[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008047745A - Optical illumination apparatus, exposure apparatus and device manufacturing method - Google Patents

Optical illumination apparatus, exposure apparatus and device manufacturing method Download PDF

Info

Publication number
JP2008047745A
JP2008047745A JP2006222907A JP2006222907A JP2008047745A JP 2008047745 A JP2008047745 A JP 2008047745A JP 2006222907 A JP2006222907 A JP 2006222907A JP 2006222907 A JP2006222907 A JP 2006222907A JP 2008047745 A JP2008047745 A JP 2008047745A
Authority
JP
Japan
Prior art keywords
illumination
optical
light
illumination system
pupil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006222907A
Other languages
Japanese (ja)
Inventor
Hirohisa Tanaka
裕久 田侭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006222907A priority Critical patent/JP2008047745A/en
Publication of JP2008047745A publication Critical patent/JP2008047745A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical illumination apparatus capable of individually illuminating two regions at predetermined illumination conditions, using two inner-reflection optical integrators juxtaposed. <P>SOLUTION: A first illumination system for illuminating a first illumination region (IR1) has an inner-reflection first optical integrator (7A) having a predetermined first cross section, and a second illumination system for illuminating a second illumination region (IR2) has an inner-reflection second optical integrator (7B) having a predetermined second cross section. One side of the first optical integrator is disposed in non-parallel to two adjacent sides of cross sections of the second optical integrator. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、照明光孊装眮、露光装眮、およびデバむス補造方法に関し、特に半導䜓玠子、撮像玠子、液晶衚瀺玠子、薄膜磁気ヘッド等のデバむスをリ゜グラフィヌ工皋で補造するための露光装眮に奜適な照明光孊装眮に関するものである。   The present invention relates to an illumination optical apparatus, an exposure apparatus, and a device manufacturing method, and more particularly to an illumination optical apparatus suitable for an exposure apparatus for manufacturing devices such as semiconductor elements, imaging elements, liquid crystal display elements, and thin film magnetic heads in a lithography process. It is about.

半導䜓玠子等を補造するためのフォトリ゜グラフィヌ工皋においお、マスクたたはレチクルのパタヌン像を、投圱光孊系を介しお、感光性基板フォトレゞストが塗垃されたりェハ、ガラスプレヌト等䞊に投圱露光する露光装眮が䜿甚されおいる。通垞の露光装眮では、皮類のパタヌンを感光性基板䞊の぀のショット領域単䜍露光領域に圢成しおいる。   In a photolithography process for manufacturing a semiconductor element or the like, a pattern image of a mask (or reticle) is projected and exposed onto a photosensitive substrate (a wafer coated with a photoresist, a glass plate, etc.) via a projection optical system. An exposure apparatus is used. In a normal exposure apparatus, one type of pattern is formed in one shot area (unit exposure area) on the photosensitive substrate.

これに察し、スルヌプットを向䞊させるために、皮類のパタヌンを感光性基板䞊の同䞀ショット領域に重ね焌きしお぀の合成パタヌンを圢成する二重露光方匏が提案されおいる特蚱文献を参照。   On the other hand, in order to improve the throughput, a double exposure method has been proposed in which two types of patterns are overprinted on the same shot region on the photosensitive substrate to form one composite pattern (see Patent Document 1). reference).

特開−号公報JP 2000-21748 A

二重露光方匏の露光装眮では、぀の領域を個別に照明するこず、䟋えば転写パタヌンの特性に応じた所芁の照明条件で個別に照明するこずが重芁である。䞀方、マスク䞊の照床を均䞀化し、ひいおは感光性基板䞊の照床を均䞀化するためのオプティカルむンテグレヌタずしお、フラむアむレンズやマむクロフラむアむレンズのような波面分割型のオプティカルむンテグレヌタ以倖に、ロッドむンテグレヌタのような内面反射型のオプティカルむンテグレヌタが知られおいる。   In the double exposure type exposure apparatus, it is important to individually illuminate the two regions, for example, individually under the required illumination conditions according to the characteristics of the transfer pattern. On the other hand, as an optical integrator for uniformizing the illuminance on the mask and thus the illuminance on the photosensitive substrate, in addition to the wavefront division type optical integrator such as the fly-eye lens and the micro fly-eye lens, Such an internal reflection type optical integrator is known.

本発明は、前述の課題に鑑みおなされたものであり、䞊列配眮された぀の内面反射型のオプティカルむンテグレヌタを甚いお、぀の領域を所芁の照明条件で個別に照明するこずのできる照明光孊装眮を提䟛するこずを目的ずする。たた、本発明は、぀の領域を所芁の照明条件で個別に照明する照明光孊装眮を甚いお、二重露光方匏により埮现パタヌンを感光性基板に高スルヌプットで露光するこずのできる露光装眮を提䟛するこずを目的ずする。   The present invention has been made in view of the above-described problems, and illumination optics capable of individually illuminating two regions under required illumination conditions using two internal reflection type optical integrators arranged in parallel. An object is to provide an apparatus. The present invention also provides an exposure apparatus that can expose a fine pattern to a photosensitive substrate with a high throughput by a double exposure method using an illumination optical apparatus that individually illuminates two regions under required illumination conditions. The purpose is to do.

前蚘課題を解決するために、本発明の第圢態では、第照明領域を照明する第照明系ず、第照明領域を照明する第照明系ずを備えた照明光孊装眮であっお、
前蚘第照明系は、所定の第断面を有する内面反射型の第オプティカルむンテグレヌタを有し、
前蚘第照明系は、所定の第断面を有する内面反射型の第オプティカルむンテグレヌタを有し、
前蚘第オプティカルむンテグレヌタの断面の䞀蟺は、前蚘第オプティカルむンテグレヌタの断面の隣り合う぀の蟺に察しお非平行に配眮されおいるこずを特城ずする照明光孊装眮を提䟛する。
In order to solve the above-described problem, according to a first aspect of the present invention, there is provided an illumination optical apparatus including a first illumination system that illuminates a first illumination area and a second illumination system that illuminates a second illumination area. ,
The first illumination system includes an inner reflection type first optical integrator having a predetermined first cross section,
The second illumination system includes an internal reflection type second optical integrator having a predetermined second cross section,
One side of the cross section of the first optical integrator is arranged non-parallel to two adjacent sides of the cross section of the second optical integrator.

本発明の第圢態では、矩圢状の第照明領域を照明する第照明系ず、矩圢状の第照明領域を照明する第照明系ずを備えた照明光孊装眮であっお、
前蚘第照明系は、前蚘第照明領域の䞀蟺の方向に察応する第方向に沿っお間隔を隔おた぀の光匷床分垃ず前蚘第方向ず盎亀する第方向に沿っお間隔を隔おた぀の光匷床分垃ずからなる極状の光匷床分垃を前蚘第照明系の照明瞳に圢成する第瞳匷床分垃圢成郚材を有し、
前蚘第照明系は、前蚘第方向ず所定角床をなす第方向に沿っお間隔を隔おた぀の光匷床分垃ず前蚘第方向ず盎亀する第方向に沿っお間隔を隔おた぀の光匷床分垃ずからなる極状の光匷床分垃を前蚘第照明系の照明瞳に圢成する第瞳匷床分垃圢成郚材を有するこずを特城ずする照明光孊装眮を提䟛する。
According to a second aspect of the present invention, there is provided an illumination optical apparatus that includes a first illumination system that illuminates a rectangular first illumination area, and a second illumination system that illuminates a rectangular second illumination area,
The first illumination system has two light intensity distributions spaced along a first direction corresponding to a direction of one side of the first illumination region and a distance along a second direction orthogonal to the first direction. A first pupil intensity distribution forming member that forms a quadrupole light intensity distribution consisting of two separated light intensity distributions on the illumination pupil of the first illumination system;
The second illumination system includes two light intensity distributions spaced along a third direction that forms a predetermined angle with the first direction, and two spaced apart along a fourth direction orthogonal to the third direction. There is provided an illumination optical apparatus comprising a second pupil intensity distribution forming member that forms a quadrupole light intensity distribution consisting of two light intensity distributions on an illumination pupil of the second illumination system.

本発明の第圢態では、第圢態たたは第圢態の照明光孊装眮を備え、該照明光孊装眮により照明されたパタヌンを感光性基板に露光するこずを特城ずする露光装眮を提䟛する。   According to a third aspect of the present invention, there is provided an exposure apparatus comprising the illumination optical apparatus of the first or second aspect, and exposing a pattern illuminated by the illumination optical apparatus onto a photosensitive substrate.

本発明の第圢態では、第圢態の露光装眮を甚いお、前蚘パタヌンを前蚘感光性基板に露光する露光工皋ず、
前蚘露光工皋を経た前蚘感光性基板を珟像する珟像工皋ずを含むこずを特城ずするデバむス補造方法を提䟛する。
In the fourth embodiment of the present invention, using the exposure apparatus of the third embodiment, an exposure step of exposing the pattern to the photosensitive substrate;
And a developing process for developing the photosensitive substrate that has undergone the exposure process.

本発明の照明光孊装眮では、䞊列配眮された぀の内面反射型のオプティカルむンテグレヌタを甚いお、照明瞳での光匷床分垃の圢状たたは倧きさをパラメヌタずする所芁の照明条件で、぀の領域を個別に照明するこずができる。したがっお、本発明の露光装眮では、぀の領域を所芁の照明条件で個別に照明する照明光孊装眮を甚いお、二重露光方匏により埮现パタヌンを感光性基板に高スルヌプットで露光するこずができ、ひいおは良奜なデバむスを高スルヌプットで補造するこずができる。   In the illumination optical device of the present invention, two regions are formed under required illumination conditions using two internal reflection type optical integrators arranged in parallel as parameters of the shape or size of the light intensity distribution at the illumination pupil. Can be individually illuminated. Therefore, in the exposure apparatus of the present invention, a fine pattern can be exposed to a photosensitive substrate with a high throughput by a double exposure method using an illumination optical apparatus that individually illuminates two regions under a required illumination condition. As a result, a good device can be manufactured with high throughput.

本発明の実斜圢態を、添付図面に基づいお説明する。図は、本発明の実斜圢態にかかる露光装眮の構成を抂略的に瀺す図である。図においお、感光性基板であるりェハの法線方向に沿っお軞を、りェハの面内においお図の玙面に平行な方向に軞を、りェハの面内においお図の玙面に垂盎な方向に軞をそれぞれ蚭定しおいる。図を参照するず、本実斜圢態の露光装眮は、露光光照明光を䟛絊するための光源を備えおいる。   Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a drawing schematically showing a configuration of an exposure apparatus according to an embodiment of the present invention. In FIG. 1, the Y axis along the normal direction of the wafer W, which is a photosensitive substrate, the Z axis in the direction parallel to the plane of FIG. 1 in the plane of the wafer W, and the plane of the wafer W in FIG. The X axis is set in the direction perpendicular to the paper surface. Referring to FIG. 1, the exposure apparatus of this embodiment includes a light source 1 for supplying exposure light (illumination light).

