JP2008056795A - Prepreg and fiber reinforced composite material - Google Patents
Prepreg and fiber reinforced composite material Download PDFInfo
- Publication number
- JP2008056795A JP2008056795A JP2006235041A JP2006235041A JP2008056795A JP 2008056795 A JP2008056795 A JP 2008056795A JP 2006235041 A JP2006235041 A JP 2006235041A JP 2006235041 A JP2006235041 A JP 2006235041A JP 2008056795 A JP2008056795 A JP 2008056795A
- Authority
- JP
- Japan
- Prior art keywords
- prepreg
- component
- composite material
- fiber
- resin composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- KQVVPVCKQVMOTE-UHFFFAOYSA-N C(c(cc(cc1)Oc(cc2C3)ccc2OCN3c2ccccc2)c1OC1)N1c1ccccc1 Chemical compound C(c(cc(cc1)Oc(cc2C3)ccc2OCN3c2ccccc2)c1OC1)N1c1ccccc1 KQVVPVCKQVMOTE-UHFFFAOYSA-N 0.000 description 2
- XRYYZSQXOGSWOK-UHFFFAOYSA-N C(c(cc1)ccc1N(C1)COc2c1cccc2)c(cc1)ccc1N1COc2ccccc2C1 Chemical compound C(c(cc1)ccc1N(C1)COc2c1cccc2)c(cc1)ccc1N1COc2ccccc2C1 XRYYZSQXOGSWOK-UHFFFAOYSA-N 0.000 description 1
- LSHWJIJIAARQJT-UHFFFAOYSA-N C(c1cc(-c(cc2C3)ccc2OCN3c2ccccc2)ccc1OC1)N1c1ccccc1 Chemical compound C(c1cc(-c(cc2C3)ccc2OCN3c2ccccc2)ccc1OC1)N1c1ccccc1 LSHWJIJIAARQJT-UHFFFAOYSA-N 0.000 description 1
- MLNNBOKXNSNWPD-UHFFFAOYSA-N CC(C)(c(cc1C2)ccc1OCN2c1ccc(C)cc1)c(cc1C2)ccc1OCN2c1ccc(C)cc1 Chemical compound CC(C)(c(cc1C2)ccc1OCN2c1ccc(C)cc1)c(cc1C2)ccc1OCN2c1ccc(C)cc1 MLNNBOKXNSNWPD-UHFFFAOYSA-N 0.000 description 1
- ZQURWBBQNMCNIR-UHFFFAOYSA-N CC(C)(c1ccc2OCN(C)Cc2c1)c(cc1)cc2c1OCN(C)C2 Chemical compound CC(C)(c1ccc2OCN(C)Cc2c1)c(cc1)cc2c1OCN(C)C2 ZQURWBBQNMCNIR-UHFFFAOYSA-N 0.000 description 1
- DLIVAGWCBYRBTQ-UHFFFAOYSA-N CC(c(cc1)cc(C2)c1OCN2c1ccccc1)c(cc1)cc(C2)c1OCN2c1ccccc1 Chemical compound CC(c(cc1)cc(C2)c1OCN2c1ccccc1)c(cc1)cc(C2)c1OCN2c1ccccc1 DLIVAGWCBYRBTQ-UHFFFAOYSA-N 0.000 description 1
- VNADHGDVFCTMBO-UHFFFAOYSA-N O=C(c(cc1)cc(C2)c1OCN2c1ccccc1)c(cc1C2)ccc1OCN2c1ccccc1 Chemical compound O=C(c(cc1)cc(C2)c1OCN2c1ccccc1)c(cc1C2)ccc1OCN2c1ccccc1 VNADHGDVFCTMBO-UHFFFAOYSA-N 0.000 description 1
- GQIBNJYPPDPDEU-UHFFFAOYSA-N O=S(c(cc1)cc(C2)c1OCN2c1ccccc1)(c(cc1C2)ccc1OCN2c1ccccc1)=O Chemical compound O=S(c(cc1)cc(C2)c1OCN2c1ccccc1)(c(cc1C2)ccc1OCN2c1ccccc1)=O GQIBNJYPPDPDEU-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
Abstract
Description
本発明は、航空機用途、船舶用途、スポーツ用途、その他一般産業用途に好適な繊維強化複合材料を得るためのプリプレグ、およびそれから得られる繊維強化複合材料に関するものである。 The present invention relates to a prepreg for obtaining a fiber-reinforced composite material suitable for aircraft use, marine use, sports use, and other general industrial uses, and a fiber-reinforced composite material obtained therefrom.
エポキシ樹脂やフェノール樹脂をはじめとする熱硬化性樹脂は、その優れた機械特性、電気特性、耐熱性、耐薬品性等の諸特性により、塗料、電気・電子材料、接着剤、繊維強化複合材料のマトリックス樹脂等に使用されている。 Thermosetting resins such as epoxy resins and phenolic resins, paints, electrical / electronic materials, adhesives, fiber reinforced composite materials, due to their excellent mechanical properties, electrical properties, heat resistance, chemical resistance, etc. It is used for the matrix resin.
熱硬化性樹脂をマトリックス樹脂とした繊維強化複合材料、特に炭素繊維を用いた炭素繊維強化複合材料は、その力学特性が優れていることから、ゴルフクラブ、テニスラケット、釣り竿などのスポーツ用品をはじめ、航空機や車両などの構造材料、コンクリート構造物の補強など幅広い分野で使用されている。最近は、炭素繊維が導電性を有することにより、炭素繊維強化複合材料が優れた電磁波遮蔽性を有し、さらに優れた力学特性を持つため、ノートパソコンやビデオカメラなどの電気・電子機器の筐体などにも使用され、筐体の薄肉化、機器の重量軽減などに役立っている。このような繊維強化複合材料は、熱硬化性樹脂を強化繊維に含浸して得られるプリプレグを積層して得られることが多い。 Fiber reinforced composite materials that use thermosetting resins as matrix resins, especially carbon fiber reinforced composite materials that use carbon fibers, have excellent mechanical properties, so they can be used in sports equipment such as golf clubs, tennis rackets, and fishing rods. It is used in a wide range of fields, such as structural materials for aircraft and vehicles, and reinforcement of concrete structures. Recently, carbon fiber reinforced composite materials have excellent electromagnetic shielding properties and excellent mechanical properties due to the electrical conductivity of carbon fibers, so that the housings of electrical and electronic equipment such as laptop computers and video cameras can be used. It is also used for the body, etc., which helps to reduce the thickness of the housing and reduce the weight of the equipment. Such fiber-reinforced composite materials are often obtained by laminating prepregs obtained by impregnating reinforcing fibers with thermosetting resins.
この中で、特に航空機や車両などの構造材料、建築材料などにおいては、火災によって構造材料が着火燃焼し、有毒ガスなどが発生することは非常に危険であるため、材料に難燃性を有することが強く求められている。 Among them, especially in structural materials and building materials such as aircraft and vehicles, it is extremely dangerous that the structural materials are ignited and burned by fire and toxic gas is generated, so the material has flame retardancy. There is a strong demand for that.
また電気・電子機器用途においても、装置内部からの発熱や外部の高温にさらされることにより、筐体や部品などが発火し燃焼する事故を防ぐために、材料の難燃化が求められている。ところが、従来知られている熱硬化性樹脂の多くは、十分な難燃性を有するものではなく、種々の難燃剤が添加されている。 Also, in electrical and electronic equipment applications, it is required to make the material flame-retardant in order to prevent accidents in which the casing and parts are ignited and burned by being exposed to heat generated from the inside of the apparatus or external high temperature. However, many of the conventionally known thermosetting resins do not have sufficient flame retardancy, and various flame retardants are added.
例えば代表的なハロゲン系難燃剤として知られている臭素系難燃剤は、優れた難燃効果を有しているので広く使用されているが、燃焼時に臭化水素等の有害物質を発生し、人体や自然環境に悪影響を及ぼす可能性があることから、その使用が制限されつつある。 For example, brominated flame retardants known as typical halogenated flame retardants are widely used because they have an excellent flame retardant effect, but generate harmful substances such as hydrogen bromide during combustion, Its use is being restricted because it can adversely affect the human body and the natural environment.
そこで、代替の難燃剤として、リン系難燃剤、窒素系難燃剤、無機系難燃剤等を使用することが検討されているが、一般的にこれらの難燃剤は、ハロゲン系難燃剤に比べて難燃効果が劣るため、多量に用いたり、これらの難燃剤を組み合わせて使用する必要がある。この結果、複合材料の耐熱性や弾性率が大幅に低下するなど難燃性以外の特性が損なわれる問題があった。 Therefore, the use of phosphorus-based flame retardants, nitrogen-based flame retardants, inorganic flame retardants, and the like as alternative flame retardants has been studied. Generally, these flame retardants are compared to halogen-based flame retardants. Since the flame retardant effect is inferior, it is necessary to use a large amount or a combination of these flame retardants. As a result, there has been a problem that properties other than flame retardancy are impaired, such as a significant decrease in heat resistance and elastic modulus of the composite material.
このような状況において、従来の熱硬化性樹脂に比べて芳香環含有率が高く、比較的難燃性が優れているとされるベンゾオキサジン樹脂を使用することが検討されている。 Under such circumstances, the use of a benzoxazine resin, which has a higher aromatic ring content than a conventional thermosetting resin and is relatively excellent in flame retardancy, has been studied.
開環重合を利用したジヒドロベンゾオキサジン樹脂の硬化物は、エポキシ樹脂やフェノール樹脂のような熱硬化性樹脂と比べて、難燃性、耐熱性、機械特性、電気特性等に優れているものの、硬化温度が通常200℃以上と高く、硬化速度も遅いため生産性が悪いという欠点を有している(例えば特許文献1参照)
この課題に対して、ジヒドロベンゾオキサジン環を有する化合物にノボラック型フェノール樹脂を配合することにより硬化性をいくらか改善でき(例えば特許文献2参照)、さらにジヒドロベンゾオキサジン化合物にノボラック型フェノール樹脂とカチオン重合開始剤とを同時に配合することによりそれぞれ単独で加えた物よりも、硬化性が優れるという技術が開示されている(例えば特許文献3参照)。しかしながら、一般的なノボラック型フェノール樹脂を反応系に加えた場合、硬化速度を速くすることは可能だが、耐熱性が低下するという欠点がある。また、マトリックス樹脂組成物の粘度が高くなり、プリプレグ製造工程、ことに樹脂フィルム作製時に塗工できないため通常より高温で軟化させると成形中に硬化反応が進行して樹脂の粘度が経時変化し、フィルムの厚みが制御できず目的とするプリプレグが得られないといった問題がある。さらには、プリプレグ成形温度以下の低温においても硬化反応が進行してしまうため、プリプレグをカット、積層する際にTgが上昇してプリプレグの表面が固くなり、プリプレグのタック性やドレープ性が低下するといった問題がある。
In response to this problem, the curability can be improved somewhat by adding a novolak type phenol resin to a compound having a dihydrobenzoxazine ring (see, for example, Patent Document 2). A technique is disclosed in which curability is superior to those added individually by mixing an initiator simultaneously (see, for example, Patent Document 3). However, when a general novolac type phenol resin is added to the reaction system, the curing rate can be increased, but there is a disadvantage that the heat resistance is lowered. In addition, the viscosity of the matrix resin composition is increased, and since the prepreg manufacturing process, in particular, it cannot be applied at the time of resin film production, if it is softened at a higher temperature than usual, a curing reaction proceeds during molding, and the viscosity of the resin changes with time, There exists a problem that the thickness of a film cannot be controlled and the target prepreg cannot be obtained. Furthermore, since the curing reaction proceeds even at a low temperature below the prepreg molding temperature, Tg increases when the prepreg is cut and laminated, the surface of the prepreg becomes hard, and the tackiness and drape properties of the prepreg decrease. There is a problem.
本発明は上記した従来技術における問題を解決し、ハロゲン、リン等難燃剤を含まずとも、高い難燃性、耐熱性を有し、かつ硬化速度が速く作業安定性に優れた繊維強化複合材料を与えるプリプレグ、およびそれから得られる繊維強化複合材料を提供することを目的とする。 The present invention solves the above-mentioned problems in the prior art, and has a high flame retardancy and heat resistance, and has a high curing speed and excellent work stability without including a flame retardant such as halogen or phosphorus. An object of the present invention is to provide a prepreg that provides a fiber and a fiber-reinforced composite material obtained therefrom.
本発明のプリプレグは上記目的を達成するために次のような構成を有する。すなわち、次の[A]成分および[B]成分を含む熱硬化性樹脂組成物と、次の[C]成分とにより構成される複合材料用プリプレグであって、[A]成分100重量に対して、[B]成分を4〜20重量部含み、150℃におけるゲルタイムが5分以下であることを特徴とする複合材料用プリプレグである。 In order to achieve the above object, the prepreg of the present invention has the following configuration. That is, a prepreg for a composite material comprising a thermosetting resin composition containing the following [A] component and [B] component, and the following [C] component, wherein A composite material prepreg comprising 4 to 20 parts by weight of the component [B] and having a gel time at 150 ° C. of 5 minutes or less.
[A]次の構造式(I)または(II)で表される単位構造を有するベンゾオキサジン樹脂 [A] Benzoxazine resin having a unit structure represented by the following structural formula (I) or (II)
(式中、R1は、炭素数1〜12の鎖状アルキル基、炭素数3〜8の環状アルキル基、フェニル基、又は炭素数1〜12の鎖状アルキル基またはハロゲンで置換されたフェニル基から選ばれる1つであり、芳香環の酸素原子が結合している炭素原子のオルト位とパラ位の少なくとも一方の炭素原子には水素が結合している) (In the formula, R 1 represents a chain alkyl group having 1 to 12 carbon atoms, a cyclic alkyl group having 3 to 8 carbon atoms, a phenyl group, or a chain alkyl group having 1 to 12 carbon atoms, or phenyl substituted with halogen. A hydrogen atom bonded to at least one of the ortho and para carbon atoms to which the oxygen atom of the aromatic ring is bonded)
(式中、R2は水素原子、炭素数1〜12の鎖状アルキル基、ハロゲンのいずれかを示し、それぞれのR2は互いに同一であっても異なっていてもよい。またXは、−CH2−、
−C(CH3)2−、−CH(CH3)−、−S−、−SO2−、−CO−、−O−で表される基のいずれか、またはXを持たない構造から選ばれる1つである)
[B]酸触媒
[C]難燃性強化繊維
また、本発明の複合材料は上記目的を達成するために次のような構成を有する。すなわち、前記の複合材料用プリプレグを硬化して得られる繊維強化複合材料である。
(Wherein R 2 represents any one of a hydrogen atom, a chain alkyl group having 1 to 12 carbon atoms, and a halogen, and each R 2 may be the same as or different from each other. X is — CH 2 -,
A group represented by —C (CH 3 ) 2 —, —CH (CH 3 ) —, —S—, —SO 2 —, —CO—, —O—, or a structure having no X is selected. Is one)
[B] Acid Catalyst [C] Flame Retardant Reinforcing Fiber The composite material of the present invention has the following configuration in order to achieve the above object. That is, it is a fiber-reinforced composite material obtained by curing the above-mentioned composite material prepreg.
本発明によれば、以下に説明するとおり、複合材料用プリプレグおよび複合材料に要求される諸特性を満足しながら、ハロゲン、リン等の難燃剤を加えなくとも難燃性に優れ、かつ硬化速度が速い複合材料用プリプレグおよび複合材料を提供することができる。 According to the present invention, as described below, while satisfying various properties required for composite material prepregs and composite materials, it is excellent in flame retardancy without adding a flame retardant such as halogen, phosphorus and the curing rate. It is possible to provide a prepreg for a composite material and a composite material having a high speed.
本発明の複合材料用プリプレグは、熱硬化性樹脂組成物と、[C]成分である難燃性強化繊維とにより構成され、その熱硬化性樹脂組成物は、前記した構造式(I)または(II)で表される構造単位を有するベンゾオキサジン樹脂である[A]成分と、酸触媒である[B]成分を含んでなる。熱硬化性樹脂組成物は、好ましくは、[C]成分である難燃性強化繊維に少なくとも一部が含浸されている。 The prepreg for a composite material of the present invention is composed of a thermosetting resin composition and a flame retardant reinforcing fiber which is a [C] component, and the thermosetting resin composition has the structural formula (I) or It comprises a [A] component that is a benzoxazine resin having a structural unit represented by (II) and a [B] component that is an acid catalyst. The thermosetting resin composition is preferably at least partially impregnated with the flame-retardant reinforcing fiber which is the [C] component.
構造式(I)におけるR1の具体的な例としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、シクロペンチル基、シクロヘキシル基、フェニル基、o−メチルフェニル基、m−メチルフェニル基、p−メチルフェニル基、o−エチルフェニル基、m−エチルフェニル基、p−エチルフェニル基、o−t−ブチルフェニル基、m−t−ブチルフェニル基、p−t−ブチルフェニル基、o−クロロフェニル基、o−ブロモフェニル基などを好ましく挙げることができる。これらの中でも、良好な取り扱い性を与えることから、メチル基、エチル基、プロピル基、フェニル基、o−メチルフェニル基がさらに好ましい。 Specific examples of R 1 in the structural formula (I) include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, cyclopentyl group, cyclohexyl group, phenyl group, o-methylphenyl group, m-methylphenyl group, p-methylphenyl group, o-ethylphenyl group, m-ethylphenyl group, p-ethylphenyl group, ot-butylphenyl group, mt-butylphenyl Preferred examples include a group, pt-butylphenyl group, o-chlorophenyl group, o-bromophenyl group and the like. Among these, a methyl group, an ethyl group, a propyl group, a phenyl group, and an o-methylphenyl group are more preferable because they give good handleability.
本発明において、[A]成分としては、良好な取り扱い性や硬化性が得られることから、例えば次の構造式(III)〜(XIII)で表される樹脂からなる群から選ばれるものが好ましく用いられる。 In the present invention, the component [A] is preferably selected from the group consisting of resins represented by the following structural formulas (III) to (XIII) because good handleability and curability are obtained. Used.
[A]成分であるベンゾオキサジン樹脂は、モノマーからなるものでも良いし、数分子が重合してオリゴマー状態となっていても良く、また、異なる構造を有するベンゾオキサジン樹脂を同時に用いても良い。異なる構造を有するベンゾオキサジン樹脂を同時に用いることにより、単一化合物のみを用いる場合と比べて、ベンゾオキサジン樹脂の結晶化が抑制されて樹脂組成物の粘度が下がり、より低温での取り扱いが容易となる場合がある。 The benzoxazine resin as the component [A] may be a monomer, may be polymerized in several molecules, or may be used simultaneously with benzoxazine resins having different structures. By using benzoxazine resins having different structures at the same time, crystallization of the benzoxazine resin is suppressed and the viscosity of the resin composition is reduced compared to the case of using only a single compound, and handling at a lower temperature is easier. There is a case.
本発明において、熱硬化性樹脂組成物には、ベンゾオキサジン樹脂に加え、その特性改質のために、エポキシ樹脂、シアネートエステル樹脂等の熱硬化性樹脂やエポキシ樹脂、シアネートエステル樹脂等の熱硬化性樹脂の硬化剤を含んでもよい。 In the present invention, in addition to the benzoxazine resin, the thermosetting resin composition includes thermosetting resins such as epoxy resins and cyanate ester resins, and thermosetting resins such as epoxy resins and cyanate ester resins. A curing agent for the conductive resin may be included.
また、熱硬化性樹脂組成物には、分子内にベンゾオキサジン環を持たないフェノール樹脂が含まれていない方が良く、具体的には、熱硬化性樹脂組成物における、分子内にベンゾオキサジン環を持たないフェノール樹脂の含有量が、[A]成分100重量部に対して、5重量部以下、好ましくは3重量部以下、より好ましくは2.5重量部以下、さらに好ましくは2重量部以下、最も好ましくは0重量部であるのが良い。ベンゾオキサジン環を持たないフェノール樹脂の含有率が多すぎると、マトリックス樹脂となる熱硬化性樹脂組成物の粘度が高くなり、プリプレグ製造工程で不具合が生じることがあり、ことに後述するホットメルト法でプリプレグを製造する場合、樹脂フィルム作製時に塗工できない、またフィルム化の際に通常より高温で軟化させると成形中に硬化反応が進行して樹脂の粘度が経時変化し、フィルムの厚みが制御できず目的とするプリプレグが得られないなどの不具合が生じる場合がある。また、プリプレグ成形温度以下の低温においても硬化反応が進行してしまうため、プリプレグをカット、積層する際に、熱硬化性樹脂組成物のガラス転移温度(以下、Tgと略記する場合がある)が上昇してプリプレグの表面が固くなりやすいため、プリプレグのタック性やドレープ性が低下する場合がある他、プリプレグを硬化させてなる複合材料の耐熱性や層間剪断強度(以下、ILSSと表す)が低下する場合がある。ここでいうベンゾオキサジン環を持たないフェノール樹脂とは、一般的には、フェノール類単量体とアルデヒド類をアルカリ、または酸触媒下で付加反応させて高分子量化させたものであり、具体的にはノボラック型フェノール樹脂、レゾール型フェノール樹脂等のフェノール樹脂である。 The thermosetting resin composition should not contain a phenol resin having no benzoxazine ring in the molecule. Specifically, in the thermosetting resin composition, the benzoxazine ring in the molecule The content of the phenolic resin not having a component is 5 parts by weight or less, preferably 3 parts by weight or less, more preferably 2.5 parts by weight or less, and even more preferably 2 parts by weight or less with respect to 100 parts by weight of the component [A]. Most preferably, it is 0 parts by weight. If the content of the phenolic resin having no benzoxazine ring is too high, the viscosity of the thermosetting resin composition that becomes the matrix resin may increase, and problems may occur in the prepreg manufacturing process. When prepreg is manufactured with, the resin cannot be applied at the time of resin film production, and if it is softened at a higher temperature than usual at the time of film formation, the curing reaction proceeds during molding, and the viscosity of the resin changes with time, and the film thickness is controlled. In some cases, the target prepreg cannot be obtained. Further, since the curing reaction proceeds even at a low temperature below the prepreg molding temperature, the glass transition temperature (hereinafter sometimes abbreviated as Tg) of the thermosetting resin composition when the prepreg is cut and laminated. Since the surface of the prepreg tends to harden due to the rise, the tackiness and drape of the prepreg may be reduced, and the heat resistance and interlaminar shear strength (hereinafter referred to as ILSS) of the composite material obtained by curing the prepreg may be reduced. May decrease. The phenolic resin having no benzoxazine ring here is generally a phenolic monomer and an aldehyde that are subjected to an addition reaction in the presence of an alkali or acid catalyst to increase the molecular weight. There are phenol resins such as novolac type phenol resin and resol type phenol resin.
本発明における[B]成分は、酸触媒であり、ベンゾオキサジン樹脂の開環反応を促進する作用を有し、150℃で5分以下のゲルタイムを達成するために不可欠である。[B]成分としては、具体的に、カルボン酸、スルホン酸、カテコール、ヒドロキノン、レゾルシノール、ピロガロール等の単核体フェノール化合物、ナフトール誘導体、ヒドロキシアントラセン誘導体、ヒドロキシアントラキノン誘導体、ルイス酸等を挙げることができる。 [B] component in this invention is an acid catalyst, has the effect | action which accelerates | stimulates the ring-opening reaction of a benzoxazine resin, and is indispensable in order to achieve the gel time of 5 minutes or less at 150 degreeC. Specific examples of the component [B] include mononuclear phenol compounds such as carboxylic acid, sulfonic acid, catechol, hydroquinone, resorcinol, pyrogallol, naphthol derivatives, hydroxyanthracene derivatives, hydroxyanthraquinone derivatives, Lewis acids, and the like. it can.
[B]成分としては、これらの中で、ルイス酸が好ましく用いられる。ルイス酸はベンゾオキサジン環の酸素原子の非共有電子対への強い求核性を有し、ベンゾオキサジン樹脂の硬化性を向上させる効果がある。 Among these, a Lewis acid is preferably used as the component [B]. The Lewis acid has strong nucleophilicity to the lone pair of oxygen atoms of the benzoxazine ring, and has the effect of improving the curability of the benzoxazine resin.
ルイス酸としては、例えば、三ハロゲン化ホウ素錯体が挙げられる。中でも硬化性の点から三塩化ホウ素アミン錯体、三塩化ホウ素ジメチル硫黄錯体等の三塩化ホウ素錯体が好ましく利用され、特に好ましくは三塩化ホウ素アミン錯体である。 Examples of Lewis acids include boron trihalide complexes. Of these, boron trichloride complexes such as boron trichloride amine complex and boron trichloride dimethyl sulfur complex are preferably used from the viewpoint of curability, and boron trichloride amine complex is particularly preferable.
また、[B]成分としては、酸無水物、スルホン酸エステル等、化合物自身はプロトンを持たないが加水分解等によりプロトンを発生する化合物も用いることができる。そのような化合物として、トルエンスルホン酸誘導体が、硬化性と保存安定性を両立させることから好ましく用いられる。トルエンスルホン酸誘導体から得られるスルホン酸は酸性度が高いためプロトン供与性が高く、ベンゾオキサジン環の開環により生成する水酸基を安定化させるため、硬化性を向上させる効果が大きい。 In addition, as the component [B], compounds such as acid anhydrides and sulfonic acid esters that do not have protons but generate protons by hydrolysis or the like can also be used. As such a compound, a toluenesulfonic acid derivative is preferably used since both curability and storage stability are achieved. Since the sulfonic acid obtained from the toluenesulfonic acid derivative has high acidity, the proton donating property is high, and the hydroxyl group generated by the ring opening of the benzoxazine ring is stabilized, so that the effect of improving curability is great.
トルエンスルホン酸誘導体の中でも、p−トルエンスルホン酸エステルが、さらに硬化性を向上させる効果が大きいため、好ましく用いられる。p−トルエンスルホン酸エステルの例としては、p−トルエンスルホン酸メチル、p−トルエンスルホン酸エチル、p−トルエンスルホン酸n−プロピル、p−トルエンスルホン酸イソプロピル、p−トルエンスルホン酸n−ブチル、p−トルエンスルホン酸2−ブチニル、p−トルエンスルホン酸3−ブチニル、p−トルエンスルホン酸イソブチル等を挙げることができ、特にp−トルエンスルホン酸メチル、p−トルエンスルホン酸エチルが本発明においてより好ましく用いられる。 Among the toluenesulfonic acid derivatives, p-toluenesulfonic acid ester is preferably used because it has a great effect of improving curability. Examples of p-toluenesulfonic acid esters include methyl p-toluenesulfonate, ethyl p-toluenesulfonate, n-propyl p-toluenesulfonate, isopropyl p-toluenesulfonate, n-butyl p-toluenesulfonate, Examples include 2-butynyl p-toluenesulfonate, 3-butynyl p-toluenesulfonate, isobutyl p-toluenesulfonate, and the like. In particular, methyl p-toluenesulfonate and ethyl p-toluenesulfonate are more preferred in the present invention. Preferably used.
また、p−トルエンスルホン酸エステルは、エステルの置換基の分子量が増加するに従いベンゾオキサジン環の重合開始温度が高くなることから、目的とする重合開始温度によって適切な触媒を選択することが可能である。なお、これらの酸触媒は単独で使用しても良いし、2種類以上併用しても良い。 In addition, since p-toluenesulfonic acid ester has a higher polymerization initiation temperature for the benzoxazine ring as the molecular weight of the substituent of the ester increases, an appropriate catalyst can be selected depending on the intended polymerization initiation temperature. is there. These acid catalysts may be used alone or in combination of two or more.
かかる[B]成分の配合量は、[A]成分100重量部に対して、4〜20重量部とすることが好ましい。さらに5〜18重量部であることが好ましく、特に7〜15重量部であることが好ましい。[B]成分が少なすぎると、ベンゾオキサジン環の開環を促進させる効果が不足する場合があり、[B]成分が多すぎると、樹脂組成物中に多量に残存してしまい、複合材料の機械特性および難燃性が低下する場合がある。 It is preferable that the compounding quantity of this [B] component shall be 4-20 weight part with respect to 100 weight part of [A] component. Furthermore, it is preferable that it is 5-18 weight part, and it is especially preferable that it is 7-15 weight part. If the amount of the component [B] is too small, the effect of promoting the ring opening of the benzoxazine ring may be insufficient. If the amount of the component [B] is too large, a large amount of the component remains in the resin composition. Mechanical properties and flame retardancy may be reduced.
本発明のプリプレグに用いられる熱硬化性樹脂組成物は、短時間で大量に生産できることが望まれる産業材料用途、特に電気・電子機器の筐体などの用途では、短時間で硬化する必要があり、具体的には150℃におけるゲルタイムが5分以下である必要がある。また、生産性を向上する目的においては、より短時間でゲル化することが望ましい。なお、熱硬化性樹脂組成物の150℃におけるゲルタイムは次のようにして測定することができる。すなわち、熱硬化性樹脂組成物を2cm3サンプルとして採取し、キュラストメータを用いて150℃に加熱したダイスにサンプルを入れ、ねじり応力をかけてサンプルの硬化の進行にともなう粘度上昇をダイスに伝わるトルクとして測定する。測定開始後、トルクが0.001N・mに達するまでの時間を150℃におけるゲルタイムとした。 The thermosetting resin composition used in the prepreg of the present invention must be cured in a short time for industrial material applications that are desired to be able to be produced in large quantities in a short time, especially for applications such as housings for electrical and electronic equipment. Specifically, the gel time at 150 ° C. needs to be 5 minutes or less. Further, for the purpose of improving productivity, it is desirable to gel in a shorter time. In addition, the gel time in 150 degreeC of a thermosetting resin composition can be measured as follows. That is, the thermosetting resin composition is sampled as a 2 cm 3 sample, put into a die heated to 150 ° C. using a curastometer, and a torsional stress is applied to the die to increase the viscosity as the sample cures. Measured as transmitted torque. The time until the torque reached 0.001 N · m after the start of measurement was defined as the gel time at 150 ° C.
本発明において、熱硬化性樹脂組成物は、前記した成分を混合することにより得られる。混合方法としては特に限定されないが、ニーダーやプラネタリーミキサー、3本ロールおよび2軸押出機などが好ましく用いられる。 In the present invention, the thermosetting resin composition is obtained by mixing the above-described components. Although it does not specifically limit as a mixing method, A kneader, a planetary mixer, a 3 roll, a twin screw extruder, etc. are used preferably.
本発明における[C]成分は、難燃性を有する強化繊維である。難燃性を有する強化繊維としては、例えば、アルミニウム、ステンレスなどの金属繊維、ポリアクリロニトリル系、レーヨン系、ピッチ系の炭素繊維、黒鉛繊維、ガラスなどの絶縁性繊維、ボロン繊維、炭化ホウ素繊維、フェノール繊維などの強化繊維を挙げることができる。この中で、優れた難燃性、比弾性率、比強度を繊維強化複合材料に発現させるため、炭素繊維を用いるのが好ましい。また、これらの繊維を2種類以上混合して用いても構わない。 [C] component in this invention is a reinforced fiber which has a flame retardance. Examples of reinforcing fibers having flame retardancy include metal fibers such as aluminum and stainless steel, polyacrylonitrile-based, rayon-based, pitch-based carbon fibers, graphite fibers, insulating fibers such as glass, boron fibers, boron carbide fibers, Mention may be made of reinforcing fibers such as phenol fibers. Among these, it is preferable to use carbon fiber in order to exhibit excellent flame retardancy, specific elastic modulus, and specific strength in the fiber-reinforced composite material. Also, two or more of these fibers may be mixed and used.
[C]成分として炭素繊維を用いる場合、用途に応じてあらゆる種類の炭素繊維を用いることが可能であり、通常引張強度が1.0GPa〜9.0GPaである炭素繊維が使用可能である。繊維本来の引張強度や複合材料としたときの耐衝撃性が高いという面から、かかる引張強度は高ければ高いほど好ましく、より好ましくは2.0GPa〜9.0GPaである。また、用いる炭素繊維は、通常その引張弾性率が50Gpa〜1000GPaであるものが使用可能であるが、引張弾性率が高い炭素繊維を用いることは、複合材料としたときに高弾性率を得ることに繋がる。また、かかる引張弾性率は、電気・電子機器の筐体など、より薄肉化・軽量化を重視する場合には、高い剛性が求められ、より好ましくは150GPa〜1000GPaである。ここでいう炭素繊維の引張強度、弾性率は、JIS R7601(1986)にしたがって測定されるストランド引張強度、ストランド引張弾性率を意味する。 When carbon fiber is used as the component [C], any type of carbon fiber can be used depending on the application, and carbon fiber having a normal tensile strength of 1.0 GPa to 9.0 GPa can be used. In view of high tensile strength inherent to the fiber and impact resistance when a composite material is used, the tensile strength is preferably as high as possible, and more preferably 2.0 GPa to 9.0 GPa. In addition, as the carbon fiber to be used, those whose tensile elastic modulus is usually 50 Gpa to 1000 GPa can be used. However, using a carbon fiber having a high tensile elastic modulus provides a high elastic modulus when a composite material is used. It leads to. Further, such a tensile elastic modulus is required to have high rigidity, and more preferably 150 GPa to 1000 GPa, when importance is attached to thinning and lightening such as a housing of an electric / electronic device. The tensile strength and elastic modulus of carbon fiber here mean the strand tensile strength and strand tensile elastic modulus measured according to JIS R7601 (1986).
また、[C]成分として炭素繊維を用いる場合、炭素繊維の単繊維の断面形状としては、実質的に真円状であることが好ましい。ここで、単繊維の断面形状が実質的に真円であるとは、単繊維の断面形状に外接する円の半径Rと内接する円の半径rとの比R/rが1.0〜1.1、好ましくは1.0〜1.05の範囲であることを意味する。単繊維の断面形状が真円状の場合、真円状でない場合と比べて炭素繊維の表面積が小さく樹脂との接触面積が小さくなることから、樹脂への熱伝達効率が低下して樹脂の分解が遅くなり、難燃性がより向上する。また、単繊維の断面形状が真円状の場合、プリプレグ成形時に、炭素繊維の単糸同士もしくは束同士の擦過による単糸切れに起因する強度の低下や毛羽発生、糸の破断などのプロセス面でのトラブルが発生しにくい。断面形状が真円状の炭素繊維として、東レ(株)製の”トレカ(登録商標)”T700Sや”トレカ(登録商標)”M30Sなどが挙げられる。 Moreover, when using carbon fiber as a [C] component, it is preferable that the cross-sectional shape of the single fiber of carbon fiber is substantially perfect circle shape. Here, the fact that the cross-sectional shape of the single fiber is substantially a perfect circle means that the ratio R / r between the radius R of the circle circumscribing the cross-sectional shape of the single fiber and the radius r of the inscribed circle is 1.0 to 1. .1, preferably in the range of 1.0 to 1.05. When the cross-sectional shape of a single fiber is a perfect circle, the surface area of the carbon fiber is smaller and the contact area with the resin is smaller than when it is not a perfect circle. Becomes slower and flame retardancy is further improved. In addition, when the cross-sectional shape of the single fiber is a perfect circle, during prepreg molding, process surfaces such as a decrease in strength due to single yarn breakage due to rubbing between single yarns or bundles of carbon fibers, generation of fuzz, and yarn breakage Trouble is difficult to occur. Examples of the carbon fiber having a perfect circular cross section include “Torayca (registered trademark)” T700S and “Torayca (registered trademark)” M30S manufactured by Toray Industries, Inc.
本発明の繊維強化複合材料用プリプレグは、繊維強化複合材料用プリプレグ全質量に対する繊維の含有質量(以下、Wfと表す)が50〜90%であることが好ましく、さらに60〜
85%であることが好ましく、さらには70〜85%であることがより好ましい。かかるWfが小さすぎると、難燃性を向上させる効果が十分ではなく、繊維強化複合材料に要求される諸特性を満たすことができない場合がある。また、かかるWfが大きすぎると、強化繊維とマトリックス樹脂の接着性が低下し、プリプレグを積層した際にプリプレグ同士が接着せず、得られる複合材料において層間で剥離してしまう場合がある。ここでいうWfは、JIS K7071(1988)にしたがって測定される繊維質量含有率を意味する。
The fiber-reinforced composite material prepreg of the present invention preferably has a fiber content mass (hereinafter referred to as Wf) of 50 to 90% with respect to the total mass of the fiber-reinforced composite material prepreg, and more preferably 60 to
It is preferably 85%, more preferably 70 to 85%. If the Wf is too small, the effect of improving the flame retardancy is not sufficient, and the various properties required for the fiber-reinforced composite material may not be satisfied. Moreover, when this Wf is too large, the adhesiveness between the reinforcing fiber and the matrix resin is lowered, and when the prepregs are laminated, the prepregs do not adhere to each other, and the resulting composite material may peel off between the layers. Wf here means the fiber mass content measured according to JIS K7071 (1988).
強化繊維の形態としては、一方向に引き揃えられた長繊維、二方向織物、多軸織物、不織布、マット、ニット、組み紐などが挙げられるが、これに限定されるものではない。ここでいう長繊維とは、実質的に10mm以上連続な単繊維もしくは繊維束を意味する。 Examples of the form of the reinforcing fiber include, but are not limited to, a long fiber aligned in one direction, a bi-directional woven fabric, a multiaxial woven fabric, a non-woven fabric, a mat, a knit, and a braid. The long fiber here means a single fiber or a fiber bundle substantially continuous for 10 mm or more.
一方向に引き揃えられた長繊維を用いた、いわゆる一方向プリプレグは、強化繊維の方向が揃っており、繊維の曲がりが少ないため繊維方向の強度利用率が高いため特に好ましい。また、一方向プリプレグは、複数のプリプレグを適切な積層構成で積層した後成形すると、繊維強化複合材料の各方面の弾性率、強度を自由に制御できるため特に好ましい。 A so-called unidirectional prepreg using long fibers aligned in one direction is particularly preferable because the directions of the reinforcing fibers are aligned, and the bending rate of the fibers is small, so that the strength utilization factor in the fiber direction is high. Further, the unidirectional prepreg is particularly preferable when a plurality of prepregs are laminated after being laminated in an appropriate laminated configuration because the elastic modulus and strength of each surface of the fiber-reinforced composite material can be freely controlled.
また、各種織物を用いた織物プリプレグも、強度、弾性率の異方性が少ない材料が得られること、表面に繊維織物の模様が浮かび意匠性に優れることから好ましい。複数種のプリプレグ、例えば一方向プリプレグと織物プリプレグの両方を用いて複合材料を成形することも可能である。 Further, a fabric prepreg using various fabrics is also preferable because a material having low strength and elastic anisotropy can be obtained, and a pattern of a fiber fabric is floated on the surface and is excellent in design. It is also possible to form composite materials using multiple types of prepregs, for example both unidirectional and woven prepregs.
次に、本発明の複合材料用プリプレグを得るに好適な方法について説明する。本発明の複合材料用プリプレグは、前記した熱硬化性樹脂組成物を強化繊維に含浸せしめるものであれば特に限定されないが、例えば熱硬化性樹脂組成物を、メチルエチルケトン、メタノールなどの溶媒に溶解して低粘度化し、強化繊維に含浸させるウェット法、あるいは、熱硬化性樹脂組成物を、実質的に溶媒を用いずに、加熱により低粘度化し、強化繊維に含浸させるホットメルト法などの方法により製造することができる。 Next, a method suitable for obtaining the composite material prepreg of the present invention will be described. The composite material prepreg of the present invention is not particularly limited as long as the above-described thermosetting resin composition is impregnated into the reinforcing fiber. For example, the thermosetting resin composition is dissolved in a solvent such as methyl ethyl ketone or methanol. By a wet method in which the viscosity is lowered and impregnated into the reinforcing fiber, or a hot melt method in which the thermosetting resin composition is reduced in viscosity by heating and impregnated into the reinforcing fiber substantially without using a solvent. Can be manufactured.
ウェット法では、強化繊維をマトリックス樹脂を含む液体に浸漬した後、引き上げ、オーブンなどを用いて溶媒を蒸発させてプリプレグを得ることができる。 In the wet method, a prepreg can be obtained by immersing reinforcing fibers in a liquid containing a matrix resin, and then pulling up and evaporating the solvent using an oven or the like.
ホットメルト法では、加熱により低粘度化した熱硬化性樹脂組成物を、直接強化繊維に含浸させる方法、あるいは一旦樹脂組成物を離型紙などの上にコーティングした樹脂フィルムをまず作製し、ついで強化繊維の両側あるいは片側からその樹脂フィルムを重ね、加熱加圧することにより熱硬化性樹脂組成物を強化繊維に含浸させてプリプレグを製造することができる。ホットメルト法では、プリプレグ中に残留する溶媒が実質的にないため、本発明では、より好ましく用いられる。 In the hot melt method, a method of directly impregnating a reinforcing fiber with a thermosetting resin composition whose viscosity has been reduced by heating, or a resin film in which the resin composition is once coated on release paper or the like is first produced and then reinforced. A prepreg can be manufactured by impregnating a reinforcing fiber with a thermosetting resin composition by overlapping the resin film from both sides or one side of the fiber and applying heat and pressure. In the hot melt method, since there is substantially no solvent remaining in the prepreg, it is more preferably used in the present invention.
また、プリプレグの取り扱い性を適切な範囲とするためには、強化繊維に熱硬化性樹脂組成物を含浸する工程において、熱硬化性樹脂組成物が到達する最高温度が、60℃〜150℃の範囲、より好ましくは、80℃〜130℃の範囲であることが良い。かかる最高温度が高すぎると、熱硬化性樹脂組成物中で硬化反応が部分的に進行し、未硬化樹脂のTgが上昇してしまい、得られるプリプレグにおいて適当なドレープ性を達成できない場合があり、また、かかる最高温度が低すぎると、強化繊維への十分な含浸が困難となる場合がある。 Moreover, in order to make the handleability of a prepreg into an appropriate range, in the process of impregnating the reinforcing fiber with the thermosetting resin composition, the maximum temperature reached by the thermosetting resin composition is 60 ° C to 150 ° C. It is good that it is the range, More preferably, it is the range of 80 to 130 degreeC. If the maximum temperature is too high, the curing reaction may partially proceed in the thermosetting resin composition, and the Tg of the uncured resin may increase, so that appropriate draping properties may not be achieved in the resulting prepreg. Moreover, when the maximum temperature is too low, it may be difficult to sufficiently impregnate the reinforcing fibers.
本発明のプリプレグは、熱硬化性樹脂組成物が必ずしも繊維束の内部まで含浸されている必要はなく、シート状に一方向に引き揃えた繊維や繊維織物の表面付近に熱硬化性樹脂組成物が局在化している態様であっても良い。 The prepreg of the present invention does not necessarily need to be impregnated with the thermosetting resin composition to the inside of the fiber bundle, and the thermosetting resin composition is near the surface of the fiber or fiber woven fabric arranged in one direction in a sheet shape. May be a mode in which is localized.
本発明のプリプレグを用いて繊維強化複合材料を成形するには、プリプレグを積層後、積層物に圧力を付与しながら、熱硬化性樹脂組成物を加熱硬化させる方法などを用いることができる。 In order to form a fiber-reinforced composite material using the prepreg of the present invention, a method of heat-curing the thermosetting resin composition while applying pressure to the laminate after laminating the prepreg can be used.
圧力を付与しながら熱硬化性樹脂組成物を加熱硬化させる方法には、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法などがある。 Examples of methods for heat-curing the thermosetting resin composition while applying pressure include a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, and an internal pressure molding method.
繊維強化複合材料を成形する温度としては、熱硬化性樹脂組成物に含まれる硬化剤の種類などよるが、通常80〜220℃が好ましい。かかる成形温度が低すぎると、十分な速硬化性が得られない場合があり、逆に高すぎると、熱歪みによる反りが発生しやすくなったりする場合がある。 The temperature at which the fiber-reinforced composite material is molded depends on the type of curing agent contained in the thermosetting resin composition, but is usually preferably 80 to 220 ° C. If the molding temperature is too low, sufficient fast curability may not be obtained. Conversely, if the molding temperature is too high, warping due to thermal strain may be likely to occur.
本発明で得られる繊維強化複合材料は、2mm以下の厚さで測定される難燃性が、UL94規格による測定で、V−1以上、好ましくはV−0という高い難燃性を有したものとなる。また、電気・電子機器の筐体として用いられる場合、さらに薄い肉厚で使用される場合がある可能性を想定すれば、厚さ1.5mm以下で、難燃性がV−1以上、好ましくはV−0という高い難燃性を有したものや、より薄い肉厚である、厚さ1.2mm以下とか、厚さ0.8mm以下、さらには厚さ0.5mm以下という場合でも、難燃性がV−1以上、とりわけV−0という高い難燃性を有したものとすることができる。 The fiber-reinforced composite material obtained by the present invention has a flame retardancy measured at a thickness of 2 mm or less, and has a high flame retardancy of V-1 or more, preferably V-0 as measured by UL94 standard. It becomes. In addition, when used as a casing of an electric / electronic device, assuming a possibility of being used with a thinner wall thickness, the thickness is 1.5 mm or less and the flame retardancy is V-1 or more, preferably Is difficult even if it has a high flame retardancy of V-0 or a thinner wall thickness of 1.2 mm or less, 0.8 mm or less, and even 0.5 mm or less. The flame retardancy is V-1 or higher, and in particular, V-0 has high flame retardancy.
ここでV−0及びV−1の難燃性とは、UL94規格(Underwriters Laboratories Inc.で考案された米国燃焼試験法)において、燃焼時間やその状態、延焼の有無、滴下(ドリップ)の有無やその滴下物の燃焼性などにより規定されているV−0及びV−1の条件を満たした難燃性を示す。 Here, the flame retardancy of V-0 and V-1 is the combustion time and its state, the presence or absence of fire spread, the presence or absence of dripping (drip) in the UL94 standard (American Combustion Test Method devised by Underwriters Laboratories Inc.) And flame retardancy satisfying the conditions of V-0 and V-1 defined by the flammability of the droplets and the drops.
以下、実施例により本発明をさらに具体的に説明する。なお、本実施例では、各種特性を次に示す方法で測定した。 Hereinafter, the present invention will be described more specifically with reference to examples. In this example, various characteristics were measured by the following methods.
(1)熱硬化性樹脂組成物のゲルタイム
熱硬化性樹脂組成物から2cm3をサンプルとして準備し、樹脂の硬化を追跡するためにキュラストメータV型(日合商事(株)製)を用いてゲルタイムを測定した。測定開始後、トルクが0.001N・mに達した時間をゲルタイムとした。
(1) Gel time of thermosetting resin composition 2 cm 3 was prepared from the thermosetting resin composition as a sample, and a curastometer V type (manufactured by Nigo Shoji Co., Ltd.) was used to track the curing of the resin. The gel time was measured. The time when the torque reached 0.001 N · m after the start of measurement was defined as the gel time.
(2)ガラス転移温度(Tg)
繊維強化複合材料から質量15mgの試験片をカットしてサンプルを準備し、JIS K7121(1987)記載の方法にしたがって、示差走査熱量計(DSC)を用いて測定した。昇温速度は40℃/minとし、DSC曲線が階段状変化を示す部分の中間点ガラス転移温度をTgとした。なお、本実施例では、示差走査熱量計として、Pyris DSC(パーキンエルマー・インスツルメント社製)を用いた。
(2) Glass transition temperature (Tg)
A sample having a mass of 15 mg was cut from the fiber-reinforced composite material to prepare a sample, and measured using a differential scanning calorimeter (DSC) according to the method described in JIS K7121 (1987). The heating rate was 40 ° C./min, and the midpoint glass transition temperature of the portion where the DSC curve showed a step-like change was Tg. In this example, Pyris DSC (manufactured by Perkin Elmer Instruments) was used as a differential scanning calorimeter.
(3) 難燃性
UL94規格に基づき、垂直燃焼試験により難燃性を評価した。成形した繊維強化複合材料から幅12.7±0.1mm、長さ127±1mmの試験片5本を切り出した。バーナーの炎の高さを19mmに調整し、垂直に保持した試験片中央下端を炎に10秒間さらした後、炎から離し燃焼時間を記録した。消炎後は、ただちにバーナー炎を更に10秒間当てて炎から離し燃焼時間を計測した。有炎滴下物(ドリップ)がなく、1回目、2回目とも消火までの時間が10秒以内、かつ5本の試験片に10回接炎した後の燃焼時間の合計が50秒以内ならばV−0、燃焼時間が30秒以内かつ5本の試験片に10回接炎した後の燃焼時間の合計が250秒以内であればV−1と判定した。また、V−1と同じ燃焼時間でも有炎滴下物がある場合はV−2、燃焼時間がそれより長い場合、あるいは試験片保持部まで燃焼した場合はV−outと判定した。
(3) Flame retardance Flame retardancy was evaluated by a vertical combustion test based on the UL94 standard. Five test pieces having a width of 12.7 ± 0.1 mm and a length of 127 ± 1 mm were cut out from the molded fiber-reinforced composite material. The height of the flame of the burner was adjusted to 19 mm, and the lower end of the center of the test piece held vertically was exposed to the flame for 10 seconds, then separated from the flame and the burning time was recorded. Immediately after extinguishing the flame, the burner flame was further applied for 10 seconds to separate it from the flame, and the combustion time was measured. If there is no flammable drop (drip) and the time until extinction is within 10 seconds in both the first and second times, and the total burning time after 10 flames contacted 5 times is within 50 seconds, V It was determined as V-1 if the combustion time was within 30 seconds and the total combustion time after contacting the five test pieces 10 times within 250 seconds. Moreover, it was determined as V-2 when there was a flammable drop even in the same combustion time as V-1, and as V-out when the combustion time was longer than that or when the test piece was burned up to the test piece holder.
(4)プリプレグのライフ
プリプレグを23℃環境下において、測定開始時と45日経過時のTg変化を比較し、次に示す判断基準で評価した。Tgは前記(2)と同様の方法で測定した。
○:Tg上昇が10℃より小さく、プリプレグのライフが長く安定性が良好。
△:Tg上昇が10〜15℃であり、プリプレグのライフがやや短い。
×:Tg上昇が15℃より大きく、プリプレグのライフが短い。
××:Tg上昇が30℃より大きく、硬化が進行しておりプリプレグを積層した際にプリプレグ同士が接着しない。
(5)複合材料の層間剪断強度(ILSS)
繊維強化複合材料から幅10.0±0.2mm、厚さ3.0±0.2mm、長さ21.0±1mmの試験片をカットしてサンプルを準備し、JIS K7078(1991)記載の方法にしたがってILSSを求めた。かかるILSSは、5個の試料について測定し、その平均強度を求めた。また測定については、室温乾燥状態(23℃、相対湿度50%)で行った。
(4) Life of prepreg The prepreg was evaluated in accordance with the following judgment criteria in a 23 ° C. environment by comparing Tg changes at the start of measurement and 45 days. Tg was measured by the same method as in (2) above.
◯: Tg increase is smaller than 10 ° C., prepreg life is long and stability is good.
(Triangle | delta): Tg raise is 10-15 degreeC, and the life of a prepreg is a little short.
X: Tg increase is larger than 15 ° C., and the life of the prepreg is short.
XX: Tg increase is larger than 30 ° C., curing is progressing, and the prepregs are not bonded to each other when the prepregs are laminated.
(5) Interlaminar shear strength (ILSS) of composite material
A sample was prepared by cutting a test piece having a width of 10.0 ± 0.2 mm, a thickness of 3.0 ± 0.2 mm, and a length of 21.0 ± 1 mm from the fiber reinforced composite material, and described in JIS K7078 (1991). ILSS was determined according to the method. The ILSS was measured for five samples and the average intensity was determined. The measurement was performed in a room temperature dry state (23 ° C., relative humidity 50%).
次に示す材料を、表1および表2に示す組成によりニーダーで混練して、各実施例、各比較例で用いる樹脂組成物を調整した。
[A]成分
次の構造を有するF−a型ベンゾオキサジン樹脂(四国化成工業(株)製)
The materials shown below were kneaded with a kneader according to the compositions shown in Table 1 and Table 2 to prepare resin compositions used in each Example and each Comparative Example.
[A] component Fa type benzoxazine resin having the following structure (manufactured by Shikoku Kasei Kogyo Co., Ltd.)
次の構造を有するP−d型ベンゾオキサジン樹脂(四国化成工業(株)製) Pd-type benzoxazine resin having the following structure (manufactured by Shikoku Kasei Kogyo Co., Ltd.)
次の構造を有するbis−S型ベンゾオキサジン樹脂(小西化学工業(株)製) Bis-S type benzoxazine resin having the following structure (manufactured by Konishi Chemical Industry Co., Ltd.)
[B]成分
DY9577(三塩化ホウ素オクチルアミン錯体、ハンツマン・アドバンスド・マテリアルズ(株)製)
p−トルエンスルホン酸メチルエステル(東京化成工業(株)製)
p−トルエンスルホン酸エチルエステル(東京化成工業(株)製)
その他成分
“フェノライト”(登録商標)TD2131(ノボラック型フェノール樹脂、融点80℃、大日本インキ化学工業(株)製)
上記のようにして調整した各樹脂組成物を、次に示す強化繊維の中から、表1に示すように組み合わせて実施例、比較例の各プリプレグを作製した。
強化繊維
炭素繊維:“トレカ”(登録商標)T700SC−12K−50C (引張強度4.9GPa、引張弾性率235GPa、繊維比重1.80、東レ(株)製)
ポリエチレン繊維:“ダイニーマ”(登録商標)SK60(東洋紡(株)製)
なお、それぞれのプリプレグは、次のようにして作製した。リバースロールコーターを用いて離型紙上に樹脂組成物を塗布して樹脂フィルムを作製した。樹脂フィルムの単位体積あたりの樹脂量は目的とするプリプレグのWfに合わせるものとし、Wfが65%、72%、75%、78%のときの樹脂フィルムの単位体積あたりの樹脂量は、それぞれ27g/m2、20g/m2、17g/m2、14g/m2であった。次に単位面積あたりの繊維重量が100g/m2となるようにシート状に一方向に整列させた強化繊維に前記樹脂フィルムを強化繊維の両面から重ね、加熱加圧して樹脂組成物を含浸させ、一方向プリプレグとした。
[B] component DY9577 (boron trichloride octylamine complex, manufactured by Huntsman Advanced Materials Co., Ltd.)
p-Toluenesulfonic acid methyl ester (manufactured by Tokyo Chemical Industry Co., Ltd.)
p-Toluenesulfonic acid ethyl ester (manufactured by Tokyo Chemical Industry Co., Ltd.)
Other components “Phenolite” (registered trademark) TD2131 (Novolak type phenolic resin, melting point 80 ° C., manufactured by Dainippon Ink & Chemicals, Inc.)
Each resin composition prepared as described above was combined as shown in Table 1 from the following reinforcing fibers to prepare prepregs of Examples and Comparative Examples.
Reinforcing fiber carbon fiber: "Torayca" (registered trademark) T700SC-12K-50C (tensile strength 4.9 GPa, tensile elastic modulus 235 GPa, fiber specific gravity 1.80, manufactured by Toray Industries, Inc.)
Polyethylene fiber: “Dyneema” (registered trademark) SK60 (manufactured by Toyobo Co., Ltd.)
Each prepreg was produced as follows. A resin film was prepared by applying the resin composition onto the release paper using a reverse roll coater. The amount of resin per unit volume of the resin film is adjusted to the Wf of the target prepreg, and when the Wf is 65%, 72%, 75%, and 78%, the resin amount per unit volume of the resin film is 27 g, respectively. / M 2 , 20 g / m 2 , 17 g / m 2 and 14 g / m 2 . Next, the resin film is laminated on both sides of the reinforcing fibers on the reinforcing fibers aligned in one direction in a sheet shape so that the fiber weight per unit area becomes 100 g / m 2, and heated and pressed to impregnate the resin composition. The unidirectional prepreg was used.
各実施例および比較例において、それぞれの一方向プリプレグを0°方向に揃えて積層し、加熱プレスを用いて160℃、圧力0.6MPaで10分間加熱加圧し、厚さ1.5mm、1.0mm、0.2mmの繊維強化複合材料板を得て、それぞれの難燃性を測定した。また、上記と同方法にて厚さ3.0mmの繊維強化複合材料を得て、ILSSを測定した。 In each of the examples and comparative examples, each unidirectional prepreg was laminated in the 0 ° direction and heated and pressed at 160 ° C. and a pressure of 0.6 MPa for 10 minutes using a heating press, and the thickness was 1.5 mm. Fiber reinforced composite material plates of 0 mm and 0.2 mm were obtained, and their flame retardancy was measured. Further, a fiber-reinforced composite material having a thickness of 3.0 mm was obtained by the same method as described above, and ILSS was measured.
結果を表1および表2に示す。なお、表中の樹脂組成物の数字は重量部を表す。実施例1〜8と比較例1との比較から、酸触媒を添加することによりベンゾオキサジン樹脂の硬化性が向上し、150℃におけるゲルタイムが5分以下となることがわかる。また、実施例1〜8と比較例4との比較から炭素繊維などの難燃性強化繊維を用いることによりV−0およびV−1が達成できることがわかる。さらに、実施例9、10と比較例6との比較から、ベンゾオキサジン樹脂の構造もしくは異なる構造を有するベンゾオキサジン樹脂を併用することに関わらず、酸触媒を添加することにより、150℃におけるゲルタイムが5分以下となることがわかる。 The results are shown in Tables 1 and 2. In addition, the number of the resin composition in a table | surface represents a weight part. From the comparison between Examples 1 to 8 and Comparative Example 1, it can be seen that by adding an acid catalyst, the curability of the benzoxazine resin is improved, and the gel time at 150 ° C. is 5 minutes or less. Moreover, it turns out from the comparison with Examples 1-8 and Comparative Example 4 that V-0 and V-1 can be achieved by using a flame-retardant reinforcing fiber such as carbon fiber. Further, from the comparison between Examples 9 and 10 and Comparative Example 6, the gel time at 150 ° C. was increased by adding the acid catalyst regardless of the use of a benzoxazine resin structure or a benzoxazine resin having a different structure. It turns out that it will be 5 minutes or less.
Claims (7)
[A]次の構造式(I)または(II)で表される単位構造を有するベンゾオキサジン樹脂
−C(CH3)2−、−CH(CH3)−、−S−、−SO2−、−CO−、−O−で表される基のいずれか、またはXを持たない構造から選ばれる1つである)
[B]酸触媒
[C]難燃性強化繊維 A prepreg for a composite material composed of a thermosetting resin composition containing the following [A] component and [B] component, and the following [C] component, with respect to 100 weight of the [A] component, [B] A prepreg for a composite material comprising 4 to 20 parts by weight of a component and having a gel time at 150 ° C. of 5 minutes or less.
[A] Benzoxazine resin having a unit structure represented by the following structural formula (I) or (II)
A group represented by —C (CH 3 ) 2 —, —CH (CH 3 ) —, —S—, —SO 2 —, —CO—, —O—, or a structure having no X is selected. Is one)
[B] Acid catalyst [C] Flame retardant reinforcing fiber
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006235041A JP5151095B2 (en) | 2006-08-31 | 2006-08-31 | Prepreg and fiber reinforced composites |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006235041A JP5151095B2 (en) | 2006-08-31 | 2006-08-31 | Prepreg and fiber reinforced composites |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008056795A true JP2008056795A (en) | 2008-03-13 |
JP5151095B2 JP5151095B2 (en) | 2013-02-27 |
Family
ID=39239925
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006235041A Expired - Fee Related JP5151095B2 (en) | 2006-08-31 | 2006-08-31 | Prepreg and fiber reinforced composites |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5151095B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010092723A1 (en) | 2009-02-12 | 2010-08-19 | 新日本石油株式会社 | Benzoxazine resin composition |
WO2011047939A1 (en) | 2009-10-22 | 2011-04-28 | Henkel Ag & Co. Kgaa | Curable composition comprising a benzoxazine compound and a sulfonic acid ester having a cyclic structure as a heat-activatable catalyst |
KR20130105525A (en) | 2012-03-16 | 2013-09-25 | 가부시끼가이샤 다이셀 | Resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material |
JP2016533417A (en) * | 2013-10-16 | 2016-10-27 | スリーエム イノベイティブ プロパティズ カンパニー | Benzoxazine polymerization |
CN107236249A (en) * | 2017-07-18 | 2017-10-10 | 宁波锐华新材料科技有限公司 | A kind of benzoxazine colophony based composites and preparation method thereof |
JP6493776B1 (en) * | 2017-04-27 | 2019-04-03 | Dic株式会社 | Sheet winding forming method |
CN117247654A (en) * | 2023-11-17 | 2023-12-19 | 西南石油大学 | Water-soluble benzoxazine and inorganic fiber composite aerogel and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10310678A (en) * | 1997-05-13 | 1998-11-24 | Hitachi Chem Co Ltd | Thermosetting resin composition |
JP2002128987A (en) * | 2000-10-30 | 2002-05-09 | Sumitomo Bakelite Co Ltd | Thermosetting resin composition |
JP2003147165A (en) * | 2001-08-29 | 2003-05-21 | Osaka City | Thermosetting resin composition |
JP2004285292A (en) * | 2003-03-25 | 2004-10-14 | Toho Tenax Co Ltd | Roving prepreg and epoxy resin composition for the same |
-
2006
- 2006-08-31 JP JP2006235041A patent/JP5151095B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10310678A (en) * | 1997-05-13 | 1998-11-24 | Hitachi Chem Co Ltd | Thermosetting resin composition |
JP2002128987A (en) * | 2000-10-30 | 2002-05-09 | Sumitomo Bakelite Co Ltd | Thermosetting resin composition |
JP2003147165A (en) * | 2001-08-29 | 2003-05-21 | Osaka City | Thermosetting resin composition |
JP2004285292A (en) * | 2003-03-25 | 2004-10-14 | Toho Tenax Co Ltd | Roving prepreg and epoxy resin composition for the same |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010092723A1 (en) | 2009-02-12 | 2010-08-19 | 新日本石油株式会社 | Benzoxazine resin composition |
WO2011047939A1 (en) | 2009-10-22 | 2011-04-28 | Henkel Ag & Co. Kgaa | Curable composition comprising a benzoxazine compound and a sulfonic acid ester having a cyclic structure as a heat-activatable catalyst |
JP2013508486A (en) * | 2009-10-22 | 2013-03-07 | ヘンケル・アクチェンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト・アウフ・アクチェン | Curable composition containing benzoxazine compound and sulfonate ester having cyclic structure as heat activation catalyst |
US8748563B2 (en) | 2009-10-22 | 2014-06-10 | Henkel Ag & Co. Kgaa | Curable compositions |
KR20130105525A (en) | 2012-03-16 | 2013-09-25 | 가부시끼가이샤 다이셀 | Resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material |
US10040905B2 (en) | 2013-10-16 | 2018-08-07 | 3M Innovative Properties Company | Benzoxazine polymerization |
JP2016533417A (en) * | 2013-10-16 | 2016-10-27 | スリーエム イノベイティブ プロパティズ カンパニー | Benzoxazine polymerization |
KR20190126174A (en) * | 2017-04-27 | 2019-11-08 | 디아이씨 가부시끼가이샤 | Sheet winding forming method |
JP6493776B1 (en) * | 2017-04-27 | 2019-04-03 | Dic株式会社 | Sheet winding forming method |
KR102183392B1 (en) * | 2017-04-27 | 2020-11-27 | 디아이씨 가부시끼가이샤 | Sheet winding forming method |
CN107236249A (en) * | 2017-07-18 | 2017-10-10 | 宁波锐华新材料科技有限公司 | A kind of benzoxazine colophony based composites and preparation method thereof |
CN117247654A (en) * | 2023-11-17 | 2023-12-19 | 西南石油大学 | Water-soluble benzoxazine and inorganic fiber composite aerogel and preparation method thereof |
CN117247654B (en) * | 2023-11-17 | 2024-02-09 | 西南石油大学 | Water-soluble benzoxazine and inorganic fiber composite aerogel and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5151095B2 (en) | 2013-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5614280B2 (en) | Epoxy resin composition, prepreg, carbon fiber reinforced composite material, and electronic / electrical component casing | |
JP2008214547A (en) | Prepreg for fiber-reinforced composite material, and fiber-reinforced composite material | |
JP5151095B2 (en) | Prepreg and fiber reinforced composites | |
JP5229252B2 (en) | Epoxy resin composition for carbon fiber reinforced composite material, prepreg, carbon fiber reinforced composite material, and electronic / electrical component casing | |
JP5250972B2 (en) | Epoxy resin composition for carbon fiber reinforced composite material, prepreg, integrated molded product, fiber reinforced composite material plate, and casing for electric / electronic device | |
JP5698000B2 (en) | Benzoxazine resin composition | |
JP2008094961A (en) | Benzoxazine resin composition | |
JP6666857B2 (en) | Flame-retardant epoxy resin composition, prepreg and laminate using the same | |
JP7394930B2 (en) | Epoxy resin containing phosphorylated anhydride | |
JP2005239939A (en) | Fiber reinforced resin composite material | |
JP2009173764A (en) | Prepreg and carbon fiber-reinforced composite material | |
JP2008214561A (en) | Resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material | |
WO2013056411A1 (en) | Epoxy resin composition and prepreg and copper clad laminate manufactured by using the same | |
JP4154234B2 (en) | Flame retardant epoxy resin composition, prepreg and fiber reinforced composite material using the same | |
KR20160079827A (en) | Curable compositions which form interpenetrating polymer networks | |
JP2011148938A (en) | Epoxy resin composition, prepreg and fiber-reinforced composite material | |
JP6520256B2 (en) | Carbon fiber reinforced thermoplastic, housing for electric and electronic devices | |
KR20220095214A (en) | Phthalonitrile resin, method for preparing same, and composition thereof | |
KR101769263B1 (en) | Thermosetting epoxy resin composition and use thereof | |
KR101814313B1 (en) | Thermosetting resin composition and use thereof | |
JP2005281634A (en) | Flame-retardant master batch for use in thermosetting resin, and method for producing thermosetting resin composition, prepreg, and fiber-reinforced composite material | |
JP2022553124A (en) | Flame retardant composition, prepreg and fiber reinforced composite | |
JP2022553125A (en) | Flame-retardant epoxy resin composition | |
JP2006077202A (en) | Flame-retardant prepreg | |
JP2024002608A (en) | Epoxy resin composition, and prepreg and structure using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090526 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20111027 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111202 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120814 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120821 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121119 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151214 Year of fee payment: 3 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5151095 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151214 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |