[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2008047458A - Electrode for power storage device, and power storage device using it - Google Patents

Electrode for power storage device, and power storage device using it Download PDF

Info

Publication number
JP2008047458A
JP2008047458A JP2006223067A JP2006223067A JP2008047458A JP 2008047458 A JP2008047458 A JP 2008047458A JP 2006223067 A JP2006223067 A JP 2006223067A JP 2006223067 A JP2006223067 A JP 2006223067A JP 2008047458 A JP2008047458 A JP 2008047458A
Authority
JP
Japan
Prior art keywords
electrode
storage device
current collector
active material
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006223067A
Other languages
Japanese (ja)
Other versions
JP5301090B2 (en
Inventor
Toshiki Hashime
俊樹 橋目
Tsuguro Mori
嗣朗 森
Shizukuni Yada
静邦 矢田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Research Institute KRI Inc
Original Assignee
Kansai Research Institute KRI Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Research Institute KRI Inc filed Critical Kansai Research Institute KRI Inc
Priority to JP2006223067A priority Critical patent/JP5301090B2/en
Publication of JP2008047458A publication Critical patent/JP2008047458A/en
Application granted granted Critical
Publication of JP5301090B2 publication Critical patent/JP5301090B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for a power storage device for which simple and practical predoping technology can be applied for obtaining of higher capacity by predoping, improvement of energy density with higher voltage and higher output, since the level of demand is high for high energy density and high output/high efficiency charging property in the power storage device, and to provide the power storage device using the electrode for the power storage device. <P>SOLUTION: Electrical conductivity in the electrode is 5.0×10<SP>-2</SP>S/cm or more; and the width of holes going through front and back surfaces of the collector is 0.4 mm or less in the electrode provided with a collector with holes going from the front to back surfaces and an electrode layer, containing active substance formed on the collector in the electrode for the power storage device and the power storage device provided with the electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、簡便、かつ、実用的なプリドープ技術に基づき製造することが可能な、高エネルギー密度、高出力特性を有する蓄電デバイス用電極及びその電極を具備する蓄電デバイスに関する。   The present invention relates to an electrode for an electricity storage device having high energy density and high output characteristics, which can be manufactured based on a simple and practical pre-doping technique, and an electricity storage device including the electrode.

近年、地球環境の保全及び省資源を目指したエネルギーの有効利用の観点から、深夜電力貯蔵システム、太陽光発電技術に基づく家庭用分散型蓄電システム、電気自動車用の蓄電システムなどが注目を集めている。その中、高効率エンジンと蓄電システムとの組み合わせ(例えば、ハイブリッド電気自動車)、あるいは燃料電池と蓄電システムとの組み合わせ(例えば、燃料電池電気自動車)において、エンジンあるいは燃料電池が最大効率で運転するためには、一定出力での運転が必須であり、負荷側の出力変動あるいはエネルギー回生に対応するために、蓄電システム側には高出力放電特性、高率充電特性が要求されている。この要求に対応するため、蓄電システムにおいては高エネルギー密度を特徴とするリチウムイオン電池の高出力化あるいは高出力を特徴とする電気二重層キャパシタの高エネルギー密度化に向けた研究開発が実施されている。   In recent years, midnight power storage systems, home-use distributed power storage systems based on solar power generation technology, and power storage systems for electric vehicles have attracted attention from the viewpoint of effective use of energy aimed at conservation of the global environment and resource saving. Yes. Among them, in a combination of a high-efficiency engine and a power storage system (for example, a hybrid electric vehicle) or a combination of a fuel cell and a power storage system (for example, a fuel cell electric vehicle), the engine or the fuel cell operates at maximum efficiency. Therefore, operation at a constant output is essential, and in order to cope with load-side output fluctuations or energy regeneration, the power storage system side is required to have high output discharge characteristics and high rate charge characteristics. In order to meet this demand, research and development has been carried out in power storage systems to increase the output of lithium ion batteries characterized by high energy density or to increase the energy density of electric double layer capacitors characterized by high output. Yes.

一方、リチウムイオン電池あるいはキャパシタなどの蓄電デバイスにおいて、活物質にあらかじめリチウムイオンを担持させること(以下、プリドープと呼ぶ)により、蓄電デバイスの高容量化、高電圧化する技術が注目されている。例えば非特許文献1、特許文献1、非特許文献2、非特許文献3などに記載されているポリアセン系骨格構造を含有する不溶不融性基体などの高容量材料に対し、このプリドープを適用することにより、非特許文献4に記載されている様に、その特徴(高容量)を充分に活かした蓄電デバイス設計が可能となる。プリドープは古くから実用化されている技術であり、例えば、非特許文献5、特許文献2には、リチウムを負極活物質であるポリアセン系骨格構造を含有する不溶不融性基体にプリドープさせた、高電圧かつ高容量な蓄電デバイスが開示されている。プリドープに関しては、あらかじめリチウムを担持させた電極を用いて蓄電デバイスに組み込む方法、リチウム金属などを電極成形時に混合する方法などが知られているが、簡便かつ実用的なプリドープ法に関しては、活物質を含有する電極にリチウム金属箔を接触させる方法がある。この技術は電極数が少なく、比較的厚い電極を用いるコイン型などに有効であるが、薄い電極を複数枚積層する積層型構造電池、あるいは、巻回型構造電池においては、工程が煩雑になる、あるいは、薄型リチウム金属の取り扱いなどに課題があり、更に簡便かつ実用的なプリドープ法が必要であった。 On the other hand, in a power storage device such as a lithium ion battery or a capacitor, attention has been paid to a technology for increasing the capacity and voltage of the power storage device by previously supporting lithium ions on the active material (hereinafter referred to as pre-doping). For example, this pre-doping is applied to a high-capacity material such as an insoluble infusible substrate containing a polyacene-based skeleton structure described in Non-Patent Document 1, Patent Document 1, Non-Patent Document 2, Non-Patent Document 3, etc. Thus, as described in Non-Patent Document 4, it is possible to design an electricity storage device that fully utilizes its characteristics (high capacity). Pre-doping is a technology that has been practically used for a long time. For example, in Non-Patent Document 5 and Patent Document 2, lithium is pre-doped on an insoluble infusible substrate containing a polyacene skeleton structure as a negative electrode active material. A high voltage and high capacity power storage device is disclosed. Regarding pre-doping, a method of incorporating lithium in advance into an electricity storage device using a lithium-supported electrode, a method of mixing lithium metal or the like at the time of electrode formation, and the like are known, but for a simple and practical pre-doping method, an active material There is a method in which a lithium metal foil is brought into contact with an electrode that contains. This technique has a small number of electrodes and is effective for a coin type using relatively thick electrodes. However, the process is complicated in a stacked structure battery or a wound structure battery in which a plurality of thin electrodes are stacked. Alternatively, there are problems in handling thin lithium metal, and a simple and practical pre-doping method is required.

この問題を解決する方法として、特許文献3には、表裏面を貫通する孔を備え、負極活物質がリチウムを可逆的に担持可能であり、負極由来のリチウムが負極あるいは正極と対向して配置されたリチウムとの電気化学的接触により担持され、かつ該リチウムの対向面積が負極面積の40%以下であることを特徴とする有機電解質電池が開示されている。この電池では貫通孔を備えた集電体上に電極層を形成し、電池内に配置されたリチウム金属と負極を短絡することにより、リチウムイオンが集電体の貫通孔を通過し、すべての負極にドープされる。特許文献3の実施例には、貫通孔を備えた集電体にエキスパンドメタルを用い、正極活物質にLiCoO、負極活物質にポリアセン系骨格構造を含有する不溶不融性基体を用いた有機電解質電池が開示されており、該負極活物質には、電池内に配置されたリチウム金属からリチウムイオンを簡便にプリドープすることができる。しかし、電池の放電速度は最大2Cレベルであり、例えば、100Cを超える出力特性については何ら記載がない。 As a method for solving this problem, Patent Document 3 includes a hole penetrating the front and back surfaces, the negative electrode active material can reversibly carry lithium, and the lithium derived from the negative electrode is disposed facing the negative electrode or the positive electrode. An organic electrolyte battery is disclosed which is supported by electrochemical contact with lithium and has an opposing area of lithium of 40% or less of the negative electrode area. In this battery, an electrode layer is formed on a current collector provided with a through hole, and lithium metal and a negative electrode disposed in the battery are short-circuited, so that lithium ions pass through the current collector through-hole, Doped in the negative electrode. In an example of Patent Document 3, an expanded metal is used for a current collector having a through hole, an organic material using an insoluble infusible substrate containing LiCoO 2 as a positive electrode active material and a polyacene skeleton structure as a negative electrode active material. An electrolyte battery is disclosed, and the negative electrode active material can be easily pre-doped with lithium ions from lithium metal disposed in the battery. However, the discharge rate of the battery is at the maximum 2C level, and for example, there is no description about output characteristics exceeding 100C.

特許文献4には、空隙率1%〜30%の表裏面を貫通する孔を有する集電体を用いることにより集電体からの電極の脱落は減少させることが開示されているが、出力特性については何ら記載がない。特許文献5には正極に比表面積が1900m/gのポリアセン系骨格構造を含有する不溶不融性基体、負極にポリアセン系骨格構造を含有する不溶不融性基体を用い、これら活物質を、貫通孔を備えた集電体上に形成し、電池内に配置されたリチウム金属からリチウムイオンを負極活物質にプリドープしたキャパシタが開示されている。このキャパシタ電圧は3.3Vを超え、エネルギー密度も15Wh/l程度と従来のキャパシタより高いものの、50Cまでの出力特性しか開示されておらず、貫通孔を備えた集電体を用いた場合の、高出力時のキャパシタの特性については記載がない。特許文献6には貫通孔を備えた集電体の孔を埋めることにより、電極層形成が容易であり、かつ、電極の脱落も防止できることが開示されているが、出力に関する記載はない。 Patent Document 4 discloses that the use of a current collector having a hole penetrating the front and back surfaces with a porosity of 1% to 30% reduces the dropout of the electrode from the current collector. There is no description about. Patent Document 5 uses an insoluble infusible substrate containing a polyacene skeleton structure having a specific surface area of 1900 m 2 / g as a positive electrode, an insoluble infusible substrate containing a polyacene skeleton structure as a negative electrode, and these active materials. A capacitor is disclosed which is formed on a current collector provided with a through hole and pre-doped with lithium ions from a lithium metal disposed in a battery into a negative electrode active material. Although this capacitor voltage exceeds 3.3V and the energy density is about 15 Wh / l, which is higher than that of the conventional capacitor, only the output characteristics up to 50C are disclosed, and the case of using a current collector with a through hole is disclosed. There is no description about the characteristics of the capacitor at high output. Patent Document 6 discloses that by filling a hole of a current collector having a through-hole, it is easy to form an electrode layer and prevent the electrode from falling off, but there is no description regarding output.

上記のように簡便かつ実用的なプリドープ法として、貫通孔を備えた集電体上に電極層を形成し、電池内に配置されたリチウム金属と負極を短絡することにより、リチウムイオンが集電体の貫通孔を通過し、電極活物質に担持させる技術が開示されている。しかし、例えば、100Cを超えるような高出力負荷において貫通孔(空隙あり)を備えた集電体を用いた場合、金属箔(空隙なし)などの集電体を用いた場合に比べ、その容量が低下する問題点を有していた。
T.Yamabe,M.Fujii,S.Mori,H.Kinoshita,S.Yata:Synth.Met.,145,31(2004) 特開昭59−3806号公報 S.Yata,Y.Hato,K.Sakurai,T.Osaki,K.Tanaka,T.Yamabe:Synth.Met.,18,645(1987) S.Yata,H.Kinoshita,M.Komori,N.Ando,T.Kashiwamura,T.Harada,K.Tanaka,T.Yamabe:Synth.Met.,62,153(1994) S.Yata,Y.Hato,H.Kinoshita,N.Ando,A.Anekawa,T.Hashimoto,M.Yamaguchi,K.Tanaka,T.Yamabe:Synth.Met.,73,273(1995) 矢田静邦,工業材料,Vol.40,No.5,32(1992) 特開平3−233860号公報 WO98/33227号公報 WO00/07255号公報 WO03/003395号公報 WO04/097867号公報
As a simple and practical pre-doping method as described above, an electrode layer is formed on a current collector provided with a through hole, and a lithium metal disposed in the battery and a negative electrode are short-circuited, thereby collecting lithium ions. A technique for passing through a through-hole of a body and supporting it on an electrode active material is disclosed. However, for example, when a current collector having a through hole (with a gap) is used at a high output load exceeding 100 C, the capacity is larger than when a current collector such as a metal foil (without a gap) is used. Has the problem of lowering.
T.A. Yamabe, M .; Fujii, S .; Mori, H .; Kinoshita, S .; Yata: Synth. Met. , 145, 31 (2004) JP 59-3806 S. Yata, Y. et al. Hato, K .; Sakurai, T .; Osaki, K .; Tanaka, T .; Yamabe: Synth. Met. , 18, 645 (1987) S. Yata, H .; Kinoshita, M .; Komori, N .; Ando, T .; Kashiwamura, T .; Harada, K .; Tanaka, T .; Yamabe: Synth. Met. 62, 153 (1994) S. Yata, Y. et al. Hato, H .; Kinoshita, N .; Ando, A .; Anekawa, T .; Hashimoto, M .; Yamaguchi, K .; Tanaka, T .; Yamabe: Synth. Met. 73, 273 (1995) Shigeru Yada, Industrial Materials, Vol. 40, no. 5, 32 (1992) JP-A-3-233860 WO98 / 33227 WO00 / 07255 WO03 / 003395 publication WO04 / 097867

リチウムイオン電池、キャパシタなどの蓄電デバイスにおける高エネルギー密度及び高出力/高率充電特性への要求レベルは高い。この要求に応えるためには、高容量材料へのリチウムプリドープによる高容量化、あるいは、高電圧化によるエネルギー密度の向上、高出力化が今後の蓄電デバイス開発に必須技術であると考えられ、上述の貫通孔を備えた集電体を用いたプリドープ技術は、プリドープを必要とする蓄電デバイスの実用化において有用である。しかし、この実用プリドープ技術を高出力特性を特徴としようとする蓄電デバイスに適用する場合、プリドープを簡便に実施することは可能であるが、集電体に従来の金属箔を用いた場合に比べ、高出力負荷時、すなわち、大電流負荷時において充分な特性を引き出すことが困難であった。従って、本発明は従来の貫通孔を備えた集電体を用いた実用プリドープ技術に適用可能であり、高出力負荷特性に優れた蓄電デバイス用電極及びそれを用いた蓄電デバイスを提供することにある。   The required level for high energy density and high output / high rate charging characteristics in power storage devices such as lithium ion batteries and capacitors is high. In order to meet this demand, it is considered that high capacity by high-capacity material by lithium pre-doping, or improvement of energy density by high voltage, high output is an essential technology for the future development of electricity storage devices, The above-described pre-doping technique using a current collector having a through-hole is useful in practical application of an electricity storage device that requires pre-doping. However, when this practical pre-doping technology is applied to power storage devices that are characterized by high output characteristics, pre-doping can be carried out easily, but compared to the case where a conventional metal foil is used for the current collector. It is difficult to extract sufficient characteristics at high output load, that is, at high current load. Therefore, the present invention is applicable to a practical pre-doping technique using a current collector having a conventional through hole, and provides an electrode for an electricity storage device excellent in high output load characteristics and an electricity storage device using the same. is there.

本発明者は、上記の様な従来技術の問題点に留意しつつ、研究を進めた結果、表裏面を貫通する孔を有する集電体と集電体上に形成された活物質を含む電極層を有する蓄電デバイス用電極において、電極の電気伝導度が5.0×10−2S/cm以上であり、かつ、その集電体の表裏面を貫通する孔の幅が0.4mm以下であることにより、高出力負荷時においても、デバイス設計上期待される出力特性を充分に発揮することができることを見出し、本発明を完成するに至った。 The present inventor has conducted research while paying attention to the problems of the prior art as described above, and as a result, an electrode including a current collector having holes penetrating the front and back surfaces and an active material formed on the current collector In the electrode for an electricity storage device having a layer, the electrical conductivity of the electrode is 5.0 × 10 −2 S / cm or more, and the width of the hole penetrating the front and back surfaces of the current collector is 0.4 mm or less. As a result, it has been found that the output characteristics expected in the device design can be sufficiently exhibited even under high output load, and the present invention has been completed.

上記請求項1に記載の蓄電デバイス用電極は、表裏面を貫通する孔を有する集電体と集電体上に形成された活物質を含む電極層を有する電極において、電極の電気伝導度が5.0×10−2S/cm以上であり、かつ、その集電体の表裏面を貫通する孔の幅が0.4mm以下であることを特徴としている。 The electrode for an electricity storage device according to claim 1 is an electrode having a current collector having a hole penetrating the front and back surfaces and an electrode layer containing an active material formed on the current collector. 5.0 × 10 −2 S / cm or more, and the width of the hole penetrating the front and back surfaces of the current collector is 0.4 mm or less.

上記請求項2に記載の蓄電デバイス用電極は、表裏面を貫通する孔を有する集電体の空隙率が10%以上90%以下であることを特徴としている。   The electrode for an electricity storage device according to claim 2 is characterized in that the porosity of the current collector having holes penetrating the front and back surfaces is 10% or more and 90% or less.

上記請求項1あるいは2の構成によれば、この電極を、従来の実用プリドープ技術に適用した場合、高出力負荷時にデバイス設計上期待される出力特性を充分に発揮することが可能となる。   According to the first or second aspect of the present invention, when this electrode is applied to a conventional practical pre-doping technique, it is possible to sufficiently exhibit output characteristics expected in device design at high output load.

上記請求項3に記載の蓄電デバイスは、正極及び/又は負極に請求項1あるいは2に記載のされている蓄電デバイス用電極を用いることを特徴としている。   The electricity storage device according to claim 3 is characterized in that the electrode for electricity storage device described in claim 1 or 2 is used for the positive electrode and / or the negative electrode.

上記請求項4に記載の蓄電デバイスは、リチウムを吸蔵、放出可能な正極活物質を含む正極、リチウムを吸蔵、放出可能な負極活物質を含む負極、リチウム塩を非水系溶媒に溶解した電解液を有する非水系蓄電デバイスにおいて、正極及び/又は負極が請求項1から3のいずれかに記載されている電極であり、正極活物質及び/又は負極活物質に集電体の貫通孔をリチウムが通過することによりプリドープさせることを特徴としている。   The electricity storage device according to claim 4 is a positive electrode including a positive electrode active material capable of occluding and releasing lithium, a negative electrode including a negative electrode active material capable of occluding and releasing lithium, and an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent. The positive electrode and / or the negative electrode is an electrode according to any one of claims 1 to 3, wherein the positive electrode active material and / or the negative electrode active material is provided with lithium through holes of the current collector. It is characterized by pre-doping by passing.

上記請求項3、4によれば貫通孔を備えた集電体を用いた簡便かつ実用プリドープ技術が適用可能であり、更に、この技術の課題であった高出力負荷特性において、優れた出力特性を有する蓄電デバイスを得ることができる。   According to the third and fourth aspects, a simple and practical pre-doping technique using a current collector having a through-hole can be applied. Further, in the high output load characteristic which is a problem of this technique, an excellent output characteristic is obtained. Can be obtained.

本発明の蓄電デバイス用電極は、表裏面を貫通する孔を有する集電体と集電体上に形成された活物質を含む電極層を有する電極において、電極の電気伝導度が5.0×10−2S/cm以上であり、かつ、その集電体の表裏面を貫通する孔の幅が0.4mm以下である。この電極を用いることにより、従来の貫通孔を備えた集電体を用いた簡便かつ実用プリドープ技術の課題であった高出力負荷特性に対し、優れた出力特性を得られる効果を奏する。 The electrode for an electricity storage device of the present invention is an electrode having a current collector having holes penetrating the front and back surfaces and an electrode layer containing an active material formed on the current collector. 10 −2 S / cm or more and the width of the hole penetrating the front and back surfaces of the current collector is 0.4 mm or less. By using this electrode, it is possible to obtain an excellent output characteristic with respect to the high output load characteristic which has been a problem of a simple and practical pre-doping technique using a current collector having a conventional through hole.

本発明の一実施形態について、説明すれば以下の通りである。   An embodiment of the present invention will be described as follows.

本発明の蓄電デバイス用電極は、表裏面を貫通する孔を有する集電体と集電体上に形成された活物質を含む電極層を有する電極において、電極の電気伝導度が5.0×10−2S/cm以上であり、かつ、その集電体の表裏面を貫通する孔の幅が0.4mm以下であることを特徴とする蓄電デバイス用電極である。 The electrode for an electricity storage device of the present invention is an electrode having a current collector having holes penetrating the front and back surfaces and an electrode layer containing an active material formed on the current collector. The electrode for an electricity storage device is characterized by being 10 −2 S / cm or more and a width of a hole penetrating the front and back surfaces of the current collector being 0.4 mm or less.

本発明における表裏面を貫通する孔を有する集電体は、上記特許文献3〜6に記載されているが、集電体の表裏面を貫通する孔を備えており、例えば、パンチング、エッチングなどによる表裏面を貫通する孔を加工した導電性基体(パンチング箔、エッチング箔、穿孔箔など)、発泡導電性基体、導電性材料の網、導電性材料の不織布などが挙げられ、例えば、50μm以下、更には30μm以下のパンチング箔、エッチング箔、穿孔箔であることが好ましい。集電体の材質は金属、炭素などの高い導電性を有するものであり、例えば、集電体の導電性は10S/cm以上、すなわち、本発明の電極の電気伝導性(5.0×10−2S/cm)に比べ充分に高い電気伝導性を有するものである。集電体の材質は、本発明の蓄電デバイス用電極を用いる蓄電デバイスの電圧・出力設計、設計出力集電体上に形成する電極層に含まれる活物質・導電材・バインダーの種類あるいは電解液などにより適宜決定されるものであり、特に限定しないが、リチウム塩を非水系溶媒に溶解した電解液を有する非水系蓄電デバイスとして用いる場合、正極集電体の材質としてはアルミニウム、負極集電体の材質としては銅が一般的である。 The current collector having a hole penetrating the front and back surfaces in the present invention is described in Patent Documents 3 to 6, but includes a hole penetrating the front and back surfaces of the current collector. For example, punching, etching, etc. Examples include conductive substrates (such as punching foils, etching foils, and perforated foils) with holes penetrating the front and back surfaces, foamed conductive substrates, conductive material nets, and non-woven fabrics of conductive materials. Further, a punching foil, etching foil or perforated foil of 30 μm or less is preferable. The current collector is made of metal, carbon or the like having high conductivity. For example, the current collector has a conductivity of 10 0 S / cm or more, that is, the electrical conductivity of the electrode of the present invention (5.0 × 10 −2 S / cm) having sufficiently high electrical conductivity. The material of the current collector is the voltage / output design of the electricity storage device using the electrode for the electricity storage device of the present invention, the type of active material / conductive material / binder contained in the electrode layer formed on the designed output current collector, or the electrolytic solution In the case of using as a non-aqueous storage device having an electrolytic solution in which a lithium salt is dissolved in a non-aqueous solvent, the positive electrode current collector is made of aluminum, a negative electrode current collector, or the like. As the material, copper is generally used.

本発明の表裏面を貫通する孔の形状は、特に限定されないが、表面あるいは裏面に見える形が、円、楕円、長方形、多角形など種々の形状が可能であり、孔は集電体中を直線的、曲線的、3次元的など種々の形状をもって集電体表裏面を貫通させることが可能である。 The shape of the hole penetrating the front and back surfaces of the present invention is not particularly limited, but various shapes such as a circle, an ellipse, a rectangle, and a polygon are possible as the shape visible on the front surface or the back surface, and the hole passes through the current collector. It is possible to penetrate the current collector front and back surfaces in various shapes such as linear, curved, and three-dimensional.

本発明の表裏面を貫通する孔を有する集電体の空隙率は、特に限定されないが、10%以上90%以下、更に好ましくは、30%を越え60%以下である。本発明で空隙率とは、集電体体積に占める表裏面を貫通する孔の体積割合を言う。具体的には、集電体面積をA(cm)、マイクロメータ、のぎすなどで測定可能な集電体厚みをB(cm)、集電体重量をW(g)、集電体材質の比重ρ(g/cm)とした場合、空隙率は「1−W/(A×B×ρ)」×100%であり、従来技術においては、貫通孔の割合、気孔率と呼ばれることもある。この空隙率は、プリドープの速度を速めるあるいはプリドープの均一性を高めるためには大きく設定することが好ましいが、大きすぎる場合、集電体上への電極層形成の容易さ、電極強度の観点から好ましくない。 The porosity of the current collector having holes penetrating the front and back surfaces of the present invention is not particularly limited, but is 10% or more and 90% or less, more preferably more than 30% and 60% or less. In the present invention, the porosity means the volume ratio of holes penetrating the front and back surfaces in the current collector volume. Specifically, the current collector area is A (cm 2 ), the current collector thickness is B (cm), the current collector weight is W (g), and the current collector material When the specific gravity ρ (g / cm 3 ) is used, the porosity is “1−W / (A × B × ρ)” × 100%, and in the prior art, this is called the ratio of through-holes, porosity. There is also. This porosity is preferably set large in order to increase the speed of pre-doping or improve the uniformity of pre-doping, but if it is too large, from the viewpoint of ease of electrode layer formation on the current collector and electrode strength It is not preferable.

本発明の表裏面を貫通する孔の幅は、0.4mm以下であり、更に好ましくは0.35mm以下である。孔の幅が大きすぎる場合、たとえ、電極の電気伝導度が本発明の範囲を満たしても、本発明の目的である高出力負荷特性が得られにくくなる。また、下限については好ましくは0.05mm以上、更に好ましくは0.1mm以上であり、小さすぎる場合集電体の製造が難しくなる。本発明における孔の幅とは、孔中のすべての点から集電体までの最短距離を考え、その中の最大値の2倍を本発明においては孔の幅と定義する。孔の断面が円の場合、孔中の点から集電体までの最短距離の最大値は半径となり、孔の幅は半径の2倍、すなわち、直径となる。孔の断面が長方形の場合、孔中の点から集電体までの最短距離の最大値は短辺の長さの1/2となり、孔の幅は孔の短辺の長さとなる。孔の断面が楕円の場合、孔中の点から集電体までの最短距離の最大値は短軸半径となり、孔の幅は短軸直径となる。また、不定形な孔である場合、各断面において上記の様に孔の幅を求め、その80%以上が本発明の範囲に入ることが好ましい。 The width of the hole penetrating the front and back surfaces of the present invention is 0.4 mm or less, more preferably 0.35 mm or less. When the width of the hole is too large, even if the electric conductivity of the electrode satisfies the range of the present invention, it becomes difficult to obtain the high output load characteristic which is the object of the present invention. Moreover, about a minimum, Preferably it is 0.05 mm or more, More preferably, it is 0.1 mm or more, and manufacture of a collector will become difficult when too small. The width of the hole in the present invention refers to the shortest distance from all points in the hole to the current collector, and twice the maximum value is defined as the hole width in the present invention. When the cross section of the hole is a circle, the maximum value of the shortest distance from the point in the hole to the current collector is the radius, and the width of the hole is twice the radius, that is, the diameter. When the cross section of the hole is rectangular, the maximum value of the shortest distance from the point in the hole to the current collector is ½ of the length of the short side, and the width of the hole is the length of the short side of the hole. When the cross section of the hole is elliptical, the maximum value of the shortest distance from the point in the hole to the current collector is the short axis radius, and the width of the hole is the short axis diameter. In the case of an irregular hole, the width of the hole is determined in each cross section as described above, and 80% or more of the width is preferably within the scope of the present invention.

本発明の蓄電デバイス用電極は、上記表裏面を貫通する孔を有する集電体上に活物質を含む電極層を形成する。電極層は、貫通する孔を有する集電体の両面あるいは片面に形成され、集電体の孔中にも形成することができる。電極層とは活物質を主成分とし、必要に応じ、導電材、バインダーを用いて成形することができる。バインダーの種類は、特に限定されるものではないが、ポリフッ化ビニリデン、ポリ四フッ化エチレンなどのフッ素系樹脂類、フッ素ゴム、SBR、アクリル樹脂、ポリエチレン、ポリプロピレンなどのポリオレフィン類などが例示される。バインダー量は、特に限定されず、活物質の平均粒径、形状などにより適宜決定されるものであるが、例えば、活物質の重量の1〜30%程度の割合とすることが好ましい。また、導電材の種類、量は、特に限定されるものではなく、活物質の電子伝導性、平均粒径、形状などにより適宜決定されるものであるが、材料としては、カーボンブラック、アセチレンブラック、黒鉛などの炭素材料、金属材料が例示される。導電材量は、特に限定されず、後述の電極の電気伝導性を得るために必要な量が添加される。 本発明の蓄電デバイス用電極は、上記活物質、必要に応じ、導電材、バインダーを用いて、塗布成形、プレス成形、ロール成形など、公知の電極成形法を用いて、集電体上に形成し、製造することが可能である。 In the electrode for an electricity storage device of the present invention, an electrode layer containing an active material is formed on a current collector having holes penetrating the front and back surfaces. The electrode layer is formed on both sides or one side of the current collector having a through-hole, and can also be formed in the current collector hole. The electrode layer contains an active material as a main component, and can be formed using a conductive material and a binder as necessary. The type of the binder is not particularly limited, and examples thereof include fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, and polyolefins such as fluorine rubber, SBR, acrylic resin, polyethylene, and polypropylene. . The amount of the binder is not particularly limited and is appropriately determined depending on the average particle diameter, shape, and the like of the active material. For example, the ratio is preferably about 1 to 30% of the weight of the active material. In addition, the type and amount of the conductive material are not particularly limited, and are appropriately determined depending on the electronic conductivity, average particle size, shape, and the like of the active material. Examples of the material include carbon black and acetylene black. Examples thereof include carbon materials such as graphite and metal materials. The amount of the conductive material is not particularly limited, and an amount necessary for obtaining the electrical conductivity of the electrode described later is added. The electrode for the electricity storage device of the present invention is formed on the current collector using a known electrode molding method such as coating molding, press molding, roll molding, etc., using the above active material, if necessary, a conductive material and a binder. And can be manufactured.

本発明の電極の電気伝導度は5.0×10−2S/cm以上、好ましくは1.0×10−1S/cm以上である。この電気伝導度は電極の厚み方向の電気伝導度であり、本発明では電極表裏面を厚み方向に、銅製の半径2mmΦの円柱状の端子で挟み、2Kgf/cmの圧力を印加し、上下端子間に電圧を印加した時に流れる電流を測定することにより求めることができる。電極の電気伝導度が下限未満の場合、高出力負荷時において、表裏面を貫通する孔を有さない集電体、例えば、金属箔を用いた場合に比べ、容量低下が大きくなることから本発明の効果が得られない。また、電気伝導度の上限は、特に限定されず、本発明の効果を得る目的では高いほど良いが、例えば、上記方法で活物質粉体を成形した場合、通常1.0×10S/cm以下である。 The electric conductivity of the electrode of the present invention is 5.0 × 10 −2 S / cm or more, preferably 1.0 × 10 −1 S / cm or more. This electric conductivity is the electric conductivity in the thickness direction of the electrode. In the present invention, the front and back surfaces of the electrode are sandwiched between cylindrical terminals with a copper radius of 2 mmΦ in the thickness direction, and a pressure of 2 kgf / cm 2 is applied. It can be determined by measuring the current that flows when a voltage is applied across the terminals. If the electrical conductivity of the electrode is less than the lower limit, the capacity drop is larger than when using a current collector that does not have holes penetrating the front and back surfaces, such as metal foil, at high output load. The effect of the invention cannot be obtained. In addition, the upper limit of the electric conductivity is not particularly limited, and it is better for the purpose of obtaining the effects of the present invention. For example, when the active material powder is molded by the above method, it is usually 1.0 × 10 1 S / cm or less.

本発明の電極の電気伝導度を得るためには、上述のように、活物質に導電材を添加し、電極を成形することが一般的であるが、活物質表面を電気伝導性の高い材料で被覆するなどの方法も用いることができる。導電材を添加する場合、その量は導電材の電気伝導性、粒径、形状あるいは活物質の電気伝導性、粒径、形状により、上述の電気伝導度が得られるように適宜決定されるが、例えば、活物質の重量の1〜50%、好ましくは5〜40%、更に好ましくは10%〜30%用いることができる。特に、活物質の電気伝導性が低い場合、あるいは、活物質の粒径が細かい場合、導電材は10%以上必要な場合もある。 In order to obtain the electrical conductivity of the electrode of the present invention, as described above, it is common to add a conductive material to the active material and mold the electrode. However, the active material surface is a material having high electrical conductivity. A method such as coating with can also be used. When a conductive material is added, the amount is appropriately determined depending on the electrical conductivity, particle size and shape of the conductive material or the electrical conductivity, particle size and shape of the active material so as to obtain the above-described electrical conductivity. For example, 1 to 50% of the weight of the active material, preferably 5 to 40%, more preferably 10% to 30% can be used. In particular, when the electrical conductivity of the active material is low, or when the particle size of the active material is small, the conductive material may be required 10% or more.

また、電極層と集電体との接触抵抗が大きい場合、例えば、活性炭、ポリアセン系骨格構造を含有する不溶不融基体を活物質とする電極層をアルミニウムを材質とする集電体上に形成した場合、集電体表面に導電性材料層を薄く形成し、その上に電極層を形成することも可能である。 Also, when the contact resistance between the electrode layer and the current collector is large, for example, an electrode layer using an insoluble infusible substrate containing activated carbon or a polyacene skeleton structure as an active material is formed on the current collector made of aluminum. In this case, it is possible to form a thin conductive material layer on the surface of the current collector and form an electrode layer thereon.

ここまでの本発明の蓄電デバイス用電極についての説明は記載がない場合、正極、負極ともに共通する。以下、本発明の蓄電デバイス用電極に用いる活物質について、正極、負極に分け説明する。 When there is no description about the electrode for electrical storage devices of the present invention so far, both the positive electrode and the negative electrode are common. Hereinafter, the active material used for the electrode for an electricity storage device of the present invention will be described separately for a positive electrode and a negative electrode.

本発明において蓄電デバイス用正極を得る場合の活物質は、特に限定されるものではないが、例えば、活性炭、ポリアセン系骨格構造を含有する不溶不融性基体などの有機半導体、リチウムを吸蔵、放出可能な金属酸化物、金属硫化物など公知のものを用いることができる。金属酸化物としては、リチウム複合コバルト酸化物、リチウム複合ニッケル酸化物、リチウム複合マンガン酸化物、或いはこれらの混合物、更にはこれら複合酸化物に異種金属元素を一種以上添加した系などのリチウムを含む金属酸化物だけでなく、五酸化バナジウム、二酸化マンガン、二硫化モリブデンなどのリチウムを吸蔵、放出可能であるがリチウムを含まない金属酸化物も、蓄電デバイスにおいて正極あるいは負極にリチウムをプリドープすることにより本発明に用いることが可能となる。これら正極に用いる活物質の粒径は、例えば2μm以下と、小さい方が出力面から好ましい。 In the present invention, the active material for obtaining a positive electrode for an electricity storage device is not particularly limited, but for example, activated carbon, an organic semiconductor such as an insoluble infusible substrate containing a polyacene skeleton structure, and occlusion and release of lithium. Known metal oxides and metal sulfides can be used. Examples of the metal oxide include lithium, such as lithium composite cobalt oxide, lithium composite nickel oxide, lithium composite manganese oxide, or a mixture thereof, and a system in which one or more different metal elements are added to these composite oxides. In addition to metal oxides, metal oxides that can occlude and release lithium such as vanadium pentoxide, manganese dioxide, and molybdenum disulfide but do not contain lithium can also be obtained by pre-doping lithium into the positive electrode or negative electrode in power storage devices. It can be used in the present invention. The particle size of the active material used for these positive electrodes is preferably 2 μm or less, for example, from the output surface.

本発明において蓄電デバイス用正極の厚み(集電体の両面に電極層が形成される場合は電極厚みの1/2)は活物質の種類、用いる蓄電デバイスの設計出力などにより適宜決定されるが、例えば、活性炭、ポリアセン系骨格構造を含有する不溶不融性基体などの場合、150μm以下、更には100μm以下が望ましく、金属酸化物を用いる場合は、50μm以下5μm以上、更には30μm以下5μm以上が望ましい。 In the present invention, the thickness of the positive electrode for the electricity storage device (1/2 of the electrode thickness when electrode layers are formed on both sides of the current collector) is appropriately determined depending on the type of active material, the design output of the electricity storage device used, and the like. For example, in the case of an insoluble infusible substrate containing activated carbon or a polyacene skeleton structure, it is preferably 150 μm or less, more preferably 100 μm or less, and when a metal oxide is used, 50 μm or less, 5 μm or more, and further 30 μm or less, 5 μm or more. Is desirable.

本発明において蓄電デバイス用負極を得る場合の活物質は、特に限定されるものではないが、例えば、活性炭、ポリアセン系骨格構造を含有する不溶不融性基体などの有機半導体、黒鉛系物質、炭素系物質、錫酸化物、ケイ素酸化物、錫、ケイ素などのリチウムを吸蔵、放出可能な材料が挙げられる。特に、活性炭、ポリアセン系骨格構造を含有する不溶不融性基体は出力特性に優れることから好ましい材料の一例である。これら負極に用いる活物質の粒径は、例えば2μm以下と、小さい方が出力面から好ましい。 In the present invention, the active material for obtaining the negative electrode for an electricity storage device is not particularly limited. For example, activated carbon, an organic semiconductor such as an insoluble infusible substrate containing a polyacene skeleton structure, a graphite material, carbon Examples thereof include materials that can occlude and release lithium, such as series substances, tin oxide, silicon oxide, tin, and silicon. In particular, activated carbon and an insoluble and infusible substrate containing a polyacene skeleton structure are examples of preferable materials because of excellent output characteristics. The particle size of the active material used for these negative electrodes is preferably 2 μm or less, for example, from the output surface.

本発明において蓄電デバイス用負極の厚み(集電体の両面に電極層が形成される場合は電極厚みの1/2)は活物質の種類、用いる蓄電デバイスの設計出力などにより適宜決定されるが、例えば、ポリアセン系骨格構造を含有する不溶不融性基体などの場合、80μm以下5μm以上が望ましい。 In the present invention, the thickness of the negative electrode for an electricity storage device (1/2 of the electrode thickness when electrode layers are formed on both sides of the current collector) is appropriately determined depending on the type of active material, the design output of the electricity storage device used, and the like. For example, in the case of an insoluble and infusible substrate containing a polyacene skeleton structure, the thickness is desirably 80 μm or less and 5 μm or more.

本発明の蓄電デバイスは正極及び/又は負極が上記蓄電デバイス用電極を用いたものであり、特に、リチウムを吸蔵、放出可能な正極活物質を含む正極、リチウムを吸蔵、放出可能な負極活物質を含む負極、リチウム塩を非水系溶媒に溶解した電解液を有し、正極及び/又は負極が上記蓄電デバイス用電極であり、正極活物質及び/又は負極活物質に集電体の貫通孔をリチウムが通過することによりプリドープさせることを特徴とする。 The electricity storage device of the present invention is one in which the positive electrode and / or the negative electrode uses the electrode for the electricity storage device, and in particular, a positive electrode containing a positive electrode active material capable of occluding and releasing lithium, and a negative electrode active material capable of occluding and releasing lithium. A positive electrode and / or a negative electrode is an electrode for the electricity storage device, and the positive electrode active material and / or the negative electrode active material has a through-hole of a current collector. It is pre-doped by passing lithium.

これら蓄電デバイスの構成(セル構成、プリドープ用リチウムの配置)、プリドープ法については、例えば、特許文献3〜6に記載されているが、本発明では、正極及び/又は負極に上述の表裏面を貫通する孔を有する集電体と集電体上に形成された活物質を含む電極層を有する電極において、電極の電気伝導度が5.0×10−2S/cm以上であり、かつ、その集電体の表裏面を貫通する孔の幅が0.4mm以下であることを特徴とする蓄電デバイス用電極を用いることにより、集電体に従来の金属箔を用いた場合に比べ、高出力負荷時、すなわち、大電流負荷時において充分な出力特性を引き出すことが可能となる。 The configuration of these electricity storage devices (cell configuration, arrangement of lithium for pre-doping) and the pre-doping method are described in, for example, Patent Documents 3 to 6, but in the present invention, the above-described front and back surfaces are applied to the positive electrode and / or the negative electrode. In an electrode having a current collector having a through-hole and an electrode layer containing an active material formed on the current collector, the electrical conductivity of the electrode is 5.0 × 10 −2 S / cm or more, and By using the electrode for an electricity storage device characterized in that the width of the hole penetrating the front and back surfaces of the current collector is 0.4 mm or less, compared to the case where a conventional metal foil is used for the current collector, It is possible to extract sufficient output characteristics at the time of output load, that is, at the time of large current load.

本発明の蓄電デバイスにおけるリチウムを吸蔵、放出可能な正極活物質、リチウムを吸蔵、放出可能な負極活物質、正極、負極はすでに説明した通りである。本発明の蓄電デバイスに用いるリチウム塩を非水系溶媒に溶解した電解液とは、正極材料の種類、負極材料の性状、充電電圧などの使用条件などに対応して、適宜決定される。リチウム塩を含む非水系電解液としては、例えば、LiPF、LiBF、LiClOなどのリチウム塩をプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、酢酸メチル、蟻酸メチルなどの1種又は2種以上からなる有機溶媒に溶解したものを用いることができる。また、電解液の濃度は、特に限定されるものではないが、一般的に0.5〜2mol/l程度が実用的である。電解液は、当然のことながら、水分が100ppm以下のものを用いることが好ましい。また、公知のゲル電解質、固体電解質を用いることも可能である。 The positive electrode active material capable of inserting and extracting lithium, the negative electrode active material capable of inserting and extracting lithium, the positive electrode, and the negative electrode in the electricity storage device of the present invention are as described above. The electrolytic solution in which the lithium salt used in the electricity storage device of the present invention is dissolved in a non-aqueous solvent is appropriately determined in accordance with the use conditions such as the type of the positive electrode material, the properties of the negative electrode material, and the charging voltage. Examples of the non-aqueous electrolyte containing a lithium salt include lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, dimethoxyethane, γ-butyrolactone, acetic acid. What was melt | dissolved in the organic solvent which consists of 1 type, or 2 or more types, such as methyl and methyl formate, can be used. The concentration of the electrolytic solution is not particularly limited, but generally about 0.5 to 2 mol / l is practical. As a matter of course, it is preferable to use an electrolytic solution having a water content of 100 ppm or less. Moreover, it is also possible to use a well-known gel electrolyte and solid electrolyte.

本発明の蓄電デバイスにおいて、正極、負極の間に絶縁、電解液保持の目的でセパレータが配置される場合、このセパレータは、特に限定されるものではなく、ポリエチレン微多孔膜、ポリプロピレン微多孔膜、あるいはポリエチレンとポリプロピレンの積層膜、セルロース、ガラス繊維、アラミド繊維、ポリアクリルニトリル繊維などからなる織布、あるいは不織布などがあり、その目的と状況に応じ、適宜決定することが可能である。 In the electricity storage device of the present invention, when a separator is disposed between the positive electrode and the negative electrode for the purpose of insulation and electrolyte holding, the separator is not particularly limited, and a polyethylene microporous film, a polypropylene microporous film, Alternatively, there are a laminated film of polyethylene and polypropylene, a woven fabric made of cellulose, glass fiber, aramid fiber, polyacrylonitrile fiber, or a non-woven fabric, which can be appropriately determined according to the purpose and situation.

本発明の蓄電デバイスにおいては、蓄電デバイス内に配置されたリチウム金属などのリチウム源から正極活物質及び/又は負極活物質に集電体の貫通孔をリチウムが通過することによりプリドープさせることを特徴とする。例えば、正極、負極がセパレータを介し順次積層された構造を有する蓄電デバイスにおいて、所定量のリチウム金属を積層体の外側に配置、リチウム金属と負極を電気的に接続しておけば、電解液を注液した場合、集電体が貫通孔を有するがゆえにリチウムは正極電極層、セパレータ層、負極電極層、集電体すべてを通過することが可能となり、すべての負極にドーピングされることになる。正極にプリドープする場合も、同様であり、リチウム金属と正極を電気的に接続しておけば良い。また、集電体両面に電極層を形成し、その片側にリチウム金属を貼り付けるなどして、電極片面から集電体両側の電極活物質にプリドープすることも可能であり、その場合、プリドープする活物質を含む正極又は負極のみを表裏面を貫通する孔を有する集電体を用いれば良い。 In the electricity storage device of the present invention, the positive electrode active material and / or the negative electrode active material is pre-doped by passing lithium through the through holes of the current collector from a lithium source such as lithium metal arranged in the electricity storage device. And For example, in an electricity storage device having a structure in which a positive electrode and a negative electrode are sequentially stacked via a separator, a predetermined amount of lithium metal is disposed outside the stacked body, and the lithium metal and the negative electrode are electrically connected. When injected, since the current collector has through holes, lithium can pass through the positive electrode layer, the separator layer, the negative electrode layer, and the current collector, and all negative electrodes are doped. . The same applies to the case where the positive electrode is pre-doped, and the lithium metal and the positive electrode may be electrically connected. It is also possible to pre-dope the electrode active material on both sides of the current collector from one side of the current electrode by forming electrode layers on both sides of the current collector and attaching lithium metal to one side thereof. A current collector having a hole penetrating the front and back surfaces of only the positive electrode or the negative electrode containing the active material may be used.

本発明の蓄電デバイスの形状は特に限定されるものではなく、コイン型、円筒型、角型、フィルム型など、その目的に応じ、適宜決定することが可能である。   The shape of the electricity storage device of the present invention is not particularly limited, and can be appropriately determined according to the purpose, such as a coin shape, a cylindrical shape, a square shape, and a film shape.

以下に実施例を示し、本発明の特徴とするところをさらに明確化するが、本発明は実施例により何ら限定されるものではない。   EXAMPLES Examples will be shown below to further clarify the features of the present invention, but the present invention is not limited to the examples.

(1)フェノール樹脂硬化体301gをステンレス製皿に入れ、この皿を角型炉(400×400×400mm)内に配置して、熱反応に供した。熱反応は、窒素雰囲気下で行い、窒素流量は5リットル/分とした。熱反応は、1℃/分の速度で、炉内温が室温から630℃となるまで昇温し、同温度で4時間保持した後、自然冷却により、60℃まで冷却し、皿を炉から取り出し、本発明の不溶不融性基体を得た。収量は180gであった。   (1) 301 g of a cured phenol resin was placed in a stainless steel dish, and the dish was placed in a square furnace (400 × 400 × 400 mm) and subjected to a thermal reaction. The thermal reaction was performed in a nitrogen atmosphere, and the nitrogen flow rate was 5 liters / minute. The thermal reaction was performed at a rate of 1 ° C./minute until the furnace temperature was raised from room temperature to 630 ° C., held at that temperature for 4 hours, then cooled to 60 ° C. by natural cooling, and the dish was removed from the furnace. The insoluble and infusible substrate of the present invention was obtained. The yield was 180g.

(2)得られたポリアセン系骨格構造を含有する不溶不融性基体を遊星型ボールミルを用いて平均粒度5.4μmまで粉砕した。得られた不溶不融性基体材料について、元素分析(測定使用機:パーキンエルマー社製元素分析装置「PE2400 シリーズII、CHNS/O)を行った。元素分析において水素原子/炭素原子の原子比が0.27であった。   (2) The insoluble and infusible substrate containing the resulting polyacene skeleton structure was pulverized to an average particle size of 5.4 μm using a planetary ball mill. The obtained insoluble and infusible substrate material was subjected to elemental analysis (measurement machine: PerkinElmer elemental analyzer “PE2400 series II, CHNS / O). In the elemental analysis, the atomic ratio of hydrogen atom / carbon atom was It was 0.27.

(3)次いで、上記のポリアセン系骨格構造を含有する不溶不融性基体66.7重量部及び導電材アセチレンブラック19重量部及びPVdF(ポリフッ化ビニリデン)14.3重量部をNMP(N−メチル−2−ピロリドン)230重量部と混合し、負極合材スラリーを得た。このスラリーを孔径0.3mm(円形であり本発明における孔の幅に相当する)、空隙率50%、厚さ14μmの銅のパンチング箔(本発明の貫通孔を備えた集電体)の両面に塗布し、乾燥した後、プレス加工して電極を得た。電極の厚みは62μmであり、電極層の密度は0.79g/cmであった。得られた銅のパンチング箔の両面に電極層を形成した電極の電極表裏面を厚み方向に、銅製の直径2mmΦの円柱状の端子で挟み、2Kgf/cmの圧力を印加し、上下端子間に電圧1Vを印加した時に流れる電流を測定し(以下、電気伝導度はこの方法で測定)、電極の電気伝導度を求めたところ1.0×10−1S/cmであった。 (3) Next, 66.7 parts by weight of the insoluble infusible substrate containing the above polyacene skeleton structure, 19 parts by weight of conductive material acetylene black, and 14.3 parts by weight of PVdF (polyvinylidene fluoride) were added to NMP (N-methyl). -2-pyrrolidone) was mixed with 230 parts by weight to obtain a negative electrode mixture slurry. This slurry was formed on both sides of a copper punching foil (current collector having through holes of the present invention) having a hole diameter of 0.3 mm (circular and corresponding to the width of the holes in the present invention), a porosity of 50%, and a thickness of 14 μm. After coating, drying, press working was performed to obtain an electrode. The thickness of the electrode was 62 μm, and the density of the electrode layer was 0.79 g / cm 3 . The electrode front and back surfaces of the electrode having electrode layers formed on both sides of the obtained copper punching foil are sandwiched between cylindrical terminals with a diameter of 2 mmΦ made of copper, and a pressure of 2 kgf / cm 2 is applied between the upper and lower terminals. The current flowing when a voltage of 1 V was applied to the electrode was measured (hereinafter, the electric conductivity was measured by this method), and the electric conductivity of the electrode was determined to be 1.0 × 10 −1 S / cm.

(4)上記で得られた電極の片側にリチウム金属を配置し、この電極とリチウム金属を電気的に接続し、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルを作製した。このセルを用いて活物質であるポリアセン系骨格構造を含有する不溶不融性基体の重量あたり1000mAh/gに相当する量をプリドープした。電極の片側のみにリチウム金属を配置しているため、反対側の電極活物質へは、貫通孔をリチウムが通過することによりプリドープされている。 (4) Lithium metal is arranged on one side of the electrode obtained above, this electrode and lithium metal are electrically connected, and ethylene carbonate and methylethyl carbonate are mixed at an electrolyte ratio of 3: 7 (volume ratio). An electrochemical cell was prepared using a solution of LiPF 6 dissolved in the solvent at a concentration of 1 mol / l. Using this cell, an amount corresponding to 1000 mAh / g per weight of an insoluble infusible substrate containing a polyacene skeleton structure as an active material was pre-doped. Since lithium metal is disposed only on one side of the electrode, the electrode active material on the opposite side is pre-doped by passing lithium through the through hole.

(5)市販活性炭93重量部及び導電材ケッチェンブラック7重量部及びPVdF17重量部をNMP355重量部と混合し、正極合材スラリーを得た。黒鉛系導電性塗料を予め塗布した厚さ30μmのアルミ箔に、正極合材スラリーを片面に塗布し、乾燥した後、プレス加工して電極を得た。本実施例では貫通孔を有する集電体に形成された電極の出力特性を評価する目的で、上述の活性炭電極を用いているが、本発明の蓄電デバイスの構成を限定するものではない。   (5) 93 parts by weight of commercially available activated carbon, 7 parts by weight of conductive material ketjen black and 17 parts by weight of PVdF were mixed with 355 parts by weight of NMP to obtain a positive electrode mixture slurry. A positive electrode mixture slurry was applied to one side of an aluminum foil having a thickness of 30 μm previously coated with a graphite-based conductive paint, dried, and then pressed to obtain an electrode. In this embodiment, the above-mentioned activated carbon electrode is used for the purpose of evaluating the output characteristics of the electrode formed on the current collector having the through-hole, but the configuration of the electricity storage device of the present invention is not limited.

(6)上記でプリドープしたポリアセン系骨格構造を含有する不溶不融性基体を活物質とした電極層を、貫通孔を備えた集電体上に両面に形成した電極を負極とし、上記で得られた厚さ105μm、電極層密度0.60g/cmの活性炭電極2枚を正極とし、負極の両側に配置した。電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルを作製した。 (6) An electrode layer using an insoluble infusible substrate containing a polyacene-based skeleton structure predoped as described above as an active material and an electrode formed on both sides on a current collector provided with a through-hole is used as a negative electrode. Two activated carbon electrodes having a thickness of 105 μm and an electrode layer density of 0.60 g / cm 3 were used as the positive electrode and arranged on both sides of the negative electrode. An electrochemical cell was prepared using a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 3: 7 as an electrolytic solution.

(7)作製したセルを500mAの定電流で4.0Vまで充電した後、10mAの電流で2.0Vまで放電した。この時の容量は、9.87mAhであった。続いて、上記と同様の充電後、電流密度を変えながら出力特性を確認した。100Cに相当する1Aの電流で放電した場合、容量は6.06mAhであり、300Cに相当する3Aの電流で放電した場合、容量は3.41mAhであり、500Cに相当する5Aの電流で放電した場合、容量は1.63mAhであった。   (7) The manufactured cell was charged to 4.0 V with a constant current of 500 mA, and then discharged to 2.0 V with a current of 10 mA. The capacity at this time was 9.87 mAh. Subsequently, after the same charging as described above, the output characteristics were confirmed while changing the current density. When discharged with a current of 1 A corresponding to 100 C, the capacity was 6.06 mAh, and when discharged with a current of 3 A corresponding to 300 C, the capacity was 3.41 mAh and discharged with a current of 5 A corresponding to 500 C. In the case, the capacity was 1.63 mAh.

(8)次に比較として、上記のポリアセン系骨格構造を含有する不溶不融性基体を66.7重量部及び導電材アセチレンブラック19重量部及びPVdF(ポリフッ化ビニリデン)14.3重量部をNMP(N−メチル−2−ピロリドン)230重量部と混合し、負極合材スラリーを得た。このスラリーを厚さ14μmの銅箔(貫通孔を備えていない集電体)の両面に塗布し、乾燥した後、プレス加工して電極を得た。電極の厚みは61μmであり、電極層の密度は0.8g/cmであった。得られた電極の電気伝導度を求めたところ1.1×10−1S/cmであった。 (8) Next, for comparison, 66.7 parts by weight of the insoluble infusible substrate containing the polyacene skeleton structure, 19 parts by weight of conductive material acetylene black, and 14.3 parts by weight of PVdF (polyvinylidene fluoride) are added to NMP. A negative electrode mixture slurry was obtained by mixing with 230 parts by weight of (N-methyl-2-pyrrolidone). This slurry was applied to both sides of a copper foil having a thickness of 14 μm (current collector not having through holes), dried, and then pressed to obtain an electrode. The thickness of the electrode was 61 μm, and the density of the electrode layer was 0.8 g / cm 3 . The electric conductivity of the obtained electrode was determined to be 1.1 × 10 −1 S / cm.

(9)上記で得られた電極の両側にリチウム金属を配置し、この電極とリチウム金属を電気的に接続し、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルを作製した。このセルを用いて活物質であるポリアセン系骨格構造を含有する不溶不融性基体の重量あたり1000mAh/gに相当する量をプリドープした。 (9) Lithium metal is arranged on both sides of the electrode obtained above, this electrode and lithium metal are electrically connected, and ethylene carbonate and methyl ethyl carbonate are mixed at 3: 7 (volume ratio) as an electrolytic solution. An electrochemical cell was prepared using a solution of LiPF 6 dissolved in the solvent at a concentration of 1 mol / l. Using this cell, an amount corresponding to 1000 mAh / g per weight of an insoluble infusible substrate containing a polyacene skeleton structure as an active material was pre-doped.

(10)上記でプリドープしたポリアセン系骨格構造を含有する不溶不融性基体を活物質とした電極層を貫通孔を有さない集電体上に両面に形成した電極を負極とし、上記で得られた厚さ106μm、電極層密度0.60g/cmの活性炭電極2枚を正極とし、負極の両側に配置した。電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セル(比較セル)を作製した。 (10) An electrode in which an electrode layer using an insoluble infusible substrate containing a polyacene skeleton structure pre-doped as described above as an active material is formed on both sides on a current collector having no through hole is used as a negative electrode. Two activated carbon electrodes having a thickness of 106 μm and an electrode layer density of 0.60 g / cm 3 were used as the positive electrode and arranged on both sides of the negative electrode. An electrochemical cell (comparative cell) was prepared using a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 3: 7 as an electrolytic solution.

(11)作製した比較セルを、同様に、500mAの定電流で4.0Vまで充電した後、10mAの電流で2.0Vまで放電した。この時の容量は、10.0mAhであった。続いて、上記と同様の充電後、電流密度を変えながら出力特性を確認した。100Cに相当する1Aの電流で放電した場合、容量は6.57mAhであり、300Cに相当する3Aの電流で放電した場合、容量は4.04mAhであり、500Cに相当する5Aの電流で放電した場合、容量は2.00mAhであった。比較セルと本発明の貫通孔を有する集電体に形成された電極を用いた上記セルの特性を比較した場合、1C相当の10mAの電流では貫通孔を有する集電体に形成された電極を用いた上記セルの特性は比較セル(集電体が貫通孔を有さない)に対し、99%の容量を有しており、100Cに相当する1Aの電流で放電した場合93%、300Cに相当する3Aの電流においても84%、更には、500Cに相当する5Aの電流においても82%と、貫通孔を有する集電体を用いた場合でも、集電体が貫通孔を有さない集電体を用いた電極に対し、高出力負荷時においても充分な容量が得られている。
(比較例1)
(11) The prepared comparative cell was similarly charged to 4.0 V with a constant current of 500 mA, and then discharged to 2.0 V with a current of 10 mA. The capacity at this time was 10.0 mAh. Subsequently, after the same charging as described above, the output characteristics were confirmed while changing the current density. When discharged at a current of 1 A corresponding to 100 C, the capacity was 6.57 mAh, and when discharged at a current of 3 A corresponding to 300 C, the capacity was 4.04 mAh and discharged at a current of 5 A corresponding to 500 C. In the case, the capacity was 2.00 mAh. When comparing the characteristics of the above cell using the electrode formed on the current collector having the through-hole of the comparative cell and the present invention, the electrode formed on the current collector having the through-hole was obtained at a current of 10 mA equivalent to 1C. The characteristics of the cell used are 99% of the capacity of the comparative cell (the current collector does not have a through hole), and 93% when discharged at a current of 1A corresponding to 100C, and 300C. Even when a current collector having a through hole is used, 84% even at a current corresponding to 3A, and further 82% even at a current corresponding to 5A corresponding to 500C, the current collector does not have a through hole. Sufficient capacity is obtained even when the output is high with respect to the electrode using the electric body.
(Comparative Example 1)

(1)実施例1に記載のポリアセン系骨格構造を含有する不溶不融性基体を66.7重量部及び導電材アセチレンブラック19重量部及びPVdF(ポリフッ化ビニリデン)14.3重量部をNMP(N−メチル−2−ピロリドン)230重量部と混合し、同様の組成で負極合材スラリーを得た。このスラリーを孔径0.5mm(本発明における孔の幅に相当する)、空隙率50%、厚さ14μmの銅のパンチング箔(本発明の貫通孔の幅の請求範囲外の孔を備えた集電体)の両面に塗布し、乾燥した後、プレス加工して電極を得た。電極の厚みは61μmであり、電極層の密度は0.80g/cmであった。得られた電極の電気伝導度を求めたところ1.0×10−1S/cmであった。 (1) 66.7 parts by weight of an insoluble infusible substrate containing the polyacene-based skeleton structure described in Example 1, 19 parts by weight of conductive material acetylene black, and 14.3 parts by weight of PVdF (polyvinylidene fluoride) are mixed with NMP ( N-methyl-2-pyrrolidone) was mixed with 230 parts by weight to obtain a negative electrode mixture slurry with the same composition. This slurry was made into a copper punching foil having a hole diameter of 0.5 mm (corresponding to the width of the hole in the present invention), a porosity of 50%, and a thickness of 14 μm. The electrode was applied to both sides of the electric body and dried, followed by pressing to obtain an electrode. The thickness of the electrode was 61 μm, and the density of the electrode layer was 0.80 g / cm 3 . The electric conductivity of the obtained electrode was determined to be 1.0 × 10 −1 S / cm.

(2)上記で得られた電極の片側にリチウム金属を配置し、この電極とリチウム金属を電気的に接続し、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルを作製した。このセルを用いて活物質であるポリアセン系骨格構造を含有する不溶不融性基体の重量あたり1000mAh/gに相当する量をプリドープした。電極の片側にリチウム金属を配置していないため、反対側の電極活物質へは、貫通孔をリチウムが通過することによりプリドープされている。 (2) Lithium metal is arranged on one side of the electrode obtained above, this electrode and lithium metal are electrically connected, and ethylene carbonate and methylethyl carbonate are mixed at an electrolyte ratio of 3: 7 (volume ratio). An electrochemical cell was prepared using a solution of LiPF 6 dissolved in the solvent at a concentration of 1 mol / l. Using this cell, an amount corresponding to 1000 mAh / g per weight of an insoluble infusible substrate containing a polyacene skeleton structure as an active material was pre-doped. Since lithium metal is not disposed on one side of the electrode, the electrode active material on the opposite side is pre-doped by passing lithium through the through hole.

(3)上記でプリドープしたポリアセン系骨格構造を含有する不溶不融性基体を活物質とした電極層を貫通孔を備えた集電体上に両面に形成した電極を負極とし、実施例1で得られた厚さ105μm、電極層密度0.59g/cmの活性炭電極2枚を正極とし、負極の両側に配置した。電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セル(比較セル)を作製した。 (3) In Example 1, an electrode in which an electrode layer using an insoluble infusible substrate containing a polyacene skeleton structure pre-doped as described above as an active material was formed on both sides on a current collector provided with a through hole was used as a negative electrode. The obtained two activated carbon electrodes having a thickness of 105 μm and an electrode layer density of 0.59 g / cm 3 were used as the positive electrode and arranged on both sides of the negative electrode. An electrochemical cell (comparative cell) was prepared using a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 3: 7 as an electrolytic solution.

(4)作製した比較セルを、同様に、500mAの定電流で4.0Vまで充電した後、10mAの電流で2.0Vまで放電した。この時の容量は、9.59mAhであった。続いて、上記と同様の充電後、電流密度を変えながら出力特性を確認した。100Cに相当する1Aの電流で放電した場合、容量は5.83mAhであり、300Cに相当する3Aの電流で放電した場合、容量は3.36mAhであり、500Cに相当する5Aの電流で放電した場合、容量は1.19mAhであった。1C相当の10mAの電流では、実施例1に記載の比較セル(集電体が貫通孔を有さない)に対し、96%の容量を有しており、100Cに相当する1Aの電流で放電した場合89%、300Cに相当する3Aの電流において83%、500Cに相当する5Aの電流においては60%となり、上記実施例1の貫通孔を有する集電体に形成された電極と同じ電極の電気伝導度(1.0×10−1S/cm)を有するものの、集電体の表裏面を貫通する孔の幅が0.4mm以下でないことから、300Cを超える高出力負荷時において、容量が低下する。
(比較例2)
(4) Similarly, the fabricated comparative cell was charged to 4.0 V with a constant current of 500 mA, and then discharged to 2.0 V with a current of 10 mA. The capacity at this time was 9.59 mAh. Subsequently, after the same charging as described above, the output characteristics were confirmed while changing the current density. When discharged with a current of 1 A corresponding to 100 C, the capacity was 5.83 mAh, and when discharged with a current of 3 A corresponding to 300 C, the capacity was 3.36 mAh and discharged with a current of 5 A corresponding to 500 C. In the case, the capacity was 1.19 mAh. With a current of 10 mA corresponding to 1 C, the comparative cell described in Example 1 (the current collector does not have a through hole) has a capacity of 96%, and is discharged with a current of 1 A corresponding to 100 C. 89%, 83% at a current of 3A corresponding to 300C, 60% at a current of 5A corresponding to 500C, and the same electrode as the electrode formed on the current collector having the through-hole of Example 1 above. Although it has electrical conductivity (1.0 × 10 −1 S / cm), the width of the hole passing through the front and back surfaces of the current collector is not 0.4 mm or less. Decreases.
(Comparative Example 2)

(1)電極の電気伝導度の比較として、上記のポリアセン系骨格構造を含有する不溶不融性基体を80重量部及び導電材アセチレンブラック10重量部及びPVdF(ポリフッ化ビニリデン)10重量部をNMP(N−メチル−2−ピロリドン)230重量部と混合し、同様の組成で負極合材スラリーを得た。このスラリーを孔径0.3mm(円形であり本発明における孔の幅に相当する)、空隙率50%、厚さ14μmの銅のパンチング箔(本発明の貫通孔を備えた集電体)の両面に塗布し、乾燥した後、プレス加工して電極を得た。電極の厚みは61μmであり、電極層の密度は0.79g/cmであった。得られた電極の電気伝導度を求めたところ2.0×10−2S/cmであった。 (1) As a comparison of the electrical conductivity of the electrodes, 80 parts by weight of the insoluble infusible substrate containing the above polyacene skeleton structure, 10 parts by weight of conductive material acetylene black, and 10 parts by weight of PVdF (polyvinylidene fluoride) are NMP. The mixture was mixed with 230 parts by weight of (N-methyl-2-pyrrolidone) to obtain a negative electrode mixture slurry with the same composition. This slurry was formed on both sides of a copper punching foil (current collector having through holes of the present invention) having a hole diameter of 0.3 mm (circular and corresponding to the width of the holes in the present invention), a porosity of 50%, and a thickness of 14 μm. After coating, drying, press working was performed to obtain an electrode. The thickness of the electrode was 61 μm, and the density of the electrode layer was 0.79 g / cm 3 . The electric conductivity of the obtained electrode was determined to be 2.0 × 10 −2 S / cm.

(2)上記で得られた電極の片側にリチウム金属を配置し、この電極とリチウム金属を電気的に接続し、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルを作製した。このセルを用いて活物質であるポリアセン系骨格構造を含有する不溶不融性基体の重量あたり1000mAh/gに相当する量をプリドープした。電極の片側にリチウム金属を配置していなため、反対側の電極活物質へは、貫通孔をリチウムが通過することによりプリドープされている。 (2) Lithium metal is arranged on one side of the electrode obtained above, this electrode and lithium metal are electrically connected, and ethylene carbonate and methylethyl carbonate are mixed at an electrolyte ratio of 3: 7 (volume ratio). An electrochemical cell was prepared using a solution of LiPF 6 dissolved in the solvent at a concentration of 1 mol / l. Using this cell, an amount corresponding to 1000 mAh / g per weight of an insoluble infusible substrate containing a polyacene skeleton structure as an active material was pre-doped. Since lithium metal is not disposed on one side of the electrode, the electrode active material on the opposite side is pre-doped by passing lithium through the through hole.

(3)上記でプリドープしたポリアセン系骨格構造を含有する不溶不融性基体を活物質とした電極層を貫通孔を備えた集電体上に両面に形成した電極を負極とし、実施例1で得られた厚さ106μm、電極層密度0.59g/cmの活性炭電極2枚を正極とし、負極の両側に配置した。電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルを作製した。 (3) In Example 1, an electrode in which an electrode layer using an insoluble infusible substrate containing a polyacene skeleton structure pre-doped as described above as an active material was formed on both sides on a current collector provided with a through hole was used as a negative electrode. The obtained two activated carbon electrodes having a thickness of 106 μm and an electrode layer density of 0.59 g / cm 3 were used as the positive electrode and arranged on both sides of the negative electrode. An electrochemical cell was prepared using a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 3: 7 as an electrolytic solution.

(4)作製したセルを、500mAの定電流で4.0Vまで充電した後、10mAの電流で2.0Vまで放電した。この時の容量は、9.55mAhであった。続いて、上記と同様の充電後、電流密度を変えながら出力特性を確認した。100Cに相当する1Aの電流で放電した場合、容量は5.70mAhであり、300Cに相当する3Aの電流で放電した場合、容量は2.32mAhであり、500Cに相当する5Aの電流で放電した場合、容量は0.25mAhであった。   (4) The fabricated cell was charged to 4.0 V with a constant current of 500 mA, and then discharged to 2.0 V with a current of 10 mA. The capacity at this time was 9.55 mAh. Subsequently, after the same charging as described above, the output characteristics were confirmed while changing the current density. When discharged at a current of 1 A corresponding to 100 C, the capacity was 5.70 mAh, and when discharged at a current of 3 A corresponding to 300 C, the capacity was 2.32 mAh and discharged at a current of 5 A corresponding to 500 C. In the case, the capacity was 0.25 mAh.

(5)次に比較として、上記のポリアセン系骨格構造を含有する不溶不融性基体を80重量部及び導電材アセチレンブラック10重量部及びPVdF(ポリフッ化ビニリデン)10重量部をNMP(N−メチル−2−ピロリドン)230重量部と混合し、同様の組成で負極合材スラリーを得た。このスラリーを厚さ14μmの銅箔(貫通孔を備えていない集電体)の両面に塗布し、乾燥した後、プレス加工して電極を得た。電極の厚みは61μmであり、電極層の密度は0.79g/cmであった。得られた電極の電気伝導度を求めたところ2.2×10−2S/cmであった。 (5) Next, as a comparison, 80 parts by weight of the insoluble infusible substrate containing the above polyacene skeleton structure, 10 parts by weight of conductive material acetylene black and 10 parts by weight of PVdF (polyvinylidene fluoride) were added to NMP (N-methyl). 2-pyrrolidone) was mixed with 230 parts by weight to obtain a negative electrode mixture slurry having the same composition. This slurry was applied to both sides of a copper foil having a thickness of 14 μm (current collector not having through holes), dried, and then pressed to obtain an electrode. The thickness of the electrode was 61 μm, and the density of the electrode layer was 0.79 g / cm 3 . The electric conductivity of the obtained electrode was determined to be 2.2 × 10 −2 S / cm.

(6)上記で得られた電極の両側にリチウム金属を配置し、この電極とリチウム金属を電気的に接続し、電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セルを作製した。このセルを用いて活物質であるポリアセン系骨格構造を含有する不溶不融性基体の重量あたり1000mAh/gに相当する量をプリドープした。 (6) Lithium metal is arranged on both sides of the electrode obtained above, this electrode and lithium metal are electrically connected, and ethylene carbonate and methyl ethyl carbonate are mixed at 3: 7 (volume ratio) as an electrolytic solution. An electrochemical cell was prepared using a solution of LiPF 6 dissolved in the solvent at a concentration of 1 mol / l. Using this cell, an amount corresponding to 1000 mAh / g per weight of an insoluble infusible substrate containing a polyacene skeleton structure as an active material was pre-doped.

(7)上記でプリドープしたポリアセン系骨格構造を含有する不溶不融性基体を活物質とした電極層を貫通孔を有さない集電体上に両面に塗工した電極を負極とし、上記で得られた片面塗工の厚さ104μm、電極層密度0.60g/cmの活性炭電極2枚を正極とし、負極の両側に配置した。電解液としてエチレンカーボネートとメチルエチルカーボネートとを3:7(体積比)で混合した溶媒に1mol/lの濃度にLiPFを溶解した溶液を用いて、電気化学セル(比較セル)を作製した。 (7) An electrode in which an electrode layer using an insoluble infusible substrate containing a polyacene skeleton structure predoped as described above as an active material is coated on both sides of a current collector having no through-hole is used as a negative electrode, and The obtained two-sided activated carbon electrodes having a thickness of 104 μm and an electrode layer density of 0.60 g / cm 3 were used as positive electrodes and arranged on both sides of the negative electrode. An electrochemical cell (comparative cell) was prepared using a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / l in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 3: 7 as an electrolytic solution.

(8)作製した比較セルを、同様に、500mAの定電流で4.0Vまで充電した後、10mAの電流で2.0Vまで放電した。この時の容量は、9.86mAhであった。続いて、上記と同様の充電後、電流密度を変えながら出力特性を確認した。100Cに相当する1Aの電流で放電した場合、容量は6.06mAhであり、300Cに相当する3Aの電流で放電した場合、容量は3.78mAhであり、500Cに相当する5Aの電流で放電した場合、容量は0.98mAhであった。電極の電気伝導度が共に2.0×10−2S/cmである、この比較セルと貫通孔を有する集電体に形成された電極を用いた上記セルの特性を比較した場合、1C相当の10mAの電流では貫通孔を有する集電体に形成された電極を用いた上記セルの特性は比較セル(集電体が貫通孔を有さない)に対し、容量は97%であり、100Cに相当する1Aの電流で放電した場合94%、300Cに相当する3Aの電流においては61%、500Cに相当する5Aの電流においては26%であり、電極の電気伝導度が5.0×10−2S/cm以下である場合、集電体の表裏面を貫通する孔の幅が0.4mm以下であっても、高出力負荷時において充分な容量が得られない。 (8) The prepared comparative cell was similarly charged to 4.0 V with a constant current of 500 mA, and then discharged to 2.0 V with a current of 10 mA. The capacity at this time was 9.86 mAh. Subsequently, after the same charging as described above, the output characteristics were confirmed while changing the current density. When discharged at a current of 1 A corresponding to 100 C, the capacity was 6.06 mAh, and when discharged at a current of 3 A corresponding to 300 C, the capacity was 3.78 mAh and discharged at a current of 5 A corresponding to 500 C. In the case, the capacity was 0.98 mAh. When comparing the characteristics of this cell using an electrode formed on a current collector having a through-hole and this comparative cell, both of which have an electric conductivity of 2.0 × 10 −2 S / cm, equivalent to 1C The characteristics of the cell using the electrode formed on the current collector having a through-hole in the current of 10 mA of the comparison cell (the current collector does not have the through-hole) is 97%, and the capacity is 100C. Is 94% when discharged at a current corresponding to 1A, 61% at a current of 3A corresponding to 300C, and 26% at a current of 5A corresponding to 500C, and the electrical conductivity of the electrode is 5.0 × 10. In the case of −2 S / cm or less, even when the width of the hole penetrating the front and back surfaces of the current collector is 0.4 mm or less, sufficient capacity cannot be obtained at high output load.

本発明の蓄電デバイス用電極及び蓄電デバイスは、例えば、ハイブリッド電気自動車、燃料電池電気自動車などに用いられる高出力蓄電デバイスの高エネルギー密度化及び高出力/高率充電特性への要求に応えるものであり、プリドープによる蓄電デバイスの高容量化、高電圧化によるエネルギー密度の向上、高出力化に貢献するものである。
The electrode for an electricity storage device and the electricity storage device of the present invention meet the demand for higher energy density and higher output / high rate charging characteristics of a high-output electricity storage device used for, for example, a hybrid electric vehicle, a fuel cell electric vehicle and the like. Yes, it contributes to the increase in the capacity of the electricity storage device by pre-doping, the improvement of the energy density by the increase in voltage, and the increase in output.

Claims (4)

表裏面を貫通する孔を有する集電体と集電体上に形成された活物質を含む電極層を有する電極において、電極の電気伝導度が5.0×10−2S/cm以上であり、かつ、その集電体の表裏面を貫通する孔の幅が0.4mm以下であることを特徴とする蓄電デバイス用電極。 In an electrode having a current collector having holes penetrating the front and back surfaces and an electrode layer containing an active material formed on the current collector, the electrical conductivity of the electrode is 5.0 × 10 −2 S / cm or more. And the width | variety of the hole which penetrates the front and back of the collector is 0.4 mm or less, The electrode for electrical storage devices characterized by the above-mentioned. 表裏面を貫通する孔を有する集電体の空隙率が10%以上90%以下であることを特徴とする請求項1に記載の蓄電デバイス用電極。   The electrode for an electricity storage device according to claim 1, wherein the porosity of the current collector having holes penetrating the front and back surfaces is 10% or more and 90% or less. 正極、負極、セパレータ及び電解液を具備する蓄電デバイスにおいて、正極及び/又は負極が請求項1あるいは2に記載されている蓄電デバイス用電極を用いた蓄電デバイス。   An electricity storage device comprising a positive electrode, a negative electrode, a separator, and an electrolytic solution, wherein the positive electrode and / or the negative electrode uses the electrode for an electricity storage device according to claim 1 or 2. リチウムを吸蔵、放出可能な正極活物質を含む正極、リチウムを吸蔵、放出可能な負極活物質を含む負極、リチウム塩を非水系溶媒に溶解した電解液を有する非水系蓄電デバイスにおいて、正極及び/又は負極が請求項1あるいは2に記載されている電極であり、正極活物質及び/又は負極活物質に集電体の貫通孔をリチウムが通過することによりプリドープさせることを特徴とする非水系蓄電デバイス。
A positive electrode including a positive electrode active material capable of occluding and releasing lithium, a negative electrode including a negative electrode active material capable of occluding and releasing lithium, and a nonaqueous storage device having an electrolyte solution in which a lithium salt is dissolved in a nonaqueous solvent. Alternatively, the negative electrode is an electrode according to claim 1 or 2, wherein the positive electrode active material and / or the negative electrode active material is pre-doped by passing lithium through the through-hole of the current collector. device.
JP2006223067A 2006-08-18 2006-08-18 Electrode for lithium ion capacitor and lithium ion capacitor using the same Active JP5301090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006223067A JP5301090B2 (en) 2006-08-18 2006-08-18 Electrode for lithium ion capacitor and lithium ion capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223067A JP5301090B2 (en) 2006-08-18 2006-08-18 Electrode for lithium ion capacitor and lithium ion capacitor using the same

Publications (2)

Publication Number Publication Date
JP2008047458A true JP2008047458A (en) 2008-02-28
JP5301090B2 JP5301090B2 (en) 2013-09-25

Family

ID=39180982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006223067A Active JP5301090B2 (en) 2006-08-18 2006-08-18 Electrode for lithium ion capacitor and lithium ion capacitor using the same

Country Status (1)

Country Link
JP (1) JP5301090B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040370A (en) * 2008-08-06 2010-02-18 Fuji Heavy Ind Ltd Energy storage device
JP2010067793A (en) * 2008-09-11 2010-03-25 Japan Pionics Co Ltd Electrode sheet, and electrical double layer capacitor and lithium ion capacitor using electrode sheet
JP2010098020A (en) * 2008-10-15 2010-04-30 Hitachi Powdered Metals Co Ltd Negative electrode coating film and coating composition for forming electrode coating film of lithium ion capacitor
JP2010114206A (en) * 2008-11-05 2010-05-20 Hitachi Powdered Metals Co Ltd Negative electrode film for lithium-ion capacitor, and electrode film-forming coating material composition
JP2010141217A (en) * 2008-12-15 2010-06-24 Shin Kobe Electric Mach Co Ltd Laminate, lithium ion capacitor, and method of manufacturing lithium ion capacitor
JP2010205827A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
JP2013175793A (en) * 2013-06-11 2013-09-05 Shin Kobe Electric Mach Co Ltd Lithium ion capacitor
FR3004290A1 (en) * 2013-04-08 2014-10-10 Accumulateurs Fixes CURRENT COLLECTOR FOR ELECTROCHEMICAL ELEMENT ELECTRODE
JP2016110777A (en) * 2014-12-04 2016-06-20 積水化学工業株式会社 Method for manufacturing lithium ion secondary battery
JP2016110776A (en) * 2014-12-04 2016-06-20 積水化学工業株式会社 Method for manufacturing lithium ion secondary battery
WO2016159058A1 (en) * 2015-03-30 2016-10-06 日立化成株式会社 Lithium ion secondary battery and method of manufacturing same
WO2022145107A1 (en) * 2020-12-29 2022-07-07 マクセル株式会社 Negative electrode for non-aqueous electrolyte secondary batteries, method for manufacturing same, and method for inspecting same, and non-aqueous electrolyte secondary battery and method for manufacturing same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244836A (en) * 1987-03-31 1988-10-12 日立コンデンサ株式会社 Electric double-layer capacitor
JPH027865A (en) * 1988-06-25 1990-01-11 Matsushita Electric Works Ltd Load controller
JPH10242006A (en) * 1997-02-24 1998-09-11 Toyota Central Res & Dev Lab Inc Electrode for electric double layer capacitor
JPH11195415A (en) * 1997-11-05 1999-07-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery and its manufacture
JPH11224834A (en) * 1998-02-05 1999-08-17 Nec Corp Polarizable electrode, its manufacture, and electric double layer capacitor using the electrode
JPH11288723A (en) * 1998-03-31 1999-10-19 Tdk Corp Current collector for electrochemical element
JP2003007354A (en) * 2001-06-25 2003-01-10 Toyota Motor Corp Method and equipment for evaluating charasteristics of secondary lithium battery
JP2003346801A (en) * 2002-05-27 2003-12-05 Asahi Kasei Corp Negative electrode material, method for manufacturing the same, and battery element
JP2004311417A (en) * 2003-03-27 2004-11-04 Nec Tokin Corp Electrode and electrochemical cell using it
WO2004097867A2 (en) * 2003-03-31 2004-11-11 Kanebo Ltd Organic electrolyte capacitor
JP2005203116A (en) * 2004-01-13 2005-07-28 Kanebo Ltd Method of double-side coating and coated electrode
WO2005096333A1 (en) * 2004-03-31 2005-10-13 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor using mesoporous carbon material as negative electrode
JP2006512265A (en) * 2002-09-17 2006-04-13 ビーエーエスエフ アクチェンゲゼルシャフト Foam mainly composed of carbon and having a high internal surface area, and method for producing the same

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244836A (en) * 1987-03-31 1988-10-12 日立コンデンサ株式会社 Electric double-layer capacitor
JPH027865A (en) * 1988-06-25 1990-01-11 Matsushita Electric Works Ltd Load controller
JPH10242006A (en) * 1997-02-24 1998-09-11 Toyota Central Res & Dev Lab Inc Electrode for electric double layer capacitor
JPH11195415A (en) * 1997-11-05 1999-07-21 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte battery and its manufacture
JPH11224834A (en) * 1998-02-05 1999-08-17 Nec Corp Polarizable electrode, its manufacture, and electric double layer capacitor using the electrode
JPH11288723A (en) * 1998-03-31 1999-10-19 Tdk Corp Current collector for electrochemical element
JP2003007354A (en) * 2001-06-25 2003-01-10 Toyota Motor Corp Method and equipment for evaluating charasteristics of secondary lithium battery
JP2003346801A (en) * 2002-05-27 2003-12-05 Asahi Kasei Corp Negative electrode material, method for manufacturing the same, and battery element
JP2006512265A (en) * 2002-09-17 2006-04-13 ビーエーエスエフ アクチェンゲゼルシャフト Foam mainly composed of carbon and having a high internal surface area, and method for producing the same
JP2004311417A (en) * 2003-03-27 2004-11-04 Nec Tokin Corp Electrode and electrochemical cell using it
WO2004097867A2 (en) * 2003-03-31 2004-11-11 Kanebo Ltd Organic electrolyte capacitor
JP2005203116A (en) * 2004-01-13 2005-07-28 Kanebo Ltd Method of double-side coating and coated electrode
WO2005096333A1 (en) * 2004-03-31 2005-10-13 Fuji Jukogyo Kabushiki Kaisha Organic electrolyte capacitor using mesoporous carbon material as negative electrode

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040370A (en) * 2008-08-06 2010-02-18 Fuji Heavy Ind Ltd Energy storage device
JP2010067793A (en) * 2008-09-11 2010-03-25 Japan Pionics Co Ltd Electrode sheet, and electrical double layer capacitor and lithium ion capacitor using electrode sheet
JP2010098020A (en) * 2008-10-15 2010-04-30 Hitachi Powdered Metals Co Ltd Negative electrode coating film and coating composition for forming electrode coating film of lithium ion capacitor
JP2010114206A (en) * 2008-11-05 2010-05-20 Hitachi Powdered Metals Co Ltd Negative electrode film for lithium-ion capacitor, and electrode film-forming coating material composition
JP2010141217A (en) * 2008-12-15 2010-06-24 Shin Kobe Electric Mach Co Ltd Laminate, lithium ion capacitor, and method of manufacturing lithium ion capacitor
JP2010205827A (en) * 2009-03-02 2010-09-16 Asahi Kasei Corp Nonaqueous lithium type electricity storage element
FR3004290A1 (en) * 2013-04-08 2014-10-10 Accumulateurs Fixes CURRENT COLLECTOR FOR ELECTROCHEMICAL ELEMENT ELECTRODE
JP2013175793A (en) * 2013-06-11 2013-09-05 Shin Kobe Electric Mach Co Ltd Lithium ion capacitor
JP2016110777A (en) * 2014-12-04 2016-06-20 積水化学工業株式会社 Method for manufacturing lithium ion secondary battery
JP2016110776A (en) * 2014-12-04 2016-06-20 積水化学工業株式会社 Method for manufacturing lithium ion secondary battery
WO2016159058A1 (en) * 2015-03-30 2016-10-06 日立化成株式会社 Lithium ion secondary battery and method of manufacturing same
CN107431236A (en) * 2015-03-30 2017-12-01 日立化成株式会社 Lithium rechargeable battery and its manufacture method
JPWO2016159058A1 (en) * 2015-03-30 2018-02-01 日立化成株式会社 Lithium ion secondary battery and manufacturing method thereof
US20180083288A1 (en) * 2015-03-30 2018-03-22 Hitachi Chemical Company, Ltd. Lithium-ion secondary battery and method of manufacturing the same
US10340527B2 (en) 2015-03-30 2019-07-02 Hitachi Chemical Company, Ltd. Lithium-ion secondary battery and method of manufacturing the same
WO2022145107A1 (en) * 2020-12-29 2022-07-07 マクセル株式会社 Negative electrode for non-aqueous electrolyte secondary batteries, method for manufacturing same, and method for inspecting same, and non-aqueous electrolyte secondary battery and method for manufacturing same

Also Published As

Publication number Publication date
JP5301090B2 (en) 2013-09-25

Similar Documents

Publication Publication Date Title
JP5301090B2 (en) Electrode for lithium ion capacitor and lithium ion capacitor using the same
JP5008637B2 (en) Method for producing non-aqueous lithium secondary battery
JP5462445B2 (en) Lithium ion secondary battery
JP4971729B2 (en) Lithium ion capacitor
JP5182477B2 (en) Non-aqueous secondary battery
JP4857073B2 (en) Lithium ion capacitor
KR101045159B1 (en) Lithium ion capacitor
KR101771279B1 (en) Method for lithium predoping, method for producing electrodes, and electric energy storage device using these methods
JP4015993B2 (en) Organic electrolyte capacitor
US20080220329A1 (en) Negative electrode active material for an electricity storage device and method for manufacturing the same
JP5797993B2 (en) Nonaqueous electrolyte secondary battery
JP5714283B2 (en) Pre-doped electrode manufacturing method and power storage device
JP4738042B2 (en) Non-aqueous lithium storage element and method for manufacturing the same
JP2013084566A (en) Nonaqueous electrolytic secondary cell
JP2007115721A (en) Lithium ion capacitor
JPWO2016194733A1 (en) Lithium ion secondary battery
JP2012204310A (en) Lithium pre-doping method, manufacturing method of electrode, and power storage device made using the methods
JP6384596B2 (en) Anode materials for lithium-ion batteries
JP2007180431A (en) Lithium ion capacitor
JP2008060028A (en) Power storage device
JP5167584B2 (en) Non-aqueous electrolyte secondary battery
WO2015005294A1 (en) Power storage device
JP2009130066A (en) Lithium ion capacitor
JP2009108444A (en) Method for producing mesophase pitch-based carbon fiber baked at low-temperature
CN115249791A (en) Lithium transition metal oxide electrode comprising additional metal and method for preparing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130619

R150 Certificate of patent or registration of utility model

Ref document number: 5301090

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250