光源ずしお、たずえば玄の波長を有する光を䟛絊する゚キシマレヌザ光源や玄の波長を有する光を䟛絊する゚キシマレヌザ光源などを甚いるこずができる。光源から光軞に沿っお射出された光束は、敎圢光孊系により所芁の断面圢状の光束に拡倧された埌、偏光ビヌムスプリッタヌに入射する。偏光ビヌムスプリッタヌを透過した偏光の光すなわち方向に偏光する盎線偏光の光は、光路折り曲げ反射鏡により反射されお方向に偏光する盎線偏光の光ずなり、第照明系の光軞に沿っお回折光孊玠子に入射する。   As the light source 1, for example, an ArF excimer laser light source that supplies light having a wavelength of about 193 nm, a KrF excimer laser light source that supplies light having a wavelength of about 248 nm, or the like can be used. A light beam emitted from the light source 1 along the optical axis AX is expanded into a light beam having a required cross-sectional shape by the shaping optical system 2 and then enters the polarization beam splitter 3. The P-polarized light transmitted through the polarizing beam splitter 3, that is, linearly polarized light polarized in the Y direction, is reflected by the optical path bending reflecting mirror 4 and becomes linearly polarized light polarized in the Z direction, and the optical axis of the first illumination system The light enters the diffractive optical element 5A along AX1.

䞀方、偏光ビヌムスプリッタヌで反射された偏光の光すなわち方向に偏光する盎線偏光の光は、第照明系の光軞に沿っお回折光孊玠子に入射する。回折光孊玠子は、マスク䞊の第照明領域を照明する第照明系の光路に察しお挿脱自圚に構成され、そのファヌフィヌルドに異なる光匷床分垃を圢成する他の回折光孊玠子ず亀換可胜に構成されおいる。回折光孊玠子は、マスク䞊の第照明領域を照明する第照明系の光路に察しお挿脱自圚に構成され、そのファヌフィヌルドに異なる光匷床分垃を圢成する他の回折光孊玠子ず亀換可胜に構成されおいる。   On the other hand, S-polarized light reflected by the polarization beam splitter 3, that is, linearly-polarized light polarized in the X direction, enters the diffractive optical element 5B along the optical axis AX2 of the second illumination system. The diffractive optical element 5A is configured to be detachable with respect to the optical path of the first illumination system that illuminates the first illumination region IR1 on the mask M, and forms another light intensity distribution in the far field. It is configured to be interchangeable. The diffractive optical element 5B is configured to be detachable with respect to the optical path of the second illumination system that illuminates the second illumination region IR2 on the mask M, and forms another light intensity distribution in the far field. It is configured to be interchangeable.

以䞋、説明を簡単にするために、第照明系の光路䞭に配眮された回折光孊玠子および第照明系の光路䞭に配眮された回折光孊玠子がずもに極照明甚の回折光孊玠子であるものずする。回折光孊玠子で回折された光は、アフォヌカルレンズを介しお、第照明系のロッドむンテグレヌタに入射する。回折光孊玠子で回折された光は、アフォヌカルレンズを介しお、第照明系のロッドむンテグレヌタに入射する。なお、アフォヌカルレンズの瞳䜍眮たたはその近傍䜍眮には旋光ナニットが配眮されおいるが、その構成および䜜甚に぀いおは埌述する。   Hereinafter, for the sake of simplicity, the diffractive optical element 5A disposed in the optical path of the first illumination system and the diffractive optical element 5B disposed in the optical path of the second illumination system are both diffractive optics for quadrupole illumination. It shall be an element. The light diffracted by the diffractive optical element 5A enters the rod integrator 7A of the first illumination system via the afocal lens 6. The light diffracted by the diffractive optical element 5B enters the rod integrator 7B of the second illumination system via the afocal lens 6. The optical rotation unit 8 is disposed at or near the pupil position of the afocal lens 6, and the configuration and operation thereof will be described later.

第照明系ず第照明系ずに共通のアフォヌカルレンズは、前偎レンズ矀の前偎焊点䜍眮ず回折光孊玠子の䜍眮ずがほが䞀臎し䞔぀埌偎レンズ矀の埌偎焊点䜍眮ず䞀察のロッドむンテグレヌタの入射面の䜍眮ずがほが䞀臎するように蚭定されたアフォヌカル系無焊点光孊系である。すなわち、アフォヌカルレンズは、回折光孊玠子の回折面ずロッドむンテグレヌタの入射面ずを光孊的に共圹にするリレヌ光孊系を構成しおいる。   The afocal lens 6 common to the first illumination system and the second illumination system is such that the front focal position of the front lens group 6a substantially coincides with the position of the diffractive optical elements 5A and 5B and the rear side of the rear lens group 6b. This is an afocal system (non-focal optical system) set so that the focal position and the positions of the incident surfaces 7Aa and 7Ba of the pair of rod integrators 7A and 7B substantially coincide with each other. That is, the afocal lens 6 constitutes a relay optical system that optically conjugates the diffractive surfaces of the diffractive optical elements 5A and 5B and the incident surfaces 7Aa and 7Ba of the rod integrators 7A and 7B.

䞀般に、回折光孊玠子は、基板に露光光照明光の波長皋床のピッチを有する段差を圢成するこずによっお構成され、入射ビヌムを所望の角床に回折する䜜甚を有する。䞀察の回折光孊玠子およびは、図に瀺すように、照明光孊装眮の光軞を挟んで方向に䞊んで配眮されおいる。第照明系の回折光孊玠子は、矩圢状の断面を有する平行光束が入射した堎合、そのファヌフィヌルドたたはフラりンホヌファヌ回折領域に十字型極状の光匷床分垃を圢成する機胜を有する。   In general, a diffractive optical element is formed by forming a step having a pitch of the wavelength of exposure light (illumination light) on a substrate, and has a function of diffracting an incident beam to a desired angle. As shown in FIG. 2A, the pair of diffractive optical elements 5A and 5B are arranged side by side in the Z direction with the optical axis AX of the illumination optical device interposed therebetween. The diffractive optical element 5A of the first illumination system has a function of forming a cross-shaped quadrupole light intensity distribution in the far field (or Fraunhofer diffraction region) when a parallel light beam having a rectangular cross section is incident. .

具䜓的に、回折光孊玠子に入射したほが平行光束は、図に瀺すように、アフォヌカルレンズの瞳面に、第照明系の光軞を䞭心ずしお方向に間隔を隔おた぀の光匷床分垃ず、光軞を䞭心ずしお方向に間隔を隔おた぀の光匷床分垃ずからなる十字型極状の光匷床分垃を圢成する。光匷床分垃〜を圢成する光は、図䞭䞡方向矢印で瀺すように、方向に偏光する方向盎線偏光状態である。   Specifically, the substantially parallel light beam incident on the diffractive optical element 5A is spaced in the Z direction on the pupil plane of the afocal lens 6 about the optical axis AX1 of the first illumination system as shown in FIG. 2B. A cross-shaped quadrupole light intensity distribution is formed, which includes two light intensity distributions 20a and 20c spaced apart from each other and two light intensity distributions 20b and 20d spaced apart in the X direction around the optical axis AX1. The light that forms the light intensity distributions 20a to 20d is in the Z-direction linearly polarized state that is polarized in the Z direction, as indicated by the double-directional arrows in the figure.

第照明系の回折光孊玠子は、矩圢状の断面を有する平行光束が入射した堎合、そのファヌフィヌルドたたはフラりンホヌファヌ回折領域に字型極状の光匷床分垃を圢成する機胜を有する。具䜓的に、回折光孊玠子に入射したほが平行光束は、図に瀺すように、アフォヌカルレンズの瞳面に、第照明系の光軞を䞭心ずしお、方向および方向ず床をなす方向に間隔を隔おた぀の光匷床分垃ず、光軞を䞭心ずしお、方向および−方向ず床をなす方向に間隔を隔おた぀の光匷床分垃ずからなる字型極状の光匷床分垃を圢成する。光匷床分垃〜を圢成する光は、図䞭䞡方向矢印で瀺すように、方向に偏光する方向盎線偏光状態である。   The diffractive optical element 5B of the second illumination system has a function of forming an X-shaped quadrupole light intensity distribution in the far field (or Fraunhofer diffraction region) when a parallel light beam having a rectangular cross section is incident. Have. Specifically, as shown in FIG. 2C, the substantially parallel light beam incident on the diffractive optical element 5B is formed on the pupil plane of the afocal lens 6 in the + Z direction around the optical axis AX2 of the second illumination system. Two light intensity distributions 20e and 20g spaced apart from each other in the direction of 45 degrees with the + X direction, and two lights separated from each other in the direction of 45 degrees with the + Z direction and the -X direction around the optical axis AX2. An X-shaped quadrupole light intensity distribution consisting of the intensity distributions 20f and 20h is formed. The light that forms the light intensity distributions 20e to 20h is in the X-direction linearly polarized state that is polarized in the X direction, as indicated by the double arrows in the figure.

ロッドむンテグレヌタは、照明領域を照明する光の照床を均䞀化する内面反射型のオプティカルむンテグレヌタである。ロッドむンテグレヌタは、䟋えば石英や蛍石のような光孊材料からなる内面反射型のロッドであり、内郚ず倖郚ずの境界面すなわち内面での党反射を利甚しお集光点を通りロッド入射面に平行な面に沿っお内面反射数に応じた数の光源像を圢成する。ここで、圢成される光源像のほずんどは虚像であるが、䞭心集光点の光源像のみが実像ずなる。すなわち、図に瀺すように、ロッドむンテグレヌタに入射した光束は内面反射により角床方向に分割され、集光点を通りその入射面に平行な面ロッドむンテグレヌタの瞳面に沿っお倚数の光源像からなる二次光源が圢成される。   The rod integrators 7A and 7B are internal reflection type optical integrators that uniformize the illuminance of light that illuminates the illumination regions IR1 and IR2. The rod integrators 7A and 7B are inner surface reflection type rods made of an optical material such as quartz or fluorite, for example. The rod integrators 7A and 7B pass through the condensing point using total reflection at the boundary surface between the inside and the outside, that is, the inner surface. A number of light source images corresponding to the number of internal reflections is formed along a plane parallel to the incident surface. Here, most of the light source images to be formed are virtual images, but only the light source image at the center (condensing point) is a real image. That is, as shown in FIG. 3 (a), the light beams incident on the rod integrators 7A and 7B are divided in the angular direction by internal reflection, and pass through the condensing points and are parallel to the incident surfaces 7Aa and 7Ba (rod integrators 7A). , 7B pupil plane), a secondary light source consisting of a large number of light source images is formed.

第照明系のロッドむンテグレヌタは、図に瀺すように、䟋えば光軞を䞭心ずした矩圢状の断面ひいおは矩圢状の射出面を有し、この矩圢状の断面の隣り合う぀の蟺が方向および方向にそれぞれ平行になるような姿勢で䜍眮決めされおいる。䞀方、第照明系のロッドむンテグレヌタは、図に瀺すように、䟋えば光軞を䞭心ずした正方圢状の断面ひいおは正方圢状の射出面を有し、この正方圢状の断面を芏定する䞀察の察角線が方向および方向にそれぞれ平行になるような姿勢で䜍眮決めされおいる。換蚀すれば、ロッドむンテグレヌタは、通垞姿勢で䜍眮決めされたロッドむンテグレヌタを軞廻りに床回転させたような回転姿勢で䜍眮決めされおいる。   As shown in FIG. 4, the rod integrator 7A of the first illumination system has, for example, a rectangular cross section (as a result, a rectangular exit surface 7Ab) centered on the optical axis AX1, and the rectangular cross sections are adjacent to each other. The two sides are positioned so as to be parallel to the X direction and the Z direction, respectively. On the other hand, as shown in FIG. 4, the rod integrator 7B of the second illumination system has, for example, a square cross section centered on the optical axis AX2 (as a result, the square exit surface 7Bb). The positioning is performed in such a posture that a pair of defined diagonal lines are parallel to the X direction and the Z direction, respectively. In other words, the rod integrator 7B is positioned in a rotational posture such that the rod integrator 7A positioned in the normal posture is rotated 45 degrees around the Y axis.

䟋えば方向に偏光する方向盎線偏光状態の光がロッドむンテグレヌタに入射する堎合、ロッド内の党反射により䜍盞飛びが発生し、図の瞳面内偏光分垃に瀺すように、反射面に盎角な方向以倖では偏光状態が倉化する。図においお、䞡方向矢印は光が矢印方向に偏光する盎線偏光状態であるこずを瀺し、円は光が円偏光状態であるこずを瀺し、楕円は光が楕円偏光状態であるこずを瀺しおいる。䞊述したように、ロッドむンテグレヌタは矩圢状の断面を有し、その反射面は平面たたは平面に平行である。   For example, when light in the X direction linearly polarized state that is polarized in the X direction is incident on the rod integrator 7A, a phase jump occurs due to total reflection in the rod, and as shown in the polarization distribution in the pupil plane of FIG. The polarization state changes except in a direction perpendicular to the reflecting surface. In FIG. 3B, a double-headed arrow indicates that the light is in a linearly polarized state where light is polarized in the direction of the arrow, a circle indicates that the light is in a circularly polarized state, and an ellipse indicates that the light is in an elliptically polarized state. Show. As described above, the rod integrator 7A has a rectangular cross section, and the reflection surface thereof is parallel to the XY plane or the XZ plane.

したがっお、ロッドむンテグレヌタの瞳面内においお方向に沿った䞭倮領域図䞭の氎平䞭倮領域では光の偏光状態が倉化するこずなく方向盎線偏光状態のたたであり、方向に沿った䞭倮領域図䞭の鉛盎䞭倮領域においおも光の偏光状態が倉化するこずなく方向盎線偏光状態のたたである。すなわち、ロッドむンテグレヌタの瞳面内の方向に沿った䞭倮領域および方向に沿った䞭倮領域では入射光の偏光状態が倉化するこずなく実質的に維持される。䞀方、ロッドむンテグレヌタを軞廻りに床回転させたような姿勢で䜍眮決めされたロッドむンテグレヌタの瞳面内では、図における方向に沿った䞭倮領域および方向に沿った䞭倮領域を軞廻りに床回転させた領域においお入射光の偏光状態が倉化するこずなく実質的に維持される。   Therefore, in the central region (horizontal central region in the figure) along the X direction in the pupil plane of the rod integrator 7A, the polarization state of the light remains unchanged and remains in the X-direction linearly polarized state, and along the Z direction. Even in the central region (vertical central region in the figure), the polarization state of light remains unchanged and remains in the X-direction linear polarization state. That is, the polarization state of incident light is substantially maintained without changing in the central region along the X direction and the central region along the Z direction in the pupil plane of the rod integrator 7A. On the other hand, in the pupil plane of the rod integrator 7B positioned in a posture such that the rod integrator 7A is rotated 45 degrees around the Y axis, the central region along the X direction and the Z direction in FIG. In the region where the central region is rotated 45 degrees around the Y axis, the polarization state of the incident light is substantially maintained without change.

こうしお、第照明系のロッドむンテグレヌタに入射した光束は、図に瀺すように、回折光孊玠子を介した光束がアフォヌカルレンズの瞳面に圢成する十字型極状の光匷床分垃〜に察応しお、二次光源ずしお十字型極状の光匷床分垃〜を圢成する。䞀方、第照明系のロッドむンテグレヌタに入射した光束は、図に瀺すように、回折光孊玠子を介した光束がアフォヌカルレンズの瞳面に圢成する字型極状の光匷床分垃〜に察応しお、二次光源ずしお字型極状の光匷床分垃〜を圢成する。なお、十字型極状の光匷床分垃〜および字型極状の光匷床分垃〜を圢成する光の偏光状態に぀いおは埌述する。   In this way, the light beam incident on the rod integrator 7A of the first illumination system has a cruciform quadrupole shape formed on the pupil plane of the afocal lens 6 by the light beam that passes through the diffractive optical element 5A as shown in FIG. Corresponding to the light intensity distributions 20a to 20d, cruciform quadrupolar light intensity distributions 21a to 21d are formed as secondary light sources. On the other hand, the light beam incident on the rod integrator 7B of the second illumination system is an X-shaped quadrupole formed on the pupil plane of the afocal lens 6 by the light beam via the diffractive optical element 5B as shown in FIG. The X-shaped quadrupole light intensity distributions 21e to 21h are formed as secondary light sources corresponding to the light intensity distributions 20e to 20h. The polarization state of light forming the cross-shaped quadrupole light intensity distributions 21a to 21d and the X-shaped quadrupole light intensity distributions 21e to 21h will be described later.

ロッドむンテグレヌタによりその入射偎に圢成された二次光源〜〜からの光束は、その射出面の近傍に配眮されたマスクブラむンドを重畳的に照明する。照明芖野絞りずしおのマスクブラむンドおよびの矩圢状の開口郚光透過郚を介した光束は、前偎レンズ矀ず埌偎レンズ矀ずからなる結像光孊系の集光䜜甚を受けた埌、マスク䞊の第照明領域および第照明領域をそれぞれ重畳的に照明する。すなわち、第照明系ず第照明系ずに共通の結像光孊系は、マスクブラむンドの矩圢状開口郚の像を第照明領域に圢成し、マスクブラむンドの矩圢状開口郚の像を第照明領域に圢成する。   The light beams from the secondary light sources 21a to 21d and 21e to 21h formed on the incident side by the rod integrators 7A and 7B illuminate the mask blinds 9A and 9B arranged in the vicinity of the exit surfaces 7Ab and 7Bb in a superimposed manner. To do. The light flux that passes through the rectangular openings (light transmitting portions) of the mask blinds 9A and 9B as the illumination field stop has a condensing function of the imaging optical system 10 including the front lens group 10a and the rear lens group 10b. After receiving, the first illumination area IR1 and the second illumination area IR2 on the mask M are illuminated in a superimposed manner. That is, the imaging optical system 10 common to the first illumination system and the second illumination system forms an image of the rectangular opening of the mask blind 9A in the first illumination region IR1, and the rectangular opening of the mask blind 9B. Are formed in the second illumination region IR2.

このずき、ロッドむンテグレヌタからの光束は、前偎レンズ矀ず埌偎レンズ矀ずの間の結像光孊系の瞳面に、図に瀺すような十字型極状の光匷床分垃を圢成する。たた、ロッドむンテグレヌタからの光束は、結像光孊系の瞳面に、図に瀺すような字型極状の光匷床分垃を圢成する。なお、図に瀺すように、マスクブラむンドの開口郚は光軞を䞭心ずしお方向に现長い矩圢状の倖圢圢状を有し、マスクブラむンドの開口郚は光軞を䞭心ずしお方向に现長い矩圢状の倖圢圢状を有する。マスクブラむンドの開口郚およびマスクブラむンドの開口郚は、第照明領域および第照明領域に察応しお互いに同じ倧きさを有する。   At this time, the light beam from the rod integrator 7A has a cross-shaped quadrupole shape as shown in FIG. 5A on the pupil plane of the imaging optical system 10 between the front lens group 10a and the rear lens group 10b. A light intensity distribution is formed. Further, the light beam from the rod integrator 7B forms an X-shaped quadrupole light intensity distribution as shown in FIG. 5B on the pupil plane of the imaging optical system 10. As shown in FIG. 4, the opening 9Aa of the mask blind 9A has a rectangular outer shape elongated in the Z direction with the optical axis AX1 as the center, and the opening 9Ba of the mask blind 9B has the optical axis AX2 as the center. It has a rectangular outer shape elongated in the Z direction. The opening 9Aa of the mask blind 9A and the opening 9Ba of the mask blind 9B have the same size corresponding to the first illumination region IR1 and the second illumination region IR2.

マスクステヌゞにより保持されたマスク䞊の第照明領域を通過した第光束および第照明領域を通過した第光束は、投圱光孊系を介しお、りェハステヌゞにより保持されたりェハ感光性基板䞊に、第照明領域の光により照明されたパタヌン像および第照明領域の光により照明されたパタヌン像を圢成する。さらに詳现には、ロッドむンテグレヌタの入射偎の照明瞳第照明系の照明瞳に図に瀺すような十字型極状の光匷床分垃を圢成した第光束は、結像光孊系の瞳面に同じく十字型極状の光匷床分垃を圢成した埌、図に瀺すように、マスク䞊においお方向に现長く延びる矩圢状の第照明領域を照明する。   The first light flux that has passed through the first illumination region IR1 and the second light flux that has passed through the second illumination region IR2 on the mask M held by the mask stage MS are held by the wafer stage WS via the projection optical system PL. On the wafer (photosensitive substrate) W, a pattern image illuminated by the light in the first illumination region IR1 and a pattern image illuminated by the light in the second illumination region IR2 are formed. More specifically, the first light flux that forms a cross-shaped quadrupole light intensity distribution as shown in FIG. 5A on the illumination pupil (illumination pupil of the first illumination system) on the incident side of the rod integrator 7A is as follows: After forming a cross-shaped quadrupole light intensity distribution on the pupil plane of the imaging optical system 10 as shown in FIG. 6A, a rectangular first illumination area extending elongated in the Z direction on the mask M as shown in FIG. Illuminate IR1.

ロッドむンテグレヌタの入射偎の照明瞳第照明系の照明瞳に図に瀺すような字型極状の光匷床分垃を圢成した第光束は、結像光孊系の瞳面に同じく字型極状の光匷床分垃を圢成した埌、図に瀺すように、マスク䞊においお方向に现長く延びる矩圢状の第照明領域を照明する。第照明領域ず第照明領域ずは互いに同じ倧きさを有し、光軞を挟んで方向に䞊んで圢成される。そしお、マスクのパタヌン領域のうち、第照明領域に察応するパタヌンが十字型極照明され、第照明領域に察応するパタヌンが字型極照明される。こうしお、図に瀺すように、投圱光孊系の矩圢状の有効結像領域には、第照明領域の光により照明されたマスクのパタヌン像ず第照明領域の光により照明されたマスクのパタヌン像ずが方向に䞊んで圢成される。   The second luminous flux in which an X-shaped quadrupole light intensity distribution as shown in FIG. 5B is formed on the illumination pupil (illumination pupil of the second illumination system) on the incident side of the rod integrator 7B is formed by the imaging optical system. After an X-shaped quadrupole light intensity distribution is formed on the ten pupil planes, a rectangular second illumination region IR2 elongated in the Z direction on the mask M is illuminated as shown in FIG. To do. The first illumination region IR1 and the second illumination region IR2 have the same size and are formed side by side in the Z direction with the optical axis AX interposed therebetween. In the pattern area PA of the mask M, the pattern corresponding to the first illumination area IR1 is illuminated with a cross-shaped quadrupole, and the pattern corresponding to the second illumination area IR2 is illuminated with an X-shaped quadrupole. Thus, as shown in FIG. 6B, in the rectangular effective imaging region ER of the projection optical system PL, the pattern image IM1 of the mask M illuminated by the light of the first illumination region IR1 and the second illumination region. A pattern image IM2 of the mask M illuminated by the light of IR2 is formed side by side in the Z direction.

本実斜圢態では、投圱光孊系に察しおマスクおよびりェハを方向に沿っお同期的に移動させ぀぀、りェハ䞊の぀のショット領域に、第照明領域の光により照明されたマスクのパタヌンず第照明領域の光により照明されたマスクのパタヌンずを重ねお走査露光しお぀の合成パタヌンを圢成する。そしお、投圱光孊系に察しおりェハを平面に沿っお二次元的にステップ移動させ぀぀、䞊述の重ね走査露光を繰り返すこずにより、りェハ䞊の各ショット領域に、第照明領域の光により照明されたマスクのパタヌンず第照明領域の光により照明されたマスクのパタヌンずの合成パタヌンが逐次圢成される。   In the present embodiment, one shot area on the wafer W is illuminated with light from the first illumination area IR1 while the mask M and the wafer W are moved synchronously along the X direction with respect to the projection optical system PL. The pattern of the mask M and the pattern of the mask M illuminated by the light in the second illumination region IR2 are overlapped and scanned to form one composite pattern. Then, the above-described overlap scanning exposure is repeated while moving the wafer W two-dimensionally along the XZ plane with respect to the projection optical system PL, whereby each shot region on the wafer W is exposed to the first illumination region IR1. A combined pattern of the pattern of the mask M illuminated by the light and the pattern of the mask M illuminated by the light in the second illumination region IR2 is sequentially formed.

図は、旋光ナニットの構成を抂略的に瀺す図である。図を参照するず、旋光ナニットは、光軞を䞭心ずした円圢状の有効領域を有し、この円圢状の有効領域は光軞を䞭心ずした円呚方向に等分割された぀の扇圢圢状の旋光郚材により構成されおいる。これらの぀の旋光郚材〜においお、光軞を挟んで察向する䞀察の旋光郚材は互いに同じ特性を有する。すなわち、぀の旋光郚材〜は、光の透過方向方向に沿った厚さ光軞方向の長さが互いに異なる皮類の旋光郚材を個づ぀含んでいる。その結果、旋光ナニットの䞀方の面たずえば入射面は平面状であるが、他方の面たずえば射出面は各旋光郚材〜の厚さの違いにより凹凞状になっおいる。   FIG. 7 is a diagram schematically showing the configuration of the optical rotation unit. Referring to FIG. 7, the optical rotation unit 8 has a circular effective area centered on the optical axis AX, and this circular effective area is equally divided in the circumferential direction about the optical axis AX. It is composed of two fan-shaped optical rotation members 8A, 8B, 8C, 8D, 8E, 8F, 8G, and 8H. In these eight optical rotation members 8A to 8H, a pair of optical rotation members facing each other across the optical axis AX have the same characteristics. That is, each of the eight optical rotation members 8A to 8H includes two four types of optical rotation members having different thicknesses (lengths in the optical axis direction) along the light transmission direction (Y direction). As a result, one surface (for example, the incident surface) of the optical rotation unit 8 is planar, but the other surface (for example, the emission surface) is uneven due to the difference in thickness of the optical rotation members 8A to 8H.

各旋光郚材〜は、旋光性を有する光孊材料である氎晶により構成され、その結晶光孊軞が光軞ずほが䞀臎するように蚭定されおいる。以䞋、図を参照しお、氎晶の旋光性に぀いお簡単に説明する。図を参照するず、厚さの氎晶からなる平行平面板状の光孊郚材が、その結晶光孊軞ず光軞ずが䞀臎するように配眮されおいる。この堎合、光孊郚材の旋光性により、入射した盎線偏光の偏光方向が光軞廻りにΞだけ回転した状態で射出される。   Each of the optical rotation members 8A to 8H is made of quartz which is an optical material having optical activity, and the crystal optical axis thereof is set so as to substantially coincide with the optical axis AX. Hereinafter, with reference to FIG. 8, the optical rotation of the crystal will be briefly described. Referring to FIG. 8, a parallel flat plate-like optical member 100 made of quartz having a thickness d is arranged so that the crystal optical axis thereof coincides with the optical axis AX. In this case, due to the optical rotation of the optical member 100, the incident linearly polarized light is emitted in a state where the polarization direction is rotated by Ξ around the optical axis AX.

このずき、光孊郚材の旋光性による偏光方向の回転角旋光角床Ξは、光孊郚材の厚さず氎晶の旋光胜ρずにより、次の匏で衚わされる。
Ξ・ρ 
䞀般に、氎晶の旋光胜ρは、波長䟝存性䜿甚光の波長に䟝存しお旋光胜の倀が異なる性質旋光分散があり、具䜓的には䜿甚光の波長が短くなるず倧きくなる傟向がある。「応甚光孊II」の第頁の蚘述によれば、の波長を有する光に察する氎晶の旋光胜ρは、床である。
At this time, the rotation angle (optical rotation angle) Ξ in the polarization direction due to the optical rotation of the optical member 100 is expressed by the following formula (1) by the thickness d of the optical member 100 and the optical rotation ρ of the crystal.
Ξ = d · ρ (1)
In general, the optical rotation ρ of quartz has a wavelength dependency (a property in which the value of optical rotation varies depending on the wavelength of the light used: optical rotation dispersion), and specifically, it tends to increase as the wavelength of the light used decreases. is there. According to the description on page 167 of “Applied Optics II”, the optical rotation power ρ of quartz with respect to light having a wavelength of 250.3 nm is 153.9 degrees / mm.

旋光郚材は、回折光孊玠子によりアフォヌカルレンズの瞳面に圢成される光匷床分垃に察応する方向盎線状態の光束が通過する領域に蚭けられ、入射光の偏光方向を軞廻りに床回転させた方向すなわち方向に偏光方向を有する方向盎線偏光の光を射出するように厚さが蚭定されおいる。したがっお、図に瀺す十字型極状の光匷床分垃〜のうち、旋光郚材の旋光䜜甚を受けた光束が圢成する䞀察の光匷床分垃を通過する光束は方向盎線偏光状態になる。   The optical rotatory members 8A and 8C are provided in a region through which a light beam in a Z-direction linear state corresponding to the light intensity distributions 20a and 20c formed on the pupil plane of the afocal lens 6 by the diffractive optical element 5A passes. The thickness is set so as to emit X-direction linearly polarized light having a polarization direction in the direction rotated by +90 degrees around the Y axis, that is, in the X direction. Therefore, among the cross-shaped quadrupolar light intensity distributions 21a to 21d shown in FIG. 5A, the light beams that pass through the optical rotation action of the optical rotation members 8A and 8C pass through a pair of light intensity distributions 21a and 21c. The light beam is in the X-direction linearly polarized state.

旋光郚材は、回折光孊玠子によりアフォヌカルレンズの瞳面に圢成される光匷床分垃に察応する方向盎線状態の光束が通過する領域に蚭けられ、入射光の偏光方向を軞廻りに床回転させた方向すなわち方向に偏光方向を有する方向盎線偏光の光を射出するように厚さが蚭定されおいる。したがっお、図に瀺す十字型極状の光匷床分垃〜のうち、旋光郚材の旋光䜜甚を受けた光束が圢成する䞀察の光匷床分垃を通過する光束は方向盎線偏光状態になる。   The optical rotation members 8B and 8D are provided in a region through which a light beam in the Z-direction linear state corresponding to the light intensity distributions 20b and 20d formed on the pupil plane of the afocal lens 6 by the diffractive optical element 5A passes. The thickness is set so as to emit light in the Z direction linearly polarized light having the polarization direction in the direction rotated by +180 degrees around the Y axis, that is, in the Z direction. Therefore, among the cross-shaped quadrupolar light intensity distributions 21a to 21d shown in FIG. 5A, the light beams that pass through the optical rotation action of the optical rotation members 8B and 8D pass through a pair of light intensity distributions 21b and 21d. The luminous flux is in the Z-direction linearly polarized state.

旋光郚材は、回折光孊玠子によりアフォヌカルレンズの瞳面に圢成される光匷床分垃に察応する方向盎線状態の光束が通過する領域に蚭けられ、入射光の偏光方向を軞廻りに床回転させた方向すなわち方向および−方向ず床をなす第斜め方向に偏光方向を有する第斜め方向盎線偏光の光を射出するように厚さが蚭定されおいる。したがっお、図に瀺す字型極状の光匷床分垃〜のうち、旋光郚材の旋光䜜甚を受けた光束が圢成する䞀察の光匷床分垃を通過する光束は第斜め方向盎線偏光状態になる。   The optical rotatory members 8E and 8G are provided in a region through which a light beam in the X-direction linear state corresponding to the light intensity distributions 20e and 20g formed on the pupil plane of the afocal lens 6 by the diffractive optical element 5B passes. Thickness is set so as to emit light of a first obliquely linearly polarized light having a polarization direction in a direction rotated by +45 degrees around the Y axis, that is, a first oblique direction that forms 45 degrees with the + Z direction and the −X direction. Has been. Therefore, among the X-shaped quadrupole light intensity distributions 21e to 21h shown in FIG. 5 (b), the light passes through a pair of light intensity distributions 21e and 21g formed by the light beam subjected to the optical rotation of the optical rotation members 8E and 8G. The luminous flux to be in the first oblique direction linearly polarized state.

旋光郚材は、回折光孊玠子によりアフォヌカルレンズの瞳面に圢成される光匷床分垃に察応する方向盎線状態の光束が通過する領域に蚭けられ、入射光の偏光方向を軞廻りに床回転させた方向すなわち方向および方向ず床をなす第斜め方向に偏光方向を有する第斜め方向盎線偏光の光を射出するように厚さが蚭定されおいる。したがっお、図に瀺す字型極状の光匷床分垃〜のうち、旋光郚材の旋光䜜甚を受けた光束が圢成する䞀察の光匷床分垃を通過する光束は第斜め方向盎線偏光状態になる。   The optical rotation members 8F and 8H are provided in a region through which a light beam in the X-direction linear state corresponding to the light intensity distributions 20f and 20h formed on the pupil plane of the afocal lens 6 by the diffractive optical element 5B passes. The thickness is set to emit light of a second obliquely linearly polarized light having a polarization direction in a direction rotated by +135 degrees around the Y axis, that is, a second oblique direction forming 45 degrees with the + Z direction and the + X direction. ing. Therefore, among the X-shaped quadrupole light intensity distributions 21e to 21h shown in FIG. 5 (b), the light passes through a pair of light intensity distributions 21f and 21h formed by the light beam subjected to the optical rotation of the optical rotation members 8F and 8H. The light beam to be turned is in the second obliquely linearly polarized state.

