JP2008047745A - Optical illumination apparatus, exposure apparatus and device manufacturing method - Google Patents
Optical illumination apparatus, exposure apparatus and device manufacturing method Download PDFInfo
- Publication number
- JP2008047745A JP2008047745A JP2006222907A JP2006222907A JP2008047745A JP 2008047745 A JP2008047745 A JP 2008047745A JP 2006222907 A JP2006222907 A JP 2006222907A JP 2006222907 A JP2006222907 A JP 2006222907A JP 2008047745 A JP2008047745 A JP 2008047745A
- Authority
- JP
- Japan
- Prior art keywords
- illumination
- optical
- light
- illumination system
- pupil
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005286 illumination Methods 0.000 title claims abstract description 245
- 230000003287 optical effect Effects 0.000 title claims abstract description 238
- 238000004519 manufacturing process Methods 0.000 title description 6
- 238000009826 distribution Methods 0.000 claims description 73
- 230000010287 polarization Effects 0.000 claims description 56
- 210000001747 pupil Anatomy 0.000 claims description 55
- 239000000758 substrate Substances 0.000 claims description 31
- 238000003384 imaging method Methods 0.000 claims description 20
- 230000008859 change Effects 0.000 claims description 5
- 235000012431 wafers Nutrition 0.000 description 31
- 238000000034 method Methods 0.000 description 20
- 239000004973 liquid crystal related substance Substances 0.000 description 14
- 230000008569 process Effects 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000009471 action Effects 0.000 description 7
- 230000004907 flux Effects 0.000 description 7
- 239000010453 quartz Substances 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 239000002131 composite material Substances 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 210000002858 crystal cell Anatomy 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000007261 regionalization Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010436 fluorite Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005405 multipole Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
æ¬çºæã¯ãç §æå åŠè£ 眮ãé²å è£ çœ®ãããã³ããã€ã¹è£œé æ¹æ³ã«é¢ããç¹ã«åå°äœçŽ åãæ®åçŽ åãæ¶²æ¶è¡šç€ºçŽ åãèèç£æ°ãããçã®ããã€ã¹ããªãœã°ã©ãã£ãŒå·¥çšã§è£œé ããããã®é²å è£ çœ®ã«å¥œé©ãªç §æå åŠè£ 眮ã«é¢ãããã®ã§ããã   The present invention relates to an illumination optical apparatus, an exposure apparatus, and a device manufacturing method, and more particularly to an illumination optical apparatus suitable for an exposure apparatus for manufacturing devices such as semiconductor elements, imaging elements, liquid crystal display elements, and thin film magnetic heads in a lithography process. It is about.
åå°äœçŽ åçã補é ããããã®ãã©ããªãœã°ã©ãã£ãŒå·¥çšã«ãããŠããã¹ã¯ïŒãŸãã¯ã¬ãã¯ã«ïŒã®ãã¿ãŒã³åããæåœ±å åŠç³»ãä»ããŠãæå æ§åºæ¿ïŒãã©ãã¬ãžã¹ããå¡åžããããŠã§ããã¬ã©ã¹ãã¬ãŒãçïŒäžã«æåœ±é²å ããé²å è£ çœ®ã䜿çšãããŠãããéåžžã®é²å è£ çœ®ã§ã¯ãïŒçš®é¡ã®ãã¿ãŒã³ãæå æ§åºæ¿äžã®ïŒã€ã®ã·ã§ããé åïŒåäœé²å é åïŒã«åœ¢æããŠããã   In a photolithography process for manufacturing a semiconductor element or the like, a pattern image of a mask (or reticle) is projected and exposed onto a photosensitive substrate (a wafer coated with a photoresist, a glass plate, etc.) via a projection optical system. An exposure apparatus is used. In a normal exposure apparatus, one type of pattern is formed in one shot area (unit exposure area) on the photosensitive substrate.
ããã«å¯Ÿããã¹ã«ãŒããããåäžãããããã«ãïŒçš®é¡ã®ãã¿ãŒã³ãæå æ§åºæ¿äžã®åäžã·ã§ããé åã«éãçŒãããŠïŒã€ã®åæãã¿ãŒã³ã圢æããäºéé²å æ¹åŒãææ¡ãããŠããïŒç¹èš±æç®ïŒãåç §ïŒã   On the other hand, in order to improve the throughput, a double exposure method has been proposed in which two types of patterns are overprinted on the same shot region on the photosensitive substrate to form one composite pattern (see Patent Document 1). reference).
äºéé²å æ¹åŒã®é²å è£ çœ®ã§ã¯ãïŒã€ã®é åãåå¥ã«ç §æããããšãäŸãã°è»¢åãã¿ãŒã³ã®ç¹æ§ã«å¿ããæèŠã®ç §ææ¡ä»¶ã§åå¥ã«ç §æããããšãéèŠã§ãããäžæ¹ããã¹ã¯äžã®ç §åºŠãåäžåããã²ããŠã¯æå æ§åºæ¿äžã®ç §åºŠãåäžåããããã®ãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ãšããŠããã©ã€ã¢ã€ã¬ã³ãºããã€ã¯ããã©ã€ã¢ã€ã¬ã³ãºã®ãããªæ³¢é¢åå²åã®ãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ä»¥å€ã«ããããã€ã³ãã°ã¬ãŒã¿ã®ãããªå é¢åå°åã®ãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ãç¥ãããŠããã   In the double exposure type exposure apparatus, it is important to individually illuminate the two regions, for example, individually under the required illumination conditions according to the characteristics of the transfer pattern. On the other hand, as an optical integrator for uniformizing the illuminance on the mask and thus the illuminance on the photosensitive substrate, in addition to the wavefront division type optical integrator such as the fly-eye lens and the micro fly-eye lens, Such an internal reflection type optical integrator is known.
æ¬çºæã¯ãåè¿°ã®èª²é¡ã«éã¿ãŠãªããããã®ã§ããã䞊åé 眮ãããïŒã€ã®å é¢åå°åã®ãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ãçšããŠãïŒã€ã®é åãæèŠã®ç §ææ¡ä»¶ã§åå¥ã«ç §æããããšã®ã§ããç §æå åŠè£ 眮ãæäŸããããšãç®çãšããããŸããæ¬çºæã¯ãïŒã€ã®é åãæèŠã®ç §ææ¡ä»¶ã§åå¥ã«ç §æããç §æå åŠè£ 眮ãçšããŠãäºéé²å æ¹åŒã«ãã埮现ãã¿ãŒã³ãæå æ§åºæ¿ã«é«ã¹ã«ãŒãããã§é²å ããããšã®ã§ããé²å è£ çœ®ãæäŸããããšãç®çãšããã   The present invention has been made in view of the above-described problems, and illumination optics capable of individually illuminating two regions under required illumination conditions using two internal reflection type optical integrators arranged in parallel. An object is to provide an apparatus. The present invention also provides an exposure apparatus that can expose a fine pattern to a photosensitive substrate with a high throughput by a double exposure method using an illumination optical apparatus that individually illuminates two regions under required illumination conditions. The purpose is to do.
åèšèª²é¡ã解決ããããã«ãæ¬çºæã®ç¬¬ïŒåœ¢æ
ã§ã¯ã第ïŒç
§æé åãç
§æãã第ïŒç
§æç³»ãšã第ïŒç
§æé åãç
§æãã第ïŒç
§æç³»ãšãåããç
§æå
åŠè£
眮ã§ãã£ãŠã
åèšç¬¬ïŒç
§æç³»ã¯ãæå®ã®ç¬¬ïŒæé¢ãæããå
é¢åå°åã®ç¬¬ïŒãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ãæãã
åèšç¬¬ïŒç
§æç³»ã¯ãæå®ã®ç¬¬ïŒæé¢ãæããå
é¢åå°åã®ç¬¬ïŒãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ãæãã
åèšç¬¬ïŒãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ã®æé¢ã®äžèŸºã¯ãåèšç¬¬ïŒãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ã®æé¢ã®é£ãåãïŒã€ã®èŸºã«å¯ŸããŠéå¹³è¡ã«é
眮ãããŠããããšãç¹åŸŽãšããç
§æå
åŠè£
眮ãæäŸããã
In order to solve the above-described problem, according to a first aspect of the present invention, there is provided an illumination optical apparatus including a first illumination system that illuminates a first illumination area and a second illumination system that illuminates a second illumination area. ,
The first illumination system includes an inner reflection type first optical integrator having a predetermined first cross section,
The second illumination system includes an internal reflection type second optical integrator having a predetermined second cross section,
One side of the cross section of the first optical integrator is arranged non-parallel to two adjacent sides of the cross section of the second optical integrator.
æ¬çºæã®ç¬¬ïŒåœ¢æ
ã§ã¯ãç©åœ¢ç¶ã®ç¬¬ïŒç
§æé åãç
§æãã第ïŒç
§æç³»ãšãç©åœ¢ç¶ã®ç¬¬ïŒç
§æé åãç
§æãã第ïŒç
§æç³»ãšãåããç
§æå
åŠè£
眮ã§ãã£ãŠã
åèšç¬¬ïŒç
§æç³»ã¯ãåèšç¬¬ïŒç
§æé åã®äžèŸºã®æ¹åã«å¯Ÿå¿ããç¬¬ïŒæ¹åã«æ²¿ã£ãŠééãéãŠãïŒã€ã®å
匷床ååžãšåèšç¬¬ïŒæ¹åãšçŽäº€ããç¬¬ïŒæ¹åã«æ²¿ã£ãŠééãéãŠãïŒã€ã®å
匷床ååžãšãããªãïŒæ¥µç¶ã®å
匷床ååžãåèšç¬¬ïŒç
§æç³»ã®ç
§æç³ã«åœ¢æãã第ïŒç³åŒ·åºŠååžåœ¢æéšæãæãã
åèšç¬¬ïŒç
§æç³»ã¯ãåèšç¬¬ïŒæ¹åãšæå®è§åºŠããªãç¬¬ïŒæ¹åã«æ²¿ã£ãŠééãéãŠãïŒã€ã®å
匷床ååžãšåèšç¬¬ïŒæ¹åãšçŽäº€ããç¬¬ïŒæ¹åã«æ²¿ã£ãŠééãéãŠãïŒã€ã®å
匷床ååžãšãããªãïŒæ¥µç¶ã®å
匷床ååžãåèšç¬¬ïŒç
§æç³»ã®ç
§æç³ã«åœ¢æãã第ïŒç³åŒ·åºŠååžåœ¢æéšæãæããããšãç¹åŸŽãšããç
§æå
åŠè£
眮ãæäŸããã
According to a second aspect of the present invention, there is provided an illumination optical apparatus that includes a first illumination system that illuminates a rectangular first illumination area, and a second illumination system that illuminates a rectangular second illumination area,
The first illumination system has two light intensity distributions spaced along a first direction corresponding to a direction of one side of the first illumination region and a distance along a second direction orthogonal to the first direction. A first pupil intensity distribution forming member that forms a quadrupole light intensity distribution consisting of two separated light intensity distributions on the illumination pupil of the first illumination system;
The second illumination system includes two light intensity distributions spaced along a third direction that forms a predetermined angle with the first direction, and two spaced apart along a fourth direction orthogonal to the third direction. There is provided an illumination optical apparatus comprising a second pupil intensity distribution forming member that forms a quadrupole light intensity distribution consisting of two light intensity distributions on an illumination pupil of the second illumination system.
æ¬çºæã®ç¬¬ïŒåœ¢æ ã§ã¯ã第ïŒåœ¢æ ãŸãã¯ç¬¬ïŒåœ¢æ ã®ç §æå åŠè£ 眮ãåããè©²ç §æå åŠè£ 眮ã«ããç §æããããã¿ãŒã³ãæå æ§åºæ¿ã«é²å ããããšãç¹åŸŽãšããé²å è£ çœ®ãæäŸããã   According to a third aspect of the present invention, there is provided an exposure apparatus comprising the illumination optical apparatus of the first or second aspect, and exposing a pattern illuminated by the illumination optical apparatus onto a photosensitive substrate.
æ¬çºæã®ç¬¬ïŒåœ¢æ
ã§ã¯ã第ïŒåœ¢æ
ã®é²å
è£
眮ãçšããŠãåèšãã¿ãŒã³ãåèšæå
æ§åºæ¿ã«é²å
ããé²å
å·¥çšãšã
åèšé²å
å·¥çšãçµãåèšæå
æ§åºæ¿ãçŸåããçŸåå·¥çšãšãå«ãããšãç¹åŸŽãšããããã€ã¹è£œé æ¹æ³ãæäŸããã
In the fourth embodiment of the present invention, using the exposure apparatus of the third embodiment, an exposure step of exposing the pattern to the photosensitive substrate;
And a developing process for developing the photosensitive substrate that has undergone the exposure process.
