[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007519233A - Beam emitting type and / or beam receiving type semiconductor component - Google Patents

Beam emitting type and / or beam receiving type semiconductor component Download PDF

Info

Publication number
JP2007519233A
JP2007519233A JP2006545908A JP2006545908A JP2007519233A JP 2007519233 A JP2007519233 A JP 2007519233A JP 2006545908 A JP2006545908 A JP 2006545908A JP 2006545908 A JP2006545908 A JP 2006545908A JP 2007519233 A JP2007519233 A JP 2007519233A
Authority
JP
Japan
Prior art keywords
semiconductor component
semiconductor chip
semiconductor
silicon
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006545908A
Other languages
Japanese (ja)
Other versions
JP4939946B2 (en
Inventor
ヘルベルト ブルンナー
イェーガー ハラルト
エーリヒ ゾルク イェルク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority claimed from PCT/DE2004/002738 external-priority patent/WO2005064696A1/en
Publication of JP2007519233A publication Critical patent/JP2007519233A/en
Application granted granted Critical
Publication of JP4939946B2 publication Critical patent/JP4939946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/8506Containers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/50Encapsulations or containers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/852Encapsulations
    • H10H20/854Encapsulations characterised by their material, e.g. epoxy or silicone resins
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/857Interconnections, e.g. lead-frames, bond wires or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10HINORGANIC LIGHT-EMITTING SEMICONDUCTOR DEVICES HAVING POTENTIAL BARRIERS
    • H10H20/00Individual inorganic light-emitting semiconductor devices having potential barriers, e.g. light-emitting diodes [LED]
    • H10H20/80Constructional details
    • H10H20/85Packages
    • H10H20/851Wavelength conversion means
    • H10H20/8511Wavelength conversion means characterised by their material, e.g. binder

Abstract

本発明は、ビーム発光性及び/又はビーム受光性の半導体チップと、プラスチック成形部と、外部電気端子を有しているビーム発光型及び/又はビーム受光型半導体構成素子に関している。前記プラスチック成形部は、半導体構成素子によって発光及び/又は受光される電磁ビームに対して透過性であり、さらに当該プラスチック成形部と共に半導体チップが少なくとも部分的に変形されており、前記外部電気端子は、半導体チップの電気的コンタクト面と電気的に接続されている。前記プラスチック成形部は、硬化反応性のシリコン成形材料からなっている。さらに本発明はそのような半導体構成素子の製造方法にも関している。  The present invention relates to a beam-emitting and / or beam-receiving semiconductor component having a beam-emitting and / or beam-receiving semiconductor chip, a plastic molded portion, and an external electrical terminal. The plastic molded part is transparent to an electromagnetic beam emitted and / or received by a semiconductor component, and the semiconductor chip is at least partially deformed together with the plastic molded part, and the external electrical terminal is The semiconductor chip is electrically connected to the electrical contact surface of the semiconductor chip. The plastic molding part is made of a curing reactive silicon molding material. The invention further relates to a method for manufacturing such a semiconductor component.

Description

本発明は、ビーム発光型及び/又はビーム受光型半導体構成素子であって、ビーム発光性及び/又はビーム受光性の半導体チップと、プラスチック成形部と、外部電気端子とを有し、前記プラスチック成形部は、半導体構成素子によって発光及び/又は受光される電磁放射に対して透過性でかつ当該プラスチック成形部を用いて半導体チップが少なくとも部分的に変形されており、前記外部電気端子は、半導体チップの電気的なコンタクト面と電気的に接続されている半導体構成素子に関している。さらに本発明は、そのような半導体構成素子の製造方法にも関している。   The present invention is a beam emitting and / or beam receiving semiconductor component, comprising a beam emitting and / or beam receiving semiconductor chip, a plastic molding portion, and an external electrical terminal, and the plastic molding The part is transparent to electromagnetic radiation emitted and / or received by a semiconductor component and the semiconductor chip is at least partially deformed using the plastic molding part, and the external electrical terminal is a semiconductor chip The present invention relates to a semiconductor component that is electrically connected to the electrical contact surface. The invention further relates to a method for manufacturing such a semiconductor component.

この種の半導体構成素子は国際公開第01/50540号パンフレットから公知である。そこに開示されている構成素子では、半導体チップがリードフレーム上に取付けられている。この半導体チップとリードフレームの部分領域はプレス成形されたプラスチック成形体によって覆われている。リードフレームの外部電気端子はこのプラスチック成形体から突出している。このプラスチック成形体は例えばエポキシ樹脂からなり、無機若しくは有機の変換物質並びに充填物質を含んでいる。   This type of semiconductor component is known from WO 01/50540. In the component disclosed therein, a semiconductor chip is mounted on a lead frame. The partial regions of the semiconductor chip and the lead frame are covered with a press-molded plastic molded body. External electric terminals of the lead frame protrude from the plastic molded body. This plastic molded body is made of, for example, an epoxy resin and contains an inorganic or organic conversion substance and a filling substance.

オプトエレクトロニクス構成素子の別の方式は、例えば国際公開第99/07023号パンフレットから公知である。ここでは、半導体チップが載置されているリードフレームがケーシング基体と共に変形され、さらに反射器型の切欠きを有している。この切欠き内には半導体チップが配設されている。この切欠きは、半導体チップの取付け後にビーム透過性の大抵は透明の鋳造質量体によって、半導体チップと場合によってはチップからリードフレームまでのボンディングワイヤがこれによって取り囲まれるまで充填される。そのような構造形態の公知の鋳造質量体は、例えば透過性のエポキシ樹脂である。類似の構造形態は例えば国際公開第98/12757号パンフレットから公知である。   Another method of optoelectronic components is known, for example, from WO 99/07023. Here, the lead frame on which the semiconductor chip is mounted is deformed together with the casing base, and further has a reflector-type notch. A semiconductor chip is disposed in the notch. This notch is filled after the semiconductor chip is mounted by a beam-transparent, mostly transparent casting mass, until the semiconductor chip and possibly the bonding wire from the chip to the lead frame are surrounded by it. A known casting mass of such a structural form is, for example, a permeable epoxy resin. Similar structural forms are known, for example, from WO 98/12757.

米国特許出願公開第6,274,924号明細書には表面実装可能なLEDケーシング構造形態が開示されており、ここでは半導体チップが内部に埋め込まれリードフレームの外部電気端子と電気的に接続されている剛性のプラスチック体が、軟性のビーム透過性の包含材料、例えばシリコンによって充填されている。このプラスチック体の上にはレンズキャップが載置されている。このレンズキャップは、包含材料に一方では所定の形態を付与し、他方ではケーシング基体からの流出を阻止している。このLEDケーシング構造形態は比較的多数のケーシング構成要素が必要になることに基づいて比較的多くの製造コストがかかる。   US Pat. No. 6,274,924 discloses a surface mountable LED casing structure, in which a semiconductor chip is embedded and electrically connected to an external electrical terminal of a lead frame. The rigid plastic body is filled with a soft beam transmissive inclusion material, such as silicon. A lens cap is placed on the plastic body. The lens cap imparts a predetermined shape to the containing material on the one hand and prevents the outflow from the casing substrate on the other hand. This LED casing structure configuration is relatively expensive to manufacture due to the relatively large number of casing components required.

発明が解決しようとする課題
本発明の課題は、冒頭に述べたような形式の半導体構成素子において、一方では技術的に容易に製造が可能であり、他方では特に青色光若しくは紫外線ビームを放出する半導体チップの適用のもとで十分な劣化安定性が得られるように改善を行うことである。
Problem to be Solved by the Invention The problem of the present invention is that a semiconductor component of the type described at the outset can be technically easily manufactured on the one hand, and on the other hand emits in particular a blue or ultraviolet beam. The improvement is to obtain sufficient deterioration stability under application of the semiconductor chip.

課題を解決するための手段
前記課題は、請求項1の特徴部分に記載された本発明による半導体素子と、請求項9の特徴部分に記載された本発明による方法によって解決される。この半導体構成素子の別の有利な構成例は請求項2〜8に記載されている。
The object is solved by a semiconductor device according to the invention as described in the characterizing part of claim 1 and a method according to the invention as described in the characterizing part of claim 9. Further advantageous configurations of this semiconductor component are described in claims 2-8.

本発明によるビーム発光型及び/又はビーム受光型半導体構成素子は、以下の構成要素を含んでいる。すなわち、
−ビーム発光性及び/又はビーム受光性の半導体チップ
−特に射出成形若しくはプレス成形されたプラスチック成形部、このプラスチック成形部は半導体構成素子によって発光及び/又は受光される電磁ビームに対して透過性であり、該プラスチック成形体を用いて半導体チップが少なくとも部分的に変形され、さらに前記プラスチック成形部は硬化反応性のシリコン成形質量体からなっている、
−外部電気端子、この外部電気端子は半導体チップの電気的なコンタクト面と電気的に接続されている。
The beam-emitting and / or beam-receiving semiconductor component according to the present invention includes the following components. That is,
-Beam-emitting and / or beam-receiving semiconductor chip-In particular, an injection-molded or press-molded plastic molded part, which is transparent to the electromagnetic beam emitted and / or received by the semiconductor component. A semiconductor chip is at least partially deformed using the plastic molded body, and the plastic molded portion is made of a curing reactive silicon molded mass;
An external electrical terminal, which is electrically connected to the electrical contact surface of the semiconductor chip.

前記シリコン成形質量体とは、当該明細書では、専らシリコンからなる成形質量体だけでなく、成形プロセスを用いてプラスチック成形部まで処理可能な成形質量体であって、従来の成形質量体よりも劣化安定性が十分に向上しているシリコンからなる成形質量体も含む。   In the present specification, the silicon molding mass is not only a molding mass consisting exclusively of silicon, but also a molding mass that can be processed up to a plastic molding part using a molding process, and is more than a conventional molding mass. Also included is a molded mass made of silicon having sufficiently improved deterioration stability.

このシリコン成形質量体は有利には10分以下の硬化時間を有している。このことは経済的に意味のある機械の稼動時間の実現のもとで半導体構成素子の製造を容易にしている。   This silicon molding mass preferably has a setting time of 10 minutes or less. This facilitates the manufacture of semiconductor components under the realization of economically meaningful machine operating times.

またこのシリコン成形質量体は有利には、硬化状態において数値65のショアー硬度(D型)以上の硬さを有している。それにより有利には機械的影響に対するプラスチック成形部の形状安定性が向上する。   In addition, this silicon molding mass advantageously has a hardness equal to or greater than the Shore hardness (D type) of 65 in the cured state. This advantageously improves the shape stability of the plastic part against mechanical influences.

さらにこの成形質量体は、有利にはシリコンの他に少なくとも1つのさらなる材料、例えばエポキシ受信を含んだシリコン複合材料である。そのような複合材料は次のような利点を提供する。すなわちそのつどの適用ケースと使用されるプロセスに対する要求に適合化させることができる。シリコン−エポキシ樹脂複合材は通常は、シリコンのみの成形質量体よりも硬化が早くて機械的な強度も高い。この理由から大抵は容易に成形でき、プロセス時間もより短くできる。   Furthermore, the molding mass is preferably a silicon composite material containing at least one further material in addition to silicon, for example an epoxy receiver. Such a composite material provides the following advantages. That is, it can be adapted to the requirements for each application case and the process used. Silicone-epoxy resin composites usually cure faster and have higher mechanical strength than silicon-only molded masses. For this reason, it is usually easy to mold and the process time can be shorter.

混合光を放出する半導体構成素子の製造のために、シリコン成形質量体は、次のような変換材料を含む。すなわち半導体チップによって発光される及び/又は半導体構成素子によって受光される第1の波長領域の電磁放射の少なくとも一部を吸収し、第1の波長領域とは異なる第2の波長領域の電磁放射を放出する変換材料を含む。特に無機の蛍光粉末は簡単なやり方でシリコン材料に混合させることが可能である。それに関する例として例えばCerドーピングされたイットリウム・アルミニウム・ガーネットやCerドーピングされたテルビウム・アルミニウム・ガーネット粉末が挙げられる。その他の適した無機蛍光物質は、例えば国際公開第01/50540号パンフレットや国際公開第98/12757号パンフレットに記載があり、その限りではそれらの開示内容も参照され得る。   For the production of semiconductor components that emit mixed light, the silicon molding mass comprises a conversion material as follows. That is, it absorbs at least a portion of the electromagnetic radiation in the first wavelength region that is emitted by the semiconductor chip and / or received by the semiconductor component, and emits electromagnetic radiation in the second wavelength region that is different from the first wavelength region. Contains the release material to be released. In particular, the inorganic fluorescent powder can be mixed with the silicon material in a simple manner. Examples thereof include Cer-doped yttrium aluminum garnet and Cer-doped terbium aluminum garnet powder. Other suitable inorganic fluorescent materials are described in, for example, WO 01/50540 pamphlet and WO 98/12757 pamphlet.

有利には本発明によるプラスチック成形部は、青色スペクトル領域若しくは紫外スペクトル領域の電磁放射を放出する半導体チップを有する半導体構成素子において用いられる。   The plastic molding according to the invention is preferably used in a semiconductor component having a semiconductor chip that emits electromagnetic radiation in the blue or ultraviolet spectral range.

別の有利な実施例によれば、唯一の一体的なプラスチック成形部の半導体チップは硬化反応性のシリコン成形質量体から製造される。この種のプラスチック成形部の基本構成は、例えば先の国際公開第01/50540号パンフレットに記載されており、その限りではこの開示内容も参照され得る。   According to another advantageous embodiment, the only one-piece plastic-molded semiconductor chip is produced from a cure-reactive silicon molding mass. The basic structure of this type of plastic molded part is described in, for example, the above-mentioned International Publication No. 01/50540 pamphlet.

別の有利な実施例によれば、半導体チップが半導体チップの電気端子に対する電気的導体線路を備えた支持基板又は支持箔上に被着され、半導体チップが硬化反応性シリコン鋳造質量体からなるプラスチック成形部によって包み込まれる。   According to another advantageous embodiment, the plastic in which the semiconductor chip is deposited on a support substrate or support foil with electrical conductor lines to the electrical terminals of the semiconductor chip, the semiconductor chip comprising a cured reactive silicon casting mass Wrapped by the molding part.

本発明による半導体素子の有利な製造方法によれば、半導体チップが外部電気端子を備えた導体フレーム上に固定され、外部電気端子と電気的に接続される。それに続いて半導体チップは、導体フレームの部分領域も含めて射出成形法又はプレス成形法を用いてシリコン成形質量体でもって変形される。   According to an advantageous method of manufacturing a semiconductor device according to the present invention, a semiconductor chip is fixed on a conductor frame having external electrical terminals and is electrically connected to the external electrical terminals. Subsequently, the semiconductor chip is deformed with a silicon molding mass using injection molding or press molding including the partial region of the conductor frame.

別の有利な方法によれば、半導体チップが半導体チップの電気端子に対する電気的導体線路を備えた支持基板若しくは支持箔上に被着され、電気的導体線路と電気的に接続される。それに続いて半導体チップは支持基板ないしは支持箔上に射出成形法又はプレス成形法を用いてシリコン成形質量体によって包み込まれる。   According to another advantageous method, the semiconductor chip is deposited on a support substrate or a support foil with an electrical conductor line for the electrical terminals of the semiconductor chip and is electrically connected to the electrical conductor line. Subsequently, the semiconductor chip is encapsulated by a silicon molding mass on a support substrate or support foil using an injection molding method or a press molding method.

特に有利には本発明は、0.5mm×1.0mm以下の設置面積(底面積)を有している、及び/又は350μm以下、有利には250μm以下の全高を有している、ビーム発光型及び/又はビーム受光型半導体構成素子のもとで利用される。   Particularly advantageously, the invention provides a beam emission having an installation area (bottom area) of 0.5 mm × 1.0 mm or less and / or having a total height of 350 μm or less, preferably 250 μm or less. Used under mold and / or beam-receiving semiconductor components.

本発明のさらなる利点、さらなる構成及び有利な実施形態は、以下で図1から図3に基づいて説明する実施例から明らかにされる。これらの図面のうち、
図1は本発明の第1実施例の断面図であり、
図2は本発明の第2実施例の断面図であり、
図3は本発明の第3実施例の断面図である。
Further advantages, further configurations and advantageous embodiments of the present invention will become apparent from the examples described below on the basis of FIGS. 1 to 3. Of these drawings,
FIG. 1 is a sectional view of a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a second embodiment of the present invention.
FIG. 3 is a cross-sectional view of a third embodiment of the present invention.

実施例
次に本発明の実施例を図面に基づき以下の明細書で詳細に説明する。これらの種々の実施例において同じ構成要素ないし同じ作用の構成要素には、それぞれ同じ名称が用いられ、同じ符号が付されている。これらの図面は基本的には必ずしも縮尺通りのものではない。また個々の構成要素も基本的には実際のサイズ比で相互に示されたものではないことを述べておく。
EXAMPLES Next, examples of the present invention will be described in detail in the following specification based on the drawings. In these various embodiments, the same component or the component having the same action is given the same name and the same reference numeral. These drawings are not necessarily drawn to scale. It should also be noted that the individual components are not basically shown mutually in actual size ratios.

図1による実施例は、導体フレーム(リードフレーム)上の白色光を放出する発光ダイオード構成素子である。   The embodiment according to FIG. 1 is a light emitting diode component that emits white light on a conductor frame (lead frame).

金属性の導体フレーム(リードフレーム)10(該フレーム上のチップ取付け領域16には1つのLEDチップ1が取付けられている)は、透過性のシリコン成形質量体3と共に変形されており、該シリコン成形質量体3からはその相対向する2つの側面においてそれぞれ1つのリードフレーム端子11,12が突出している。これらのリードフレーム端子11,12は、当該発光ダイオード構成素子の外部電気端子を表している。透過性のシリコン成形質量体3内部では、リードフレーム端子11,12の各々がチップ取付け領域16から当該発光ダイオード構成素子の取付け面13の方向に向けてS字状の湾曲部14,15を有している。   A metallic conductor frame (lead frame) 10 (one LED chip 1 is mounted on a chip mounting region 16 on the frame) is deformed together with a transparent silicon molding mass 3, and the silicon One lead frame terminal 11, 12 protrudes from the molding mass 3 on its two opposite sides. These lead frame terminals 11 and 12 represent external electric terminals of the light emitting diode component. Inside the transmissive silicon molded mass 3, each of the lead frame terminals 11, 12 has S-shaped curved portions 14, 15 from the chip mounting region 16 toward the mounting surface 13 of the light emitting diode component. is doing.

シリコン成形質量体3には、屈折率を高めるために無機質の充填剤、例えばTiO2、ZrO2、α−Al2O3などが添加されていてもよい。   In order to increase the refractive index, an inorganic filler such as TiO2, ZrO2, or α-Al2O3 may be added to the silicon molded mass 3.

図1による発光ダイオード光源の製造方法のもとでは、LEDチップ1がリードフレーム10上のチップ取付け領域16に取付けられ、リードフレーム端子11,12と導電的に接続される。これらのリードフレーム端子11,12には、半導体LEDチップ1の取付け前若しくは取付け後にS字状の湾曲部14,15が設けられる。半導体チップ1はリードフレーム10のS字状湾曲部14,15も含めてプレス成形法若しくは射出成形法を用いて透過性のシリコン成形質量体3と共に変形される。シリコン成形質量体3はプレス成形若しくは射出成形においてさらに少なくとも部分的に硬化される。それにより十分に形状安定した一体型のプラスチック成形部5が形成される。   Under the light emitting diode light source manufacturing method according to FIG. 1, the LED chip 1 is mounted on the chip mounting region 16 on the lead frame 10 and is electrically connected to the lead frame terminals 11 and 12. These lead frame terminals 11 and 12 are provided with S-shaped curved portions 14 and 15 before or after the semiconductor LED chip 1 is attached. The semiconductor chip 1 including the S-shaped curved portions 14 and 15 of the lead frame 10 is deformed together with the permeable silicon molding mass 3 using a press molding method or an injection molding method. The silicon molding mass 3 is further at least partially cured in press molding or injection molding. As a result, the integrated plastic molding portion 5 having a sufficiently stable shape is formed.

白色光源のもとでは、半導体LEDチップ1は、青色スペクトル領域又は紫外スペクトル領域にある発光スペクトルを有する。半導体LEDチップ1は有利には、GaN又はInGaNをベースに構成される。しかしながら半導体LEDチップ1はZnS/ZnSeなどの材料系からなっていてもよいし、前記スペクトル領域に適したその他の材料系からなっていてもよい。   Under a white light source, the semiconductor LED chip 1 has an emission spectrum in the blue spectral region or the ultraviolet spectral region. The semiconductor LED chip 1 is advantageously constructed on the basis of GaN or InGaN. However, the semiconductor LED chip 1 may be made of a material system such as ZnS / ZnSe, or may be made of another material system suitable for the spectral region.

半導体LEDチップ1の被着とコンタクト接続の後では、適切な射出成形装置ないしプレス成形装置において透過性のシリコン成形質量体3がリードフレーム端子11,12に射出される。シリコン成形質量体3においては、蛍光粉末4が埋め込まれる。この蛍光粉末は半導体LEDチップ1から放出された電磁放射の少なくとも部分的な波長変換を引き起こす変換材からなっている。この波長変換材を用いることにより、白色光源の光学的な印象を引き起こす放射スペクトルが生成される。蛍光粉末に適した蛍光材は、例えばCerドーピングされたイットリウム・アルミニウム・ガーネットパウダーやCerドーピングされたテルビウム・アルミニウム・ガーネットパウダーなどである。   After the semiconductor LED chip 1 is deposited and contact-connected, the permeable silicon molding mass 3 is injected into the lead frame terminals 11 and 12 in an appropriate injection molding apparatus or press molding apparatus. In the silicon molding mass 3, fluorescent powder 4 is embedded. The fluorescent powder is made of a conversion material that causes at least partial wavelength conversion of electromagnetic radiation emitted from the semiconductor LED chip 1. By using this wavelength conversion material, a radiation spectrum that causes an optical impression of a white light source is generated. Examples of fluorescent materials suitable for the fluorescent powder include Cer-doped yttrium aluminum garnet powder and Cer-doped terbium aluminum garnet powder.

リードフレーム10の事前作成とシリコン成形質量体3を用いた変形(これは場合によっては蛍光粉末4とさらなる充填材を含む)は、次のように行われる。すなわち、リードフレーム区分11,12がプラスチック成形部5から水平方向に引き出され、詳細にはそのろう付け端子面11A,12Aが実質的にプラスチック成形部5の裏側と同じ平面内(これは通常はプリント基板上の構成素子の載置面を表している)に存在するように行われる。これに対してリードフレーム端子11,12は注入前に既に最終形状に曲げられる。それらは変形前にチップ端子領域から取付け面の方向でS字状の湾曲部を既に有しており、そのためもはや変形後に構成素子に対して曲げによるストレスの影響を与えることはない。このことは特に僅かな体積のプラスチック成形部5しか有さないさらに小型化された構成素子の場合には特に有利となる。なぜならそこでは注入材とリードフレームとの間で層間剥離が生じた場合に、例えば曲げストレスによって完成後の構成素子の気密性が達成できなくなる大きな危険性が解決されるからである。   The lead frame 10 is prepared in advance and deformed using the silicon molding mass 3 (this may include fluorescent powder 4 and further filler) as follows. That is, the lead frame sections 11 and 12 are pulled out in the horizontal direction from the plastic molding portion 5, and more specifically, the brazed terminal surfaces 11 A and 12 A are substantially in the same plane as the back side of the plastic molding portion 5 (this is usually (Represents the mounting surface of the component on the printed circuit board). On the other hand, the lead frame terminals 11 and 12 are already bent into a final shape before injection. They already have an S-shaped bend in the direction from the chip terminal area to the mounting surface before deformation, so that they no longer have an effect of bending stress on the component after deformation. This is particularly advantageous in the case of further miniaturized components which have only a small volume of plastic molding part 5. This is because, in the case where delamination occurs between the injection material and the lead frame, for example, the great risk that the airtightness of the completed component cannot be achieved due to bending stress is solved.

シリコン成形質量体3は、例えば10分以下の硬化時間を有し、硬化された状態において65ショアー硬度(D)以上の硬度を有する。   The silicon molded mass 3 has a curing time of 10 minutes or less, for example, and has a hardness of 65 Shore hardness (D) or more in the cured state.

完成した構成素子は有利にはプリント基板(ボード)上で平らな水平方向の端子面11A,12Aにリフロー法によってろう付け可能である。それにより表面実装法SMT(Surface Mounting Technology)に適した構成素子が製造される。   The completed component can be brazed to the flat horizontal terminal surfaces 11A, 12A on the printed circuit board (board) by the reflow method. Thereby, a component suitable for the surface mounting method SMT (Surface Mounting Technology) is manufactured.

同じようなやり方でUV放射や青色放射を検出するフォトダイオード構成素子が形成され得る。   Photodiode components that detect UV radiation and blue radiation can be formed in a similar manner.

図2による第2実施例は、図1による第1実施例と特に次の点で異なっている。すなわち導体フレーム10の箇所において絶縁性の支持基板100が金属化層の形態の電気的な導体線路111,112を備えている点である。プラスチック成形部5は、支持基板100上に設けられている。この構成素子は第1実施例と類似した手法で形成が可能である。   The second embodiment according to FIG. 2 differs from the first embodiment according to FIG. That is, the insulating support substrate 100 is provided with the electrical conductor lines 111 and 112 in the form of a metallized layer at the conductor frame 10. The plastic molding part 5 is provided on the support substrate 100. This component can be formed by a method similar to that of the first embodiment.

図3による第3実施例は、小型発光ダイオードであり、これは可撓性の導体フレーム10と、ビーム発光性の活性領域を備えたLEDチップ1と、プラスチック成形部5とを有している。可撓性の導体フレーム10は、この場合60μmの厚さの金属箔101と同じく60μmの厚さのプラスチック箔102からなっており、これらは高精度に相互に接着されている。プラスチック箔はシリコンプラスチックで形成されていてもよい。   The third embodiment according to FIG. 3 is a small light-emitting diode, which has a flexible conductor frame 10, an LED chip 1 with a beam-emitting active region, and a plastic molding part 5. . In this case, the flexible conductor frame 10 is composed of a plastic foil 102 having a thickness of 60 μm as well as a metal foil 101 having a thickness of 60 μm, and these are bonded to each other with high accuracy. The plastic foil may be formed of silicon plastic.

金属箔101は、カソードとアノードが定められるように押し抜き加工されている。それぞれカソードとアノードの上方ではプラスチック箔102内に押し抜き加工によって複数の孔部が設けられている。LEDチップ1の下側は前記複数の孔部の一方を貫通してカソード上にボンディングされている。アノードは他方の孔部を通るボンディングワイヤ2を介してLEDチップ1の上側に接続されている。   The metal foil 101 is punched so that the cathode and the anode are defined. A plurality of holes are formed in the plastic foil 102 by punching above the cathode and the anode, respectively. The lower side of the LED chip 1 passes through one of the plurality of holes and is bonded onto the cathode. The anode is connected to the upper side of the LED chip 1 through a bonding wire 2 passing through the other hole.

前記可撓性のフレーム上で多数の構成部材を実現し得るようにするために、包み込みに対して例えばいわゆるキャビティツーキャビティモルディング法(Cavity−to−Cavity Molding)が用いられる。それにより各可撓性の導体フレーム10上で、LEDチップ1とボンディングワイヤ2を包み込むプラスチック成形部5が製造される。構成部材を通る射出チャネルの案内によって、射出チャネルの数が低減できる。プラスチック成形部は、前述してきた実施例のプラスチック成形部と同じ材料からなる。   In order to be able to realize a large number of components on the flexible frame, for example, a so-called cavity-to-cavity molding method is used for the wrapping. Thereby, the plastic molding part 5 which wraps the LED chip 1 and the bonding wire 2 on each flexible conductor frame 10 is manufactured. By guiding the injection channels through the components, the number of injection channels can be reduced. The plastic molding part is made of the same material as the plastic molding part of the embodiment described above.

さらにこれらの構成部材はアレイモルディング法(Array−Molding)を用いて包み込むことも可能である。このアレイモルディング法の場合には、それぞれ多数の構成部材を含んだ工具の空洞が充填される。射出構成部材は成形部の冷却後に例えばカッティングによって分離される。アレイモルディング法の場合の面密度は有利には通常はキャビティツーキャビティモルディング法よりも高い。   Furthermore, these components can also be encapsulated using an array molding method. In the case of this array molding method, the cavity of the tool, each containing a number of components, is filled. The injection component is separated by, for example, cutting after the molded part is cooled. The areal density in the case of the array molding method is advantageously higher than that of the cavity-to-cavity molding method.

総じて小型発光ダイオードの設置面積(フットプリント)は約0.5mm×1.0mmであり、全高は250μmのみである。   In general, the installation area (footprint) of the small light-emitting diode is about 0.5 mm × 1.0 mm, and the total height is only 250 μm.

前述してきた説明、図面並びに請求項で開示されている本発明の特徴は、個別においても、任意の組み合わせにおいても本発明の本質であり得る。また発光ダイオードの代わりにフォトダイオードが用いられてもよいし、あるいはチップが発光ダイオード及びフォトダイオードとして作動するものであってもよい。   The features of the invention disclosed in the above description, drawings and claims may be the nature of the invention both individually and in any combination. A photodiode may be used instead of the light emitting diode, or the chip may operate as a light emitting diode and a photodiode.

本発明の第1実施例の断面図Sectional view of the first embodiment of the present invention 本発明の第2実施例の断面図Sectional view of the second embodiment of the present invention 本発明の第3実施例の断面図Sectional view of the third embodiment of the present invention

Claims (9)

ビーム発光型及び/又はビーム受光型半導体構成素子であって、
ビーム発光性及び/又はビーム受光性の半導体チップと、
プラスチック成形部と、
外部電気端子とを有し、
前記プラスチック成形部は、半導体構成素子によって発光及び/又は受光される電磁放射に対して透過性でかつ当該プラスチック成形部と共に半導体チップが少なくとも部分的に変形されており、
前記外部電気端子は、半導体チップの電気的なコンタクト面と電気的に接続されている形式の半導体構成素子において、
前記プラスチック成形部が、硬化反応性のシリコン成形質量体からなっていることを特徴とする半導体構成素子。
A beam-emitting and / or beam-receiving semiconductor component,
A beam emitting and / or beam receiving semiconductor chip;
Plastic molding part,
An external electrical terminal,
The plastic molded part is transparent to electromagnetic radiation emitted and / or received by a semiconductor component and the semiconductor chip is at least partially deformed together with the plastic molded part;
In the semiconductor component of the type in which the external electrical terminal is electrically connected to the electrical contact surface of the semiconductor chip,
A semiconductor component, wherein the plastic molding part is made of a curing reactive silicon molding mass.
前記シリコン成形質量体は、10分以下の硬化時間を有するものである、請求項1記載の半導体構成素子。   The semiconductor component according to claim 1, wherein the silicon molding mass has a curing time of 10 minutes or less. 前記シリコン成形質量体は、硬化された状態において数値が65以上のショアー硬度(D)を有している、請求項1または2記載の半導体構成素子。   The semiconductor component according to claim 1, wherein the silicon molding mass has a Shore hardness (D) of 65 or more in a cured state. 前記シリコン成形質量体は、シリコン複合材料である、請求項1から3いずれか1項記載の半導体構成素子。   The semiconductor component according to claim 1, wherein the silicon molding mass is a silicon composite material. 前記シリコン成形質量体は、変換材料を含んでおり、該変換材料は半導体チップによって発光される及び/又は半導体構成素子によって受光される第1の波長領域の電磁放射の少なくとも一部を吸収し、第1の波長領域とは異なる第2の波長領域の電磁放射を放出する、請求項1から4いずれか1項記載の半導体構成素子。   The silicon molding mass contains a conversion material, which absorbs at least part of the electromagnetic radiation of the first wavelength region emitted by the semiconductor chip and / or received by the semiconductor component, 5. The semiconductor component according to claim 1, wherein the semiconductor component emits electromagnetic radiation in a second wavelength region different from the first wavelength region. 前記半導体チップは、青色スペクトル領域若しくは紫外スペクトル領域の電磁放射を放出する、請求項1から5いずれか1項記載の半導体構成素子。   6. The semiconductor component according to claim 1, wherein the semiconductor chip emits electromagnetic radiation in a blue spectral region or an ultraviolet spectral region. 0.5mm×1.0mm以下の設置面積(フットプリント)を有している、請求項1から6いずれか1項記載の半導体構成素子。   The semiconductor component according to claim 1, which has an installation area (footprint) of 0.5 mm × 1.0 mm or less. 350μm以下、有利には250μm以下の全高を有している、請求項1から7いずれか1項記載の半導体構成素子。   8. A semiconductor component according to claim 1, having an overall height of 350 [mu] m or less, preferably 250 [mu] m or less. 半導体チップを外部電気端子を備えた金属性の導体フレーム又は支持基板又は支持箔上に固定し、
前記半導体チップを導体フレーム又は支持基板又は支持箔の部分領域も含めて射出成形部の空胴内へ設け、
シリコン成形質量体を射出成形法又はプレス成形法を用いて空洞内へ射出し、
前記シリコン成形質量体を空胴内で少なくとも形状安定したプラスチック成形部が形成されるように硬化させることを特徴とする、請求項1から6いずれか1項記載の半導体構成素子の製造方法。
Fixing a semiconductor chip on a metallic conductor frame or supporting substrate or supporting foil with external electrical terminals;
The semiconductor chip is provided in the cavity of the injection-molded part including the conductor frame or the support substrate or the partial region of the support foil,
Silicon molding mass is injected into the cavity using injection molding or press molding,
The method of manufacturing a semiconductor component according to any one of claims 1 to 6, wherein the silicon molding mass is cured so as to form a plastic molding portion having at least a shape stability in a cavity.
JP2006545908A 2003-12-30 2004-12-14 Beam emitting type and / or beam receiving type semiconductor component Expired - Lifetime JP4939946B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10361801A DE10361801A1 (en) 2003-12-30 2003-12-30 Radiation emitting and/or radiation receiving semiconductor element with a semiconductor chip useful in LED technology, and in reaction-flow processes and surface mounting technology (SMT)
DE10361801.5 2003-12-30
DE202004005228.8 2004-04-02
DE202004005228U DE202004005228U1 (en) 2003-12-30 2004-04-02 Radiation-emitting and / or radiation-receiving semiconductor component
PCT/DE2004/002738 WO2005064696A1 (en) 2003-12-30 2004-12-14 Radiation-emitting and/or radiation-receiving semiconductor component and method for the production thereof

Publications (2)

Publication Number Publication Date
JP2007519233A true JP2007519233A (en) 2007-07-12
JP4939946B2 JP4939946B2 (en) 2012-05-30

Family

ID=34609500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006545908A Expired - Lifetime JP4939946B2 (en) 2003-12-30 2004-12-14 Beam emitting type and / or beam receiving type semiconductor component

Country Status (3)

Country Link
JP (1) JP4939946B2 (en)
CN (1) CN1875491B (en)
DE (2) DE10361801A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159767A (en) * 2010-01-29 2011-08-18 Toshiba Corp Led package and method for manufacturing the same
JP2011258658A (en) * 2010-06-07 2011-12-22 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005034122A1 (en) * 2005-07-21 2007-02-08 Wacker Chemie Ag Siliconharzverguss of LEDs
WO2008073400A1 (en) 2006-12-11 2008-06-19 The Regents Of The University Of California Transparent light emitting diodes
DE102008024704A1 (en) 2008-04-17 2009-10-29 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
DE102008044847A1 (en) * 2008-08-28 2010-03-04 Osram Opto Semiconductors Gmbh Optoelectronic component
US10431567B2 (en) 2010-11-03 2019-10-01 Cree, Inc. White ceramic LED package
TWI447965B (en) * 2010-01-22 2014-08-01 Tzu Kuei Wen Method for led chip package
US9831393B2 (en) 2010-07-30 2017-11-28 Cree Hong Kong Limited Water resistant surface mount device package
JP5049382B2 (en) 2010-12-21 2012-10-17 パナソニック株式会社 LIGHT EMITTING DEVICE AND LIGHTING DEVICE USING THE SAME
DE102012102122A1 (en) * 2012-03-13 2013-09-19 Osram Opto Semiconductors Gmbh Area light source
US9711489B2 (en) 2013-05-29 2017-07-18 Cree Huizhou Solid State Lighting Company Limited Multiple pixel surface mount device package
DE102015105661B4 (en) * 2015-04-14 2022-04-28 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic device with a mixture comprising a silicone and a fluoro-organic additive
US10680147B2 (en) * 2017-11-24 2020-06-09 Osram Oled Gmbh Method of producing a lighting device
US11592166B2 (en) 2020-05-12 2023-02-28 Feit Electric Company, Inc. Light emitting device having improved illumination and manufacturing flexibility
US11876042B2 (en) 2020-08-03 2024-01-16 Feit Electric Company, Inc. Omnidirectional flexible light emitting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107584A (en) * 1982-12-13 1984-06-21 Casio Comput Co Ltd light emitting diode
JPH05327028A (en) * 1992-05-26 1993-12-10 Sharp Corp Manufacture of optical device
JP2002314142A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Light emitting device
JP2002374007A (en) * 2001-06-15 2002-12-26 Toyoda Gosei Co Ltd Light emitting device
WO2003005458A1 (en) * 2001-06-29 2003-01-16 Osram Opto Semiconductors Gmbh Surface-mountable, radiation-emitting component and method for the production thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3857435B2 (en) * 1998-08-31 2006-12-13 ローム株式会社 Optical semiconductor element, optical semiconductor element mounting structure, and optical semiconductor element group packaging structure
US6274924B1 (en) * 1998-11-05 2001-08-14 Lumileds Lighting, U.S. Llc Surface mountable LED package
DE19964252A1 (en) * 1999-12-30 2002-06-06 Osram Opto Semiconductors Gmbh Surface mount component for an LED white light source
JP3609709B2 (en) * 2000-09-29 2005-01-12 株式会社シチズン電子 Light emitting diode
DE10214119A1 (en) * 2002-03-28 2003-10-23 Osram Opto Semiconductors Gmbh Optoelectronic component comprises a casting compound which lets through radiation and consist of silicone or a silicone resin

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59107584A (en) * 1982-12-13 1984-06-21 Casio Comput Co Ltd light emitting diode
JPH05327028A (en) * 1992-05-26 1993-12-10 Sharp Corp Manufacture of optical device
JP2002314142A (en) * 2001-04-09 2002-10-25 Toyoda Gosei Co Ltd Light emitting device
JP2002374007A (en) * 2001-06-15 2002-12-26 Toyoda Gosei Co Ltd Light emitting device
WO2003005458A1 (en) * 2001-06-29 2003-01-16 Osram Opto Semiconductors Gmbh Surface-mountable, radiation-emitting component and method for the production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159767A (en) * 2010-01-29 2011-08-18 Toshiba Corp Led package and method for manufacturing the same
JP2011258658A (en) * 2010-06-07 2011-12-22 Toshiba Corp Semiconductor light-emitting device and method of manufacturing the same
US9246065B2 (en) 2010-06-07 2016-01-26 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing semiconductor light emitting device

Also Published As

Publication number Publication date
CN1875491B (en) 2010-04-21
DE202004005228U1 (en) 2005-05-19
DE10361801A1 (en) 2005-08-04
JP4939946B2 (en) 2012-05-30
CN1875491A (en) 2006-12-06

Similar Documents

Publication Publication Date Title
EP2218116B1 (en) Slim led package
JP4939946B2 (en) Beam emitting type and / or beam receiving type semiconductor component
US7714342B2 (en) Chip coated light emitting diode package and manufacturing method thereof
JP5618481B2 (en) Surface-mountable optoelectronic element and method for manufacturing surface-mountable optoelectronic element
JP4444822B2 (en) Surface mountable small light emitting diode and / or photodiode and method for manufacturing the diode
KR101176672B1 (en) Radiation-emitting or radiation-receiving semiconductor component and method for the production thereof
US8502261B2 (en) Side mountable semiconductor light emitting device packages and panels
US20130037837A1 (en) Miniature leadless surface mount lamp with dome and reflector cup
TWM366177U (en) Lead frame, package structure and LED package structure
US9978920B2 (en) Package, light-emitting device, and method for manufacturing the same
US10964637B2 (en) Package and light emitting device
JP2020004776A (en) Package, light emitting device, and manufacturing method thereof
KR20120069072A (en) Light emitting device
JP2020004778A (en) Package, light emitting device, and manufacturing methods thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100707

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101005

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101013

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101108

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101115

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110414

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110711

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110719

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110812

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111011

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939946

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250