このように、旋光ナニットは、第照明系ず第照明系ずに共通のリレヌ光孊系であるアフォヌカルレンズの瞳䜍眮たたはその近傍䜍眮に配眮され、第照明系の回折光孊玠子を介しお圢成された぀の光束の偏光方向を倉曎する぀の旋光郚材〜ず、第照明系の回折光孊玠子を介しお圢成された぀の光束の偏光方向を倉曎する぀の旋光郚材〜ずを有する。旋光ナニットの䜜甚により、第照明系の照明瞳での光束の偏光状態および第照明系の照明瞳での光束の偏光状態がそれぞれ呚方向盎線偏光状態に蚭定される。なお、別々に圢成された぀の旋光郚材を組み合わせお旋光ナニットを埗るこずもできるし、あるいは平行平面板状の氎晶基板に所芁の凹凞圢状段差を圢成するこずにより旋光ナニットを埗るこずもできる。   In this way, the optical rotation unit 8 is disposed at or near the pupil position of the afocal lens 6 which is a relay optical system common to the first illumination system and the second illumination system, and is a diffractive optical element of the first illumination system. 4 to change the polarization direction of the four light beams formed through the four optical rotation members 8A to 8D for changing the polarization direction of the four light beams formed through 5A and the diffractive optical element 5B of the second illumination system. And two optical rotation members 8E to 8H. By the action of the optical rotation unit 8, the polarization state of the light beam at the illumination pupil of the first illumination system and the polarization state of the light beam at the illumination pupil of the second illumination system are respectively set to the circumferential linear polarization state. In addition, the optical rotation unit 8 can be obtained by combining eight optically formed members separately formed, or the optical rotation unit 8 is obtained by forming a required concavo-convex shape (step) on a parallel flat plate-like crystal substrate. You can also.

䞀般に、露光装眮では、りェハに照射される光が偏光を䞻成分ずする偏光状態になるように、所芁の盎線偏光状態の光でマスクのパタヌンを照明するこずが奜たしい。ここで、偏光ずは、入射面に察しお垂盎な方向に偏光方向を有する盎線偏光入射面に垂盎な方向に電気ベクトルが振動しおいる偏光のこずである。たた、入射面は、光が媒質の境界面りェハの衚面に達したずきに、その点での境界面の法線ず光の入射方向ずを含む面ずしお定矩される。このように、りェハに照射される光が偏光を䞻成分ずする偏光状態になるように所芁の盎線偏光状態の光でマスクパタヌンを照明するこずにより、投圱光孊系の光孊性胜焊点深床などの向䞊を図るこずができ、りェハ䞊においおコントラストの高いパタヌン像を埗るこずができる。   In general, in the exposure apparatus, it is preferable to illuminate the pattern of the mask M with light in a required linear polarization state so that the light irradiated onto the wafer W is in a polarization state mainly composed of S-polarized light. Here, the S-polarized light is linearly polarized light having a polarization direction in a direction perpendicular to the incident surface (polarized light having an electric vector oscillating in a direction perpendicular to the incident surface). Further, the incident surface is defined as a surface including the normal of the boundary surface at that point and the incident direction of light when the light reaches the boundary surface of the medium (the surface of the wafer W). Thus, the optical performance (focal point) of the projection optical system PL is obtained by illuminating the mask pattern with light in a required linearly polarized state so that the light irradiated onto the wafer W is in a polarization state mainly composed of S-polarized light. The depth and the like can be improved, and a pattern image with high contrast can be obtained on the wafer W.

本実斜圢態では、旋光ナニットの䜜甚により、図に瀺すように、ロッドむンテグレヌタの瞳面内に十字型極状の光匷床分垃〜が呚方向盎線偏光状態で圢成される。これは、図に瀺したように、ロッドむンテグレヌタの瞳面内の方向に沿った䞭倮領域および方向に沿った䞭倮領域、すなわち十字型極状の光匷床分垃〜が圢成される領域では、入射光の偏光状態が倉化するこずなく実質的に維持されるからである。こうしお、第照明領域は、十字型極状の光匷床分垃〜からの呚方向盎線偏光状態の光により照明される。その結果、第照明領域の光により照明されたマスクのパタヌンのうち、䟋えば方向や方向に沿っお现長く延びる瞊暪パタヌンが最終的な被照射面ずしおのりェハに結像する光は偏光を䞻成分ずする偏光状態になり、りェハ䞊においおコントラストの高いパタヌン像を埗るこずができる。   In the present embodiment, due to the action of the optical rotation unit 8, as shown in FIG. 5A, cross-shaped quadrupolar light intensity distributions 21a to 21d are formed in the circumferential linear polarization state in the pupil plane of the rod integrator 7A. Is done. As shown in FIG. 3B, this is because the central region along the X direction and the central region along the Z direction in the pupil plane of the rod integrator 7A, that is, the cross-shaped quadrupolar light intensity distributions 21a to 21a. This is because in the region where 21d is formed, the polarization state of the incident light is substantially maintained without being changed. Thus, the first illumination region IR1 is illuminated with the light in the circumferential linear polarization state from the cross-shaped quadrupole light intensity distributions 21a to 21d. As a result, among the patterns of the mask M illuminated by the light in the first illumination region IR1, for example, the light that forms a vertically and horizontally elongated pattern extending along the X direction or the Z direction on the wafer W as the final irradiated surface. Becomes a polarization state mainly composed of S-polarized light, and a pattern image with high contrast can be obtained on the wafer W.

同様に、旋光ナニットの䜜甚により、図に瀺すように、ロッドむンテグレヌタの瞳面内に字型極状の光匷床分垃〜が呚方向盎線偏光状態で圢成される。これは、ロッドむンテグレヌタを軞廻りに床回転させたような姿勢で䜍眮決めされたロッドむンテグレヌタの瞳面内においお、字型極状の光匷床分垃〜が圢成される領域では、入射光の偏光状態が倉化するこずなく実質的に維持されるからである。こうしお、第照明領域は、十字型極状の字型極状の光匷床分垃〜からの呚方向盎線偏光状態の光により照明される。その結果、第照明領域の光により照明されたマスクのパタヌンのうち、䟋えば方向や方向ず床をなす斜め方向に沿っお现長く延びる斜めパタヌンが最終的な被照射面ずしおのりェハに結像する光は偏光を䞻成分ずする偏光状態になり、りェハ䞊においおコントラストの高いパタヌン像を埗るこずができる。   Similarly, due to the action of the optical rotation unit 8, as shown in FIG. 5B, X-shaped quadrupolar light intensity distributions 21e to 21h are formed in the circumferential linear polarization state in the pupil plane of the rod integrator 7B. The This is a region where X-shaped quadrupole light intensity distributions 21e to 21h are formed in the pupil plane of the rod integrator 7B positioned in a posture such that the rod integrator 7A is rotated 45 degrees around the Y axis. This is because the polarization state of incident light is substantially maintained without being changed. Thus, the second illumination region IR2 is illuminated with light in the circumferential linear polarization state from the cross-shaped quadrupole X-shaped quadrupole light intensity distributions 21e to 21h. As a result, among the patterns of the mask M illuminated by the light in the second illumination region IR2, for example, an oblique pattern extending elongated along an oblique direction forming 45 degrees with the X direction or the Z direction is used as the final irradiated surface. The light imaged on the wafer W is in a polarization state mainly composed of S-polarized light, and a pattern image with high contrast can be obtained on the wafer W.

本実斜圢態では、極照明甚の回折光孊玠子に代えお、茪垯照明甚の回折光孊玠子や円圢照明甚の回折光孊玠子や他の耇数極照明甚の回折光孊玠子を照明光路䞭に蚭定するこずによっお、茪垯照明や円圢照明や耇数極照明極照明、極照明、極照明などを行うこずができる。すなわち、䟋えば茪垯照明、円圢照明、耇数極照明などから遞択された任意の照明圢態で、第照明領域および第照明領域を独立に照明するこずができる。たた、偏光ビヌムスプリッタヌおよび旋光ナニットの䜜甚により、第照明領域を照明する光および第照明領域を照明する光をそれぞれ所芁の偏光状態に蚭定するこずができる。   In this embodiment, instead of the diffractive optical elements 5A and 5B for quadrupole illumination, a diffractive optical element for annular illumination, a diffractive optical element for circular illumination, or another diffractive optical element for multipole illumination is used as an illumination optical path. By setting to the inside, annular illumination, circular illumination, and multipolar illumination (dipolar illumination, tripolar illumination, quinpole illumination, etc.) can be performed. That is, for example, the first illumination region IR1 and the second illumination region IR2 can be independently illuminated in an arbitrary illumination mode selected from annular illumination, circular illumination, multipolar illumination, and the like. Further, by the action of the polarization beam splitter 3 and the optical rotation unit 8, the light for illuminating the first illumination region IR1 and the light for illuminating the second illumination region IR2 can be set to required polarization states, respectively.

たた、本実斜圢態では、䟋えばアフォヌカルレンズの前偎レンズ矀の光路䞭にアキシコン系円錐アキシコン系、角錐アキシコン系、溝アキシコン系などを配眮しお、第照明系および第照明系の照明瞳に圢成される光匷床分垃の圢状を倉化させるこずができる。たた、アフォヌカルレンズをアフォヌカルズヌムレンズずしお構成するこずにより、第照明系および第照明系の照明瞳に圢成される光匷床分垃の倧きさを倉化させるこずができる。   In the present embodiment, for example, an axicon system (cone axicon system, pyramid axicon system, V-groove axicon system, etc.) is arranged in the optical path of the front lens group 6a of the afocal lens 6, and the first illumination system and the second illumination system The shape of the light intensity distribution formed on the illumination pupil of the illumination system can be changed. Further, by configuring the afocal lens 6 as an afocal zoom lens, the magnitude of the light intensity distribution formed on the illumination pupils of the first illumination system and the second illumination system can be changed.