æ¬çºæã®ç §æå åŠè£ 眮ã§ã¯ã䞊åé 眮ãããïŒã€ã®å é¢åå°åã®ãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ãçšããŠãç §æç³ã§ã®å 匷床ååžã®åœ¢ç¶ãŸãã¯å€§ããããã©ã¡ãŒã¿ãšããæèŠã®ç §ææ¡ä»¶ã§ãïŒã€ã®é åãåå¥ã«ç §æããããšãã§ããããããã£ãŠãæ¬çºæã®é²å è£ çœ®ã§ã¯ãïŒã€ã®é åãæèŠã®ç §ææ¡ä»¶ã§åå¥ã«ç §æããç §æå åŠè£ 眮ãçšããŠãäºéé²å æ¹åŒã«ãã埮现ãã¿ãŒã³ãæå æ§åºæ¿ã«é«ã¹ã«ãŒãããã§é²å ããããšãã§ããã²ããŠã¯è¯å¥œãªããã€ã¹ãé«ã¹ã«ãŒãããã§è£œé ããããšãã§ããã   In the illumination optical device of the present invention, two regions are formed under required illumination conditions using two internal reflection type optical integrators arranged in parallel as parameters of the shape or size of the light intensity distribution at the illumination pupil. Can be individually illuminated. Therefore, in the exposure apparatus of the present invention, a fine pattern can be exposed to a photosensitive substrate with a high throughput by a double exposure method using an illumination optical apparatus that individually illuminates two regions under a required illumination condition. As a result, a good device can be manufactured with high throughput.
æ¬çºæã®å®æœåœ¢æ
ããæ·»ä»å³é¢ã«åºã¥ããŠèª¬æãããå³ïŒã¯ãæ¬çºæã®å®æœåœ¢æ
ã«ãããé²å
è£
çœ®ã®æ§æãæŠç¥çã«ç€ºãå³ã§ãããå³ïŒã«ãããŠãæå
æ§åºæ¿ã§ãããŠã§ãïŒ·ã®æ³ç·æ¹åã«æ²¿ã£ãŠïŒ¹è»žãããŠã§ãã®é¢å
ã«ãããŠå³ïŒã®çŽé¢ã«å¹³è¡ãªæ¹åã«ïŒºè»žãããŠã§ãã®é¢å
ã«ãããŠå³ïŒã®çŽé¢ã«åçŽãªæ¹åã«ïŒžè»žãããããèšå®ããŠãããå³ïŒãåç
§ãããšãæ¬å®æœåœ¢æ
ã®é²å
è£
眮ã¯ãé²å
å
ïŒç
§æå
ïŒãäŸçµŠããããã®å
æºïŒãåããŠããã
  Embodiments of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a drawing schematically showing a configuration of an exposure apparatus according to an embodiment of the present invention. In FIG. 1, the Y axis along the normal direction of the wafer W, which is a photosensitive substrate, the Z axis in the direction parallel to the plane of FIG. 1 in the plane of the wafer W, and the plane of the wafer W in FIG. The X axis is set in the direction perpendicular to the paper surface. Referring to FIG. 1, the exposure apparatus of this embodiment includes a
å
æºïŒãšããŠãããšãã°çŽïŒïŒïŒïœïœã®æ³¢é·ãæããå
ãäŸçµŠããïœïŒŠãšãã·ãã¬ãŒã¶å
æºãçŽïŒïŒïŒïœïœã®æ³¢é·ãæããå
ãäŸçµŠããïœïŒŠãšãã·ãã¬ãŒã¶å
æºãªã©ãçšããããšãã§ãããå
æºïŒããå
è»žïŒ¡ïŒžã«æ²¿ã£ãŠå°åºãããå
æã¯ãæŽåœ¢å
åŠç³»ïŒã«ããæèŠã®æé¢åœ¢ç¶ã®å
æã«æ¡å€§ãããåŸãåå
ããŒã ã¹ããªãã¿ãŒïŒã«å
¥å°ãããåå
ããŒã ã¹ããªãã¿ãŒïŒãééããåå
ã®å
ããªãã¡ïŒ¹æ¹åã«åå
ããçŽç·åå
ã®å
ã¯ãå
è·¯æãæ²ãåå°é¡ïŒã«ããåå°ãããŠïŒºæ¹åã«åå
ããçŽç·åå
ã®å
ãšãªãã第ïŒç
§æç³»ã®å
軞ïŒã«æ²¿ã£ãŠåæå
åŠçŽ åïŒïŒ¡ã«å
¥å°ããã
  As the
äžæ¹ãåå
ããŒã ã¹ããªãã¿ãŒïŒã§åå°ãããåå
ã®å
ããªãã¡ïŒžæ¹åã«åå
ããçŽç·åå
ã®å
ã¯ã第ïŒç
§æç³»ã®å
軞ïŒã«æ²¿ã£ãŠåæå
åŠçŽ åïŒïŒ¢ã«å
¥å°ãããåæå
åŠçŽ åïŒïŒ¡ã¯ããã¹ã¯ïŒäžã®ç¬¬ïŒç
§æé åïŒãç
§æãã第ïŒç
§æç³»ã®å
è·¯ã«å¯ŸããŠæ¿è±èªåšã«æ§æããããã®ãã¡ãŒãã£ãŒã«ãã«ç°ãªãå
匷床ååžã圢æããä»ã®åæå
åŠçŽ åãšäº€æå¯èœã«æ§æãããŠãããåæå
åŠçŽ åïŒïŒ¢ã¯ããã¹ã¯ïŒäžã®ç¬¬ïŒç
§æé åïŒãç
§æãã第ïŒç
§æç³»ã®å
è·¯ã«å¯ŸããŠæ¿è±èªåšã«æ§æããããã®ãã¡ãŒãã£ãŒã«ãã«ç°ãªãå
匷床ååžã圢æããä»ã®åæå
åŠçŽ åãšäº€æå¯èœã«æ§æãããŠããã
  On the other hand, S-polarized light reflected by the
以äžã説æãç°¡åã«ããããã«ã第ïŒç
§æç³»ã®å
è·¯äžã«é
眮ãããåæå
åŠçŽ åïŒïŒ¡ããã³ç¬¬ïŒç
§æç³»ã®å
è·¯äžã«é
眮ãããåæå
åŠçŽ åïŒïŒ¢ããšãã«ïŒæ¥µç
§æçšã®åæå
åŠçŽ åã§ãããã®ãšãããåæå
åŠçŽ åïŒïŒ¡ã§åæãããå
ã¯ãã¢ãã©ãŒã«ã«ã¬ã³ãºïŒãä»ããŠã第ïŒç
§æç³»ã®ãããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ã«å
¥å°ãããåæå
åŠçŽ åïŒïŒ¢ã§åæãããå
ã¯ãã¢ãã©ãŒã«ã«ã¬ã³ãºïŒãä»ããŠã第ïŒç
§æç³»ã®ãããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¢ã«å
¥å°ããããªããã¢ãã©ãŒã«ã«ã¬ã³ãºïŒã®ç³äœçœ®ãŸãã¯ãã®è¿åäœçœ®ã«ã¯æå
ãŠãããïŒãé
眮ãããŠãããããã®æ§æããã³äœçšã«ã€ããŠã¯åŸè¿°ããã
  Hereinafter, for the sake of simplicity, the diffractive
第ïŒç
§æç³»ãšç¬¬ïŒç
§æç³»ãšã«å
±éã®ã¢ãã©ãŒã«ã«ã¬ã³ãºïŒã¯ãååŽã¬ã³ãºçŸ€ïŒïœã®ååŽçŠç¹äœçœ®ãšåæå
åŠçŽ åïŒïŒ¡ïŒïŒïŒ¢ã®äœçœ®ãšãã»ãŒäžèŽãäžã€åŸåŽã¬ã³ãºçŸ€ïŒïœã®åŸåŽçŠç¹äœçœ®ãšäžå¯Ÿã®ãããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ïŒïŒïŒ¢ã®å
¥å°é¢ïŒïŒ¡ïœïŒïŒïŒ¢ïœã®äœçœ®ãšãã»ãŒäžèŽããããã«èšå®ãããã¢ãã©ãŒã«ã«ç³»ïŒç¡çŠç¹å
åŠç³»ïŒã§ãããããªãã¡ãã¢ãã©ãŒã«ã«ã¬ã³ãºïŒã¯ãåæå
åŠçŽ åïŒïŒ¡ïŒïŒïŒ¢ã®åæé¢ãšãããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ïŒïŒïŒ¢ã®å
¥å°é¢ïŒïŒ¡ïœïŒïŒïŒ¢ïœãšãå
åŠçã«å
±åœ¹ã«ãããªã¬ãŒå
åŠç³»ãæ§æããŠããã
  The
äžè¬ã«ãåæå
åŠçŽ åã¯ãåºæ¿ã«é²å
å
ïŒç
§æå
ïŒã®æ³¢é·çšåºŠã®ããããæããæ®µå·®ã圢æããããšã«ãã£ãŠæ§æãããå
¥å°ããŒã ãææã®è§åºŠã«åæããäœçšãæãããäžå¯Ÿã®åæå
åŠçŽ åïŒïŒ¡ããã³ïŒïŒ¢ã¯ãå³ïŒïŒïœïŒã«ç€ºãããã«ãç
§æå
åŠè£
眮ã®å
軞ãæãã§ïŒºæ¹åã«äžŠãã§é
眮ãããŠããã第ïŒç
§æç³»ã®åæå
åŠçŽ åïŒïŒ¡ã¯ãç©åœ¢ç¶ã®æé¢ãæããå¹³è¡å
æãå
¥å°ããå Žåããã®ãã¡ãŒãã£ãŒã«ãïŒãŸãã¯ãã©ãŠã³ããŒãã¡ãŒåæé åïŒã«åååïŒæ¥µç¶ã®å
匷床ååžã圢æããæ©èœãæããã
  In general, a diffractive optical element is formed by forming a step having a pitch of the wavelength of exposure light (illumination light) on a substrate, and has a function of diffracting an incident beam to a desired angle. As shown in FIG. 2A, the pair of diffractive
å
·äœçã«ãåæå
åŠçŽ åïŒïŒ¡ã«å
¥å°ããã»ãŒå¹³è¡å
æã¯ãå³ïŒïŒïœïŒã«ç€ºãããã«ãã¢ãã©ãŒã«ã«ã¬ã³ãºïŒã®ç³é¢ã«ã第ïŒç
§æç³»ã®å
軞ïŒãäžå¿ãšããŠïŒºæ¹åã«ééãéãŠãïŒã€ã®å
匷床ååžïŒïŒïœïŒïŒïŒïœãšãå
軞ïŒãäžå¿ãšããŠïŒžæ¹åã«ééãéãŠãïŒã€ã®å
匷床ååžïŒïŒïœïŒïŒïŒïœãšãããªãåååïŒæ¥µç¶ã®å
匷床ååžã圢æãããå
匷床ååžïŒïŒïœãïŒïŒïœã圢æããå
ã¯ãå³äžäž¡æ¹åç¢å°ã§ç€ºãããã«ãæ¹åã«åå
ããæ¹åçŽç·åå
ç¶æ
ã§ããã
  Specifically, the substantially parallel light beam incident on the diffractive
第ïŒç
§æç³»ã®åæå
åŠçŽ åïŒïŒ¢ã¯ãç©åœ¢ç¶ã®æé¢ãæããå¹³è¡å
æãå
¥å°ããå Žåããã®ãã¡ãŒãã£ãŒã«ãïŒãŸãã¯ãã©ãŠã³ããŒãã¡ãŒåæé åïŒã«ïŒžååïŒæ¥µç¶ã®å
匷床ååžã圢æããæ©èœãæãããå
·äœçã«ãåæå
åŠçŽ åïŒïŒ¢ã«å
¥å°ããã»ãŒå¹³è¡å
æã¯ãå³ïŒïŒïœïŒã«ç€ºãããã«ãã¢ãã©ãŒã«ã«ã¬ã³ãºïŒã®ç³é¢ã«ã第ïŒç
§æç³»ã®å
軞ïŒãäžå¿ãšããŠãïŒïŒºæ¹åããã³ïŒïŒžæ¹åãšïŒïŒåºŠããªãæ¹åã«ééãéãŠãïŒã€ã®å
