, preferably at 500 to 1000 ° C. for 5 to 10 hours. Absent. In addition, Ru, Pt, Pd, Rh, and Ir are described as being metals that are unlikely to cause carbon deposition, but there is no description of repeated reduction-oxidation. In the hydrocarbon decomposition catalyst of (6), the calcination temperature (400 to 1600 ° C.) and the reduction temperature (700 to 1100 ° C.) are described. Although it is described that the coking resistance is also excellent, there is no description about repeated reduction-oxidation. In the catalyst of (7), there is a description of a catalyst containing Ru and a description that it is excellent in oxidation resistance, low-temperature activity, and coking resistance, and a firing temperature (400 to 1600 ° C.) and a reduction temperature (700 ˜1100 ° C.), but there is no description of repeated reduction-oxidation.
Furthermore, such conventional hydrocarbon reforming catalysts have not always been sufficiently satisfactory in terms of their activity.

特開平11−276893号公報Japanese Patent Laid-Open No. 11-276893 特開2003−135967号公報JP 2003-135967 A 特開2004−255245号公報JP 2004-255245 A 特開2003−290657号公報JP 2003-290657 A 特開2005−224722号公報JP 2005-224722 A 特開2005−288259号公報JP 2005-288259 A 特開2006−061759号公報JP 2006-061759 A 特開2006−061760号公報JP 2006-061760 A

本発明は、このような状況下で、炭化水素を改質して水素含有ガスを製造する触媒の活性を向上させる方法、および炭化水素を改質して水素含有ガスを製造するに際し、使用する触媒に、前記の活性を向上させる方法を施し、効率よく燃料電池用水素を製造する方法を提供することを目的とするものである。   Under such circumstances, the present invention uses a method for improving the activity of a catalyst for reforming hydrocarbons to produce a hydrogen-containing gas, and a method for reforming hydrocarbons to produce a hydrogen-containing gas. An object of the present invention is to provide a method for efficiently producing hydrogen for a fuel cell by applying a method for improving the activity to the catalyst.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、特定の金属元素を含む炭化水素改質触媒、特にハイドロタルサイト状層状化合物を経由して得られる触媒に、活性化前処理として、還元−酸化の繰り返し処理を施すことにより、また、炭化水素を改質して水素含有ガスを製造するに際し、使用する触媒に、前記の活性化前処理を施すことにより、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。   As a result of intensive research to achieve the above object, the present inventors have activated hydrocarbon reforming catalysts containing specific metal elements, particularly catalysts obtained via hydrotalcite-like layered compounds. The purpose of the pretreatment is by subjecting the catalyst to be used to the aforementioned activation pretreatment to repeated reduction-oxidation treatment and reforming hydrocarbons to produce a hydrogen-containing gas. Found that it can be achieved. The present invention has been completed based on such findings.

すなわち、本発明は
(1)Ni、MgおよびAlを含むと共にPt、Pd、Ir、RhおよびRuの中から選ばれる少なくとも一種の貴金属元素を含む、炭化水素を改質して水素含有ガスを製造する触媒に活性化前処理として、還元−酸化の繰り返し処理を施すことを特徴とする水素製造触媒の前処理方法、
(2)前記還元−酸化の繰り返し処理において、還元処理が、水素含有ガス雰囲気下、600〜1100℃の範囲の温度で行われる上記(1)に記載の水素製造触媒の前処理方法、
(3)前記還元−酸化の繰り返し処理において、酸化処理が、酸素含有ガス雰囲気下、400〜1200℃の範囲の温度で行われる上記(1)または(2)に記載の水素製造触媒の前処理方法、
(4)前記触媒がハイドロタルサイト状層状化合物を経由して得られたものである上記(1)〜(3)のいずれかに記載の水素製造触媒の前処理方法、
(5)前記触媒がハイドロタルサイト状層状化合物の焼成後に貴金属成分を担持させることにより得られたものである上記(4)に記載の水素製造触媒の前処理方法、
(6)前記貴金属元素が、Rhおよび/またはRuである上記(1)〜(5)のいずれかに記載の水素製造触媒の前処理方法、
(7)焼成した前記触媒を還元処理後、「酸化−還元」の繰り返し処理を1〜20回施す上記(1)〜(6)のいずれかに記載の水素製造触媒の前処理方法、
(8)前記炭化水素の改質が、水蒸気改質、自己熱改質または部分酸化改質である上記(1)〜(7)のいずれかに記載の水素製造触媒の前処理方法および
(9)炭化水素を改質して水素含有ガスを製造するに際し、使用する触媒に、上記(1)〜(8)のいずれかに記載の前処理方法を施すことを特徴とする燃料電池用水素の製造方法を提供するものである。
That is, the present invention (1) produces a hydrogen-containing gas by reforming a hydrocarbon containing Ni, Mg and Al and at least one noble metal element selected from Pt, Pd, Ir, Rh and Ru. A pretreatment method of a hydrogen production catalyst, characterized by subjecting the catalyst to be subjected to a reduction-oxidation repeated treatment as an activation pretreatment,
(2) The pretreatment method for a hydrogen production catalyst according to (1) above, wherein the reduction treatment is performed at a temperature in the range of 600 to 1100 ° C. in a hydrogen-containing gas atmosphere in the reduction-oxidation repeated treatment,
(3) The pretreatment of the hydrogen production catalyst according to the above (1) or (2), wherein in the repetitive treatment of reduction-oxidation, the oxidation treatment is performed at a temperature in the range of 400 to 1200 ° C. in an oxygen-containing gas atmosphere. Method,
(4) The pretreatment method for a hydrogen production catalyst according to any one of (1) to (3), wherein the catalyst is obtained via a hydrotalcite-like layered compound,
(5) The pretreatment method for a hydrogen production catalyst according to (4) above, wherein the catalyst is obtained by supporting a noble metal component after calcination of the hydrotalcite layered compound,
(6) The pretreatment method for a hydrogen production catalyst according to any one of (1) to (5), wherein the noble metal element is Rh and / or Ru,
(7) The pretreatment method for a hydrogen production catalyst according to any one of (1) to (6) above, wherein the calcined catalyst is subjected to reductive treatment, followed by repeated oxidation-reduction treatment 1 to 20 times.
(8) The method for pretreating a hydrogen production catalyst according to any one of (1) to (7) above, wherein the reforming of the hydrocarbon is steam reforming, autothermal reforming or partial oxidation reforming, and (9 When a hydrogen-containing gas is produced by reforming hydrocarbons, the pretreatment method according to any one of (1) to (8) above is applied to the catalyst used. A manufacturing method is provided.

本発明によれば、特定の金属元素を含む炭化水素改質触媒、特にハイドロタルサイト状層状化合物を経由して得られる触媒に、活性化前処理として、還元−酸化の繰り返し処理を施すことにより、同触媒の活性向上を図ることができる。また、炭化水素を改質して水素含有ガスを製造するに際し、使用する触媒に、前記の活性化前処理を施すことにより、効率よく燃料電池用水素を製造することができる。   According to the present invention, a hydrocarbon reforming catalyst containing a specific metal element, particularly a catalyst obtained via a hydrotalcite-like layered compound, is subjected to a reduction-oxidation repeated treatment as a pretreatment for activation. The activity of the catalyst can be improved. Further, when producing a hydrogen-containing gas by reforming a hydrocarbon, hydrogen for a fuel cell can be efficiently produced by subjecting the catalyst to be used to the above-mentioned pretreatment for activation.

本発明の水素製造触媒の前処理方法は、Ni、MgおよびAlを含むと共に、Pt、Pd、Ir、RhおよびRuの中から選ばれる少なくとも1種の貴金属元素を含む、炭化水素を改質して水素含有ガスを製造する触媒(以下、炭化水素改質触媒と称することがある)に、活性化前処理として、還元−酸化の繰り返し処理を施すことを特徴とする。
本発明の前処理方法が適用される炭化水素改質触媒は、Ni元素とMg元素とAl元素を含む担体に、貴金属成分が担持された触媒であり、同貴金属成分としては、Pt、Pd、Ir、RhおよびRuの中から選ばれる少なくとも1種の元素を含有するものが用いられる。また、前記担体中のNiは活性成分としての役割も有している。
この炭化水素改質触媒は、特にハイドロタルサイト状層状化合物を経由して得られたものであることが、触媒活性の面から好ましい。
The pretreatment method for a hydrogen production catalyst of the present invention reforms a hydrocarbon containing Ni, Mg and Al and at least one noble metal element selected from Pt, Pd, Ir, Rh and Ru. Thus, a catalyst for producing a hydrogen-containing gas (hereinafter sometimes referred to as a hydrocarbon reforming catalyst) is subjected to a reduction-oxidation repeated treatment as a pretreatment for activation.
The hydrocarbon reforming catalyst to which the pretreatment method of the present invention is applied is a catalyst in which a noble metal component is supported on a support containing Ni element, Mg element and Al element, and as the noble metal component, Pt, Pd, A material containing at least one element selected from Ir, Rh and Ru is used. Ni in the carrier also has a role as an active ingredient.
This hydrocarbon reforming catalyst is particularly preferably obtained via a hydrotalcite-like layered compound from the viewpoint of catalytic activity.

ハイドロタルサイトは、元来下記式(1)表される粘土鉱物である。
Mg6Al2(OH)16CO3・4H2O・・・・・(1)
近年になり、2価の金属陽イオン[M(II)2+] 、3価の金属陽イオン[M(III)3+]およびn価の層間陰イオン(An-)を含む下記式(2)で表される物質が、ハイドロタルサイト状物質、ハイドロタルサイト様化合物、ハイドロタルサイト構造体、あるいは単にハイドロタルサイトと呼称されるようになった。
[(M(II)2+1-X(M(III)3+x(OH-2X+(An- x/n)・mH2O
・・・・・式(2)
式(1)で表されるハイドロタルサイトは、「OH-(0.75Mg2+、0.25AI3+)OH-」がブルサイト層として面状の骨格をなし、その層間に負の電荷をもつ0.125CO3 2-と0.5H2Oとが挟まれた構造を有している。ブルサイト層内のMg2+とAl3+との比率は広い範囲で変えることができ、それにより、ブルサイト層内の正電荷の密度を制御することが可能である。
Hydrotalcite is originally a clay mineral represented by the following formula (1).
Mg 6 Al 2 (OH) 16 CO 3 .4H 2 O (1)
Recently, a divalent metal cation [M (II) 2+ ], a trivalent metal cation [M (III) 3+ ] and an n-valent interlayer anion (A n− ) The substance represented by 2) has come to be called hydrotalcite-like substance, hydrotalcite-like compound, hydrotalcite structure, or simply hydrotalcite.
[(M (II) 2+ ) 1-X (M (III) 3+ ) x (OH ) 2 ] X + (A n− x / n ) · mH 2 O
・ ・ ・ ・ ・ Formula (2)
In the hydrotalcite represented by the formula (1), “OH (0.75Mg 2+ , 0.25AI 3+ ) OH ” forms a planar skeleton as a brucite layer, and negative charges are formed between the layers. It has a structure in which 0.125 CO 3 2- having 0.5 and 0.5H 2 O are sandwiched. The ratio of Mg 2+ to Al 3+ in the brucite layer can be varied within a wide range, thereby making it possible to control the density of positive charges in the brucite layer.

上記触媒における貴金属成分の含有量は、酸化に対する耐性、触媒活性および経済性のバランスなどの観点から、金属元素として好ましくは0.05〜3質量%、より好ましくは0.1〜2.0質量%、さらに好ましくは0.2〜1.0質量%である。なお、貴金属元素としては、触媒活性の観点から、特にRhおよび/またはRuであることが好ましい。
Ni成分の含有量は、触媒活性および経済性のバランスなどの観点から、金属元素として、好ましくは5〜25質量%、より好ましくは8〜20質量%、さらに好ましくは10〜20質量%である。
また、Mg元素およびAl元素の含有量については、Mg元素とAl元素との合計モル数を1とした場合、Mg元素は0.5〜0.85であることが好ましく、0.6〜0.8であることがより好ましい。Mg元素のモル数が0.5以上であれば多孔質担体としての特性が発揮され、また0.85以下であれば十分な強度が得られる。
The content of the noble metal component in the catalyst is preferably 0.05 to 3% by mass, more preferably 0.1 to 2.0% by mass as a metal element from the viewpoint of resistance to oxidation, a balance between catalytic activity and economy. %, More preferably 0.2 to 1.0% by mass. The noble metal element is particularly preferably Rh and / or Ru from the viewpoint of catalytic activity.
The content of the Ni component is preferably 5 to 25% by mass, more preferably 8 to 20% by mass, and still more preferably 10 to 20% by mass as a metal element from the viewpoint of a balance between catalytic activity and economy. .
As for the contents of Mg element and Al element, when the total number of moles of Mg element and Al element is 1, the Mg element is preferably 0.5 to 0.85, and 0.6 to 0 .8 is more preferable. When the number of moles of Mg element is 0.5 or more, the characteristics as a porous carrier are exhibited, and when it is 0.85 or less, sufficient strength is obtained.

上記触媒を構成する各元素源としては、以下に示す化合物を挙げることができる。
貴金属元素(Ru)源であるルテニウム化合物としては、例えばRuCl3・nH2O、Ru(NO33、Ru2(OH)2Cl4・7NH3・3H2O、K2(RuCl5(H2O))、(NH42(RuCl5(H2O))、K(RuCl5(NO))、RuBr3・nH2O、Na2RuO4、Ru(NO)(NO33、(Ru3O(OAc)6(H2O)3)OAc・nH2O、K4(Ru(CN)6)・nH2O、K2(Ru(NO24(OH)(NO))、(Ru(NH36)Cl3、(Ru(NH36)Br3、(Ru(NH36)Cl2、(Ru(NH36)Br2、(Ru32(NH314)Cl6・H2O、(Ru(NO)(NH35)Cl3、(Ru(OH)(NO)(NH34)(NO32、RuCl2(PPh33、RuCl2(PPh34、RuClH(PPh33・C78、RuH2(PPh34、RuClH(CO)(PPh33、RuH2(CO)(PPh33、(RuCl2(cod))n、Ru(CO)12、Ru(acac)3、(Ru(HCOO)(CO)2n、Ru24(p−cymene)2、[Ru(NO)(edta)]-等のルテニウム塩を挙げることができる[(edta)はエチレンジアミン四酢酸]。
これらの成分を1種単独でも、2種以上を併用してもよい。
好ましくは、取扱い上の観点からRuCl3・nH2O、Ru(NO33、Ru2(OH)2Cl4・7NH3・3H2Oが用いられる。
Examples of each element source constituting the catalyst include the following compounds.
Examples of the ruthenium compound as a noble metal element (Ru) source include RuCl 3 .nH 2 O, Ru (NO 3 ) 3 , Ru 2 (OH) 2 Cl 4 .7NH 3 .3H 2 O, K 2 (RuCl 5 ( H 2 O)), (NH 4 ) 2 (RuCl 5 (H 2 O)), K (RuCl 5 (NO)), RuBr 3 .nH 2 O, Na 2 RuO 4 , Ru (NO) (NO 3 ) 3 , (Ru 3 O (OAc) 6 (H 2 O) 3 ) OAc · nH 2 O, K 4 (Ru (CN) 6 ) · nH 2 O, K 2 (Ru (NO 2 ) 4 (OH) ( NO)), (Ru (NH 3 ) 6 ) Cl 3 , (Ru (NH 3 ) 6 ) Br 3 , (Ru (NH 3 ) 6 ) Cl 2 , (Ru (NH 3 ) 6 ) Br 2 , (Ru 3 O 2 (NH 3) 14 ) Cl 6 · H 2 O, (Ru (NO) (NH 3) 5) Cl 3, (Ru (OH) (NO) (NH 3) 4) (NO 3) 2 RuCl 2 (PPh 3) 3, RuCl 2 (PPh 3) 4, RuClH (PPh 3) 3 · C 7 H 8, RuH 2 (PPh 3) 4, RuClH (CO) (PPh 3) 3, RuH 2 (CO ) (PPh 3 ) 3 , (RuCl 2 (cod)) n , Ru (CO) 12 , Ru (acac) 3 , (Ru (HCOO) (CO) 2 ) n , Ru 2 I 4 (p-cymene) 2 And ruthenium salts such as [Ru (NO) (edta)] 2 - [(edta) is ethylenediaminetetraacetic acid].
These components may be used alone or in combination of two or more.
From the viewpoint of handling, RuCl 3 .nH 2 O, Ru (NO 3 ) 3 , Ru 2 (OH) 2 Cl 4 .7NH 3 .3H 2 O are preferably used.

貴金属元素(Rh)源であるロジウム化合物としては、例えば、Na3RhCl6、(NH42RhCl6、Rh(NH35Cl3、Rh(NO33、RhCl3等を挙げることができる。
貴金属元素(Pt)源である白金化合物としては、例えば、PtCl4、H2PtCl6、Pt(NH34Cl2、(MH42PtCl2、H2PtBr6、NH4[Pt(C24)Cl3]、Pt(NH34(OH)2、Pt(NH32(NO22等を挙げることができる。
貴金属元素(Pd)源であるパラジウム化合物としては、例えば、(NH42PdCl6、(NH42PdCl4、Pd(NH34Cl2、PdCl2、Pd(NO32等を挙げることができる。
貴金属元素(Ir)源であるイリジウム化合物としては、例えば、(NH42IrCl6、IrCl3、H2IrCl6等を挙げることができる。
Examples of rhodium compounds that are noble metal element (Rh) sources include Na 3 RhCl 6 , (NH 4 ) 2 RhCl 6 , Rh (NH 3 ) 5 Cl 3 , Rh (NO 3 ) 3 , RhCl 3 and the like. Can do.
Examples of the platinum compound as a noble metal element (Pt) source include PtCl 4 , H 2 PtCl 6 , Pt (NH 3 ) 4 Cl 2 , (MH 4 ) 2 PtCl 2 , H 2 PtBr 6 , NH 4 [Pt ( C 2 H 4 ) Cl 3 ], Pt (NH 3 ) 4 (OH) 2 , Pt (NH 3 ) 2 (NO 2 ) 2 and the like.
Examples of the palladium compound that is a noble metal element (Pd) source include (NH 4 ) 2 PdCl 6 , (NH 4 ) 2 PdCl 4 , Pd (NH 3 ) 4 Cl 2 , PdCl 2 , Pd (NO 3 ) 2 and the like. Can be mentioned.
Examples of the iridium compound that is a noble metal element (Ir) source include (NH 4 ) 2 IrCl 6 , IrCl 3 , H 2 IrCl 6, and the like.

Ni元素源であるニッケル化合物としては、例えばNi(NO32・6H2O、NiO、NiOH)2、NiSO4・6H2O、NiCO3、NiCO3・2Ni(OH)2・nH2O、NiCl2・6H2O、(HCOO)2Ni・2H2O、(CH3COO)2Ni・4H2Oなどを挙げることができる。
Mg元素源であるマグネシウム化合物としては、例えばMg(NO32・6H2O、MgO、Mg(OH)2、MgC24・2H2O、MgSO4・7H2O、MgSO4・6H2O、MgCl2・6H2O、Mg3(C6572・nH2O、3MgCO3・Mg(OH)2、Mg(C65COO)2・4H2Oなど挙げることができる。
Al元素源であるアルミニウム化合物としては、例えばAl(NO33・9H2O、Al23、Al(OH)3、AlCl3・6H2O、AlO(COOCH3)・nH2O、Al2(C243・nH2Oなどを挙げることができる。
Examples of nickel compounds that are Ni element sources include Ni (NO 3 ) 2 .6H 2 O, NiO, NiOH) 2 , NiSO 4 .6H 2 O, NiCO 3 , NiCO 3 .2Ni (OH) 2 .nH 2 O. NiCl 2 .6H 2 O, (HCOO) 2 Ni.2H 2 O, (CH 3 COO) 2 Ni.4H 2 O, and the like.
Examples of the magnesium compound as the Mg element source include Mg (NO 3 ) 2 .6H 2 O, MgO, Mg (OH) 2 , MgC 2 H 4 .2H 2 O, MgSO 4 .7H 2 O, MgSO 4 .6H. include 2 O, MgCl 2 · 6H 2 O, Mg 3 (C 6 H 5 O 7) 2 · nH 2 O, 3MgCO 3 · Mg (OH) 2, Mg (C 6 H 5 COO) such as 2 · 4H 2 O be able to.
Examples of the aluminum compound as the Al element source include Al (NO 3 ) 3 .9H 2 O, Al 2 O 3 , Al (OH) 3 , AlCl 3 .6H 2 O, AlO (COOCH 3 ) · nH 2 O, Examples include Al 2 (C 2 O 4 ) 3 .nH 2 O.

上記触媒はハイドロタルサイト状層状化合物の焼成後に、貴金属成分を担持させることにより得られたものであることが好ましい。
このような触媒は、例えば以下に示す方法により、調製することができる。
硝酸ニッケルなどのNi源、硝酸マグネシウムなどのMg源、硝酸アルミニウムなどのAl源を水に溶かした水溶液と、水酸化ナトリウム水溶液を、炭酸ナトリウム水溶液中に同時にゆっくり滴下し、滴下中常にpHが一定となるように調整する。pHは9〜13程度がよい。次いで、生成した沈殿物を40〜100℃程度で30分ないし80時間程度、好ましくは1〜24時間程度熟成したのち、ろ過し、さらに80〜150℃程度で乾燥処理する。
次に、このようにして得られたハイドロタルサイト状層状化合物を、400〜1500℃程度の温度で焼成処理することにより、NiMgAlの複合酸化物を得ることができる。次いで、この複合酸化物に、Ru源であるRu(NO33のような貴金属化合物を含む水溶液を含浸させ、所定量の貴金属元素を担持させる。この際、貴金属元素がアニオン錯体の中に存在する場合には、イオン交換により貴金属元素を担持することも可能である。イオン交換を行う場合、NiMgAlの複合酸化物を水溶液中に入れると、メモリー効果により、ハイドロタルサイト構造に戻り、層間にアニオンサイトができるためである。貴金属元素を担持後、さらに400〜1500℃程度の温度で焼成処理する。
また、貴金属元素は、最初の沈殿生成反応中に、例えばニッケル源、マグネシウム源およびアルミニウム源と共に、貴金属源となる貴金属化合物を水溶液として導入することも可能である。
上記のように、ハイドロタルサイト状層状化合物を経由して調製された触媒の比表面積は通常5〜250m2/g、好ましくは7〜200m2/gである。比表面積が5m2/g未満の場合には、個々の粒子の板面径及び厚みが共に大きいため、触媒は、成形が困難である。250m2/gを越える場合には、個々の粒子があまりに微細であるため、水洗工程、濾別工程上の問題がある。
The catalyst is preferably obtained by supporting a noble metal component after the calcining of the hydrotalcite layered compound.
Such a catalyst can be prepared, for example, by the method shown below.
An aqueous solution in which an Ni source such as nickel nitrate, an Mg source such as magnesium nitrate, and an Al source such as aluminum nitrate are dissolved in water and an aqueous sodium hydroxide solution are slowly dropped into the aqueous sodium carbonate solution simultaneously, and the pH is always constant during the dropwise addition. Adjust so that The pH is preferably about 9-13. Next, the formed precipitate is aged at about 40 to 100 ° C. for about 30 minutes to 80 hours, preferably about 1 to 24 hours, filtered, and further dried at about 80 to 150 ° C.
Next, a NiMgAl composite oxide can be obtained by firing the hydrotalcite-like layered compound thus obtained at a temperature of about 400 to 1500 ° C. Next, the composite oxide is impregnated with an aqueous solution containing a noble metal compound such as Ru (NO 3 ) 3 which is a Ru source, and a predetermined amount of noble metal element is supported. At this time, when the noble metal element is present in the anion complex, the noble metal element can be supported by ion exchange. This is because, when ion exchange is performed, if a composite oxide of NiMgAl is placed in an aqueous solution, it returns to the hydrotalcite structure due to the memory effect, and anion sites are formed between the layers. After supporting the noble metal element, it is further fired at a temperature of about 400 to 1500 ° C.
In addition, for the noble metal element, it is possible to introduce a noble metal compound serving as a noble metal source as an aqueous solution together with, for example, a nickel source, a magnesium source and an aluminum source during the initial precipitation reaction.
As described above, the specific surface area of the catalyst prepared via the hydrotalcite-like layered compound is usually 5 to 250 m 2 / g, preferably 7 to 200 m 2 / g. When the specific surface area is less than 5 m 2 / g, the catalyst is difficult to mold because both the plate surface diameter and thickness of each particle are large. If it exceeds 250 m 2 / g, the individual particles are too fine, and there is a problem in the water washing process and the filtration process.

本発明の特徴は、このようにして調製した炭化水素改質触媒(焼成後)に、還元−酸化を繰り返す前処理を施すことにより、活性を向上させることにある。
還元−酸化の繰り返し処理において、還元処理は、通常、水素含有ガス雰囲気下、600〜1100℃程度、好ましくは700〜1000℃の範囲の温度で行われる。この温度が600℃以上であれば、Ni成分の還元が十分に行われ、活性の高い触媒を得ることができ、また1100℃以下であれば、Ni成分や、Ru成分などの貴金属成分のシンタリングによる活性低下を抑制することができる。
還元処理時間は、処理温度にもよるが、Ni成分の十分な還元および経済性のバランスなどの観点から、30分ないし10時間程度が好ましく、1〜5時間がより好ましい。
The feature of the present invention is to improve the activity by subjecting the hydrocarbon reforming catalyst thus prepared (after calcination) to pretreatment that repeats reduction-oxidation.
In the reduction-oxidation repeated treatment, the reduction treatment is usually performed at a temperature in the range of about 600 to 1100 ° C., preferably 700 to 1000 ° C. in a hydrogen-containing gas atmosphere. If the temperature is 600 ° C. or higher, the Ni component is sufficiently reduced, and a highly active catalyst can be obtained. If the temperature is 1100 ° C. or lower, the sintering of noble metal components such as the Ni component and the Ru component is possible. The decrease in activity due to the ring can be suppressed.
Although the reduction treatment time depends on the treatment temperature, it is preferably about 30 minutes to 10 hours, more preferably 1 to 5 hours, from the viewpoint of sufficient reduction of the Ni component and economic balance.

一方、還元−酸化の繰り返し処理において、酸化処理は、通常、酸素含有ガス雰囲気下、400〜1200℃程度、好ましくは500〜1000℃の範囲の温度で行われる。前記酸素含有ガスとしては、通常空気が用いられるが、空気を、窒素やアルゴンなどの不活性ガスで希釈したガス、あるいは水蒸気などを用いることもできる。
酸化処理温度が400℃以上であれば、Ni元素や、Ruなどの貴金属元素の酸化が十分に進行し、本発明の効果が良好に発揮され、また1200℃以下であればRuなどの貴金属成分の揮発や表面積の低下が生じにくい。
酸化処理時間は、処理温度にもよるが、Ni元素や、Ruなどの貴金属元素の十分な酸化および経済性のバランスなどの観点から、30分ないし10時間程度が好ましく、1〜5時間がより好ましい。
On the other hand, in the reduction-oxidation repeated treatment, the oxidation treatment is usually performed at a temperature in the range of about 400 to 1200 ° C., preferably 500 to 1000 ° C. in an oxygen-containing gas atmosphere. As the oxygen-containing gas, air is usually used, but a gas obtained by diluting air with an inert gas such as nitrogen or argon, or water vapor can also be used.
When the oxidation treatment temperature is 400 ° C. or higher, the oxidation of Ni elements and noble metal elements such as Ru proceeds sufficiently, and the effects of the present invention are exhibited satisfactorily, and when it is 1200 ° C. or lower, noble metal components such as Ru. Volatilization and surface area reduction are unlikely to occur.
Although depending on the treatment temperature, the oxidation treatment time is preferably about 30 minutes to 10 hours, more preferably 1 to 5 hours, from the viewpoint of sufficient oxidation of Ni element and noble metal elements such as Ru and balance of economy. preferable.

通常、焼成された触媒を還元処理後に反応を行うが、本発明では反応に入る前にさらに酸素含有ガスや水蒸気などで触媒を酸化する。特に酸素含有ガスが好ましく、通常は空気が用いられる。その後還元を行って反応に入ってもよいし、還元を行わずに反応に入ることも可能である。
なお、触媒調製時に触媒は焼成される。この焼成は、Ni、Mg、Alの各元素を含むハイドロタルサイトを焼成し、さらに貴金属成分を担持後に焼成する場合もあるし、Ni、Mg、Alと同時に、貴金属元素をハイドロタルサイト構造に導入する場合は、1回の焼成で済む場合もある。これらは、いずれも触媒調製時の焼成である。これらも酸化の1種であるが、この焼成(酸化)はここでいう繰り返し酸化の数には数えない。
本発明においては、焼成した触媒を還元処理し、その後、「酸化−還元」を1回繰り返すことを1回繰り返し、「酸化−還元−酸化−還元」とした場合を2回繰り返しとする。
ただし、前述のように、焼成した触媒を還元処理し、その後「酸化」した後反応に入る、0.5回繰り返しや、「酸化−還元−酸化」後に反応にはいる1.5回繰り返しも、本発明の範囲に含まれる。
本発明においては、触媒活性の向上の観点から、焼成した触媒を還元処理後、「酸化−還元」の繰り返し処理を1〜20回施すことが好ましく、1〜10回施すことがより好ましく、1〜3回施すことがさらに好ましい。
このように、炭化水素改質触媒に、活性化前処理として、還元−酸化の繰り返し処理を施すことにより、同炭化水素改質触媒の活性や耐久性が向上する理由としては、次のことが考えられる。
活性金属元素であるNiとRuやRhなどの貴金属元素との相互作用により、活性金属元素が高分散化する還元−酸化の繰り返し処理により、相互作用がより強くなって、高活性化および高耐久化をもたらすことが考えられる。しかし、ある一定以上の回数を繰り返すと、活性金属元素の凝集が生じるようになり、活性が低下するものと思われる。
Usually, the calcined catalyst is reacted after the reduction treatment. In the present invention, however, the catalyst is further oxidized with an oxygen-containing gas or water vapor before entering the reaction. An oxygen-containing gas is particularly preferable, and air is usually used. Thereafter, reduction may be performed to enter the reaction, or the reaction may be performed without performing reduction.
The catalyst is calcined at the time of catalyst preparation. In this firing, the hydrotalcite containing each element of Ni, Mg, and Al is fired, and further, the noble metal component may be fired after being supported. In the case of introduction, there is a case where only one firing is sufficient. These are all calcinations during catalyst preparation. These are also one kind of oxidation, but this firing (oxidation) is not counted in the number of repeated oxidations referred to here.
In the present invention, the calcined catalyst is subjected to a reduction treatment, and thereafter, “oxidation-reduction” is repeated once, and “oxidation-reduction-oxidation-reduction” is repeated twice.
However, as described above, the calcined catalyst is reduced, and after being "oxidized", the reaction is repeated 0.5 times, or the reaction is repeated 1.5 times after "oxidation-reduction-oxidation". And within the scope of the present invention.
In the present invention, from the viewpoint of improving the catalytic activity, the calcined catalyst is preferably subjected to the "oxidation-reduction" repeated treatment 1 to 20 times after reduction treatment, more preferably 1 to 10 times, and more preferably 1 to 1. More preferably, it is applied 3 times.
As described above, the reason why the activity and durability of the hydrocarbon reforming catalyst is improved by subjecting the hydrocarbon reforming catalyst to repeated reduction-oxidation treatment as pretreatment for activation is as follows. Conceivable.
Due to the interaction between the active metal element Ni and noble metal elements such as Ru and Rh, the active metal element becomes highly dispersed by the repeated reduction-oxidation process, resulting in higher interaction and higher durability. It is possible to bring about However, if it is repeated a certain number of times or more, aggregation of active metal elements occurs, and the activity is considered to decrease.

前記のようにして、活性化前処理として、還元−酸化の繰り返し処理が施された炭化水素改質触媒を用いて行う炭化水素の改質としては、水蒸気改質、自己熱改質および部分酸化改質を好ましく挙げることができる。
この改質反応に用いられる原料炭化水素としては、例えば、メタン、エタン、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の炭素数が1〜16程度の直鎖状または分岐状の飽和脂肪族炭化水素、シクロヘキサン、メチルシクロヘキサン、シクロオクタン等の脂環式飽和炭化水素、単環および多環芳香族炭化水素、都市ガス、LPG、ナフサ、灯油等の各種の炭化水素を挙げることができる。
また、一般に、これらの原料炭化水素中に硫黄分が存在する場合には、脱硫工程を通して、通常、硫黄分が0.1質量ppm以下になるまで脱硫を行うことが好ましい。原料炭化水素中の硫黄分が0.1質量ppm程度より多くなると、炭化水素改質触媒が失活する原因になることがある。脱硫方法は特に限定されないが、水添脱硫、吸着脱硫等を適宜採用することができる。
As described above, steam reforming, autothermal reforming, and partial oxidation include hydrocarbon reforming using a hydrocarbon reforming catalyst that has been subjected to repeated reduction-oxidation treatment as pretreatment for activation. Modification can be preferably mentioned.
Examples of the raw material hydrocarbon used in the reforming reaction include straight chain or branched chains having about 1 to 16 carbon atoms such as methane, ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane, etc. Saturated aliphatic hydrocarbons, cycloaliphatic saturated hydrocarbons such as cyclohexane, methylcyclohexane and cyclooctane, monocyclic and polycyclic aromatic hydrocarbons, city gas, LPG, naphtha, kerosene and other hydrocarbons Can do.
In general, when sulfur content is present in these raw material hydrocarbons, it is usually preferable to perform desulfurization through the desulfurization step until the sulfur content becomes 0.1 mass ppm or less. If the sulfur content in the raw material hydrocarbon exceeds about 0.1 ppm by mass, the hydrocarbon reforming catalyst may be deactivated. The desulfurization method is not particularly limited, but hydrodesulfurization, adsorptive desulfurization and the like can be appropriately employed.

次に、炭化水素の各改質反応について説明する。
[水蒸気改質反応]
反応条件としては、通常、スチーム/カーボン比(モル比)が1.5〜10、好ましくは1.5〜5、より好ましくは2〜4となるように炭化水素量と水蒸気量を決定すればよい。このようにスチーム/カーボン比(モル比)を調整することにより、水素含有量の多い生成ガスを効率よく得ることができる。
反応温度は、通常、200〜900℃、好ましくは250〜900℃、さらに好ましくは300〜800℃である。反応圧力は、通常0〜3MPa・G、好ましくは0〜1MPa・Gである。
灯油またはそれ以上の沸点を有する炭化水素を原料とする場合、炭化水素改質触媒層の入口温度を630℃以下、好ましくは600℃以下に保って水蒸気改質を行うのがよい。入口温度が630℃を超えると、炭化水素の熱分解が促進され、生成したラジカルを経由して触媒または反応管壁に炭素が析出して、運転が困難になる場合がある。
触媒層出口温度は特に制限はないが、650〜800℃の範囲が好ましい。出口温度が650℃以上であれば、水素の生成量が充分であり、また800℃以下であれば、反応装置は耐熱材料を用いなくてもよく、経済的に好ましい。
なお、水蒸気改質反応に使用する水蒸気としては特に制限はない。
Next, each reforming reaction of hydrocarbon will be described.
[Steam reforming reaction]
As the reaction conditions, the amount of hydrocarbon and the amount of water vapor are usually determined so that the steam / carbon ratio (molar ratio) is 1.5 to 10, preferably 1.5 to 5, more preferably 2 to 4. Good. Thus, by adjusting the steam / carbon ratio (molar ratio), a product gas having a high hydrogen content can be obtained efficiently.
The reaction temperature is usually 200 to 900 ° C, preferably 250 to 900 ° C, more preferably 300 to 800 ° C. The reaction pressure is usually 0 to 3 MPa · G, preferably 0 to 1 MPa · G.
When kerosene or a hydrocarbon having a boiling point higher than that is used as a raw material, the steam reforming may be performed while maintaining the inlet temperature of the hydrocarbon reforming catalyst layer at 630 ° C. or lower, preferably 600 ° C. or lower. When the inlet temperature exceeds 630 ° C., thermal decomposition of hydrocarbons is promoted, and carbon may precipitate on the catalyst or reaction tube wall via the generated radicals, which may make operation difficult.
The catalyst layer outlet temperature is not particularly limited, but is preferably in the range of 650 to 800 ° C. If the outlet temperature is 650 ° C. or higher, the amount of hydrogen produced is sufficient, and if it is 800 ° C. or lower, the reaction apparatus does not need to use a heat-resistant material, which is economically preferable.
The steam used for the steam reforming reaction is not particularly limited.

[自己熱改質反応]
自己熱改質反応は炭化水素の酸化反応と炭化水素と水蒸気の反応が同一リアクター内または連続したリアクター内で起こり、通常、反応温度は200〜1,300℃、好ましくは400〜1,200℃、より好ましくは500〜900℃である。
スチーム/カーボン比(モル比)は、通常、0.1〜10、好ましくは0.4〜4である。酸素/カーボン比(モル比)は、通常、0.1〜1、好ましくは0.2〜0.8である。
反応圧力は、通常、0〜10MPa・G、好ましくは0〜5MPa・G、より好ましくは0〜3MPa・Gである。
炭化水素としては、水蒸気改質反応と同様なものが使用される。
[部分酸化改質反応]
部分酸化改質反応は炭化水素の部分酸化反応が起こり、通常、反応温度は350〜1,200℃、好ましくは450〜900℃である。酸素/カーボン比(モル比)は、通常、0.4〜0.8、好ましくは0.45〜0.65である。
反応圧力は、通常、0〜30MPa・G、好ましくは0〜5MPa・G、より好ましくは0〜3MPa・Gである。
炭化水素としては、水蒸気改質反応と同様なものが使用される。
[Self-thermal reforming reaction]
The autothermal reforming reaction takes place in the same reactor or in a continuous reactor in which the hydrocarbon oxidation reaction and the hydrocarbon-steam reaction occur. Usually, the reaction temperature is 200 to 1,300 ° C, preferably 400 to 1,200 ° C. More preferably, it is 500-900 degreeC.
The steam / carbon ratio (molar ratio) is usually 0.1 to 10, preferably 0.4 to 4. The oxygen / carbon ratio (molar ratio) is usually 0.1 to 1, preferably 0.2 to 0.8.
The reaction pressure is usually 0 to 10 MPa · G, preferably 0 to 5 MPa · G, more preferably 0 to 3 MPa · G.
As the hydrocarbon, those similar to the steam reforming reaction are used.
[Partial oxidation reforming reaction]
In the partial oxidation reforming reaction, a partial oxidation reaction of hydrocarbon occurs, and the reaction temperature is usually 350 to 1,200 ° C, preferably 450 to 900 ° C. The oxygen / carbon ratio (molar ratio) is usually 0.4 to 0.8, preferably 0.45 to 0.65.
The reaction pressure is usually 0 to 30 MPa · G, preferably 0 to 5 MPa · G, more preferably 0 to 3 MPa · G.
As the hydrocarbon, those similar to the steam reforming reaction are used.

以上の改質反応の反応方式としては、連続流通式、回分式のいずれの方式であってもよいが、連続流通式が好ましい。
連続流通式を採用する場合、炭化水素の液時空間速度(LHSV)は、通常、0.1〜10h-1、好ましくは、0.25〜5h-1である。
また、炭化水素としてメタン等のガスを用いる場合は、ガス時空間速度(GHSV)は、通常、200〜100,000h-1である。
反応形式としては、特に制限はなく、固定床式、移動床式、流動床式いずれも採用できるが、固定床式が好ましい。
反応器の形式としても特に制限はなく、例えば、管型反応器等を用いることができる。
上記のような条件で、還元−酸化の繰り返し処理が施された炭化水素改質触媒を用いて、炭化水素の水蒸気改質反応、自己熱改質反応、部分酸化改質反応を行わせることにより水素を含む混合物を得ることができ、燃料電池の水素製造プロセスに好適に使用される。
本発明はまた、炭化水素を改質して水素含有ガスを製造するに際し、使用する触媒に、活性化前処理として、前述の還元−酸化の繰り返し処理を施すことを特徴とする燃料電池用水素の製造方法をも提供する。
The reaction system for the above reforming reaction may be either a continuous flow system or a batch system, but a continuous flow system is preferred.
When employing the continuous flow type, the liquid hourly space velocity (LHSV) of the hydrocarbon is usually 0.1 to 10 h −1 , preferably 0.25 to 5 h −1 .
When a gas such as methane is used as the hydrocarbon, the gas hourly space velocity (GHSV) is usually 200 to 100,000 h −1 .
The reaction format is not particularly limited, and any of a fixed bed type, a moving bed type, and a fluidized bed type can be adopted, but a fixed bed type is preferable.
There is no restriction | limiting in particular also as a form of a reactor, For example, a tubular reactor etc. can be used.
By performing hydrocarbon steam reforming reaction, autothermal reforming reaction, and partial oxidation reforming reaction using a hydrocarbon reforming catalyst that has been subjected to repeated reduction-oxidation treatment under the above conditions. A mixture containing hydrogen can be obtained and is suitably used in a hydrogen production process of a fuel cell.
The present invention also provides a hydrogen for a fuel cell, characterized by subjecting a catalyst to be used to the above-mentioned reduction-oxidation repeated treatment as a pre-activation treatment when reforming a hydrocarbon to produce a hydrogen-containing gas. A manufacturing method is also provided.

次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
比較調製例1
Ni(NO32・6H2Oの16.414g、Mg(NO32・6H2Oの70.813gおよびAl(NO33・9H2Oの41.492gを、水150mリットルに溶解してA液を調製し、Na2CO3・10H2Oの15.816gを水100ミリリットルに溶解してB液を調製した。
次いで、前記B液中にA液を滴下する。この際、液のpHが10になるように、1モル/リットル濃度のNaOH水溶液を適宜滴下する。A液の滴下が終了したのち、90℃で40分間攪拌し、その後90℃にて20時間静置後、放冷し、吸引ろ過により沈殿物を取り出した。
次に、沈殿物を2リットルの水で洗浄後、105℃にて9時間乾燥処理したのち、0.83℃/分の速度で850℃まで昇温し、その温度で5時間焼成処理することにより、貴金属元素を含まない触媒X−1(spc−Ni/Mg−Al)を得た。
触媒X−1中のNi含有量は14質量%、Mg含有量は28質量%、Al含有量は16質量%であった。
なお、spcはsolid phase crystallization(固相晶析法)の略である。
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Comparative Preparation Example 1
16.414 g of Ni (NO 3 ) 2 · 6H 2 O, 70.813 g of Mg (NO 3 ) 2 · 6H 2 O and 41.492 g of Al (NO 3 ) 3 · 9H 2 O into 150 ml of water Solution A was prepared by dissolving, and solution B was prepared by dissolving 15.816 g of Na 2 CO 3 .10H 2 O in 100 ml of water.
Subsequently, A liquid is dripped in the said B liquid. At this time, a 1 mol / liter NaOH aqueous solution is appropriately added dropwise so that the pH of the solution is 10. After completion of dropping of the liquid A, the mixture was stirred at 90 ° C. for 40 minutes, then allowed to stand at 90 ° C. for 20 hours, allowed to cool, and the precipitate was taken out by suction filtration.
Next, the precipitate is washed with 2 liters of water, dried at 105 ° C. for 9 hours, heated to 850 ° C. at a rate of 0.83 ° C./minute, and baked at that temperature for 5 hours. Thus, catalyst X-1 (spc-Ni / Mg-Al) containing no noble metal element was obtained.
In the catalyst X-1, the Ni content was 14% by mass, the Mg content was 28% by mass, and the Al content was 16% by mass.
Note that spc is an abbreviation for solid phase crystallization.

調製例1
50g/リットル濃度のRu(NO33水溶液0.5ミリリットルを、水200ミリリットルで希釈して、C液を調製した。このC液に、比較調製例1で得た触媒X−1の5.0gを投入し、室温で12時間攪拌したのち、攪拌しながら90℃に加熱して沈殿物を蒸発乾固した。
次いで、乾固物を0.83℃/分の速度で850℃まで昇温したのち、その温度で5時間焼成処理することにより、貴金属元素を含む触媒Y−1(spc−Ru−Ni/Mg−Al)を得た。
触媒Y−1中のRu含有量は0.5質量%であった。
調製例2
調製例1における50g/リットル濃度のRu(NO33水溶液0.5ミリリットルの替りに、4.5質量%濃度のRh(NO33水溶液0.55ミリリットルを用いた以外は、調製例1と同様な操作を行い、貴金属元素を含む触媒Y−2(spc−Rh−Ni/Mg−Al)を得た。
触媒Y−2中のRh含有量は0.5質量%であった。
Preparation Example 1
Liquid C was prepared by diluting 0.5 ml of a 50 g / liter Ru (NO 3 ) 3 aqueous solution with 200 ml of water. To this liquid C, 5.0 g of the catalyst X-1 obtained in Comparative Preparation Example 1 was added, stirred for 12 hours at room temperature, and then heated to 90 ° C. with stirring to evaporate the precipitate.
Next, the dried product was heated to 850 ° C. at a rate of 0.83 ° C./minute, and then calcined at that temperature for 5 hours, whereby catalyst Y-1 containing noble metal element (spc-Ru—Ni / Mg -Al) was obtained.
The Ru content in the catalyst Y-1 was 0.5% by mass.
Preparation Example 2
Preparation example except that 0.55 ml of 4.5 mass% concentration of Rh (NO 3 ) 3 aqueous solution was used instead of 0.5 ml of 50 g / liter concentration Ru (NO 3 ) 3 aqueous solution in Preparation Example 1. The same operation as in No. 1 was performed to obtain catalyst Y-2 (spc-Rh-Ni / Mg-Al) containing a noble metal element.
The Rh content in the catalyst Y-2 was 0.5% by mass.

比較調製例2
(1)担体の調製
Mn(CH3COO)2・4H2Oの5.45gを水11.5ミリリットルに溶解し、含浸液Aを調製した。次に、予め十分に乾燥させたγ−アルミナ担体30gに前記含浸液Aをポアフィリング法にて含浸させたのち、120℃で3時間乾燥処理し、次いで800℃で3時間焼成処理することにより、Mn担持担体を得た。
(2)触媒の調製
RuCl3の0.39gを水1.8ミリリットルに溶解し、含浸液Bを調製した。予め十分に乾燥させた前記(1)のMn担持担体5.0gに、上記含浸液Bをポアフィリング法にて含浸させたのち、5モル/リットル濃度のNaOH水溶液100ミリリットルで1時間アルカリ分解した。次いで、一昼夜かけて水洗後、120℃にて5時間乾燥処理することにより、貴金属元素を含む触媒X−2(Ru/Mn/Al23)を得た。
触媒X−2中のRu含有量は3.0質量%、Mn含有量は3.7質量%であった。
Comparative Preparation Example 2
(1) Preparation of carrier 5.45 g of Mn (CH 3 COO) 2 .4H 2 O was dissolved in 11.5 ml of water to prepare an impregnating solution A. Next, after impregnating the impregnating solution A with 30 g of a sufficiently dried γ-alumina carrier by the pore filling method, drying treatment is performed at 120 ° C. for 3 hours, and then baking treatment is performed at 800 ° C. for 3 hours. A Mn-supported carrier was obtained.
(2) Preparation of catalyst 0.39 g of RuCl 3 was dissolved in 1.8 ml of water to prepare impregnation liquid B. The impregnating solution B was impregnated by the pore filling method in 5.0 g of the Mn-supported carrier (1) sufficiently dried in advance, and then alkali-decomposed with 100 ml of 5 mol / liter NaOH aqueous solution for 1 hour. . Next, after washing with water for a whole day and night, the catalyst X-2 (Ru / Mn / Al 2 O 3 ) containing a noble metal element was obtained by drying at 120 ° C. for 5 hours.
The Ru content in the catalyst X-2 was 3.0 mass%, and the Mn content was 3.7 mass%.

比較調製例3
50g/リットル濃度のRu(NO33水溶液0.60gと、Ni(NO32・6H2Oの4.12gを極少量の水に溶解して含浸液Cを調製した。予め十分に乾燥させた比較調製例2の(1)で得たMn担持担体5.0gに上記含浸液Cをポアフィリング法にて含浸させたのち、5モル/リットル濃度のNaOH水溶液100ミリリットルで1時間アルカリ分解した。次いで一昼夜かけて水洗後、120℃にて5時間乾燥処理することにより、貴金属元素を含む触媒X−3(Ru−Ni/Mn/Al23)を得た。
触媒X−3中のRu含有量は0.5質量%、Ni含有量は14質量%、Mn含有量は2.8質量%であった。
Comparative Preparation Example 3
An impregnating solution C was prepared by dissolving 0.60 g of a 50 g / liter Ru (NO 3 ) 3 aqueous solution and 4.12 g of Ni (NO 3 ) 2 .6H 2 O in a very small amount of water. After impregnating the above impregnating solution C by the pore filling method with 5.0 g of the Mn-supported carrier obtained in (1) of Comparative Preparation Example 2 which was sufficiently dried in advance, 100 ml of 5 mol / liter NaOH aqueous solution was used. The alkali was decomposed for 1 hour. Next, after washing with water for a whole day and night, the catalyst X-3 (Ru—Ni / Mn / Al 2 O 3 ) containing a noble metal element was obtained by drying at 120 ° C. for 5 hours.
The Ru content in the catalyst X-3 was 0.5 mass%, the Ni content was 14 mass%, and the Mn content was 2.8 mass%.

比較調製例4
4.5質量%濃度のRh(NO33水溶液0.65gと、Ni(NO32・6H2Oの4.12gを、極少量の水に溶解して含浸液Dを調製した。予め十分に乾燥させた比較調製例2の(1)で得たMn担持担体5.0gに、上記含浸液Dをポアフィリング法にて含浸させたのち、5モル/リットル濃度のNaOH水溶液100ミリリットルで1時間アルカリ分解した。次いで一昼夜かけて水洗後、120℃にて5時間乾燥処理することにより、貴金属元素を含む触媒X−4(Rh−Ni/Mn/Al23)を得た。
触媒X−4中のRh含有量は0.5質量%、Ni含有量は14質量%、Mn含有量は2.7質量%であった。
Comparative Preparation Example 4
An impregnating solution D was prepared by dissolving 0.65 g of a 4.5 mass% concentration Rh (NO 3 ) 3 aqueous solution and 4.12 g of Ni (NO 3 ) 2 .6H 2 O in a very small amount of water. After impregnating the above impregnating solution D with the pore filling method in 5.0 g of the Mn-supported carrier obtained in (1) of Comparative Preparation Example 2 which has been sufficiently dried in advance, 100 ml of an aqueous NaOH solution having a concentration of 5 mol / liter. For 1 hour. Next, after washing with water for a whole day and night, the catalyst X-4 (Rh—Ni / Mn / Al 2 O 3 ) containing a noble metal element was obtained by drying at 120 ° C. for 5 hours.
The Rh content in the catalyst X-4 was 0.5 mass%, the Ni content was 14 mass%, and the Mn content was 2.7 mass%.

実施例1、2および比較例1〜4
調製例1および2で得た触媒Y−1およびY−2、並びに比較調製例1〜4で得た触媒X−1〜X−4を用い、以下に示す(1)〜(3)の操作を順次行い、水蒸気改質反応における触媒の酸化−還元処理繰り返しによる、高活性化と高耐久化を検討した。
(1)初期還元処理
各触媒を16〜32メッシュの大きさに成型し、それぞれ200mgを反応管に充填し、水素気流下で850℃にて1時間還元前処理を行う。
(2)酸化/還元処理
(i)700℃で空気導入を3時間継続、(ii)空気導入停止および(iii)850℃での還元処理を1サイクルとし、第2表に示すサイクル数の処理を繰り返す。
(3)水蒸気改質前後の反応評価
反応温度を500℃に保持しながら、触媒層へ脱硫灯油(S:0.02質量ppm未満)と水を、同脱硫灯油の液時空間速度(LHSV)が16.5h-1、スチーム/カーボン(モル比)が3.0になるように供給して水蒸気改質反応を開始し、反応開始1時間後、得られたガスをサンプリングして灯油のC1転化率を求め、反応評価を行う。
この反応評価を、水蒸気改質前、水蒸気改質1回後および水蒸気改質2回後の各触媒(初期還元処理触媒、酸化−還元処理1〜20回繰り返し触媒)について、それぞれ行う。
なお、灯油のC1転化率は、下記式より求める。
C1転化率(%)=(A/B)×100
[上記式において、A=COモル流量+CO2モル流量+CH4モル流量(いずれも反応器出口における流量)、B=反応器入口側の灯油の炭素モル流量である]
これらの結果を第1表および第2表に示す。
Examples 1 and 2 and Comparative Examples 1 to 4
The operations of (1) to (3) shown below using the catalysts Y-1 and Y-2 obtained in Preparation Examples 1 and 2 and the catalysts X-1 to X-4 obtained in Comparative Preparation Examples 1 to 4 In order to improve the activity and durability of the catalyst by repeated oxidation-reduction treatment of the catalyst in the steam reforming reaction.
(1) Initial reduction treatment Each catalyst is molded to a size of 16 to 32 mesh, 200 mg each is filled in a reaction tube, and reduction pretreatment is performed at 850 ° C. for 1 hour in a hydrogen stream.
(2) Oxidation / reduction treatment (i) Introducing air at 700 ° C for 3 hours, (ii) Stopping air introduction, and (iii) Reducing treatment at 850 ° C is one cycle, and the number of cycles shown in Table 2 repeat.
(3) Reaction evaluation before and after steam reforming While maintaining the reaction temperature at 500 ° C., desulfurized kerosene (S: less than 0.02 mass ppm) and water were supplied to the catalyst layer, and the liquid hourly space velocity (LHSV) of the desulfurized kerosene. Is 16.5 h −1 and steam / carbon (molar ratio) is 3.0 to start the steam reforming reaction. One hour after the start of the reaction, the obtained gas is sampled to obtain C1 of kerosene. Obtain the conversion and evaluate the reaction.
This reaction evaluation is performed for each catalyst (initial reduction treatment catalyst, oxidation-reduction treatment 1 to 20 times repeated catalyst) before steam reforming, after one steam reforming and after two steam reforming, respectively.
The C1 conversion rate of kerosene is obtained from the following formula.
C1 conversion (%) = (A / B) × 100
[In the above formula, A = CO molar flow rate + CO 2 molar flow rate + CH 4 molar flow rate (both flow rates at the reactor outlet), B = carbon molar flow rate of kerosene on the reactor inlet side]
These results are shown in Tables 1 and 2.

Figure 2008080246
Figure 2008080246

Figure 2008080246
Figure 2008080246

第2表から、実施例1および2においては、酸化−還元繰り返し処理により、以下に示すことが分かる。
(1)前処理後の活性が向上し、水蒸気改質前の活性は、酸化−還元を3回繰り返した時点が最も高い。
(2)水蒸気改質の耐久性が向上し、水蒸気改質後の活性は、4回〜6回繰り返した時点が最も高い。20回繰り返しても、初期還元後(つまり、酸化−還元処理を行わないケース)よりも、高い活性を維持できる。
(3)活性金属元素であるNiとRu、あるいはNiとRhの相互作用により、金属元素が高分散化する酸化−還元の繰り返し処理により、相互作用がより強くなり、高活性化および高耐久化をもたらす。一方、ある一定以上の回数を繰り返すと、活性金属元素の凝集が起こり、活性が低下する。
一方、比較例では、酸化−還元の繰り返し処理によっても、高活性化をもたらさない。また、アルミナ担体では、前記のような効果は期待できない。
From Table 2, it can be seen that in Examples 1 and 2, the following are shown by the oxidation-reduction repeated treatment.
(1) The activity after the pretreatment is improved, and the activity before the steam reforming is highest when the oxidation-reduction is repeated three times.
(2) The durability of steam reforming is improved, and the activity after steam reforming is highest when it is repeated 4 to 6 times. Even if it is repeated 20 times, a higher activity can be maintained than after the initial reduction (that is, the case where the oxidation-reduction treatment is not performed).
(3) The interaction between Ni and Ru, which are active metal elements, or Ni and Rh, the interaction is strengthened by repeated oxidation-reduction treatment in which the metal element is highly dispersed, resulting in high activation and high durability. Bring. On the other hand, if a certain number of times or more is repeated, aggregation of the active metal element occurs and the activity decreases.
On the other hand, in the comparative example, high activation is not brought about even by repeated oxidation-reduction treatment. In addition, the above-mentioned effects cannot be expected with an alumina support.

本発明の水素製造触媒の前処理方法は、特定の金属元素を含む炭化水素改質触媒、特にハイドロタルサイト状層状化合物を経由して得られる触媒に、活性化前処理として、還元−酸化の繰り返し処理を施すことにより、同触媒の活性を向上させる方法であって、燃料電池用水素の製造に適用することができる。  The pretreatment method for the hydrogen production catalyst of the present invention comprises a hydrocarbon reforming catalyst containing a specific metal element, particularly a catalyst obtained via a hydrotalcite-like layered compound. This is a method for improving the activity of the catalyst by repeated treatment, and can be applied to the production of hydrogen for fuel cells.

Claims (9)

Ni、MgおよびAlを含むと共にPt、Pd、Ir、RhおよびRuの中から選ばれる少なくとも1種の貴金属元素を含む、炭化水素を改質して水素含有ガスを製造する触媒に活性化前処理として還元−酸化の繰り返し処理を施すことを特徴とする水素製造触媒の前処理方法。   An activation pretreatment for a catalyst containing Ni, Mg and Al and containing at least one noble metal element selected from Pt, Pd, Ir, Rh and Ru to reform a hydrocarbon to produce a hydrogen-containing gas As a pretreatment method for a hydrogen production catalyst, characterized in that a reduction-oxidation repeated treatment is applied. 前記還元−酸化の繰り返し処理において、還元処理が水素含有ガス雰囲気下、600〜1100℃の範囲の温度で行われる請求項1に記載の水素製造触媒の前処理方法。   2. The method for pretreating a hydrogen production catalyst according to claim 1, wherein in the reduction-oxidation repeated treatment, the reduction treatment is performed at a temperature in the range of 600 to 1100 ° C. in a hydrogen-containing gas atmosphere. 前記還元−酸化の繰り返し処理において、酸化処理が酸素含有ガス雰囲気下、400〜1200℃の範囲の温度で行われる請求項1または2に記載の水素製造触媒の前処理方法。   3. The method for pretreating a hydrogen production catalyst according to claim 1, wherein in the reduction-oxidation repeated treatment, the oxidation treatment is performed at a temperature in the range of 400 to 1200 ° C. in an oxygen-containing gas atmosphere. 前記触媒がハイドロタルサイト状層状化合物を経由して得られたものである請求項1〜3のいずれかに記載の水素製造触媒の前処理方法。   The pretreatment method for a hydrogen production catalyst according to any one of claims 1 to 3, wherein the catalyst is obtained via a hydrotalcite-like layered compound. 前記触媒がハイドロタルサイト状層状化合物の焼成後に、貴金属成分を担持させることにより得られたものである請求項4に記載の水素製造触媒の前処理方法。   The method for pretreating a hydrogen production catalyst according to claim 4, wherein the catalyst is obtained by supporting a noble metal component after calcination of the hydrotalcite layered compound. 前記貴金属元素が、Rhおよび/またはRuである請求項1〜5のいずれかに記載の水素製造触媒の前処理方法。   The pretreatment method for a hydrogen production catalyst according to any one of claims 1 to 5, wherein the noble metal element is Rh and / or Ru. 焼成した触媒を還元処理後、「酸化−還元」の繰り返し処理を1〜20回施す請求項1〜6のいずれかに記載の水素製造触媒の前処理方法。   The method for pretreating a hydrogen production catalyst according to any one of claims 1 to 6, wherein after the calcined catalyst is subjected to a reduction treatment, a repeated treatment of "oxidation-reduction" is performed 1 to 20 times. 炭化水素の改質が、水蒸気改質、自己熱改質または部分酸化改質である請求項1〜7のいずれかに記載の水素製造触媒の前処理方法。   The pretreatment method for a hydrogen production catalyst according to any one of claims 1 to 7, wherein the hydrocarbon reforming is steam reforming, autothermal reforming or partial oxidation reforming. 炭化水素を改質して水素含有ガスを製造するに際し、使用する触媒に請求項1〜8のいずれかに記載の前処理方法を施すことを特徴とする燃料電池用水素の製造方法。   A method for producing hydrogen for a fuel cell, comprising subjecting a catalyst to be used to the pretreatment method according to any one of claims 1 to 8 when producing a hydrogen-containing gas by reforming a hydrocarbon.
JP2006263263A 2006-09-27 2006-09-27 Method for pretreating hydrogen production catalyst and method for producing hydrogen for fuel cell Pending JP2008080246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006263263A JP2008080246A (en) 2006-09-27 2006-09-27 Method for pretreating hydrogen production catalyst and method for producing hydrogen for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006263263A JP2008080246A (en) 2006-09-27 2006-09-27 Method for pretreating hydrogen production catalyst and method for producing hydrogen for fuel cell

Publications (1)

Publication Number Publication Date
JP2008080246A true JP2008080246A (en) 2008-04-10

Family

ID=39351635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006263263A Pending JP2008080246A (en) 2006-09-27 2006-09-27 Method for pretreating hydrogen production catalyst and method for producing hydrogen for fuel cell

Country Status (1)

Country Link
JP (1) JP2008080246A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030800A1 (en) * 2009-09-09 2011-03-17 戸田工業株式会社 Porous catalytic object for decomposing hydrocarbon and process for producing same, process for producing hydrogen-containing mixed reformed gas from hydrocarbon, and fuel cell system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276893A (en) * 1998-03-31 1999-10-12 Mitsubishi Heavy Ind Ltd Metal fine particle-supported hydrocarbon modifying catalyst and its production
JP2000203803A (en) * 1999-01-14 2000-07-25 Toyota Motor Corp Starting of reformer for reforming hydrocarbon into hydrogen
JP2003135967A (en) * 2001-08-20 2003-05-13 Hiroshima Industrial Promotion Organization Catalyst for reaction of hydrocarbon with water vapor and method for manufacturing hydrogen from hydrocarbon by using the catalyst
JP2003290657A (en) * 2002-01-31 2003-10-14 National Institute Of Advanced Industrial & Technology Catalyst for reforming hydrocarbon, manufacture method therefor, method for manufacturing synthetic gas and catalyst precursor
JP2004089812A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Hydrogen producing catalyst and preparation method therefor
JP2004255245A (en) * 2003-02-24 2004-09-16 Toda Kogyo Corp Hydrocarbon decomposing catalyst, method for manufacturing the same and method for producing hydrogen by using the same
JP2005224722A (en) * 2004-02-13 2005-08-25 Toda Kogyo Corp Autothermal reforming catalyst, method for manufacturing the same and method for producing hydrogen by using the same
JP2005288259A (en) * 2004-03-31 2005-10-20 Teikoku Oil Co Ltd Catalyst for reforming methane-containing gas and method for manufacturing synthetic gas
JP2006061759A (en) * 2004-08-24 2006-03-09 Toda Kogyo Corp Catalyst for cracking of hydrocarbon, method of manufacturing the catalyst and a method of manufacturing hydrogen using the catalyst
JP2006061760A (en) * 2004-08-24 2006-03-09 Toda Kogyo Corp Catalyst for cracking of hydrocarbon and method of manufacturing hydrogen using it

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11276893A (en) * 1998-03-31 1999-10-12 Mitsubishi Heavy Ind Ltd Metal fine particle-supported hydrocarbon modifying catalyst and its production
JP2000203803A (en) * 1999-01-14 2000-07-25 Toyota Motor Corp Starting of reformer for reforming hydrocarbon into hydrogen
JP2003135967A (en) * 2001-08-20 2003-05-13 Hiroshima Industrial Promotion Organization Catalyst for reaction of hydrocarbon with water vapor and method for manufacturing hydrogen from hydrocarbon by using the catalyst
JP2003290657A (en) * 2002-01-31 2003-10-14 National Institute Of Advanced Industrial & Technology Catalyst for reforming hydrocarbon, manufacture method therefor, method for manufacturing synthetic gas and catalyst precursor
JP2004089812A (en) * 2002-08-30 2004-03-25 Mitsubishi Heavy Ind Ltd Hydrogen producing catalyst and preparation method therefor
JP2004255245A (en) * 2003-02-24 2004-09-16 Toda Kogyo Corp Hydrocarbon decomposing catalyst, method for manufacturing the same and method for producing hydrogen by using the same
JP2005224722A (en) * 2004-02-13 2005-08-25 Toda Kogyo Corp Autothermal reforming catalyst, method for manufacturing the same and method for producing hydrogen by using the same
JP2005288259A (en) * 2004-03-31 2005-10-20 Teikoku Oil Co Ltd Catalyst for reforming methane-containing gas and method for manufacturing synthetic gas
JP2006061759A (en) * 2004-08-24 2006-03-09 Toda Kogyo Corp Catalyst for cracking of hydrocarbon, method of manufacturing the catalyst and a method of manufacturing hydrogen using the catalyst
JP2006061760A (en) * 2004-08-24 2006-03-09 Toda Kogyo Corp Catalyst for cracking of hydrocarbon and method of manufacturing hydrogen using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030800A1 (en) * 2009-09-09 2011-03-17 戸田工業株式会社 Porous catalytic object for decomposing hydrocarbon and process for producing same, process for producing hydrogen-containing mixed reformed gas from hydrocarbon, and fuel cell system

Similar Documents

Publication Publication Date Title
JP5080319B2 (en) Hydrocarbon reforming catalyst and method for producing the same, and hydrocarbon reforming method using the catalyst
JP4159874B2 (en) Hydrocarbon reforming catalyst and hydrocarbon reforming method using the same
Gao et al. State-of-art modifications of heterogeneous catalysts for CO2 methanation–Active sites, surface basicity and oxygen defects
JP5531615B2 (en) Catalyst for cracking hydrocarbons
US8932774B2 (en) Catalyst for a process for obtaining hydrogen through reforming hydrocarbons with steam, process for preparing the catalyst and use thereof in the process
US20070036713A1 (en) Hydrocabron-decomposing catalyst, method for decomposing hydrocarbons using the catalyst, process for producing hydrogen using the catalyst, and power generation system
JP2008018414A (en) Catalyst for decomposing hydrocarbon, methods for decomposing hydrocarbon and for producing hydrogen using the same, and system for generating electricity
US11795055B1 (en) Systems and methods for processing ammonia
JP2008094665A (en) Method for producing hydrogen-containing gas
Kim et al. Nano-catalysts for gas to liquids: A concise review
JP2009255026A (en) Method of preparing hydrocarbon reformation catalyst, and method of reforming hydrocarbon
JP2009233592A (en) Method for manufacturing catalyst for reforming hydrocarbon and method for reforming hydrocarbon
KR20120037821A (en) Ni-based hydrotalcite-like catalyst for diesel steam reforming, preparing method thereof, and producing method of hydrogen using the same
KR101444600B1 (en) Preparation method of porous nickel-based spinel catalysts with high activity and sulfur resistance in hydrocarbon autothermal reforming, the catalyst prepared by the method, and operation method using the catalyst
JP2008105924A (en) Method for producing hydrogen
US20070197377A1 (en) Reforming catalyst composition
JP2008094681A (en) Method for producing hydrogen-containing gas
JP2011104565A (en) Catalyst for producing hydrogen and method for producing hydrogen by using the same
JP2008080246A (en) Method for pretreating hydrogen production catalyst and method for producing hydrogen for fuel cell
JP2009101298A (en) Catalyst for reforming hydrocarbon or oxygen-containing hydrocarbon and method for producing hydrogen-containing gas using the same
Qiu et al. Applications of Al2O3‐Based Nano‐Catalysts in Thermocatalytic CO2 Transformations: Impacts of Surface Acidity and Basicity
JP2004113923A (en) Reforming catalyst for hydrocarbon, and reforming method of hydrocarbon using it
Sokefun Insights into the Role of Metal Composition, Preparation Method, Catalyst Pretreatment for Application in the Development of Catalytic Reforming Materials for Intensified Conversion of Biogas Sourced Methane
JP2009119307A (en) Catalyst regeneration method
Robinson et al. Studies on the preparation of Supported nickel catalysts using bis (ethylenediamine) nickel (II) complexes as precursors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110920