円錐アキシコン系は光軞を䞭心ずする円錐䜓の偎面に察応する圢状の屈折面を有し、角錐アキシコン系は光軞を䞭心ずする角錐䜓の偎面に察応する圢状の屈折面を有し、溝アキシコン系は光軞を通る所定の軞線に関しおほが察称な字状の断面圢状の屈折面を有する。円錐アキシコン系、角錐アキシコン系および溝アキシコン系の構成および䜜甚に぀いおは、特開−号公報などを参照するこずができる。なお、ロッドむンテグレヌタずマスクずの間に光路折り曲げ反射鏡を配眮する堎合、この反射鏡に起因しお光の偏光状態が実質的に倉化するこずがないように、反射鏡の−反射率差偏光ず偏光ずの間の反射率差および−䜍盞差偏光ず偏光ずの間に反射により発生する䜍盞差の蚭蚈に配慮が必芁である。   The cone axicon system has a refracting surface having a shape corresponding to the side surface of the cone centered on the optical axis, and the pyramid axicon system has a refracting surface having a shape corresponding to the side surface of the pyramid centered on the optical axis, The V-groove axicon system has a refracting surface having a V-shaped cross section that is substantially symmetrical with respect to a predetermined axis passing through the optical axis. Japanese Patent Application Laid-Open No. 2002-231619 can be referred to for the configuration and operation of the conical axicon system, the pyramid axicon system, and the V-groove axicon system. When an optical path bending reflecting mirror is disposed between the rod integrators 7A and 7B and the mask M, the reflection mirror P is not changed so that the polarization state of light does not substantially change due to the reflecting mirror. Consideration must be given to the design of -S reflectivity difference (reflectance difference between P-polarized light and S-polarized light) and PS phase difference (phase difference generated by reflection between P-polarized light and S-polarized light). .

以䞊のように、本実斜圢態の照明光孊装眮では、䞊列配眮された぀の内面反射型のロッドむンテグレヌタを甚いお、照明瞳での光匷床分垃の圢状たたは倧きさ、照明光の偏光状態などをパラメヌタずする所芁の照明条件で、マスク䞊の第照明領域および第照明領域を個別に照明するこずができる。その結果、本実斜圢態の露光装眮では、぀の照明領域およびを所芁の照明条件で個別に照明する照明光孊装眮を甚いお、二重露光方匏によりマスクの埮现パタヌンをりェハに高粟床に䞔぀高スルヌプットで露光するこずができる。   As described above, in the illumination optical apparatus according to the present embodiment, the shape or size of the light intensity distribution at the illumination pupil and the polarization of the illumination light using the two internal reflection type rod integrators 7A and 7B arranged in parallel. The first illumination region IR1 and the second illumination region IR2 on the mask M can be individually illuminated under the required illumination conditions using the state and the like as parameters. As a result, in the exposure apparatus of the present embodiment, the fine pattern of the mask M is increased on the wafer W by the double exposure method using the illumination optical apparatus that individually illuminates the two illumination regions IR1 and IR2 under the required illumination conditions. It is possible to perform exposure with high accuracy and high throughput.

なお、䞊述の実斜圢態では、第照明系ず第照明系ずに共通のアフォヌカルレンズリレヌ光孊系を甚いおいるが、これに限定されるこずなく、第照明系および第照明系にそれぞれリレヌ光孊系を個別配眮するこずもできる。同様に、第照明系ず第照明系ずに共通の結像光孊系を甚いおいるが、これに限定されるこずなく、第照明系および第照明系にそれぞれ結像光孊系を個別配眮するこずもできる。   In the above-described embodiment, a common afocal lens (relay optical system) is used for the first illumination system and the second illumination system, but the first illumination system and the second illumination system are not limited to this. A relay optical system can also be individually arranged in the illumination system. Similarly, a common imaging optical system is used for the first illumination system and the second illumination system. However, the present invention is not limited to this, and the imaging optical system is provided for each of the first illumination system and the second illumination system. Individual placement is also possible.

たた、䞊述の実斜圢態では、第照明領域を照明する光を第の偏光状態に蚭定し䞔぀第照明領域を照明する光を第の偏光状態に蚭定する偏光蚭定郚ずしお、耇数の旋光子旋光郚材から構成された旋光ナニットを甚いおいる。しかしながら、これに限定されるこずなく、䟋えば耇数の波長板䞀般には移盞子を甚いお偏光蚭定郚を構成するこずもできる。すなわち、偏光蚭定郚の構成に぀いおは様々な圢態が可胜である。   In the above-described embodiment, a plurality of polarization setting units that set the light that illuminates the first illumination region to the first polarization state and set the light that illuminates the second illumination region to the second polarization state, An optical rotation unit composed of an optical rotator (optical rotation member) is used. However, the present invention is not limited to this, and the polarization setting unit can be configured using, for example, a plurality of wave plates (generally, phase shifters). That is, various configurations are possible for the configuration of the polarization setting unit.

たた、䞊述の実斜圢態では、第照明領域ず第照明領域ずが走査方向スキャン方向である方向ず盎亀する方向に䞊ぶように圢成されおいる。しかしながら、これに限定されるこずなく、図に瀺すようにマスクブラむンドの開口郚が方向に现長くなるように蚭定するこずにより、図に瀺すように第照明領域ず第照明領域ずが走査方向である方向に䞊ぶように圢成する倉圢䟋も可胜である。この堎合、図に瀺すように、投圱光孊系の矩圢状の有効結像領域には、第照明領域の光により照明されたマスクのパタヌン像ず第照明領域の光により照明されたマスクのパタヌン像ずが走査方向である方向に䞊んで圢成される。   In the above-described embodiment, the first illumination area and the second illumination area are formed so as to be aligned in the Z direction orthogonal to the X direction that is the scanning direction (scanning direction). However, the present invention is not limited to this, and by setting the openings 9Aa and 9Ba of the mask blinds 9A and 9B to be elongated in the X direction as shown in FIG. 9, as shown in FIG. A modification in which the first illumination region IR1 and the second illumination region IR2 are formed so as to be aligned in the Z direction that is the scanning direction is also possible. In this case, as shown in FIG. 10B, in the rectangular effective imaging region ER of the projection optical system PL, the pattern image IM1 of the mask M illuminated by the light of the first illumination region IR1 and the second illumination. A pattern image IM2 of the mask M illuminated by the light in the region IR2 is formed side by side in the Z direction which is the scanning direction.

なお、䞊述の実斜圢態では、第照明領域に察応するパタヌンず第照明領域に察応するパタヌンずを感光性基板りェハ䞊の同䞀ショット領域に重ね焌きしお぀の合成パタヌンを圢成する二重露光に関連しお本発明を説明しおいる。しかしながら、これに限定されるこずなく、぀以䞊のパタヌンを感光性基板䞊の同䞀ショット領域に重ね焌きしお぀の合成パタヌンを圢成する倚重露光に察しおも同様に本発明を適甚するこずができる。   In the above-described embodiment, the pattern corresponding to the first illumination area and the pattern corresponding to the second illumination area are baked on the same shot area on the photosensitive substrate (wafer) to form one composite pattern. The invention has been described in connection with double exposure. However, the present invention is not limited to this, and the present invention is similarly applied to multiple exposure in which three or more patterns are overprinted on the same shot area on the photosensitive substrate to form one composite pattern. Can do.

たた、䞊述の実斜圢態では、第照明領域のパタヌン像ず第照明領域のパタヌン像ずが感光性基板䞊においお䞊列的に圢成されおいる。しかしながら、これに限定されるこずなく、第照明領域のパタヌン像ず第照明領域のパタヌン像ずを合臎させお感光性基板䞊に圢成するこずもできる。   In the above-described embodiment, the pattern image of the first illumination area and the pattern image of the second illumination area are formed in parallel on the photosensitive substrate. However, the present invention is not limited to this, and the pattern image of the first illumination area and the pattern image of the second illumination area can be matched and formed on the photosensitive substrate.

たた、䞊述の実斜圢態では、぀のマスク䞊に第照明領域ず第照明領域ずを互いに近接するように圢成しおいる。しかしながら、これに限定されるこずなく、第マスク䞊に第照明領域を圢成し、第マスク䞊に第照明領域を圢成するこずもできる。この堎合、䟋えば図に瀺すように屈折系ず偏向ミラヌずからなる双頭型の投圱光孊系や、図に瀺すような反射屈折型で双頭型の投圱光孊系や、図に瀺すようなビヌムスプリッタヌを甚いる双頭型の投圱光孊系などを甚いるこずができる。   In the above-described embodiment, the first illumination area and the second illumination area are formed close to each other on one mask. However, the present invention is not limited to this, and the first illumination region can be formed on the first mask and the second illumination region can be formed on the second mask. In this case, for example, as shown in FIG. 11, a double-headed projection optical system PL composed of a refracting system and a deflecting mirror, a catadioptric double-headed projection optical system PL as shown in FIG. 12, or as shown in FIG. A double-head projection optical system PL using such a beam splitter can be used.

䞊述の実斜圢態にかかる露光装眮では、照明光孊装眮によっおマスクレチクルを照明し照明工皋、投圱光孊系を甚いおマスクに圢成された転写甚のパタヌンを感光性基板に露光する露光工皋こずにより、マむクロデバむス半導䜓玠子、撮像玠子、液晶衚瀺玠子、薄膜磁気ヘッド等を補造するこずができる。以䞋、本実斜圢態の露光装眮を甚いお感光性基板ずしおのりェハ等に所定の回路パタヌンを圢成するこずによっお、マむクロデバむスずしおの半導䜓デバむスを埗る際の手法の䞀䟋に぀き図のフロヌチャヌトを参照しお説明する。   In the exposure apparatus according to the above-described embodiment, the illumination optical device illuminates the mask (reticle) (illumination process), and the projection optical system is used to expose the transfer pattern formed on the mask onto the photosensitive substrate (exposure). Step), a micro device (semiconductor element, imaging element, liquid crystal display element, thin film magnetic head, etc.) can be manufactured. Hereinafter, referring to the flowchart of FIG. 14 for an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment. I will explain.

先ず、図のステップにおいお、ロットのりェハ䞊に金属膜が蒞着される。次のステップにおいお、そのロットのりェハ䞊の金属膜䞊にフォトレゞストが塗垃される。その埌、ステップにおいお、本実斜圢態の露光装眮を甚いお、マスク䞊のパタヌンの像がその投圱光孊系を介しお、そのロットのりェハ䞊の各ショット領域に順次露光転写される。その埌、ステップにおいお、そのロットのりェハ䞊のフォトレゞストの珟像が行われた埌、ステップにおいお、そのロットのりェハ䞊でレゞストパタヌンをマスクずしお゚ッチングを行うこずによっお、マスク䞊のパタヌンに察応する回路パタヌンが、各りェハ䞊の各ショット領域に圢成される。   First, in step 301 of FIG. 14, a metal film is deposited on one lot of wafers. In the next step 302, a photoresist is applied on the metal film on the one lot of wafers. Thereafter, in step 303, using the exposure apparatus of the present embodiment, the image of the pattern on the mask is sequentially exposed and transferred to each shot area on the wafer of one lot via the projection optical system. Thereafter, in step 304, the photoresist on the one lot of wafers is developed, and in step 305, the resist pattern is etched on the one lot of wafers to form a pattern on the mask. Corresponding circuit patterns are formed in each shot area on each wafer.

その埌、曎に䞊のレむダの回路パタヌンの圢成等を行うこずによっお、半導䜓玠子等のデバむスが補造される。䞊述の半導䜓デバむス補造方法によれば、極めお埮现な回路パタヌンを有する半導䜓デバむスをスルヌプット良く埗るこずができる。なお、ステップ〜ステップでは、りェハ䞊に金属を蒞着し、その金属膜䞊にレゞストを塗垃、そしお露光、珟像、゚ッチングの各工皋を行っおいるが、これらの工皋に先立っお、りェハ䞊にシリコンの酞化膜を圢成埌、そのシリコンの酞化膜䞊にレゞストを塗垃、そしお露光、珟像、゚ッチング等の各工皋を行っおも良いこずはいうたでもない。   Thereafter, a device pattern such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer. According to the semiconductor device manufacturing method described above, a semiconductor device having an extremely fine circuit pattern can be obtained with high throughput. In steps 301 to 305, a metal is deposited on the wafer, a resist is applied on the metal film, and exposure, development, and etching processes are performed. Prior to these processes, on the wafer. It is needless to say that after forming a silicon oxide film, a resist may be applied on the silicon oxide film, and steps such as exposure, development, and etching may be performed.

たた、本実斜圢態の露光装眮では、プレヌトガラス基板䞊に所定のパタヌン回路パタヌン、電極パタヌン等を圢成するこずによっお、マむクロデバむスずしおの液晶衚瀺玠子を埗るこずもできる。以䞋、図のフロヌチャヌトを参照しお、このずきの手法の䞀䟋に぀き説明する。図においお、パタヌン圢成工皋では、本実斜圢態の露光装眮を甚いおマスクのパタヌンを感光性基板レゞストが塗垃されたガラス基板等に転写露光する、所謂光リ゜グラフィヌ工皋が実行される。この光リ゜グラフィヌ工皋によっお、感光性基板䞊には倚数の電極等を含む所定パタヌンが圢成される。その埌、露光された基板は、珟像工皋、゚ッチング工皋、レゞスト剥離工皋等の各工皋を経るこずによっお、基板䞊に所定のパタヌンが圢成され、次のカラヌフィルタヌ圢成工皋ぞ移行する。   In the exposure apparatus of this embodiment, a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate). Hereinafter, an example of the technique at this time will be described with reference to the flowchart of FIG. In FIG. 15, in a pattern forming process 401, a so-called photolithography process is performed in which the exposure pattern of this embodiment is used to transfer and expose a mask pattern onto a photosensitive substrate (such as a glass substrate coated with a resist). By this photolithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. Thereafter, the exposed substrate undergoes steps such as a developing step, an etching step, and a resist stripping step, whereby a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming step 402.

次に、カラヌフィルタヌ圢成工皋では、Red、Green、Blueに察応した぀のドットの組がマトリックス状に倚数配列されたり、たたは、、の本のストラむプのフィルタヌの組を耇数氎平走査線方向に配列されたりしたカラヌフィルタヌを圢成する。そしお、カラヌフィルタヌ圢成工皋の埌に、セル組み立お工皋が実行される。セル組み立お工皋では、パタヌン圢成工皋にお埗られた所定パタヌンを有する基板、およびカラヌフィルタヌ圢成工皋にお埗られたカラヌフィルタヌ等を甚いお液晶パネル液晶セルを組み立おる。   Next, in the color filter forming step 402, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three of R, G, and B A color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning line direction. Then, after the color filter forming step 402, a cell assembly step 403 is executed. In the cell assembly step 403, a liquid crystal panel (liquid crystal cell) is assembled using the substrate having the predetermined pattern obtained in the pattern formation step 401, the color filter obtained in the color filter formation step 402, and the like.

セル組み立お工皋では、䟋えば、パタヌン圢成工皋にお埗られた所定パタヌンを有する基板ずカラヌフィルタヌ圢成工皋にお埗られたカラヌフィルタヌずの間に液晶を泚入しお、液晶パネル液晶セルを補造する。その埌、モゞュヌル組み立お工皋にお、組み立おられた液晶パネル液晶セルの衚瀺動䜜を行わせる電気回路、バックラむト等の各郚品を取り付けお液晶衚瀺玠子ずしお完成させる。䞊述の液晶衚瀺玠子の補造方法によれば、極めお埮现な回路パタヌンを有する液晶衚瀺玠子をスルヌプット良く埗るこずができる。   In the cell assembly step 403, for example, liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern formation step 401 and the color filter obtained in the color filter formation step 402, and a liquid crystal panel (liquid crystal cell) is obtained. ). Thereafter, in a module assembling step 404, components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element. According to the above-described method for manufacturing a liquid crystal display element, a liquid crystal display element having an extremely fine circuit pattern can be obtained with high throughput.

なお、䞊述の実斜圢態では、光源ずしお゚キシマレヌザ光源たたは゚キシマレヌザ光源を甚いおいるが、これに限定されるこずなく、䟋えば2レヌザ光源のように他の適圓な光源を甚いる露光装眮に察しお本発明を適甚するこずもできる。たた、䞊述の実斜圢態では、露光装眮に搭茉されおマスクを照明する照明光孊装眮を䟋にずっお本発明を説明しおいるが、マスク以倖の被照射面を照明するための䞀般的な照明光孊装眮に本発明を適甚するこずができるこずは明らかである。 In the above-described embodiment, a KrF excimer laser light source or an ArF excimer laser light source is used as a light source. However, the present invention is not limited to this, and an exposure apparatus using another appropriate light source such as an F 2 laser light source, for example. The present invention can also be applied to. In the above-described embodiment, the present invention has been described by taking an example of an illumination optical apparatus that is mounted on an exposure apparatus and illuminates a mask. However, a general illumination optical apparatus for illuminating a surface to be irradiated other than the mask. It is clear that the present invention can be applied to the present invention.

本発明の実斜圢態にかかる露光装眮の構成を抂略的に瀺す図である。It is a figure which shows schematically the structure of the exposure apparatus concerning embodiment of this invention. は䞀察の回折光孊玠子が䞊んで配眮されおいる様子を、およびはアフォヌカルレンズの瞳面に圢成される光匷床分垃を瀺す図である。(A) is a figure which shows a mode that a pair of diffractive optical element is arranged side by side, (b) and (c) are figures which show the light intensity distribution formed in the pupil surface of an afocal lens. はロッドむンテグレヌタの䜜甚を、はロッドむンテグレヌタの瞳面内偏光分垃を暡匏的に瀺す図である。(A) is a figure which shows the effect | action of a rod integrator, (b) is a figure which shows typically the polarization distribution in a pupil plane of a rod integrator. 本実斜圢態における䞀察のロッドむンテグレヌタの射出面を結像光孊系偎から芋た図である。It is the figure which looked at the emission surface of a pair of rod integrator in this embodiment from the imaging optical system side. は第照明系の照明瞳に圢成される光匷床分垃を、は第照明系の照明瞳に圢成される光匷床分垃を瀺す図である。(A) is a figure which shows the light intensity distribution formed in the illumination pupil of a 1st illumination system, (b) is a figure which shows the light intensity distribution formed in the illumination pupil of a 2nd illumination system. は第照明領域ず第照明領域ずが走査方向ず盎亀する方向に䞊んで圢成される様子を、は぀のパタヌン像がりェハ䞊で走査方向ず盎亀する方向に䞊んで圢成される様子を瀺す図である。(A) shows a state in which the first illumination area and the second illumination area are formed side by side in a direction orthogonal to the scanning direction, and (b) shows two pattern images arranged in a direction orthogonal to the scanning direction on the wafer. It is a figure which shows a mode that it forms with. 旋光ナニットの構成を抂略的に瀺す図である。It is a figure which shows the structure of an optical rotation unit roughly. 氎晶の旋光性に぀いお簡単に説明する図である。It is a figure explaining simply the optical rotatory power of quartz. 倉圢䟋における䞀察のロッドむンテグレヌタの射出面を結像光孊系偎から芋た図である。It is the figure which looked at the exit surface of a pair of rod integrator in a modification from the imaging optical system side. は倉圢䟋においお第照明領域ず第照明領域ずが走査方向に䞊んで圢成される様子を、は倉圢䟋においお぀のパタヌン像がりェハ䞊で走査方向に䞊んで圢成される様子を瀺す図である。(A) shows how the first illumination area and the second illumination area are formed side by side in the scanning direction in the modification, and (b) shows that two pattern images are formed side by side in the scanning direction on the wafer in the modification. It is a figure which shows a mode that it is performed. 屈折系ず偏向ミラヌずからなる双頭型の投圱光孊系の構成を抂略的に瀺す図である。It is a figure which shows roughly the structure of the double-headed type projection optical system which consists of a refraction system and a deflection | deviation mirror. 反射屈折型で双頭型の投圱光孊系の構成を抂略的に瀺す図である。It is a figure which shows schematically the structure of a catadioptric type double-headed type projection optical system. ビヌムスプリッタヌを甚いる双頭型の投圱光孊系の構成を抂略的に瀺す図である。It is a figure which shows schematically the structure of the double-headed projection optical system which uses a beam splitter. マむクロデバむスずしおの半導䜓デバむスを埗る際の手法のフロヌチャヌトである。It is a flowchart of the method at the time of obtaining the semiconductor device as a microdevice. マむクロデバむスずしおの液晶衚瀺玠子を埗る際の手法のフロヌチャヌトである。It is a flowchart of the method at the time of obtaining the liquid crystal display element as a microdevice.

笊号の説明Explanation of symbols

 光源
 偏光ビヌムスプリッタヌ
 回折光孊玠子
 アフォヌカルレンズ
 ロッドむンテグレヌタ内面反射型のオプティカルむンテグレヌタ
 旋光ナニット
 マスクブラむンド
 結像光孊系
 マスク
 投圱光孊系
 りェハ
DESCRIPTION OF SYMBOLS 1 Light source 3 Polarizing beam splitter 5A, 5B Diffractive optical element 6 Afocal lens 7A, 7B Rod integrator (inner surface reflection type optical integrator)
8 Optical Rotation Units 9A, 9B Mask Blind 10 Imaging Optical System M Mask PL Projection Optical System W Wafer

Claims (14)

第照明領域を照明する第照明系ず、第照明領域を照明する第照明系ずを備えた照明光孊装眮であっお、
前蚘第照明系は、所定の第断面を有する内面反射型の第オプティカルむンテグレヌタを有し、
前蚘第照明系は、所定の第断面を有する内面反射型の第オプティカルむンテグレヌタを有し、
前蚘第オプティカルむンテグレヌタの断面の䞀蟺は、前蚘第オプティカルむンテグレヌタの断面の隣り合う぀の蟺に察しお非平行に配眮されおいるこずを特城ずする照明光孊装眮。
An illumination optical apparatus comprising a first illumination system that illuminates a first illumination area and a second illumination system that illuminates a second illumination area,
The first illumination system includes an inner reflection type first optical integrator having a predetermined first cross section,
The second illumination system includes an internal reflection type second optical integrator having a predetermined second cross section,
An illumination optical apparatus, wherein one side of the cross section of the first optical integrator is arranged non-parallel to two adjacent sides of the cross section of the second optical integrator.
前蚘第照明系は、前蚘第照明系の照明瞳に所望の光匷床分垃を圢成するために入射光を回折させる第回折光孊玠子ず、該第回折光孊玠子の回折面ず前蚘第オプティカルむンテグレヌタの入射面ずを光孊的に共圹にする第リレヌ光孊系ずを有し、
前蚘第照明系は、前蚘第照明系の照明瞳に所望の光匷床分垃を圢成するために入射光を回折させる第回折光孊玠子ず、該第回折光孊玠子の回折面ず前蚘第オプティカルむンテグレヌタの入射面ずを光孊的に共圹にする第リレヌ光孊系ずを有するこずを特城ずする請求項に蚘茉の照明光孊装眮。
The first illumination system includes: a first diffractive optical element that diffracts incident light to form a desired light intensity distribution on an illumination pupil of the first illumination system; a diffractive surface of the first diffractive optical element; A first relay optical system that optically conjugates the incident surface of the one optical integrator;
The second illumination system includes a second diffractive optical element that diffracts incident light to form a desired light intensity distribution on the illumination pupil of the second illumination system, a diffraction surface of the second diffractive optical element, and the first The illumination optical apparatus according to claim 1, further comprising: a second relay optical system that optically conjugates the incident surface of the two-optical integrator.
前蚘第リレヌ光孊系および前蚘第リレヌ光孊系は、前蚘第照明系ず前蚘第照明系ずに共通のリレヌ光孊系を有するこずを特城ずする請求項に蚘茉の照明光孊装眮。 The illumination optical apparatus according to claim 2, wherein the first relay optical system and the second relay optical system have a common relay optical system for the first illumination system and the second illumination system. 前蚘第照明領域を照明する光を第の偏光状態に蚭定し䞔぀前蚘第照明領域を照明する光を第の偏光状態に蚭定する偏光蚭定郚を備えおいるこずを特城ずする請求項乃至のいずれか項に蚘茉の照明光孊装眮。 And a polarization setting unit configured to set light illuminating the first illumination area to a first polarization state and setting light illuminating the second illumination area to a second polarization state. Item 4. The illumination optical device according to any one of Items 1 to 3. 前蚘第回折光孊玠子は、前蚘第オプティカルむンテグレヌタの断面の䞀蟺の方向に察応する第方向に沿っお間隔を隔おた極状の光匷床分垃ず前蚘第方向ず盎亀する第方向に沿っお間隔を隔おた極状の光匷床分垃ずを前蚘照明瞳に圢成し、
前蚘第回折光孊玠子は、前蚘第オプティカルむンテグレヌタの断面の䞀蟺の方向に察応する第方向に沿っお間隔を隔おた極状の光匷床分垃ず前蚘第方向ず盎亀する第方向に沿っお間隔を隔おた極状の光匷床分垃ずを前蚘照明瞳に圢成するこずを特城ずする請求項乃至のいずれか項に蚘茉の照明光孊装眮。
The first diffractive optical element includes a bipolar light intensity distribution spaced along a first direction corresponding to a direction of one side of the first optical integrator and a second direction orthogonal to the first direction. And a dipolar light intensity distribution spaced apart along the illumination pupil,
The second diffractive optical element includes a bipolar light intensity distribution spaced along a third direction corresponding to the direction of one side of the cross section of the second optical integrator, and a fourth direction orthogonal to the third direction. 5. The illumination optical apparatus according to claim 2, wherein the illumination pupil is formed with a dipolar light intensity distribution spaced apart along the illumination pupil.
前蚘偏光蚭定郚は、前蚘共通のリレヌ光孊系の瞳䜍眮たたはその近傍䜍眮に配眮された旋光ナニットを有し、
前蚘旋光ナニットは、前蚘第回折光孊玠子を介しお圢成された぀の光束の偏光方向を倉曎する぀の旋光郚材ず、前蚘第回折光孊玠子を介しお圢成された぀の光束の偏光方向を倉曎する぀の旋光郚材ずを有するこずを特城ずする請求項に蚘茉の照明光孊装眮。
The polarization setting unit has an optical rotation unit arranged at a pupil position of the common relay optical system or a position in the vicinity thereof,
The optical rotation unit includes four optical rotation members that change the polarization directions of the four light beams formed through the first diffractive optical element, and the polarization directions of the four light beams formed through the second diffractive optical element. The illumination optical apparatus according to claim 5, further comprising four optical rotation members that change the angle.
前蚘旋光ナニットは、前蚘第照明系の照明瞳での光束の偏光状態および前蚘第照明系の照明瞳での光束の偏光状態を呚方向盎線偏光状態に蚭定するこずを特城ずする請求項に蚘茉の照明光孊装眮。 The optical rotation unit sets the polarization state of the light beam at the illumination pupil of the first illumination system and the polarization state of the light beam at the illumination pupil of the second illumination system to a circumferential linear polarization state. 6. The illumination optical device according to 6. 前蚘第照明系は、前蚘第オプティカルむンテグレヌタの射出面ず前蚘第照明領域ずを光孊的に共圹にする第結像光孊系を有し、
前蚘第照明系は、前蚘第オプティカルむンテグレヌタの射出面ず前蚘第照明領域ずを光孊的に共圹にする第結像光孊系を有するこずを特城ずする請求項乃至のいずれか項に蚘茉の照明光孊装眮。
The first illumination system has a first imaging optical system that optically conjugates the exit surface of the first optical integrator and the first illumination area,
The second illumination system includes a second imaging optical system that optically conjugates the exit surface of the second optical integrator and the second illumination region. The illumination optical apparatus according to Item 1.
前蚘第結像光孊系および前蚘第結像光孊系は、前蚘第照明系ず前蚘第照明系ずに共通の結像光孊系を有するこずを特城ずする請求項に蚘茉の照明光孊装眮。 The illumination according to claim 8, wherein the first imaging optical system and the second imaging optical system have a common imaging optical system for the first illumination system and the second illumination system. Optical device. 矩圢状の第照明領域を照明する第照明系ず、矩圢状の第照明領域を照明する第照明系ずを備えた照明光孊装眮であっお、
前蚘第照明系は、前蚘第照明領域の䞀蟺の方向に察応する第方向に沿っお間隔を隔おた぀の光匷床分垃ず前蚘第方向ず盎亀する第方向に沿っお間隔を隔おた぀の光匷床分垃ずからなる極状の光匷床分垃を前蚘第照明系の照明瞳に圢成する第瞳匷床分垃圢成郚材を有し、
前蚘第照明系は、前蚘第方向ず所定角床をなす第方向に沿っお間隔を隔おた぀の光匷床分垃ず前蚘第方向ず盎亀する第方向に沿っお間隔を隔おた぀の光匷床分垃ずからなる極状の光匷床分垃を前蚘第照明系の照明瞳に圢成する第瞳匷床分垃圢成郚材を有するこずを特城ずする照明光孊装眮。
An illumination optical apparatus comprising a first illumination system that illuminates a rectangular first illumination area, and a second illumination system that illuminates a rectangular second illumination area,
The first illumination system has two light intensity distributions spaced along a first direction corresponding to a direction of one side of the first illumination region and a distance along a second direction orthogonal to the first direction. A first pupil intensity distribution forming member that forms a quadrupole light intensity distribution consisting of two separated light intensity distributions on the illumination pupil of the first illumination system;
The second illumination system includes two light intensity distributions spaced along a third direction that forms a predetermined angle with the first direction, and two spaced apart along a fourth direction orthogonal to the third direction. An illumination optical apparatus, comprising: a second pupil intensity distribution forming member that forms a quadrupole light intensity distribution including two light intensity distributions on an illumination pupil of the second illumination system.
前蚘第照明系は、所定の第断面を有する内面反射型の第オプティカルむンテグレヌタを有し、該第オプティカルむンテグレヌタの断面の䞀蟺は前蚘第方向に察しお平行に配眮され、
前蚘第照明系は、所定の第断面を有する内面反射型の第オプティカルむンテグレヌタを有し、該第オプティカルむンテグレヌタの断面の䞀蟺は前蚘第方向に察しお平行に配眮されおいるこずを特城ずする請求項に蚘茉の照明光孊装眮。
The first illumination system includes a first optical integrator of an internal reflection type having a predetermined first cross section, and one side of the cross section of the first optical integrator is arranged in parallel to the first direction,
The second illumination system has an internal reflection type second optical integrator having a predetermined second cross section, and one side of the cross section of the second optical integrator is arranged in parallel to the third direction. The illumination optical apparatus according to claim 10.
前蚘第照明系の照明瞳での光束の偏光状態および前蚘第照明系の照明瞳での光束の偏光状態を呚方向盎線偏光状態に蚭定する偏光蚭定郚を備えおいるこずを特城ずする請求項たたはに蚘茉の照明光孊装眮。 And a polarization setting unit configured to set a polarization state of the light beam at the illumination pupil of the first illumination system and a polarization state of the light beam at the illumination pupil of the second illumination system to a circumferential linear polarization state. The illumination optical apparatus according to claim 10 or 11. 請求項乃至のいずれか項に蚘茉の照明光孊装眮を備え、該照明光孊装眮により照明されたパタヌンを感光性基板に露光するこずを特城ずする露光装眮。 An exposure apparatus comprising the illumination optical apparatus according to claim 1, wherein a photosensitive substrate is exposed to a pattern illuminated by the illumination optical apparatus. 請求項に蚘茉の露光装眮を甚いお、前蚘パタヌンを前蚘感光性基板に露光する露光工皋ず、
前蚘露光工皋を経た前蚘感光性基板を珟像する珟像工皋ずを含むこずを特城ずするデバむス補造方法。
An exposure step of exposing the photosensitive substrate to the photosensitive substrate using the exposure apparatus according to claim 13;
And a developing step of developing the photosensitive substrate that has undergone the exposure step.
JP2006222907A 2006-08-18 2006-08-18 Optical illumination apparatus, exposure apparatus and device manufacturing method Pending JP2008047745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006222907A JP2008047745A (en) 2006-08-18 2006-08-18 Optical illumination apparatus, exposure apparatus and device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006222907A JP2008047745A (en) 2006-08-18 2006-08-18 Optical illumination apparatus, exposure apparatus and device manufacturing method

Publications (1)

Publication Number Publication Date
JP2008047745A true JP2008047745A (en) 2008-02-28

Family

ID=39181174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006222907A Pending JP2008047745A (en) 2006-08-18 2006-08-18 Optical illumination apparatus, exposure apparatus and device manufacturing method

Country Status (1)

Country Link
JP (1) JP2008047745A (en)

Similar Documents

Publication Publication Date Title
EP2620799B1 (en) Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
JP4998803B2 (en) Exposure apparatus, device manufacturing method, and exposure method
JP5365982B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
KR102045133B1 (en) Illuminating optical system
JP5105316B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP4883482B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP5839076B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2008047745A (en) Optical illumination apparatus, exposure apparatus and device manufacturing method
JP5534276B2 (en) Illumination optical system, exposure apparatus, and device manufacturing method
JP2008021767A (en) Illuminating optical device, exposure device and manufacturing method for devices
JP2013008788A (en) Polarization conversion unit, illumination optical system, exposure device, and manufacturing method of device
JP2012059848A (en) Polarization conversion unit, illumination optical system, and method of manufacturing device
JP2010283100A (en) Polarization conversion unit, illumination optical system, exposure device, and device manufacturing method
HK1185956B (en) Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
HK1185956A (en) Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
HK1185957A (en) Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
HK1151103A (en) Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
HK1151101A (en) Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
HK1151101B (en) Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
HK1144322B (en) Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method