匷床ååžïŒïŒïœ
ïŒïŒïŒïœãšãå
軞ïŒãäžå¿ãšããŠãïŒïŒºæ¹åããã³âæ¹åãšïŒïŒåºŠããªãæ¹åã«ééãéãŠãïŒã€ã®å
匷床ååžïŒïŒïœïŒïŒïŒïœãšãããªãååïŒæ¥µç¶ã®å
匷床ååžã圢æãããå
匷床ååžïŒïŒïœ
ãïŒïŒïœã圢æããå
ã¯ãå³äžäž¡æ¹åç¢å°ã§ç€ºãããã«ãæ¹åã«åå
ããæ¹åçŽç·åå
ç¶æ
ã§ããã
  The diffractive
ãããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ïŒïŒïŒ¢ã¯ãç
§æé åïŒïŒïŒ©ïŒ²ïŒãç
§æããå
ã®ç
§åºŠãåäžåããå
é¢åå°åã®ãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ã§ããããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ïŒïŒïŒ¢ã¯ãäŸãã°ç³è±ãèç³ã®ãããªå
åŠææãããªãå
é¢åå°åã®ãããã§ãããå
éšãšå€éšãšã®å¢çé¢ããªãã¡å
é¢ã§ã®å
šåå°ãå©çšããŠéå
ç¹ãéããããå
¥å°é¢ã«å¹³è¡ãªé¢ã«æ²¿ã£ãŠå
é¢åå°æ°ã«å¿ããæ°ã®å
æºåã圢æãããããã§ã圢æãããå
æºåã®ã»ãšãã©ã¯èåã§ããããäžå¿ïŒéå
ç¹ïŒã®å
æºåã®ã¿ãå®åãšãªããããªãã¡ãå³ïŒïŒïœïŒã«ç€ºãããã«ããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ïŒïŒïŒ¢ã«å
¥å°ããå
æã¯å
é¢åå°ã«ããè§åºŠæ¹åã«åå²ãããéå
ç¹ãéããã®å
¥å°é¢ïŒïŒ¡ïœïŒïŒïŒ¢ïœã«å¹³è¡ãªé¢ïŒãããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ïŒïŒïŒ¢ã®ç³é¢ïŒã«æ²¿ã£ãŠå€æ°ã®å
æºåãããªãäºæ¬¡å
æºã圢æãããã
  The
第ïŒç
§æç³»ã®ãããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ã¯ãå³ïŒã«ç€ºãããã«ãäŸãã°å
軞ïŒãäžå¿ãšããç©åœ¢ç¶ã®æé¢ïŒã²ããŠã¯ç©åœ¢ç¶ã®å°åºé¢ïŒïŒ¡ïœïŒãæãããã®ç©åœ¢ç¶ã®æé¢ã®é£ãåãïŒã€ã®èŸºãæ¹åããã³ïŒºæ¹åã«ããããå¹³è¡ã«ãªããããªå§¿å¢ã§äœçœ®æ±ºããããŠãããäžæ¹ã第ïŒç
§æç³»ã®ãããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¢ã¯ãå³ïŒã«ç€ºãããã«ãäŸãã°å
軞ïŒãäžå¿ãšããæ£æ¹åœ¢ç¶ã®æé¢ïŒã²ããŠã¯æ£æ¹åœ¢ç¶ã®å°åºé¢ïŒïŒ¢ïœïŒãæãããã®æ£æ¹åœ¢ç¶ã®æé¢ãèŠå®ããäžå¯Ÿã®å¯Ÿè§ç·ãæ¹åããã³ïŒºæ¹åã«ããããå¹³è¡ã«ãªããããªå§¿å¢ã§äœçœ®æ±ºããããŠãããæèšããã°ããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¢ã¯ãéåžžå§¿å¢ã§äœçœ®æ±ºãããããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ã軞廻ãã«ïŒïŒåºŠå転ããããããªå転姿å¢ã§äœçœ®æ±ºããããŠããã
  As shown in FIG. 4, the
äŸãã°ïŒžæ¹åã«åå
ããæ¹åçŽç·åå
ç¶æ
ã®å
ããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ã«å
¥å°ããå Žåããããå
ã®å
šåå°ã«ããäœçžé£ã³ãçºçããå³ïŒïŒïœïŒã®ç³é¢å
åå
ååžã«ç€ºãããã«ãåå°é¢ã«çŽè§ãªæ¹å以å€ã§ã¯åå
ç¶æ
ãå€åãããå³ïŒïŒïœïŒã«ãããŠãäž¡æ¹åç¢å°ã¯å
ãç¢å°æ¹åã«åå
ããçŽç·åå
ç¶æ
ã§ããããšã瀺ããåã¯å
ãååå
ç¶æ
ã§ããããšã瀺ããæ¥åã¯å
ãæ¥ååå
ç¶æ
ã§ããããšã瀺ããŠãããäžè¿°ããããã«ããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ã¯ç©åœ¢ç¶ã®æé¢ãæãããã®åå°é¢ã¯ïŒžïŒ¹å¹³é¢ãŸãã¯ïŒžïŒºå¹³é¢ã«å¹³è¡ã§ããã
  For example, when light in the X direction linearly polarized state that is polarized in the X direction is incident on the
ãããã£ãŠããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ã®ç³é¢å
ã«ãããŠïŒžæ¹åã«æ²¿ã£ãäžå€®é åïŒå³äžã®æ°Žå¹³äžå€®é åïŒã§ã¯å
ã®åå
ç¶æ
ãå€åããããšãªãæ¹åçŽç·åå
ç¶æ
ã®ãŸãŸã§ãããæ¹åã«æ²¿ã£ãäžå€®é åïŒå³äžã®éçŽäžå€®é åïŒã«ãããŠãå
ã®åå
ç¶æ
ãå€åããããšãªãæ¹åçŽç·åå
ç¶æ
ã®ãŸãŸã§ãããããªãã¡ããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ã®ç³é¢å
ã®ïŒžæ¹åã«æ²¿ã£ãäžå€®é åããã³ïŒºæ¹åã«æ²¿ã£ãäžå€®é åã§ã¯å
¥å°å
ã®åå
ç¶æ
ãå€åããããšãªãå®è³ªçã«ç¶æããããäžæ¹ããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ã軞廻ãã«ïŒïŒåºŠå転ããããããªå§¿å¢ã§äœçœ®æ±ºãããããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¢ã®ç³é¢å
ã§ã¯ãå³ïŒïŒïœïŒã«ãããæ¹åã«æ²¿ã£ãäžå€®é åããã³ïŒºæ¹åã«æ²¿ã£ãäžå€®é åã軞廻ãã«ïŒïŒåºŠå転ãããé åã«ãããŠå
¥å°å
ã®åå
ç¶æ
ãå€åããããšãªãå®è³ªçã«ç¶æãããã
  Therefore, in the central region (horizontal central region in the figure) along the X direction in the pupil plane of the
ããããŠã第ïŒç
§æç³»ã®ãããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ã«å
¥å°ããå
æã¯ãå³ïŒïŒïœïŒã«ç€ºãããã«ãåæå
åŠçŽ åïŒïŒ¡ãä»ããå
æãã¢ãã©ãŒã«ã«ã¬ã³ãºïŒã®ç³é¢ã«åœ¢æããåååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœãïŒïŒïœã«å¯Ÿå¿ããŠãäºæ¬¡å
æºãšããŠåååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœãïŒïŒïœã圢æãããäžæ¹ã第ïŒç
§æç³»ã®ãããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¢ã«å
¥å°ããå
æã¯ãå³ïŒïŒïœïŒã«ç€ºãããã«ãåæå
åŠçŽ åïŒïŒ¢ãä»ããå
æãã¢ãã©ãŒã«ã«ã¬ã³ãºïŒã®ç³é¢ã«åœ¢æããååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœ
ãïŒïŒïœã«å¯Ÿå¿ããŠãäºæ¬¡å
æºãšããŠïŒžååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœ
ãïŒïŒïœã圢æããããªããåååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœãïŒïŒïœããã³ïŒžååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœ
ãïŒïŒïœã圢æããå
ã®åå
ç¶æ
ã«ã€ããŠã¯åŸè¿°ããã
  In this way, the light beam incident on the
ãããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ïŒïŒïŒ¢ã«ãããã®å
¥å°åŽã«åœ¢æãããäºæ¬¡å
æºïŒïŒïœãïŒïŒïœïŒïŒïŒïœ
ãïŒïŒïœããã®å
æã¯ããã®å°åºé¢ïŒïŒ¡ïœïŒïŒïŒ¢ïœã®è¿åã«é
眮ããããã¹ã¯ãã©ã€ã³ãïŒïŒ¡ïŒïŒïŒ¢ãéç³çã«ç
§æãããç
§æèŠéçµããšããŠã®ãã¹ã¯ãã©ã€ã³ãïŒïŒ¡ããã³ïŒïŒ¢ã®ç©åœ¢ç¶ã®éå£éšïŒå
éééšïŒãä»ããå
æã¯ãååŽã¬ã³ãºçŸ€ïŒïŒïœãšåŸåŽã¬ã³ãºçŸ€ïŒïŒïœãšãããªãçµåå
åŠç³»ïŒïŒã®éå
äœçšãåããåŸããã¹ã¯ïŒäžã®ç¬¬ïŒç
§æé åïŒããã³ç¬¬ïŒç
§æé åïŒãããããéç³çã«ç
§æãããããªãã¡ã第ïŒç
§æç³»ãšç¬¬ïŒç
§æç³»ãšã«å
±éã®çµåå
åŠç³»ïŒïŒã¯ããã¹ã¯ãã©ã€ã³ãïŒïŒ¡ã®ç©åœ¢ç¶éå£éšã®åã第ïŒç
§æé åïŒã«åœ¢æãããã¹ã¯ãã©ã€ã³ãïŒïŒ¢ã®ç©åœ¢ç¶éå£éšã®åã第ïŒç
§æé åïŒã«åœ¢æããã
  The light beams from the
ãã®ãšãããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ããã®å
æã¯ãååŽã¬ã³ãºçŸ€ïŒïŒïœãšåŸåŽã¬ã³ãºçŸ€ïŒïŒïœãšã®éã®çµåå
åŠç³»ïŒïŒã®ç³é¢ã«ãå³ïŒïŒïœïŒã«ç€ºããããªåååïŒæ¥µç¶ã®å
匷床ååžã圢æããããŸãããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¢ããã®å
æã¯ãçµåå
åŠç³»ïŒïŒã®ç³é¢ã«ãå³ïŒïŒïœïŒã«ç€ºããããªïŒžååïŒæ¥µç¶ã®å
匷床ååžã圢æããããªããå³ïŒã«ç€ºãããã«ããã¹ã¯ãã©ã€ã³ãïŒïŒ¡ã®éå£éšïŒïŒ¡ïœã¯å
軞ïŒãäžå¿ãšããŠïŒºæ¹åã«çްé·ãç©åœ¢ç¶ã®å€åœ¢åœ¢ç¶ãæãããã¹ã¯ãã©ã€ã³ãïŒïŒ¢ã®éå£éšïŒïŒ¢ïœã¯å
軞ïŒãäžå¿ãšããŠïŒºæ¹åã«çްé·ãç©åœ¢ç¶ã®å€åœ¢åœ¢ç¶ãæããããã¹ã¯ãã©ã€ã³ãïŒïŒ¡ã®éå£éšïŒïŒ¡ïœããã³ãã¹ã¯ãã©ã€ã³ãïŒïŒ¢ã®éå£éšïŒïŒ¢ïœã¯ã第ïŒç
§æé åïŒããã³ç¬¬ïŒç
§æé åïŒã«å¯Ÿå¿ããŠäºãã«åã倧ãããæããã
  At this time, the light beam from the
ãã¹ã¯ã¹ããŒãžïŒïŒ³ã«ããä¿æããããã¹ã¯ïŒäžã®ç¬¬ïŒç
§æé åïŒãééãã第ïŒå
æããã³ç¬¬ïŒç
§æé åïŒãééãã第ïŒå
æã¯ãæåœ±å
