[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008067566A - Three-level inverter system - Google Patents

Three-level inverter system Download PDF

Info

Publication number
JP2008067566A
JP2008067566A JP2006245338A JP2006245338A JP2008067566A JP 2008067566 A JP2008067566 A JP 2008067566A JP 2006245338 A JP2006245338 A JP 2006245338A JP 2006245338 A JP2006245338 A JP 2006245338A JP 2008067566 A JP2008067566 A JP 2008067566A
Authority
JP
Japan
Prior art keywords
positive
switching element
switching
negative
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006245338A
Other languages
Japanese (ja)
Other versions
JP4942169B2 (en
Inventor
So Shiraishi
創 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2006245338A priority Critical patent/JP4942169B2/en
Publication of JP2008067566A publication Critical patent/JP2008067566A/en
Application granted granted Critical
Publication of JP4942169B2 publication Critical patent/JP4942169B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-level inverter system which prevents overvoltages of dc capacitors and is constituted so as not to make the availability factor of the system deteriorated, when a short circuit fault is caused. <P>SOLUTION: The inverter system is constituted of a dc power supply 1, three sets of switching legs 2U, 2V and 2W, and a breaker 5, where the dc power supply includes positive and negative voltage-dividing capacitors 1P, 1N on the output side, and has a three-level potential, the switching legs are connected in parallel with the power supply 1; and the breaker is provided at a midpoint between the dc power supply 1 and each of the switching legs 2U, 2V and 2W. Positive-side fuses F1 are connected in series with switching elements Q1, Q2. Q3, and Q4 in positive-side arms of each of the switching legs 2U, 2V and 2W; while negative-side fuses F2 are connected in series with these switching elements in the negative-side arms, with these switching elements are connected in series, respectively. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、正、負及び中性点の3レベルの電位を有する直流を交流に変換する3レベルインバータ装置に関する。   The present invention relates to a three-level inverter device that converts a direct current having three levels of potentials of positive, negative, and neutral points into alternating current.

例えば、交流電力を一旦直流電力に変換し、再び交流電力に変換して負荷に給電するコンバータ/インバータ装置においては、主回路のスイッチング素子の耐圧低減や出力高調波の低減を目的として3レベルの半導体電力変換装置が用いられる。   For example, in a converter / inverter device that converts AC power to DC power, converts it back to AC power, and feeds it to a load, it has three levels for the purpose of reducing the breakdown voltage of the switching elements of the main circuit and reducing output harmonics. A semiconductor power converter is used.

3レベルの半導体電力変換装置は、3相交流と3レベルの電位を有する直流間の電力変換を行う装置であり、通常のブリッジ構成のコンバータ/インバータ装置における各相の変換アームのスイッチング素子を2直列構成とし、各変換アームのスイッチング素子間の電位はクランプダイオードを介してゼロ電位にクランプされる構成となっている。そして、各変換アームに直列にヒューズを設け、各スイッチング素子が故障あるいはゲート回路異常によって、オフすべきときにオフせずに短絡電流が流れたとき、事故波及を防止する構成としている。   The three-level semiconductor power conversion device is a device that performs power conversion between a three-phase alternating current and a direct current having a three-level potential. The switching element of each phase conversion arm in a converter / inverter device having a normal bridge configuration is divided into two. A series configuration is adopted in which the potential between the switching elements of each conversion arm is clamped to zero potential via a clamp diode. In addition, a fuse is provided in series in each conversion arm, and when a short circuit current flows without turning off when each switching element should be turned off due to a failure or a gate circuit abnormality, an accidental ripple is prevented.

例えば、3レベルコンバータにおいて、U相正側変換アームの外側のスイッチング素子が短絡故障した場合を考える。このとき、U相変換アームには短絡電流が流れ、U相正側のヒューズが溶断する。   For example, in the three-level converter, consider a case where a short circuit failure has occurred in the switching element outside the U-phase positive side conversion arm. At this time, a short-circuit current flows through the U-phase conversion arm, and the fuse on the U-phase positive side is blown.

ところが、U相正側ヒューズが溶断したあとも、交流電源からU相負側変換アームの内側の素子、U相負側クランプダイオード、負側直流コンデンサ、V相負側変換アームの逆並列ダイオードを経由して交流電源に戻る充電経路が形成される。これによって。負側直流コンデンサに短絡電流が流れ、負側直流コンデンサは交流電源電圧の√2倍まで充電される。この負側直流コンデンサは、正常運転時には、交流電圧の√2倍まで充電されているので、上記短絡事故発生時には、交流電圧の約2倍まで充電される恐れがある。   However, after the U-phase positive fuse is blown, the elements inside the U-phase negative conversion arm, the U-phase negative clamp diode, the negative DC capacitor, and the anti-parallel diode of the V-phase negative conversion arm are connected from the AC power supply. A charging path is formed to return to the AC power source. by this. A short-circuit current flows through the negative DC capacitor, and the negative DC capacitor is charged up to √2 times the AC power supply voltage. Since the negative side DC capacitor is charged up to √2 times the AC voltage during normal operation, it may be charged up to about twice the AC voltage when the short circuit accident occurs.

これに対し、上記が生じたとき、正側または負側のコンデンサを交流電源で充電しないように、考えられる充電ループにヒューズを挿入する提案が為されている(例えば、特許文献1参照。)。
特開平2004−248479号公報(第5頁、図1)
On the other hand, when the above occurs, a proposal has been made to insert a fuse into a conceivable charging loop so as not to charge a positive or negative capacitor with an AC power supply (see, for example, Patent Document 1). .
JP 2004-248479 A (page 5, FIG. 1)

特許文献1に示されている方法は、電力変換装置が3レベルコンバータの場合の例である。3レベルコンバータの場合は、上述の充電モードにおいて必ず短絡電流が流れるため、ヒューズが溶断する。しかしながら電力変換装置が3レベルインバータで、負荷が電動機である場合にはその運転条件によって上記の充電電流の値は異なる。   The method disclosed in Patent Document 1 is an example in the case where the power converter is a three-level converter. In the case of a three-level converter, since a short-circuit current always flows in the above-described charging mode, the fuse is blown. However, when the power converter is a three-level inverter and the load is an electric motor, the value of the charging current varies depending on the operating conditions.

短絡電流が流れてヒューズが溶断すると、その復旧作業においてヒューズの交換を行う必要があるため、装置の稼働率を悪化させる。   When a short-circuit current flows and the fuse is blown, it is necessary to replace the fuse in the recovery operation, which deteriorates the operating rate of the apparatus.

本発明は上記問題点に鑑みて為されたもので、短絡故障が生じたとき、直流コンデンサが過電圧となるのを防止し、且つ装置の稼働率を悪化させないようにした3レベルインバータ装置を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a three-level inverter device that prevents a DC capacitor from becoming overvoltage when a short-circuit failure occurs and does not deteriorate the operating rate of the device. The purpose is to do.

上記目的を達成するために、本発明の3レベルインバータ装置は、出力側に正及び負の直流分圧コンデンサを備え、3レベルの電位を有する直流電源と、前記直流電源に並列接続された3組のスイッチングレグと、前記直流電源の中点と前記各組のスイッチングレグの中点間に設けられた遮断器とから構成され、前記各々のスイッチングレグは、一端が前記直流電源の正側に接続された正側ヒュ−ズと、正極が前記正側ヒューズの他端に接続され、第1のダイオードを逆並列接続した第1のスイッチング素子と、正極が前記第1のスイッチング素子の負極に接続され、第2のダイオードを逆並列接続した第2のスイッチング素子と、正極が前記第2のスイッチング素子の負極に接続され、第3のダイオードを逆並列接続した第3のスイッチング素子と、正極が前記第3のスイッチング素子の負極に接続され、第4のダイオードを逆並列接続した第4のスイッチング素子と、一端が前記第4のスイッチング素子の負極に接続され、他端が前記直流電源の負側に接続された負側ヒュ−ズと、前記スイッチングレグの中点にアノードが、前記第1のスイッチング素子の負極にカソードが接続された正側クランプダイオードと、前記スイッチングレグの中点にアノードが、前記第3のスイッチング素子の負極にカソードが接続された負側クランプダイオードとから成り、前記第2のスイッチング素子の負極から交流出力を得て交流電動機に給電するようにしたことを特徴としている。   In order to achieve the above object, a three-level inverter device of the present invention comprises positive and negative DC voltage dividing capacitors on the output side, a DC power source having a three-level potential, and a 3 connected in parallel to the DC power source. A pair of switching legs; and a midpoint of the DC power supply and a circuit breaker provided between the midpoints of the switching legs of each set. Each switching leg has one end on the positive side of the DC power supply. A positive fuse connected, a positive electrode connected to the other end of the positive fuse, a first switching element having a first diode connected in reverse parallel, and a positive electrode connected to the negative electrode of the first switching element A second switching element connected in reverse parallel connection with the second diode, and a third switching element in which the positive electrode is connected to the negative electrode of the second switching element and the third diode is connected in reverse parallel connection. An element, a positive electrode connected to the negative electrode of the third switching element, a fourth switching element having a fourth diode connected in reverse parallel, one end connected to the negative electrode of the fourth switching element, and the other end A negative fuse connected to the negative side of the DC power supply; a positive clamp diode having an anode connected to the midpoint of the switching leg; a cathode connected to the negative electrode of the first switching element; and the switching leg. And a negative clamp diode having a cathode connected to the negative electrode of the third switching element, and an AC output is obtained from the negative electrode of the second switching element to supply power to the AC motor. It is characterized by that.

本発明によれば、短絡故障が生じたとき、直流コンデンサが過電圧となるのを防止し、且つ装置の稼働率を悪化させないようにした3レベルインバータ装置を提供することが可能となる。   According to the present invention, it is possible to provide a three-level inverter device that prevents a DC capacitor from becoming an overvoltage when a short circuit failure occurs, and does not deteriorate the operating rate of the device.

以下、図面を参照して本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

本発明の実施例1に係る3レベルインバータ装置を図1及び図2を参照して説明する。図1は本発明の実施例1に係る3レベルインバータ装置の回路構成図である。   A three-level inverter device according to Embodiment 1 of the present invention will be described with reference to FIGS. FIG. 1 is a circuit configuration diagram of a three-level inverter device according to Embodiment 1 of the present invention.

直流電源部1は、直流電源1から得られる直流電圧を、直流分圧コンデンサ1P及び1Nで構成される直列回路に供給して成る。直流電源部1は2Eの電圧を有している。従って、直流分圧コンデンサ1Pの正側電位を+Eとすると、直流分圧コンデンサ1P及び1Nの中点の電位は0、直流分圧コンデンサ1Nの負側の電位は−Eとなる。   The DC power supply unit 1 supplies a DC voltage obtained from the DC power supply 1 to a series circuit composed of DC voltage dividing capacitors 1P and 1N. The DC power supply unit 1 has a voltage of 2E. Therefore, if the positive potential of the DC voltage dividing capacitor 1P is + E, the potential at the midpoint of the DC voltage dividing capacitors 1P and 1N is 0, and the negative potential of the DC voltage dividing capacitor 1N is -E.

このようにして得られた3レベルの電位を有する直流電圧はスイッチングレグ2U、2V及び2Wに供給される。図1においてはスイッチングレグ2Uの内部構成が符号を付して図示してある。他のスイッチングレグ2V及び2Wの内部構成は、基本的にスイッチングレグ2Uと同一であるので、それらの符号図示及び説明は省略する。   The DC voltage having the three-level potential obtained in this way is supplied to the switching legs 2U, 2V and 2W. In FIG. 1, the internal structure of the switching leg 2U is shown with reference numerals. Since the internal configurations of the other switching legs 2V and 2W are basically the same as those of the switching leg 2U, their reference numerals and descriptions are omitted.

スイッチングレグ2Uは、一端が直流電源部1の正側に接続された正側ヒューズF1と、正極が正側ヒューズF1の他端に接続され、フライホイルダイオードD1を逆並列接続したスイッチング素子Q1と、正極がスイッチング素子Q1の負極に接続され、フライホイルダイオードD2を逆並列接続したスイッチング素子Q2と、正極がスイッチング素子Q2の負極に接続され、フライホイルダイオードD3を逆並列接続したスイッチング素子Q3と、正極がスイッチング素子Q3の負極に接続され、フライホイルダイオードD4を逆並列接続したスイッチング素子Q4と、一端がスイッチング素子Q4の負極に接続され、他端が直流電源部1の負側に接続された負側ヒューズF2と、スイッチングレグ2Uの中点にアノードが、スイッチング素子Q1の負極にカソードが接続された正側クランプダイオードDPと、スイッチングレグ2Uの中点にアノードが、スイッチング素子Q3の負極にカソードが接続された負側クランプダイオードDNとから構成されている。そして、スイッチングレグ2Uの中点と直流電源部1の中点間には遮断器5が設けられている。   The switching leg 2U includes a positive side fuse F1 having one end connected to the positive side of the DC power supply unit 1, and a switching element Q1 having a positive electrode connected to the other end of the positive side fuse F1 and a flywheel diode D1 connected in reverse parallel. A switching element Q2 in which the positive electrode is connected to the negative electrode of the switching element Q1 and the flywheel diode D2 is connected in antiparallel, and a switching element Q3 in which the positive electrode is connected to the negative electrode of the switching element Q2 and the flywheel diode D3 is connected in antiparallel. The switching element Q4 is connected to the negative electrode of the switching element Q3, the flywheel diode D4 is connected in reverse parallel, one end is connected to the negative electrode of the switching element Q4, and the other end is connected to the negative side of the DC power supply unit 1. The negative fuse F2 and the anode at the midpoint of the switching leg 2U A positive-side clamp diode DP having a cathode connected to the negative electrode of the element Q1, the anode to the midpoint of the switching leg 2U is constructed from a negative side clamp diode DN whose cathode is connected to the negative electrode of the switching element Q3. A circuit breaker 5 is provided between the midpoint of the switching leg 2U and the midpoint of the DC power supply unit 1.

スイッチングレグ2Uを構成するスイッチング素子Q1、Q2、Q3及びQ4の制御極には、図示しない制御部からゲートパルスが与えられる。そして、スイッチング素子Q1、Q2、Q3及びQ4は例えばPWM制御によって所望のU相出力電圧をスイッチング素子Q2及びQ3の中点に出力する。このU相出力電圧は、開閉器3を介して負荷である交流電動機4の1次巻線に供給される。同様にして、スイッチングレグ2V及び2Wから交流電動機4の1次巻線にV相出力電圧及びW相出力電圧が夫々供給される。   A gate pulse is applied to the control poles of the switching elements Q1, Q2, Q3 and Q4 constituting the switching leg 2U from a control unit (not shown). The switching elements Q1, Q2, Q3, and Q4 output a desired U-phase output voltage to the midpoint of the switching elements Q2 and Q3 by PWM control, for example. This U-phase output voltage is supplied to the primary winding of the AC motor 4 as a load via the switch 3. Similarly, the V-phase output voltage and the W-phase output voltage are supplied from the switching legs 2V and 2W to the primary winding of the AC motor 4, respectively.

この回路構成により、スイッチング素子Q1及びQ2をオンしたとき直流電源部1の正極から+Eの電圧が、スイッチング素子Q3及びQ4をオンしたとき直流電源部1の負極から−Eの電圧が、そしてスイッチング素子Q2及びQ3またはスイッチング素子Q3及びQ4をオンしたとき直流電源部1の中点からゼロ電圧が供給される。   With this circuit configuration, when the switching elements Q1 and Q2 are turned on, the voltage of + E from the positive electrode of the DC power supply unit 1 is switched. When the switching elements Q3 and Q4 are turned on, the voltage of -E is switched from the negative electrode of the DC power supply unit 1. When the elements Q2 and Q3 or the switching elements Q3 and Q4 are turned on, zero voltage is supplied from the midpoint of the DC power supply unit 1.

ここで、スイッチング素子Q2、Q3及びQ4を同時にオンすると、直流電源部1の中点からクランプダイオードDP、スイッチング素子Q2、Q3及びQ4を通って直流電源部1の負極に至る短絡電流が流れてしまう。このようなゲートパルスは禁止ゲートと呼ばれるが、何らかの原因によってスイッチング素子Q4が短絡状態になっているところに、ゼロ電圧を出力するためにスイッチング素子Q2及びQ3をオンすると上記と同様の直流短絡が発生する。この短絡が発生すると、ヒューズF2に短絡電流が流れるので、ヒューズF2は溶断する。   Here, when the switching elements Q2, Q3, and Q4 are simultaneously turned on, a short-circuit current flows from the midpoint of the DC power supply unit 1 through the clamp diode DP, the switching elements Q2, Q3, and Q4 to the negative electrode of the DC power supply unit 1. End up. Such a gate pulse is called a forbidden gate, but when the switching element Q4 is short-circuited for some reason, when the switching elements Q2 and Q3 are turned on to output a zero voltage, a DC short circuit similar to the above is caused. appear. When this short circuit occurs, a short circuit current flows through the fuse F2, so that the fuse F2 is melted.

上記状態において、スイッチング素子Q2も短絡故障した場合を考える。このときの動作を図2を参照して以下に説明する。   Consider a case where the switching element Q2 also has a short-circuit fault in the above state. The operation at this time will be described below with reference to FIG.

図2においては遮断器5がオン状態で且つ開閉器3もオン状態の回路構成が示されている。開閉器3は通常応答の遅い電磁接触器が用いられるため以下の説明においてはオン状態を保持していると考えて良い。   FIG. 2 shows a circuit configuration in which the circuit breaker 5 is on and the switch 3 is on. Since the electromagnetic contactor with a slow response is normally used for the switch 3, it may be considered that the switch 3 is kept on in the following description.

交流電動機4の1次巻線端子間は、上記のヒューズF2の溶断により電流が供給されなくなっても、残留誘起電圧によって運転時より若干低い電圧が保持されている。図2においてW相の電圧がU相の電圧より高ければ、破線で示したように、W相1次巻線端子からスイッチングレグ2Wの正側アーム、直流分圧コンデンサ1P、クランプダイオードDP、スイッチング素子Q2を経てU相1次巻線端子に一巡する短絡電流が流れ、直流分圧コンデンサ1Pに印加される電圧は交流電動機4のW−U間の残留誘起電圧分上昇する。   Even if the current is not supplied between the primary winding terminals of the AC motor 4 due to the blow of the fuse F2, a voltage slightly lower than that during the operation is maintained by the residual induced voltage. If the W-phase voltage is higher than the U-phase voltage in FIG. 2, as shown by the broken line, the positive arm of the switching leg 2W from the W-phase primary winding terminal, the DC voltage dividing capacitor 1P, the clamp diode DP, and the switching A short-circuit current that goes around the U-phase primary winding terminal flows through the element Q2, and the voltage applied to the DC voltage dividing capacitor 1P increases by the residual induced voltage between W and U of the AC motor 4.

同様に、図2においては電流ルートを図示していないが、V相の電圧がU相の電圧より高ければ、V相1次巻線端子からスイッチングレグ2Vの正側アーム、直流分圧コンデンサ1P、クランプダイオードDP、スイッチング素子Q2を経てU相1次巻線端子に一巡する短絡電流が流れ、直流分圧コンデンサ1Pに印加される電圧は交流電動機4のU−V間の残留誘起電圧分上昇する。このような電圧の上昇は直流分圧コンデンサ1Pのみならず、各相のスイッチングレグの正側アームのスイッチング素子の耐圧を脅かす。   Similarly, although the current route is not shown in FIG. 2, if the V-phase voltage is higher than the U-phase voltage, the positive arm of the switching leg 2V from the V-phase primary winding terminal, the DC voltage dividing capacitor 1P , A short-circuit current that goes around to the U-phase primary winding terminal flows through the clamp diode DP and the switching element Q2, and the voltage applied to the DC voltage dividing capacitor 1P increases by the residual induced voltage between U and V of the AC motor 4 To do. Such a voltage increase threatens not only the DC voltage dividing capacitor 1P but also the withstand voltage of the switching element of the positive arm of each phase switching leg.

この実施例1によれば、上記の短絡電流は図1に示した遮断器5を流れるため、この遮断器5の過電流遮断の作用によって素早く遮断することが可能となる。   According to the first embodiment, since the short-circuit current flows through the circuit breaker 5 shown in FIG. 1, the circuit breaker 5 can be quickly interrupted by the action of the overcurrent interruption.

尚、遮断器5は通常の接点式の遮断器に限ることはなく、例えば半導体素子を用いた無接点式の遮断器を適用しても良い。   The circuit breaker 5 is not limited to a normal contact type circuit breaker, and for example, a contactless circuit breaker using a semiconductor element may be applied.

図3は本発明の実施例2に係る3レベルインバータ装置の回路構成図である。この実施例2の各部について、図1の実施例1に係る3レベルインバータ装置の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例2が実施例1と異なる点は、直流分圧コンデンサ1P及び1Nの夫々の電圧を検出する電圧検出器1B及び1Cを夫々設けた点、電圧検出器1B及び1Cから与えられる検出電圧を入力とし、遮断器5にトリップ信号を与える判定回路6を設けた点である。   FIG. 3 is a circuit configuration diagram of the three-level inverter device according to the second embodiment of the present invention. In the second embodiment, the same parts as those in the circuit configuration diagram of the three-level inverter device according to the first embodiment shown in FIG. The second embodiment is different from the first embodiment in that voltage detectors 1B and 1C for detecting voltages of the DC voltage dividing capacitors 1P and 1N are provided, and detection voltages supplied from the voltage detectors 1B and 1C. Is provided, and a determination circuit 6 for providing a trip signal to the circuit breaker 5 is provided.

判定回路6は電圧検出器1B及び1Cの何れかの検出電圧が所定値を超えたとき、遮断器5にトリップ信号を与えるように構成する。そして、遮断器5の過電流トリップレベルは実施例1における過電流トリップレベルに比べて高く設定しておく。   The determination circuit 6 is configured to give a trip signal to the circuit breaker 5 when the detection voltage of any one of the voltage detectors 1B and 1C exceeds a predetermined value. The overcurrent trip level of the circuit breaker 5 is set higher than the overcurrent trip level in the first embodiment.

この実施例2によれば、直接直流分圧コンデンサ1P及び1Nの夫々の電圧が問題となる電圧に到達したとき、遮断器5をトリップするようにしたので、不要な遮断器5のトリップを防止し、装置の稼働率をより向上させることが可能となる。   According to the second embodiment, since the circuit breaker 5 is tripped when the voltage of each of the direct-current voltage dividing capacitors 1P and 1N reaches a problematic voltage, an unnecessary trip of the circuit breaker 5 is prevented. As a result, the operating rate of the apparatus can be further improved.

図4は本発明の実施例3に係る3レベルインバータ装置の回路構成図である。この実施例3の各部について、図1の実施例1に係る3レベルインバータ装置の回路構成図の各部と同一部分は同一符号で示し、その説明は省略する。この実施例3が実施例1と異なる点は、交流電動機4の端子電圧を検出する電圧検出器7を設けた点、この電圧検出器7の検出電圧が所定値を超えた信号と各スイッチングレグの何れかのヒューズが溶断した信号のAND条件で遮断器5にトリップ信号を与える機能を有する判定回路6Aを設けた点である。   FIG. 4 is a circuit configuration diagram of the three-level inverter device according to the third embodiment of the present invention. Regarding the respective parts of the third embodiment, the same parts as those of the circuit configuration diagram of the three-level inverter device according to the first embodiment of FIG. The third embodiment differs from the first embodiment in that a voltage detector 7 for detecting the terminal voltage of the AC motor 4 is provided, a signal that the detected voltage of the voltage detector 7 exceeds a predetermined value, and each switching leg. This is that a determination circuit 6A having a function of giving a trip signal to the circuit breaker 5 under an AND condition of a signal in which any one of the fuses is blown is provided.

上記のヒューズ溶断信号は、例えば各々のヒューズに付属している補助接点のOR条件から得るようにする。そして、この実施例3の場合も遮断器5の過電流トリップレベルは実施例1における過電流トリップレベルに比べて高く設定しておく。   The fuse blow signal is obtained from, for example, the OR condition of the auxiliary contact attached to each fuse. In the third embodiment, the overcurrent trip level of the circuit breaker 5 is set higher than the overcurrent trip level in the first embodiment.

交流電動機4の運転速度が低速であれば、その残留誘起電圧は低い。従って短絡故障によってヒューズが溶断して図2に示したような短絡回路が形成されても直流分圧コンデンサの電圧上昇は僅かとなり問題とはならない。従ってこの実施例3によれば、実施例2と同様、不要な遮断器5のトリップを防止し、装置の稼働率をより向上させることが可能となる。   If the operating speed of the AC motor 4 is low, the residual induced voltage is low. Therefore, even if the fuse is blown by a short circuit failure and a short circuit as shown in FIG. 2 is formed, the voltage rise of the DC voltage dividing capacitor is small and does not cause a problem. Therefore, according to the third embodiment, as in the second embodiment, unnecessary tripping of the circuit breaker 5 can be prevented, and the operating rate of the apparatus can be further improved.

本発明の実施例1に係る3レベルインバータ装置の回路構成図。The circuit block diagram of the 3 level inverter apparatus which concerns on Example 1 of this invention. 実施例1の動作説明図。FIG. 3 is an operation explanatory diagram of the first embodiment. 本発明の実施例2に係る3レベルインバータ装置の回路構成図。The circuit block diagram of the 3 level inverter apparatus which concerns on Example 2 of this invention. 本発明の実施例3に係る3レベルインバータ装置の回路構成図。The circuit block diagram of the 3 level inverter apparatus which concerns on Example 3 of this invention.

符号の説明Explanation of symbols

1 直流電源部
1A 直流電源
1P、1N 直流分圧コンデンサ
1B、1C 電圧検出器
2U、2V、2W スイッチングレグ
Q1、Q2、Q3、Q4 スイッチング素子
D1、D2、D3、D4 フライホイルダイオード
DP、DN クランプダオード
F1、F2 ヒューズ
3 開閉器
4 交流電動機
5 遮断器
6、6A 判定回路
7 電圧検出器
1 DC power supply 1A DC power supply 1P, 1N DC voltage dividing capacitor 1B, 1C Voltage detector 2U, 2V, 2W Switching legs Q1, Q2, Q3, Q4 Switching elements D1, D2, D3, D4 Flywheel diode DP, DN Clamp Diode F1, F2 Fuse 3 Switch 4 AC motor 5 Circuit breaker 6, 6A Judgment circuit 7 Voltage detector

Claims (3)

出力側に正及び負の直流分圧コンデンサを備え、3レベルの電位を有する直流電源と、
前記直流電源に並列接続された3組のスイッチングレグと、
前記直流電源の中点と前記各組のスイッチングレグの中点間に設けられた遮断器
とから構成され、
前記各々のスイッチングレグは、
一端が前記直流電源の正側に接続された正側ヒュ−ズと、
正極が前記正側ヒューズの他端に接続され、第1のダイオードを逆並列接続した第1のスイッチング素子と、
正極が前記第1のスイッチング素子の負極に接続され、第2のダイオードを逆並列接続した第2のスイッチング素子と、
正極が前記第2のスイッチング素子の負極に接続され、第3のダイオードを逆並列接続した第3のスイッチング素子と、
正極が前記第3のスイッチング素子の負極に接続され、第4のダイオードを逆並列接続した第4のスイッチング素子と、
一端が前記第4のスイッチング素子の負極に接続され、他端が前記直流電源の負側に接続された負側ヒュ−ズと、
前記スイッチングレグの中点にアノードが、前記第1のスイッチング素子の負極にカソードが接続された正側クランプダイオードと、
前記スイッチングレグの中点にアノードが、前記第3のスイッチング素子の負極にカソードが接続された負側クランプダイオードと
から成り、
前記第2のスイッチング素子の負極から交流出力を得て交流電動機に給電するようにしたことを特徴とする3レベルインバータ装置。
DC power supply having positive and negative DC voltage dividing capacitors on the output side and having a three-level potential;
Three sets of switching legs connected in parallel to the DC power supply;
It consists of a circuit breaker provided between the midpoint of the DC power supply and the midpoint of each set of switching legs,
Each of the switching legs is
A positive fuse having one end connected to the positive side of the DC power supply;
A first switching element having a positive electrode connected to the other end of the positive fuse and having a first diode connected in reverse parallel;
A second switching element having a positive electrode connected to the negative electrode of the first switching element and a second diode connected in antiparallel;
A third switching element having a positive electrode connected to the negative electrode of the second switching element and a third diode connected in reverse parallel;
A fourth switching element having a positive electrode connected to the negative electrode of the third switching element and an antiparallel connection of a fourth diode;
A negative fuse having one end connected to the negative electrode of the fourth switching element and the other end connected to the negative side of the DC power supply;
A positive-side clamp diode having an anode connected to the midpoint of the switching leg and a cathode connected to the negative electrode of the first switching element;
An anode at the midpoint of the switching leg, and a negative clamp diode having a cathode connected to the negative electrode of the third switching element,
An AC output is obtained from the negative electrode of the second switching element to supply power to the AC motor.
前記正及び負の直流分圧コンデンサの何れかの電圧が第1の所定値を超えたとき、前記遮断器をトリップさせるようにしたことを特徴とする請求項1に記載の3レベルインバータ装置。   2. The three-level inverter device according to claim 1, wherein when the voltage of one of the positive and negative DC voltage dividing capacitors exceeds a first predetermined value, the circuit breaker is tripped. 3. 前記正側ヒューズ及び前記負側ヒュ−ズの何れかがトリップし、且つ前記交流電動機の端子電圧が第2の所定値を超えたとき、前記遮断器をトリップさせるようにしたことを特徴とする請求項1に記載の3レベルインバータ装置。   The circuit breaker is tripped when either the positive side fuse or the negative side fuse trips and the terminal voltage of the AC motor exceeds a second predetermined value. The three-level inverter device according to claim 1.
JP2006245338A 2006-09-11 2006-09-11 3-level inverter Active JP4942169B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006245338A JP4942169B2 (en) 2006-09-11 2006-09-11 3-level inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006245338A JP4942169B2 (en) 2006-09-11 2006-09-11 3-level inverter

Publications (2)

Publication Number Publication Date
JP2008067566A true JP2008067566A (en) 2008-03-21
JP4942169B2 JP4942169B2 (en) 2012-05-30

Family

ID=39289751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006245338A Active JP4942169B2 (en) 2006-09-11 2006-09-11 3-level inverter

Country Status (1)

Country Link
JP (1) JP4942169B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098892A (en) * 2008-10-17 2010-04-30 Sanken Electric Co Ltd Ac-ac direct conversion device
JP2010119174A (en) * 2008-11-11 2010-05-27 Toyota Central R&D Labs Inc Power conversion circuit
WO2010095241A1 (en) * 2009-02-20 2010-08-26 東芝三菱電機産業システム株式会社 Power converter
CN101964590A (en) * 2009-07-21 2011-02-02 株式会社日立制作所 Power converter
FR2959365A1 (en) * 2010-04-26 2011-10-28 Mge Ups Systems CONVERTER DEVICE AND POWER SUPPLY WITHOUT INTERRUPTION EQUIPPED WITH SUCH A DEVICE
EP2413489A1 (en) * 2010-07-30 2012-02-01 Vinotech Holdings S.à.r.l. Highly efficient half-bridge DCAC converter
WO2012056766A1 (en) * 2010-10-27 2012-05-03 三菱電機株式会社 Power conversion apparatus
CN104753043A (en) * 2015-03-27 2015-07-01 山东大学 Multi-level current converter with direct-current fault ride-through capability and working method
CN111555647A (en) * 2020-04-30 2020-08-18 科华恒盛股份有限公司 Power converter and T-shaped three-level three-phase rectification circuit thereof
CN114424446A (en) * 2021-01-19 2022-04-29 华为数字能源技术有限公司 Fault protection device and photovoltaic power generation system
WO2022156488A1 (en) * 2021-01-19 2022-07-28 华为数字能源技术有限公司 Fault protection device and photovoltaic power generation system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334976A (en) * 1991-05-09 1992-11-24 Hitachi Ltd Inverter and drive system for ac motor
JP2000350465A (en) * 1999-06-01 2000-12-15 Yaskawa Electric Corp Three-level inverter
JP2001057782A (en) * 1999-08-11 2001-02-27 Yaskawa Electric Corp Power converter
JP2003189633A (en) * 2001-12-17 2003-07-04 Toshiba Corp Power converter
JP2004248479A (en) * 2003-02-17 2004-09-02 Toshiba Corp Three-level converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04334976A (en) * 1991-05-09 1992-11-24 Hitachi Ltd Inverter and drive system for ac motor
JP2000350465A (en) * 1999-06-01 2000-12-15 Yaskawa Electric Corp Three-level inverter
JP2001057782A (en) * 1999-08-11 2001-02-27 Yaskawa Electric Corp Power converter
JP2003189633A (en) * 2001-12-17 2003-07-04 Toshiba Corp Power converter
JP2004248479A (en) * 2003-02-17 2004-09-02 Toshiba Corp Three-level converter

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010098892A (en) * 2008-10-17 2010-04-30 Sanken Electric Co Ltd Ac-ac direct conversion device
JP2010119174A (en) * 2008-11-11 2010-05-27 Toyota Central R&D Labs Inc Power conversion circuit
US8208276B2 (en) 2009-02-20 2012-06-26 Toshiba Mitsubishi-Electric Indsutrial Systems Corporation Power conversion device
WO2010095241A1 (en) * 2009-02-20 2010-08-26 東芝三菱電機産業システム株式会社 Power converter
CN101953062A (en) * 2009-02-20 2011-01-19 东芝三菱电机产业系统株式会社 Power converter
JP5159888B2 (en) * 2009-02-20 2013-03-13 東芝三菱電機産業システム株式会社 Power converter
KR101136404B1 (en) * 2009-02-20 2012-04-18 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 Power conversion device
CN101964590A (en) * 2009-07-21 2011-02-02 株式会社日立制作所 Power converter
US8711586B2 (en) 2009-07-21 2014-04-29 Hitachi, Ltd. Power converter and method including noise suppression by controlling phase shifting of converter cells
FR2959365A1 (en) * 2010-04-26 2011-10-28 Mge Ups Systems CONVERTER DEVICE AND POWER SUPPLY WITHOUT INTERRUPTION EQUIPPED WITH SUCH A DEVICE
EP2388899A1 (en) * 2010-04-26 2011-11-23 MGE UPS Systems Converter device and uninterruptible power supply comprising such a device
EP2413489A1 (en) * 2010-07-30 2012-02-01 Vinotech Holdings S.à.r.l. Highly efficient half-bridge DCAC converter
US8848405B2 (en) 2010-07-30 2014-09-30 Vincotech Holdings S.A.R.L. Highly efficient half-bridge DC-AC converter
US9209677B2 (en) 2010-10-27 2015-12-08 Mitsubishi Electric Corporation Power conversion apparatus
CN103190048A (en) * 2010-10-27 2013-07-03 三菱电机株式会社 Power conversion apparatus
JPWO2012056766A1 (en) * 2010-10-27 2014-03-20 三菱電機株式会社 Power converter
WO2012056766A1 (en) * 2010-10-27 2012-05-03 三菱電機株式会社 Power conversion apparatus
CN104753043A (en) * 2015-03-27 2015-07-01 山东大学 Multi-level current converter with direct-current fault ride-through capability and working method
CN111555647A (en) * 2020-04-30 2020-08-18 科华恒盛股份有限公司 Power converter and T-shaped three-level three-phase rectification circuit thereof
CN114424446A (en) * 2021-01-19 2022-04-29 华为数字能源技术有限公司 Fault protection device and photovoltaic power generation system
WO2022156488A1 (en) * 2021-01-19 2022-07-28 华为数字能源技术有限公司 Fault protection device and photovoltaic power generation system
US11811217B2 (en) 2021-01-19 2023-11-07 Huawei Digital Power Technologies Co., Ltd. Fault protection apparatus and photovoltaic power generation system
EP4060846B1 (en) * 2021-01-19 2024-06-19 Huawei Digital Power Technologies Co., Ltd. Fault protection device and photovoltaic power generation system

Also Published As

Publication number Publication date
JP4942169B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP4942169B2 (en) 3-level inverter
US8208276B2 (en) Power conversion device
US20180138826A1 (en) Electric power conversion device and electric power system
US20140328093A1 (en) Power converter
JP6440923B1 (en) Power converter
JP6183460B2 (en) Inverter device
WO2014192540A1 (en) Power conversion device
JP2016100926A (en) Power conversion device
JP2009273280A (en) Dc-dc converter
JP6469894B2 (en) Power converter
JP2017118754A (en) DCDC converter
ES2935199T3 (en) Procedure and arrangement to generate a trip signal for an HVDC breaker
JP6546126B2 (en) Power conversion system
KR20140087450A (en) Converter having decrease function of fault current
JP3926618B2 (en) Power converter
JP2012034451A (en) Protective device of power conversion device
JP2009077504A (en) Inverter apparatus
JP2004248479A (en) Three-level converter
JP5828396B2 (en) DC power supply and its ground fault detection method
JP2019036405A (en) Power supply and cutoff switch circuit
KR101522414B1 (en) Z-source network apparatus
EP3595157B1 (en) Power conversion device
JP6398873B2 (en) Dynamic characteristic test apparatus and dynamic characteristic test method
JP2007267435A (en) Power converter
JP2009219225A (en) Vehicle driving system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

R150 Certificate of patent or registration of utility model

Ref document number: 4942169

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250