åŠç³»ïŒ°ïŒ¬ãä»ããŠããŠã§ãã¹ããŒãžïŒ·ïŒ³ã«ããä¿æããããŠã§ãïŒæå
æ§åºæ¿ïŒïŒ·äžã«ã第ïŒç
§æé åïŒã®å
ã«ããç
§æããããã¿ãŒã³åããã³ç¬¬ïŒç
§æé åïŒã®å
ã«ããç
§æããããã¿ãŒã³åã圢æãããããã«è©³çްã«ã¯ããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ã®å
¥å°åŽã®ç
§æç³ïŒç¬¬ïŒç
§æç³»ã®ç
§æç³ïŒã«å³ïŒïŒïœïŒã«ç€ºããããªåååïŒæ¥µç¶ã®å
匷床ååžã圢æãã第ïŒå
æã¯ãçµåå
åŠç³»ïŒïŒã®ç³é¢ã«åããåååïŒæ¥µç¶ã®å
匷床ååžã圢æããåŸãå³ïŒïŒïœïŒã«ç€ºãããã«ããã¹ã¯ïŒäžã«ãããŠïŒºæ¹åã«çްé·ãå»¶ã³ãç©åœ¢ç¶ã®ç¬¬ïŒç
§æé åïŒãç
§æããã
  The first light flux that has passed through the first illumination region IR1 and the second light flux that has passed through the second illumination region IR2 on the mask M held by the mask stage MS are held by the wafer stage WS via the projection optical system PL. On the wafer (photosensitive substrate) W, a pattern image illuminated by the light in the first illumination region IR1 and a pattern image illuminated by the light in the second illumination region IR2 are formed. More specifically, the first light flux that forms a cross-shaped quadrupole light intensity distribution as shown in FIG. 5A on the illumination pupil (illumination pupil of the first illumination system) on the incident side of the
ãããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¢ã®å
¥å°åŽã®ç
§æç³ïŒç¬¬ïŒç
§æç³»ã®ç
§æç³ïŒã«å³ïŒïŒïœïŒã«ç€ºããããªïŒžååïŒæ¥µç¶ã®å
匷床ååžã圢æãã第ïŒå
æã¯ãçµåå
åŠç³»ïŒïŒã®ç³é¢ã«åããååïŒæ¥µç¶ã®å
匷床ååžã圢æããåŸãå³ïŒïŒïœïŒã«ç€ºãããã«ããã¹ã¯ïŒäžã«ãããŠïŒºæ¹åã«çްé·ãå»¶ã³ãç©åœ¢ç¶ã®ç¬¬ïŒç
§æé åïŒãç
§æããã第ïŒç
§æé åïŒãšç¬¬ïŒç
§æé åïŒãšã¯äºãã«åã倧ãããæããå
軞ãæãã§ïŒºæ¹åã«äžŠãã§åœ¢æãããããããŠããã¹ã¯ïŒã®ãã¿ãŒã³é åã®ãã¡ã第ïŒç
§æé åïŒã«å¯Ÿå¿ãããã¿ãŒã³ãåååïŒæ¥µç
§æããã第ïŒç
§æé åïŒã«å¯Ÿå¿ãããã¿ãŒã³ãååïŒæ¥µç
§æããããããããŠãå³ïŒïŒïœïŒã«ç€ºãããã«ãæåœ±å
åŠç³»ïŒ°ïŒ¬ã®ç©åœ¢ç¶ã®æå¹çµåé åã«ã¯ã第ïŒç
§æé åïŒã®å
ã«ããç
§æããããã¹ã¯ïŒã®ãã¿ãŒã³åïŒïŒãšç¬¬ïŒç
§æé åïŒã®å
ã«ããç
§æããããã¹ã¯ïŒã®ãã¿ãŒã³åïŒïŒãšãæ¹åã«äžŠãã§åœ¢æãããã
  The second luminous flux in which an X-shaped quadrupole light intensity distribution as shown in FIG. 5B is formed on the illumination pupil (illumination pupil of the second illumination system) on the incident side of the
æ¬å®æœåœ¢æ ã§ã¯ãæåœ±å åŠç³»ïŒ°ïŒ¬ã«å¯ŸããŠãã¹ã¯ïŒããã³ãŠã§ããæ¹åã«æ²¿ã£ãŠåæçã«ç§»åããã€ã€ããŠã§ãäžã®ïŒã€ã®ã·ã§ããé åã«ã第ïŒç §æé åïŒã®å ã«ããç §æããããã¹ã¯ïŒã®ãã¿ãŒã³ãšç¬¬ïŒç §æé åïŒã®å ã«ããç §æããããã¹ã¯ïŒã®ãã¿ãŒã³ãšãéããŠèµ°æ»é²å ããŠïŒã€ã®åæãã¿ãŒã³ã圢æããããããŠãæåœ±å åŠç³»ïŒ°ïŒ¬ã«å¯ŸããŠãŠã§ãã平é¢ã«æ²¿ã£ãŠäºæ¬¡å çã«ã¹ãããç§»åããã€ã€ãäžè¿°ã®éãèµ°æ»é²å ãç¹°ãè¿ãããšã«ããããŠã§ãäžã®åã·ã§ããé åã«ã第ïŒç §æé åïŒã®å ã«ããç §æããããã¹ã¯ïŒã®ãã¿ãŒã³ãšç¬¬ïŒç §æé åïŒã®å ã«ããç §æããããã¹ã¯ïŒã®ãã¿ãŒã³ãšã®åæãã¿ãŒã³ã鿬¡åœ¢æãããã   In the present embodiment, one shot area on the wafer W is illuminated with light from the first illumination area IR1 while the mask M and the wafer W are moved synchronously along the X direction with respect to the projection optical system PL. The pattern of the mask M and the pattern of the mask M illuminated by the light in the second illumination region IR2 are overlapped and scanned to form one composite pattern. Then, the above-described overlap scanning exposure is repeated while moving the wafer W two-dimensionally along the XZ plane with respect to the projection optical system PL, whereby each shot region on the wafer W is exposed to the first illumination region IR1. A combined pattern of the pattern of the mask M illuminated by the light and the pattern of the mask M illuminated by the light in the second illumination region IR2 is sequentially formed.
å³ïŒã¯ãæå
ãŠãããã®æ§æãæŠç¥çã«ç€ºãå³ã§ãããå³ïŒãåç
§ãããšãæå
ãŠãããïŒã¯ãå
軞ãäžå¿ãšããå圢ç¶ã®æå¹é åãæãããã®å圢ç¶ã®æå¹é åã¯å
軞ãäžå¿ãšããååšæ¹åã«çåå²ãããïŒã€ã®æåœ¢åœ¢ç¶ã®æå
éšæïŒïŒ¡ïŒïŒïŒ¢ïŒïŒïŒ£ïŒïŒïŒ€ïŒïŒïŒ¥ïŒïŒïŒŠïŒïŒïŒ§ïŒïŒïŒšã«ããæ§æãããŠããããããã®ïŒã€ã®æå
éšæïŒïŒ¡ãïŒïŒšã«ãããŠãå
軞ãæãã§å¯Ÿåããäžå¯Ÿã®æå
éšæã¯äºãã«åãç¹æ§ãæãããããªãã¡ãïŒã€ã®æå
éšæïŒïŒ¡ãïŒïŒšã¯ãå
ã®ééæ¹åïŒïŒ¹æ¹åïŒã«æ²¿ã£ãåãïŒå
軞æ¹åã®é·ãïŒãäºãã«ç°ãªãïŒçš®é¡ã®æå
éšæãïŒåã¥ã€å«ãã§ããããã®çµæãæå
ãŠãããïŒã®äžæ¹ã®é¢ïŒããšãã°å
¥å°é¢ïŒã¯å¹³é¢ç¶ã§ãããã仿¹ã®é¢ïŒããšãã°å°åºé¢ïŒã¯åæå
éšæïŒïŒ¡ãïŒïŒšã®åãã®éãã«ããå¹åžç¶ã«ãªã£ãŠããã
  FIG. 7 is a diagram schematically showing the configuration of the optical rotation unit. Referring to FIG. 7, the
åæå
éšæïŒïŒ¡ãïŒïŒšã¯ãæå
æ§ãæããå
åŠææã§ããæ°Žæ¶ã«ããæ§æããããã®çµæ¶å
åŠè»žãå
軞ãšã»ãŒäžèŽããããã«èšå®ãããŠããã以äžãå³ïŒãåç
§ããŠãæ°Žæ¶ã®æå
æ§ã«ã€ããŠç°¡åã«èª¬æãããå³ïŒãåç
§ãããšãåãïœã®æ°Žæ¶ãããªãå¹³è¡å¹³é¢æ¿ç¶ã®å
åŠéšæïŒïŒïŒãããã®çµæ¶å
åŠè»žãšå
軞ãšãäžèŽããããã«é
眮ãããŠããããã®å Žåãå
åŠéšæïŒïŒïŒã®æå
æ§ã«ãããå
¥å°ããçŽç·åå
ã®åå
æ¹åãå
軞廻ãã«Îžã ãå転ããç¶æ
ã§å°åºãããã
  Each of the
ãã®ãšããå
åŠéšæïŒïŒïŒã®æå
æ§ã«ããåå
æ¹åã®å転è§ïŒæå
è§åºŠïŒÎžã¯ãå
åŠéšæïŒïŒïŒã®åãïœãšæ°Žæ¶ã®æå
èœÏãšã«ãããæ¬¡ã®åŒïŒïŒïŒã§è¡šããããã
ΞïŒïœã»Ï ïŒïŒïŒ
äžè¬ã«ãæ°Žæ¶ã®æå
èœÏã¯ãæ³¢é·äŸåæ§ïŒäœ¿çšå
ã®æ³¢é·ã«äŸåããŠæå
èœã®å€ãç°ãªãæ§è³ªïŒæå
忣ïŒããããå
·äœçã«ã¯äœ¿çšå
ã®æ³¢é·ãçããªããšå€§ãããªãåŸåãããããå¿çšå
åŠIIãã®ç¬¬ïŒïŒïŒé ã®èšè¿°ã«ããã°ãïŒïŒïŒïŒïŒïœïœã®æ³¢é·ãæããå
ã«å¯Ÿããæ°Žæ¶ã®æå
èœÏã¯ãïŒïŒïŒïŒïŒåºŠïŒïœïœã§ããã
At this time, the rotation angle (optical rotation angle) Ξ in the polarization direction due to the optical rotation of the
Ξ = d · Ï (1)
In general, the optical rotation Ï of quartz has a wavelength dependency (a property in which the value of optical rotation varies depending on the wavelength of the light used: optical rotation dispersion), and specifically, it tends to increase as the wavelength of the light used decreases. is there. According to the description on page 167 of âApplied Optics IIâ, the optical rotation power Ï of quartz with respect to light having a wavelength of 250.3 nm is 153.9 degrees / mm.
æå
éšæïŒïŒ¡ïŒïŒïŒ£ã¯ãåæå
åŠçŽ åïŒïŒ¡ã«ããã¢ãã©ãŒã«ã«ã¬ã³ãºïŒã®ç³é¢ã«åœ¢æãããå
匷床ååžïŒïŒïœïŒïŒïŒïœã«å¯Ÿå¿ããæ¹åçŽç·ç¶æ
ã®å
æãééããé åã«èšããããå
¥å°å
ã®åå
æ¹åã軞廻ãã«ïŒïŒïŒåºŠå転ãããæ¹åããªãã¡ïŒžæ¹åã«åå
æ¹åãæããæ¹åçŽç·åå
ã®å
ãå°åºããããã«åããèšå®ãããŠããããããã£ãŠãå³ïŒïŒïœïŒã«ç€ºãåååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœãïŒïŒïœã®ãã¡ãæå
éšæïŒïŒ¡ïŒïŒïŒ£ã®æå
äœçšãåããå
æã圢æããäžå¯Ÿã®å
匷床ååžïŒïŒïœïŒïŒïŒïœãééããå
æã¯ïŒžæ¹åçŽç·åå
ç¶æ
ã«ãªãã
  The optical
æå
éšæïŒïŒ¢ïŒïŒïŒ€ã¯ãåæå
åŠçŽ åïŒïŒ¡ã«ããã¢ãã©ãŒã«ã«ã¬ã³ãºïŒã®ç³é¢ã«åœ¢æãããå
匷床ååžïŒïŒïœïŒïŒïŒïœã«å¯Ÿå¿ããæ¹åçŽç·ç¶æ
ã®å
æãééããé åã«èšããããå
¥å°å
ã®åå
æ¹åã軞廻ãã«ïŒïŒïŒïŒåºŠå転ãããæ¹åããªãã¡ïŒºæ¹åã«åå
æ¹åãæããæ¹åçŽç·åå
ã®å
ãå°åºããããã«åããèšå®ãããŠããããããã£ãŠãå³ïŒïŒïœïŒã«ç€ºãåååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœãïŒïŒïœã®ãã¡ãæå
éšæïŒïŒ¢ïŒïŒïŒ€ã®æå
äœçšãåããå
æã圢æããäžå¯Ÿã®å
匷床ååžïŒïŒïœïŒïŒïŒïœãééããå
æã¯ïŒºæ¹åçŽç·åå
ç¶æ
ã«ãªãã
  The
æå
éšæïŒïŒ¥ïŒïŒïŒ§ã¯ãåæå
åŠçŽ åïŒïŒ¢ã«ããã¢ãã©ãŒã«ã«ã¬ã³ãºïŒã®ç³é¢ã«åœ¢æãããå
匷床ååžïŒïŒïœ
ïŒïŒïŒïœã«å¯Ÿå¿ããæ¹åçŽç·ç¶æ
ã®å
æãééããé åã«èšããããå
¥å°å
ã®åå
æ¹åã軞廻ãã«ïŒïŒïŒåºŠå転ãããæ¹åããªãã¡ïŒïŒºæ¹åããã³âæ¹åãšïŒïŒåºŠããªãç¬¬ïŒæãæ¹åã«åå
æ¹åãæããç¬¬ïŒæãæ¹åçŽç·åå
ã®å
ãå°åºããããã«åããèšå®ãããŠããããããã£ãŠãå³ïŒïŒïœïŒã«ç€ºãååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœ
ãïŒïŒïœã®ãã¡ãæå
éšæïŒïŒ¥ïŒïŒïŒ§ã®æå
äœçšãåããå
æã圢æããäžå¯Ÿã®å
匷床ååžïŒïŒïœ
ïŒïŒïŒïœãééããå
æã¯ç¬¬ïŒæãæ¹åçŽç·åå
ç¶æ
ã«ãªãã
  The optical
æå
éšæïŒïŒŠïŒïŒïŒšã¯ãåæå
åŠçŽ åïŒïŒ¢ã«ããã¢ãã©ãŒã«ã«ã¬ã³ãºïŒã®ç³é¢ã«åœ¢æãããå
匷床ååžïŒïŒïœïŒïŒïŒïœã«å¯Ÿå¿ããæ¹åçŽç·ç¶æ
ã®å
æãééããé åã«èšããããå
¥å°å
ã®åå
æ¹åã軞廻ãã«ïŒïŒïŒïŒåºŠå転ãããæ¹åããªãã¡ïŒïŒºæ¹åããã³ïŒïŒžæ¹åãšïŒïŒåºŠããªãç¬¬ïŒæãæ¹åã«åå
æ¹åãæããç¬¬ïŒæãæ¹åçŽç·åå
ã®å
ãå°åºããããã«åããèšå®ãããŠããããããã£ãŠãå³ïŒïŒïœïŒã«ç€ºãååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœ
ãïŒïŒïœã®ãã¡ãæå
éšæïŒïŒŠïŒïŒïŒšã®æå
äœçšãåããå
æã圢æããäžå¯Ÿã®å
匷床ååžïŒïŒïœïŒïŒïŒïœãééããå
æã¯ç¬¬ïŒæãæ¹åçŽç·åå
ç¶æ
ã«ãªãã
  The
ãã®ããã«ãæå
ãŠãããïŒã¯ã第ïŒç
§æç³»ãšç¬¬ïŒç
§æç³»ãšã«å
±éã®ãªã¬ãŒå
åŠç³»ã§ããã¢ãã©ãŒã«ã«ã¬ã³ãºïŒã®ç³äœçœ®ãŸãã¯ãã®è¿åäœçœ®ã«é
眮ããã第ïŒç
§æç³»ã®åæå
åŠçŽ åïŒïŒ¡ãä»ããŠåœ¢æãããïŒã€ã®å
æã®åå
æ¹åã倿ŽããïŒã€ã®æå
éšæïŒïŒ¡ãïŒïŒ€ãšã第ïŒç
§æç³»ã®åæå
åŠçŽ åïŒïŒ¢ãä»ããŠåœ¢æãããïŒã€ã®å
æã®åå
æ¹åã倿ŽããïŒã€ã®æå
éšæïŒïŒ¥ãïŒïŒšãšãæãããæå
ãŠãããïŒã®äœçšã«ããã第ïŒç
§æç³»ã®ç
§æç³ã§ã®å
æã®åå
ç¶æ
ããã³ç¬¬ïŒç
§æç³»ã®ç
§æç³ã§ã®å
æã®åå
ç¶æ
ãããããåšæ¹åçŽç·åå
ç¶æ
ã«èšå®ãããããªããå¥ã
ã«åœ¢æãããïŒã€ã®æå
éšæãçµã¿åãããŠæå
ãŠãããïŒãåŸãããšãã§ãããããããã¯å¹³è¡å¹³é¢æ¿ç¶ã®æ°Žæ¶åºæ¿ã«æèŠã®å¹åžåœ¢ç¶ïŒæ®µå·®ïŒã圢æããããšã«ããæå
ãŠãããïŒãåŸãããšãã§ããã
  In this way, the
äžè¬ã«ãé²å è£ çœ®ã§ã¯ããŠã§ãã«ç §å°ãããå ãåå ãäž»æåãšããåå ç¶æ ã«ãªãããã«ãæèŠã®çŽç·åå ç¶æ ã®å ã§ãã¹ã¯ïŒã®ãã¿ãŒã³ãç §æããããšã奜ãŸãããããã§ãåå ãšã¯ãå ¥å°é¢ã«å¯ŸããŠåçŽãªæ¹åã«åå æ¹åãæããçŽç·åå ïŒå ¥å°é¢ã«åçŽãªæ¹åã«é»æ°ãã¯ãã«ãæ¯åããŠããåå ïŒã®ããšã§ããããŸããå ¥å°é¢ã¯ãå ãåªè³ªã®å¢çé¢ïŒãŠã§ãã®è¡šé¢ïŒã«éãããšãã«ããã®ç¹ã§ã®å¢çé¢ã®æ³ç·ãšå ã®å ¥å°æ¹åãšãå«ãé¢ãšããŠå®çŸ©ãããããã®ããã«ããŠã§ãã«ç §å°ãããå ãåå ãäž»æåãšããåå ç¶æ ã«ãªãããã«æèŠã®çŽç·åå ç¶æ ã®å ã§ãã¹ã¯ãã¿ãŒã³ãç §æããããšã«ãããæåœ±å åŠç³»ïŒ°ïŒ¬ã®å åŠæ§èœïŒçŠç¹æ·±åºŠãªã©ïŒã®åäžãå³ãããšãã§ãããŠã§ãäžã«ãããŠã³ã³ãã©ã¹ãã®é«ããã¿ãŒã³åãåŸãããšãã§ããã   In general, in the exposure apparatus, it is preferable to illuminate the pattern of the mask M with light in a required linear polarization state so that the light irradiated onto the wafer W is in a polarization state mainly composed of S-polarized light. Here, the S-polarized light is linearly polarized light having a polarization direction in a direction perpendicular to the incident surface (polarized light having an electric vector oscillating in a direction perpendicular to the incident surface). Further, the incident surface is defined as a surface including the normal of the boundary surface at that point and the incident direction of light when the light reaches the boundary surface of the medium (the surface of the wafer W). Thus, the optical performance (focal point) of the projection optical system PL is obtained by illuminating the mask pattern with light in a required linearly polarized state so that the light irradiated onto the wafer W is in a polarization state mainly composed of S-polarized light. The depth and the like can be improved, and a pattern image with high contrast can be obtained on the wafer W.
æ¬å®æœåœ¢æ
ã§ã¯ãæå
ãŠãããïŒã®äœçšã«ãããå³ïŒïŒïœïŒã«ç€ºãããã«ããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ã®ç³é¢å
ã«åååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœãïŒïŒïœãåšæ¹åçŽç·åå
ç¶æ
ã§åœ¢æããããããã¯ãå³ïŒïŒïœïŒã«ç€ºããããã«ããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ã®ç³é¢å
ã®ïŒžæ¹åã«æ²¿ã£ãäžå€®é åããã³ïŒºæ¹åã«æ²¿ã£ãäžå€®é åãããªãã¡åååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœãïŒïŒïœã圢æãããé åã§ã¯ãå
¥å°å
ã®åå
ç¶æ
ãå€åããããšãªãå®è³ªçã«ç¶æãããããã§ãããããããŠã第ïŒç
§æé åïŒã¯ãåååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœãïŒïŒïœããã®åšæ¹åçŽç·åå
ç¶æ
ã®å
ã«ããç
§æãããããã®çµæã第ïŒç
§æé åïŒã®å
ã«ããç
§æããããã¹ã¯ïŒã®ãã¿ãŒã³ã®ãã¡ãäŸãã°ïŒžæ¹åãæ¹åã«æ²¿ã£ãŠçްé·ãå»¶ã³ã瞊暪ãã¿ãŒã³ãæçµçãªè¢«ç
§å°é¢ãšããŠã®ãŠã§ãã«çµåããå
ã¯ïŒ³åå
ãäž»æåãšããåå
ç¶æ
ã«ãªãããŠã§ãäžã«ãããŠã³ã³ãã©ã¹ãã®é«ããã¿ãŒã³åãåŸãããšãã§ããã
  In the present embodiment, due to the action of the
åæ§ã«ãæå
ãŠãããïŒã®äœçšã«ãããå³ïŒïŒïœïŒã«ç€ºãããã«ããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¢ã®ç³é¢å
ã«ïŒžååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœ
ãïŒïŒïœãåšæ¹åçŽç·åå
ç¶æ
ã§åœ¢æããããããã¯ããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ã軞廻ãã«ïŒïŒåºŠå転ããããããªå§¿å¢ã§äœçœ®æ±ºãããããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¢ã®ç³é¢å
ã«ãããŠãååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœ
ãïŒïŒïœã圢æãããé åã§ã¯ãå
¥å°å
ã®åå
ç¶æ
ãå€åããããšãªãå®è³ªçã«ç¶æãããããã§ãããããããŠã第ïŒç
§æé åïŒã¯ãåååïŒæ¥µç¶ã®ïŒžååïŒæ¥µç¶ã®å
匷床ååžïŒïŒïœ
ãïŒïŒïœããã®åšæ¹åçŽç·åå
ç¶æ
ã®å
ã«ããç
§æãããããã®çµæã第ïŒç
§æé åïŒã®å
ã«ããç
§æããããã¹ã¯ïŒã®ãã¿ãŒã³ã®ãã¡ãäŸãã°ïŒžæ¹åãæ¹åãšïŒïŒåºŠããªãæãæ¹åã«æ²¿ã£ãŠçްé·ãå»¶ã³ãæããã¿ãŒã³ãæçµçãªè¢«ç
§å°é¢ãšããŠã®ãŠã§ãã«çµåããå
ã¯ïŒ³åå
ãäž»æåãšããåå
ç¶æ
ã«ãªãããŠã§ãäžã«ãããŠã³ã³ãã©ã¹ãã®é«ããã¿ãŒã³åãåŸãããšãã§ããã
  Similarly, due to the action of the
æ¬å®æœåœ¢æ
ã§ã¯ãïŒæ¥µç
§æçšã®åæå
åŠçŽ åïŒïŒ¡ïŒïŒïŒ¢ã«ä»£ããŠã茪垯ç
§æçšã®åæå
åŠçŽ åãå圢ç
§æçšã®åæå
åŠçŽ åãä»ã®è€æ°æ¥µç
§æçšã®åæå
åŠçŽ åãç
§æå
è·¯äžã«èšå®ããããšã«ãã£ãŠã茪垯ç
§æãå圢ç
§æãè€æ°æ¥µç
§æïŒïŒæ¥µç
§æãïŒæ¥µç
§æãïŒæ¥µç
§æãªã©ïŒãè¡ãããšãã§ãããããªãã¡ãäŸãã°èŒªåž¯ç
§æãå圢ç
§æãè€æ°æ¥µç
§æãªã©ããéžæãããä»»æã®ç
§æåœ¢æ
ã§ã第ïŒç
§æé åïŒããã³ç¬¬ïŒç
§æé åïŒãç¬ç«ã«ç
§æããããšãã§ããããŸããåå
ããŒã ã¹ããªãã¿ãŒïŒããã³æå
ãŠãããïŒã®äœçšã«ããã第ïŒç
§æé åïŒãç
§æããå
ããã³ç¬¬ïŒç
§æé åïŒãç
§æããå
ãããããæèŠã®åå
ç¶æ
ã«èšå®ããããšãã§ããã
  In this embodiment, instead of the diffractive
ãŸããæ¬å®æœåœ¢æ
ã§ã¯ãäŸãã°ã¢ãã©ãŒã«ã«ã¬ã³ãºïŒã®ååŽã¬ã³ãºçŸ€ïŒïœã®å
è·¯äžã«ã¢ãã·ã³ã³ç³»ïŒåéã¢ãã·ã³ã³ç³»ãè§éã¢ãã·ã³ã³ç³»ãæºã¢ãã·ã³ã³ç³»ãªã©ïŒãé
眮ããŠã第ïŒç
§æç³»ããã³ç¬¬ïŒç
§æç³»ã®ç
§æç³ã«åœ¢æãããå
匷床ååžã®åœ¢ç¶ãå€åãããããšãã§ããããŸããã¢ãã©ãŒã«ã«ã¬ã³ãºïŒãã¢ãã©ãŒã«ã«ãºãŒã ã¬ã³ãºãšããŠæ§æããããšã«ããã第ïŒç
§æç³»ããã³ç¬¬ïŒç
§æç³»ã®ç
§æç³ã«åœ¢æãããå
匷床ååžã®å€§ãããå€åãããããšãã§ããã
  In the present embodiment, for example, an axicon system (cone axicon system, pyramid axicon system, V-groove axicon system, etc.) is arranged in the optical path of the
åéã¢ãã·ã³ã³ç³»ã¯å
軞ãäžå¿ãšããåéäœã®åŽé¢ã«å¯Ÿå¿ãã圢ç¶ã®å±æé¢ãæããè§éã¢ãã·ã³ã³ç³»ã¯å
軞ãäžå¿ãšããè§éäœã®åŽé¢ã«å¯Ÿå¿ãã圢ç¶ã®å±æé¢ãæããæºã¢ãã·ã³ã³ç³»ã¯å
軞ãéãæå®ã®è»žç·ã«é¢ããŠã»ãŒå¯Ÿç§°ãªïŒ¶åç¶ã®æé¢åœ¢ç¶ã®å±æé¢ãæãããåéã¢ãã·ã³ã³ç³»ãè§éã¢ãã·ã³ã³ç³»ããã³ïŒ¶æºã¢ãã·ã³ã³ç³»ã®æ§æããã³äœçšã«ã€ããŠã¯ãç¹éïŒïŒïŒïŒâïŒïŒïŒïŒïŒïŒå·å
¬å ±ãªã©ãåç
§ããããšãã§ããããªãããããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ïŒïŒïŒ¢ãšãã¹ã¯ïŒãšã®éã«å
è·¯æãæ²ãåå°é¡ãé
眮ããå Žåããã®åå°é¡ã«èµ·å ããŠå
ã®åå
ç¶æ
ãå®è³ªçã«å€åããããšããªãããã«ãåå°é¡ã®ïŒ°âåå°çå·®ïŒïŒ°åå
ãšïŒ³åå
ãšã®éã®åå°çå·®ïŒããã³ïŒ°âäœçžå·®ïŒïŒ°åå
ãšïŒ³åå
ãšã®éã«åå°ã«ããçºçããäœçžå·®ïŒã®èšèšã«é
æ
®ãå¿
èŠã§ããã
  The cone axicon system has a refracting surface having a shape corresponding to the side surface of the cone centered on the optical axis, and the pyramid axicon system has a refracting surface having a shape corresponding to the side surface of the pyramid centered on the optical axis, The V-groove axicon system has a refracting surface having a V-shaped cross section that is substantially symmetrical with respect to a predetermined axis passing through the optical axis. Japanese Patent Application Laid-Open No. 2002-231619 can be referred to for the configuration and operation of the conical axicon system, the pyramid axicon system, and the V-groove axicon system. When an optical path bending reflecting mirror is disposed between the
以äžã®ããã«ãæ¬å®æœåœ¢æ
ã®ç
§æå
åŠè£
眮ã§ã¯ã䞊åé
眮ãããïŒã€ã®å
é¢åå°åã®ãããã€ã³ãã°ã¬ãŒã¿ïŒïŒ¡ïŒïŒïŒ¢ãçšããŠãç
§æç³ã§ã®å
匷床ååžã®åœ¢ç¶ãŸãã¯å€§ãããç
§æå
ã®åå
ç¶æ
ãªã©ããã©ã¡ãŒã¿ãšããæèŠã®ç
§ææ¡ä»¶ã§ããã¹ã¯ïŒäžã®ç¬¬ïŒç
§æé åïŒããã³ç¬¬ïŒç
§æé åïŒãåå¥ã«ç
§æããããšãã§ããããã®çµæãæ¬å®æœåœ¢æ
ã®é²å
è£
眮ã§ã¯ãïŒã€ã®ç
§æé åïŒããã³ïŒ©ïŒ²ïŒãæèŠã®ç
§ææ¡ä»¶ã§åå¥ã«ç
§æããç
§æå
åŠè£
眮ãçšããŠãäºéé²å
æ¹åŒã«ãããã¹ã¯ïŒã®åŸ®çްãã¿ãŒã³ããŠã§ãã«é«ç²ŸåºŠã«äžã€é«ã¹ã«ãŒãããã§é²å
ããããšãã§ããã
  As described above, in the illumination optical apparatus according to the present embodiment, the shape or size of the light intensity distribution at the illumination pupil and the polarization of the illumination light using the two internal reflection
ãªããäžè¿°ã®å®æœåœ¢æ ã§ã¯ã第ïŒç §æç³»ãšç¬¬ïŒç §æç³»ãšã«å ±éã®ã¢ãã©ãŒã«ã«ã¬ã³ãºïŒãªã¬ãŒå åŠç³»ïŒãçšããŠããããããã«éå®ãããããšãªãã第ïŒç §æç³»ããã³ç¬¬ïŒç §æç³»ã«ãããããªã¬ãŒå åŠç³»ãåå¥é 眮ããããšãã§ãããåæ§ã«ã第ïŒç §æç³»ãšç¬¬ïŒç §æç³»ãšã«å ±éã®çµåå åŠç³»ãçšããŠããããããã«éå®ãããããšãªãã第ïŒç §æç³»ããã³ç¬¬ïŒç §æç³»ã«ããããçµåå åŠç³»ãåå¥é 眮ããããšãã§ããã   In the above-described embodiment, a common afocal lens (relay optical system) is used for the first illumination system and the second illumination system, but the first illumination system and the second illumination system are not limited to this. A relay optical system can also be individually arranged in the illumination system. Similarly, a common imaging optical system is used for the first illumination system and the second illumination system. However, the present invention is not limited to this, and the imaging optical system is provided for each of the first illumination system and the second illumination system. Individual placement is also possible.
ãŸããäžè¿°ã®å®æœåœ¢æ ã§ã¯ã第ïŒç §æé åãç §æããå ã第ïŒã®åå ç¶æ ã«èšå®ãäžã€ç¬¬ïŒç §æé åãç §æããå ã第ïŒã®åå ç¶æ ã«èšå®ããåå èšå®éšãšããŠãè€æ°ã®æå åïŒæå éšæïŒããæ§æãããæå ãŠããããçšããŠãããããããªãããããã«éå®ãããããšãªããäŸãã°è€æ°ã®æ³¢é·æ¿ïŒäžè¬ã«ã¯ç§»çžåïŒãçšããŠåå èšå®éšãæ§æããããšãã§ãããããªãã¡ãåå èšå®éšã®æ§æã«ã€ããŠã¯æ§ã ãªåœ¢æ ãå¯èœã§ããã   In the above-described embodiment, a plurality of polarization setting units that set the light that illuminates the first illumination region to the first polarization state and set the light that illuminates the second illumination region to the second polarization state, An optical rotation unit composed of an optical rotator (optical rotation member) is used. However, the present invention is not limited to this, and the polarization setting unit can be configured using, for example, a plurality of wave plates (generally, phase shifters). That is, various configurations are possible for the configuration of the polarization setting unit.
ãŸããäžè¿°ã®å®æœåœ¢æ
ã§ã¯ã第ïŒç
§æé åãšç¬¬ïŒç
§æé åãšãèµ°æ»æ¹åïŒã¹ãã£ã³æ¹åïŒã§ããæ¹åãšçŽäº€ããæ¹åã«äžŠã¶ããã«åœ¢æãããŠãããããããªãããããã«éå®ãããããšãªããå³ïŒã«ç€ºãããã«ãã¹ã¯ãã©ã€ã³ãïŒïŒ¡ïŒïŒïŒ¢ã®éå£éšïŒïŒ¡ïœïŒïŒïŒ¢ïœãæ¹åã«çްé·ããªãããã«èšå®ããããšã«ãããå³ïŒïŒïŒïœïŒã«ç€ºãããã«ç¬¬ïŒç
§æé åïŒãšç¬¬ïŒç
§æé åïŒãšãèµ°æ»æ¹åã§ããæ¹åã«äžŠã¶ããã«åœ¢æããå€åœ¢äŸãå¯èœã§ããããã®å Žåãå³ïŒïŒïŒïœïŒã«ç€ºãããã«ãæåœ±å
åŠç³»ïŒ°ïŒ¬ã®ç©åœ¢ç¶ã®æå¹çµåé åã«ã¯ã第ïŒç
§æé åïŒã®å
ã«ããç
§æããããã¹ã¯ïŒã®ãã¿ãŒã³åïŒïŒãšç¬¬ïŒç
§æé åïŒã®å
ã«ããç
§æããããã¹ã¯ïŒã®ãã¿ãŒã³åïŒïŒãšãèµ°æ»æ¹åã§ããæ¹åã«äžŠãã§åœ¢æãããã
  In the above-described embodiment, the first illumination area and the second illumination area are formed so as to be aligned in the Z direction orthogonal to the X direction that is the scanning direction (scanning direction). However, the present invention is not limited to this, and by setting the openings 9Aa and 9Ba of the
ãªããäžè¿°ã®å®æœåœ¢æ ã§ã¯ã第ïŒç §æé åã«å¯Ÿå¿ãããã¿ãŒã³ãšç¬¬ïŒç §æé åã«å¯Ÿå¿ãããã¿ãŒã³ãšãæå æ§åºæ¿ïŒãŠã§ãïŒäžã®åäžã·ã§ããé åã«éãçŒãããŠïŒã€ã®åæãã¿ãŒã³ã圢æããäºéé²å ã«é¢é£ããŠæ¬çºæã説æããŠãããããããªãããããã«éå®ãããããšãªããïŒã€ä»¥äžã®ãã¿ãŒã³ãæå æ§åºæ¿äžã®åäžã·ã§ããé åã«éãçŒãããŠïŒã€ã®åæãã¿ãŒã³ã圢æããå€éé²å ã«å¯ŸããŠãåæ§ã«æ¬çºæãé©çšããããšãã§ããã   In the above-described embodiment, the pattern corresponding to the first illumination area and the pattern corresponding to the second illumination area are baked on the same shot area on the photosensitive substrate (wafer) to form one composite pattern. The invention has been described in connection with double exposure. However, the present invention is not limited to this, and the present invention is similarly applied to multiple exposure in which three or more patterns are overprinted on the same shot area on the photosensitive substrate to form one composite pattern. Can do.
ãŸããäžè¿°ã®å®æœåœ¢æ ã§ã¯ã第ïŒç §æé åã®ãã¿ãŒã³åãšç¬¬ïŒç §æé åã®ãã¿ãŒã³åãšãæå æ§åºæ¿äžã«ãããŠäžŠåçã«åœ¢æãããŠãããããããªãããããã«éå®ãããããšãªãã第ïŒç §æé åã®ãã¿ãŒã³åãšç¬¬ïŒç §æé åã®ãã¿ãŒã³åãšãåèŽãããŠæå æ§åºæ¿äžã«åœ¢æããããšãã§ããã   In the above-described embodiment, the pattern image of the first illumination area and the pattern image of the second illumination area are formed in parallel on the photosensitive substrate. However, the present invention is not limited to this, and the pattern image of the first illumination area and the pattern image of the second illumination area can be matched and formed on the photosensitive substrate.
ãŸããäžè¿°ã®å®æœåœ¢æ ã§ã¯ãïŒã€ã®ãã¹ã¯äžã«ç¬¬ïŒç §æé åãšç¬¬ïŒç §æé åãšãäºãã«è¿æ¥ããããã«åœ¢æããŠãããããããªãããããã«éå®ãããããšãªãã第ïŒãã¹ã¯äžã«ç¬¬ïŒç §æé åã圢æãã第ïŒãã¹ã¯äžã«ç¬¬ïŒç §æé åã圢æããããšãã§ããããã®å ŽåãäŸãã°å³ïŒïŒã«ç€ºãããã«å±æç³»ãšååãã©ãŒãšãããªãåé åã®æåœ±å åŠç³»ïŒ°ïŒ¬ããå³ïŒïŒã«ç€ºããããªåå°å±æåã§åé åã®æåœ±å åŠç³»ïŒ°ïŒ¬ããå³ïŒïŒã«ç€ºããããªããŒã ã¹ããªãã¿ãŒãçšããåé åã®æåœ±å åŠç³»ïŒ°ïŒ¬ãªã©ãçšããããšãã§ããã   In the above-described embodiment, the first illumination area and the second illumination area are formed close to each other on one mask. However, the present invention is not limited to this, and the first illumination region can be formed on the first mask and the second illumination region can be formed on the second mask. In this case, for example, as shown in FIG. 11, a double-headed projection optical system PL composed of a refracting system and a deflecting mirror, a catadioptric double-headed projection optical system PL as shown in FIG. 12, or as shown in FIG. A double-head projection optical system PL using such a beam splitter can be used.
äžè¿°ã®å®æœåœ¢æ ã«ãããé²å è£ çœ®ã§ã¯ãç §æå åŠè£ 眮ã«ãã£ãŠãã¹ã¯ïŒã¬ãã¯ã«ïŒãç §æãïŒç §æå·¥çšïŒãæåœ±å åŠç³»ãçšããŠãã¹ã¯ã«åœ¢æããã転åçšã®ãã¿ãŒã³ãæå æ§åºæ¿ã«é²å ããïŒé²å å·¥çšïŒããšã«ããããã€ã¯ãããã€ã¹ïŒåå°äœçŽ åãæ®åçŽ åãæ¶²æ¶è¡šç€ºçŽ åãèèç£æ°ãããçïŒã補é ããããšãã§ããã以äžãæ¬å®æœåœ¢æ ã®é²å è£ çœ®ãçšããŠæå æ§åºæ¿ãšããŠã®ãŠã§ãçã«æå®ã®åè·¯ãã¿ãŒã³ã圢æããããšã«ãã£ãŠããã€ã¯ãããã€ã¹ãšããŠã®åå°äœããã€ã¹ãåŸãéã®ææ³ã®äžäŸã«ã€ãå³ïŒïŒã®ãããŒãã£ãŒããåç §ããŠèª¬æããã   In the exposure apparatus according to the above-described embodiment, the illumination optical device illuminates the mask (reticle) (illumination process), and the projection optical system is used to expose the transfer pattern formed on the mask onto the photosensitive substrate (exposure). Step), a micro device (semiconductor element, imaging element, liquid crystal display element, thin film magnetic head, etc.) can be manufactured. Hereinafter, referring to the flowchart of FIG. 14 for an example of a method for obtaining a semiconductor device as a micro device by forming a predetermined circuit pattern on a wafer or the like as a photosensitive substrate using the exposure apparatus of the present embodiment. I will explain.
å ããå³ïŒïŒã®ã¹ãããïŒïŒïŒã«ãããŠãïŒãããã®ãŠã§ãäžã«éå±èãèžçããããæ¬¡ã®ã¹ãããïŒïŒïŒã«ãããŠããã®ïŒãããã®ãŠã§ãäžã®éå±èäžã«ãã©ãã¬ãžã¹ããå¡åžãããããã®åŸãã¹ãããïŒïŒïŒã«ãããŠãæ¬å®æœåœ¢æ ã®é²å è£ çœ®ãçšããŠããã¹ã¯äžã®ãã¿ãŒã³ã®åããã®æåœ±å åŠç³»ãä»ããŠããã®ïŒãããã®ãŠã§ãäžã®åã·ã§ããé åã«é 次é²å 転åãããããã®åŸãã¹ãããïŒïŒïŒã«ãããŠããã®ïŒãããã®ãŠã§ãäžã®ãã©ãã¬ãžã¹ãã®çŸåãè¡ãããåŸãã¹ãããïŒïŒïŒã«ãããŠããã®ïŒãããã®ãŠã§ãäžã§ã¬ãžã¹ããã¿ãŒã³ããã¹ã¯ãšããŠãšããã³ã°ãè¡ãããšã«ãã£ãŠããã¹ã¯äžã®ãã¿ãŒã³ã«å¯Ÿå¿ããåè·¯ãã¿ãŒã³ããåãŠã§ãäžã®åã·ã§ããé åã«åœ¢æãããã   First, in step 301 of FIG. 14, a metal film is deposited on one lot of wafers. In the next step 302, a photoresist is applied on the metal film on the one lot of wafers. Thereafter, in step 303, using the exposure apparatus of the present embodiment, the image of the pattern on the mask is sequentially exposed and transferred to each shot area on the wafer of one lot via the projection optical system. Thereafter, in step 304, the photoresist on the one lot of wafers is developed, and in step 305, the resist pattern is etched on the one lot of wafers to form a pattern on the mask. Corresponding circuit patterns are formed in each shot area on each wafer.
ãã®åŸãæŽã«äžã®ã¬ã€ã€ã®åè·¯ãã¿ãŒã³ã®åœ¢æçãè¡ãããšã«ãã£ãŠãåå°äœçŽ åçã®ããã€ã¹ã補é ããããäžè¿°ã®åå°äœããã€ã¹è£œé æ¹æ³ã«ããã°ã極ããŠåŸ®çްãªåè·¯ãã¿ãŒã³ãæããåå°äœããã€ã¹ãã¹ã«ãŒãããè¯ãåŸãããšãã§ããããªããã¹ãããïŒïŒïŒãã¹ãããïŒïŒïŒã§ã¯ããŠã§ãäžã«éå±ãèžçãããã®éå±èäžã«ã¬ãžã¹ããå¡åžããããŠé²å ãçŸåããšããã³ã°ã®åå·¥çšãè¡ã£ãŠãããããããã®å·¥çšã«å ç«ã£ãŠããŠã§ãäžã«ã·ãªã³ã³ã®é žåèã圢æåŸããã®ã·ãªã³ã³ã®é žåèäžã«ã¬ãžã¹ããå¡åžããããŠé²å ãçŸåããšããã³ã°çã®åå·¥çšãè¡ã£ãŠãè¯ãããšã¯ãããŸã§ããªãã   Thereafter, a device pattern such as a semiconductor element is manufactured by forming a circuit pattern of an upper layer. According to the semiconductor device manufacturing method described above, a semiconductor device having an extremely fine circuit pattern can be obtained with high throughput. In steps 301 to 305, a metal is deposited on the wafer, a resist is applied on the metal film, and exposure, development, and etching processes are performed. Prior to these processes, on the wafer. It is needless to say that after forming a silicon oxide film, a resist may be applied on the silicon oxide film, and steps such as exposure, development, and etching may be performed.
ãŸããæ¬å®æœåœ¢æ ã®é²å è£ çœ®ã§ã¯ããã¬ãŒãïŒã¬ã©ã¹åºæ¿ïŒäžã«æå®ã®ãã¿ãŒã³ïŒåè·¯ãã¿ãŒã³ã黿¥µãã¿ãŒã³çïŒã圢æããããšã«ãã£ãŠããã€ã¯ãããã€ã¹ãšããŠã®æ¶²æ¶è¡šç€ºçŽ åãåŸãããšãã§ããã以äžãå³ïŒïŒã®ãããŒãã£ãŒããåç §ããŠããã®ãšãã®ææ³ã®äžäŸã«ã€ã説æãããå³ïŒïŒã«ãããŠããã¿ãŒã³åœ¢æå·¥çšïŒïŒïŒã§ã¯ãæ¬å®æœåœ¢æ ã®é²å è£ çœ®ãçšããŠãã¹ã¯ã®ãã¿ãŒã³ãæå æ§åºæ¿ïŒã¬ãžã¹ããå¡åžãããã¬ã©ã¹åºæ¿çïŒã«è»¢åé²å ãããæè¬å ãªãœã°ã©ãã£ãŒå·¥çšãå®è¡ãããããã®å ãªãœã°ã©ãã£ãŒå·¥çšã«ãã£ãŠãæå æ§åºæ¿äžã«ã¯å€æ°ã®é»æ¥µçãå«ãæå®ãã¿ãŒã³ã圢æãããããã®åŸãé²å ãããåºæ¿ã¯ãçŸåå·¥çšããšããã³ã°å·¥çšãã¬ãžã¹ãå¥é¢å·¥çšçã®åå·¥çšãçµãããšã«ãã£ãŠãåºæ¿äžã«æå®ã®ãã¿ãŒã³ã圢æãããæ¬¡ã®ã«ã©ãŒãã£ã«ã¿ãŒåœ¢æå·¥çšïŒïŒïŒãžç§»è¡ããã   In the exposure apparatus of this embodiment, a liquid crystal display element as a micro device can be obtained by forming a predetermined pattern (circuit pattern, electrode pattern, etc.) on a plate (glass substrate). Hereinafter, an example of the technique at this time will be described with reference to the flowchart of FIG. In FIG. 15, in a pattern forming process 401, a so-called photolithography process is performed in which the exposure pattern of this embodiment is used to transfer and expose a mask pattern onto a photosensitive substrate (such as a glass substrate coated with a resist). By this photolithography process, a predetermined pattern including a large number of electrodes and the like is formed on the photosensitive substrate. Thereafter, the exposed substrate undergoes steps such as a developing step, an etching step, and a resist stripping step, whereby a predetermined pattern is formed on the substrate, and the process proceeds to the next color filter forming step 402.
次ã«ãã«ã©ãŒãã£ã«ã¿ãŒåœ¢æå·¥çšïŒïŒïŒã§ã¯ãïŒRedïŒãïŒGreenïŒãïŒBlueïŒã«å¯Ÿå¿ããïŒã€ã®ãããã®çµããããªãã¯ã¹ç¶ã«å€æ°é åããããããŸãã¯ïŒ²ããã®ïŒæ¬ã®ã¹ãã©ã€ãã®ãã£ã«ã¿ãŒã®çµãè€æ°æ°Žå¹³èµ°æ»ç·æ¹åã«é åããããããã«ã©ãŒãã£ã«ã¿ãŒã圢æããããããŠãã«ã©ãŒãã£ã«ã¿ãŒåœ¢æå·¥çšïŒïŒïŒã®åŸã«ãã»ã«çµã¿ç«ãŠå·¥çšïŒïŒïŒãå®è¡ããããã»ã«çµã¿ç«ãŠå·¥çšïŒïŒïŒã§ã¯ããã¿ãŒã³åœ¢æå·¥çšïŒïŒïŒã«ãŠåŸãããæå®ãã¿ãŒã³ãæããåºæ¿ãããã³ã«ã©ãŒãã£ã«ã¿ãŒåœ¢æå·¥çšïŒïŒïŒã«ãŠåŸãããã«ã©ãŒãã£ã«ã¿ãŒçãçšããŠæ¶²æ¶ããã«ïŒæ¶²æ¶ã»ã«ïŒãçµã¿ç«ãŠãã   Next, in the color filter forming step 402, a large number of sets of three dots corresponding to R (Red), G (Green), and B (Blue) are arranged in a matrix or three of R, G, and B A color filter is formed by arranging a plurality of stripe filter sets in the horizontal scanning line direction. Then, after the color filter forming step 402, a cell assembly step 403 is executed. In the cell assembly step 403, a liquid crystal panel (liquid crystal cell) is assembled using the substrate having the predetermined pattern obtained in the pattern formation step 401, the color filter obtained in the color filter formation step 402, and the like.
ã»ã«çµã¿ç«ãŠå·¥çšïŒïŒïŒã§ã¯ãäŸãã°ããã¿ãŒã³åœ¢æå·¥çšïŒïŒïŒã«ãŠåŸãããæå®ãã¿ãŒã³ãæããåºæ¿ãšã«ã©ãŒãã£ã«ã¿ãŒåœ¢æå·¥çšïŒïŒïŒã«ãŠåŸãããã«ã©ãŒãã£ã«ã¿ãŒãšã®éã«æ¶²æ¶ãæ³šå ¥ããŠãæ¶²æ¶ããã«ïŒæ¶²æ¶ã»ã«ïŒã補é ããããã®åŸãã¢ãžã¥ãŒã«çµã¿ç«ãŠå·¥çšïŒïŒïŒã«ãŠãçµã¿ç«ãŠãããæ¶²æ¶ããã«ïŒæ¶²æ¶ã»ã«ïŒã®è¡šç€ºåäœãè¡ããã黿°åè·¯ãããã¯ã©ã€ãçã®åéšåãåãä»ããŠæ¶²æ¶è¡šç€ºçŽ åãšããŠå®æããããäžè¿°ã®æ¶²æ¶è¡šç€ºçŽ åã®è£œé æ¹æ³ã«ããã°ã極ããŠåŸ®çްãªåè·¯ãã¿ãŒã³ãæããæ¶²æ¶è¡šç€ºçŽ åãã¹ã«ãŒãããè¯ãåŸãããšãã§ããã   In the cell assembly step 403, for example, liquid crystal is injected between the substrate having the predetermined pattern obtained in the pattern formation step 401 and the color filter obtained in the color filter formation step 402, and a liquid crystal panel (liquid crystal cell) is obtained. ). Thereafter, in a module assembling step 404, components such as an electric circuit and a backlight for performing a display operation of the assembled liquid crystal panel (liquid crystal cell) are attached to complete a liquid crystal display element. According to the above-described method for manufacturing a liquid crystal display element, a liquid crystal display element having an extremely fine circuit pattern can be obtained with high throughput.
ãªããäžè¿°ã®å®æœåœ¢æ ã§ã¯ãå æºãšããŠïŒ«ïœïŒŠãšãã·ãã¬ãŒã¶å æºãŸãã¯ïŒ¡ïœïŒŠãšãã·ãã¬ãŒã¶å æºãçšããŠããããããã«éå®ãããããšãªããäŸãã°ïŒŠ2ã¬ãŒã¶å æºã®ããã«ä»ã®é©åœãªå æºãçšããé²å è£ çœ®ã«å¯ŸããŠæ¬çºæãé©çšããããšãã§ããããŸããäžè¿°ã®å®æœåœ¢æ ã§ã¯ãé²å è£ çœ®ã«æèŒãããŠãã¹ã¯ãç §æããç §æå åŠè£ 眮ãäŸã«ãšã£ãŠæ¬çºæã説æããŠãããããã¹ã¯ä»¥å€ã®è¢«ç §å°é¢ãç §æããããã®äžè¬çãªç §æå åŠè£ çœ®ã«æ¬çºæãé©çšããããšãã§ããããšã¯æããã§ããã In the above-described embodiment, a KrF excimer laser light source or an ArF excimer laser light source is used as a light source. However, the present invention is not limited to this, and an exposure apparatus using another appropriate light source such as an F 2 laser light source, for example. The present invention can also be applied to. In the above-described embodiment, the present invention has been described by taking an example of an illumination optical apparatus that is mounted on an exposure apparatus and illuminates a mask. However, a general illumination optical apparatus for illuminating a surface to be irradiated other than the mask. It is clear that the present invention can be applied to the present invention.
ïŒ å
æº
ïŒ åå
ããŒã ã¹ããªãã¿ãŒ
ïŒïŒ¡ïŒïŒïŒ¢ åæå
åŠçŽ å
ïŒ ã¢ãã©ãŒã«ã«ã¬ã³ãº
ïŒïŒ¡ïŒïŒïŒ¢ ãããã€ã³ãã°ã¬ãŒã¿ïŒå
é¢åå°åã®ãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ïŒ
ïŒ æå
ãŠããã
ïŒïŒ¡ïŒïŒïŒ¢ ãã¹ã¯ãã©ã€ã³ã
ïŒïŒ çµåå
åŠç³»
ïŒ ãã¹ã¯
 æåœ±å
åŠç³»
 ãŠã§ã
DESCRIPTION OF
8
Claims (14)
åèšç¬¬ïŒç §æç³»ã¯ãæå®ã®ç¬¬ïŒæé¢ãæããå é¢åå°åã®ç¬¬ïŒãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ãæãã
åèšç¬¬ïŒç §æç³»ã¯ãæå®ã®ç¬¬ïŒæé¢ãæããå é¢åå°åã®ç¬¬ïŒãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ãæãã
åèšç¬¬ïŒãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ã®æé¢ã®äžèŸºã¯ãåèšç¬¬ïŒãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ã®æé¢ã®é£ãåãïŒã€ã®èŸºã«å¯ŸããŠéå¹³è¡ã«é 眮ãããŠããããšãç¹åŸŽãšããç §æå åŠè£ 眮ã An illumination optical apparatus comprising a first illumination system that illuminates a first illumination area and a second illumination system that illuminates a second illumination area,
The first illumination system includes an inner reflection type first optical integrator having a predetermined first cross section,
The second illumination system includes an internal reflection type second optical integrator having a predetermined second cross section,
An illumination optical apparatus, wherein one side of the cross section of the first optical integrator is arranged non-parallel to two adjacent sides of the cross section of the second optical integrator.
åèšç¬¬ïŒç §æç³»ã¯ãåèšç¬¬ïŒç §æç³»ã®ç §æç³ã«ææã®å 匷床ååžã圢æããããã«å ¥å°å ãåæããã第ïŒåæå åŠçŽ åãšã該第ïŒåæå åŠçŽ åã®åæé¢ãšåèšç¬¬ïŒãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ã®å ¥å°é¢ãšãå åŠçã«å ±åœ¹ã«ãã第ïŒãªã¬ãŒå åŠç³»ãšãæããããšãç¹åŸŽãšããè«æ±é ïŒã«èšèŒã®ç §æå åŠè£ 眮ã The first illumination system includes: a first diffractive optical element that diffracts incident light to form a desired light intensity distribution on an illumination pupil of the first illumination system; a diffractive surface of the first diffractive optical element; A first relay optical system that optically conjugates the incident surface of the one optical integrator;
The second illumination system includes a second diffractive optical element that diffracts incident light to form a desired light intensity distribution on the illumination pupil of the second illumination system, a diffraction surface of the second diffractive optical element, and the first The illumination optical apparatus according to claim 1, further comprising: a second relay optical system that optically conjugates the incident surface of the two-optical integrator.
åèšç¬¬ïŒåæå åŠçŽ åã¯ãåèšç¬¬ïŒãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ã®æé¢ã®äžèŸºã®æ¹åã«å¯Ÿå¿ããç¬¬ïŒæ¹åã«æ²¿ã£ãŠééãéãŠãïŒæ¥µç¶ã®å 匷床ååžãšåèšç¬¬ïŒæ¹åãšçŽäº€ããç¬¬ïŒæ¹åã«æ²¿ã£ãŠééãéãŠãïŒæ¥µç¶ã®å 匷床ååžãšãåèšç §æç³ã«åœ¢æããããšãç¹åŸŽãšããè«æ±é ïŒä¹è³ïŒã®ããããïŒé ã«èšèŒã®ç §æå åŠè£ 眮ã The first diffractive optical element includes a bipolar light intensity distribution spaced along a first direction corresponding to a direction of one side of the first optical integrator and a second direction orthogonal to the first direction. And a dipolar light intensity distribution spaced apart along the illumination pupil,
The second diffractive optical element includes a bipolar light intensity distribution spaced along a third direction corresponding to the direction of one side of the cross section of the second optical integrator, and a fourth direction orthogonal to the third direction. 5. The illumination optical apparatus according to claim 2, wherein the illumination pupil is formed with a dipolar light intensity distribution spaced apart along the illumination pupil.
åèšæå ãŠãããã¯ãåèšç¬¬ïŒåæå åŠçŽ åãä»ããŠåœ¢æãããïŒã€ã®å æã®åå æ¹åã倿ŽããïŒã€ã®æå éšæãšãåèšç¬¬ïŒåæå åŠçŽ åãä»ããŠåœ¢æãããïŒã€ã®å æã®åå æ¹åã倿ŽããïŒã€ã®æå éšæãšãæããããšãç¹åŸŽãšããè«æ±é ïŒã«èšèŒã®ç §æå åŠè£ 眮ã The polarization setting unit has an optical rotation unit arranged at a pupil position of the common relay optical system or a position in the vicinity thereof,
The optical rotation unit includes four optical rotation members that change the polarization directions of the four light beams formed through the first diffractive optical element, and the polarization directions of the four light beams formed through the second diffractive optical element. The illumination optical apparatus according to claim 5, further comprising four optical rotation members that change the angle.
åèšç¬¬ïŒç §æç³»ã¯ãåèšç¬¬ïŒãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ã®å°åºé¢ãšåèšç¬¬ïŒç §æé åãšãå åŠçã«å ±åœ¹ã«ãã第ïŒçµåå åŠç³»ãæããããšãç¹åŸŽãšããè«æ±é ïŒä¹è³ïŒã®ããããïŒé ã«èšèŒã®ç §æå åŠè£ 眮ã The first illumination system has a first imaging optical system that optically conjugates the exit surface of the first optical integrator and the first illumination area,
The second illumination system includes a second imaging optical system that optically conjugates the exit surface of the second optical integrator and the second illumination region. The illumination optical apparatus according to Item 1.
åèšç¬¬ïŒç §æç³»ã¯ãåèšç¬¬ïŒç §æé åã®äžèŸºã®æ¹åã«å¯Ÿå¿ããç¬¬ïŒæ¹åã«æ²¿ã£ãŠééãéãŠãïŒã€ã®å 匷床ååžãšåèšç¬¬ïŒæ¹åãšçŽäº€ããç¬¬ïŒæ¹åã«æ²¿ã£ãŠééãéãŠãïŒã€ã®å 匷床ååžãšãããªãïŒæ¥µç¶ã®å 匷床ååžãåèšç¬¬ïŒç §æç³»ã®ç §æç³ã«åœ¢æãã第ïŒç³åŒ·åºŠååžåœ¢æéšæãæãã
åèšç¬¬ïŒç §æç³»ã¯ãåèšç¬¬ïŒæ¹åãšæå®è§åºŠããªãç¬¬ïŒæ¹åã«æ²¿ã£ãŠééãéãŠãïŒã€ã®å 匷床ååžãšåèšç¬¬ïŒæ¹åãšçŽäº€ããç¬¬ïŒæ¹åã«æ²¿ã£ãŠééãéãŠãïŒã€ã®å 匷床ååžãšãããªãïŒæ¥µç¶ã®å 匷床ååžãåèšç¬¬ïŒç §æç³»ã®ç §æç³ã«åœ¢æãã第ïŒç³åŒ·åºŠååžåœ¢æéšæãæããããšãç¹åŸŽãšããç §æå åŠè£ 眮ã An illumination optical apparatus comprising a first illumination system that illuminates a rectangular first illumination area, and a second illumination system that illuminates a rectangular second illumination area,
The first illumination system has two light intensity distributions spaced along a first direction corresponding to a direction of one side of the first illumination region and a distance along a second direction orthogonal to the first direction. A first pupil intensity distribution forming member that forms a quadrupole light intensity distribution consisting of two separated light intensity distributions on the illumination pupil of the first illumination system;
The second illumination system includes two light intensity distributions spaced along a third direction that forms a predetermined angle with the first direction, and two spaced apart along a fourth direction orthogonal to the third direction. An illumination optical apparatus, comprising: a second pupil intensity distribution forming member that forms a quadrupole light intensity distribution including two light intensity distributions on an illumination pupil of the second illumination system.
åèšç¬¬ïŒç §æç³»ã¯ãæå®ã®ç¬¬ïŒæé¢ãæããå é¢åå°åã®ç¬¬ïŒãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ãæãã該第ïŒãªããã£ã«ã«ã€ã³ãã°ã¬ãŒã¿ã®æé¢ã®äžèŸºã¯åèšç¬¬ïŒæ¹åã«å¯ŸããŠå¹³è¡ã«é 眮ãããŠããããšãç¹åŸŽãšããè«æ±é ïŒïŒã«èšèŒã®ç §æå åŠè£ 眮ã The first illumination system includes a first optical integrator of an internal reflection type having a predetermined first cross section, and one side of the cross section of the first optical integrator is arranged in parallel to the first direction,
The second illumination system has an internal reflection type second optical integrator having a predetermined second cross section, and one side of the cross section of the second optical integrator is arranged in parallel to the third direction. The illumination optical apparatus according to claim 10.
åèšé²å å·¥çšãçµãåèšæå æ§åºæ¿ãçŸåããçŸåå·¥çšãšãå«ãããšãç¹åŸŽãšããããã€ã¹è£œé æ¹æ³ã An exposure step of exposing the photosensitive substrate to the photosensitive substrate using the exposure apparatus according to claim 13;
And a developing step of developing the photosensitive substrate that has undergone the exposure step.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006222907A JP2008047745A (en) | 2006-08-18 | 2006-08-18 | Optical illumination apparatus, exposure apparatus and device manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006222907A JP2008047745A (en) | 2006-08-18 | 2006-08-18 | Optical illumination apparatus, exposure apparatus and device manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008047745A true JP2008047745A (en) | 2008-02-28 |
Family
ID=39181174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006222907A Pending JP2008047745A (en) | 2006-08-18 | 2006-08-18 | Optical illumination apparatus, exposure apparatus and device manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008047745A (en) |
-
2006
- 2006-08-18 JP JP2006222907A patent/JP2008047745A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2620799B1 (en) | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method | |
JP4998803B2 (en) | Exposure apparatus, device manufacturing method, and exposure method | |
JP5365982B2 (en) | Illumination optical system, exposure apparatus, and device manufacturing method | |
KR102045133B1 (en) | Illuminating optical system | |
JP5105316B2 (en) | Illumination optical apparatus, exposure apparatus, and device manufacturing method | |
JP4883482B2 (en) | Illumination optical apparatus, exposure apparatus, and device manufacturing method | |
JP5839076B2 (en) | Illumination optical system, exposure apparatus, and device manufacturing method | |
JP2008047745A (en) | Optical illumination apparatus, exposure apparatus and device manufacturing method | |
JP5534276B2 (en) | Illumination optical system, exposure apparatus, and device manufacturing method | |
JP2008021767A (en) | Illuminating optical device, exposure device and manufacturing method for devices | |
JP2013008788A (en) | Polarization conversion unit, illumination optical system, exposure device, and manufacturing method of device | |
JP2012059848A (en) | Polarization conversion unit, illumination optical system, and method of manufacturing device | |
JP2010283100A (en) | Polarization conversion unit, illumination optical system, exposure device, and device manufacturing method | |
HK1185956B (en) | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method | |
HK1185956A (en) | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method | |
HK1185957A (en) | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method | |
HK1151103A (en) | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method | |
HK1151101A (en) | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method | |
HK1151101B (en) | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method | |
HK1144322B (en) | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |