[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007504719A - 組み込みアプリケーションに適した、画像における赤目の検出と補正を行うシステム及び方法 - Google Patents

組み込みアプリケーションに適した、画像における赤目の検出と補正を行うシステム及び方法 Download PDF

Info

Publication number
JP2007504719A
JP2007504719A JP2006524898A JP2006524898A JP2007504719A JP 2007504719 A JP2007504719 A JP 2007504719A JP 2006524898 A JP2006524898 A JP 2006524898A JP 2006524898 A JP2006524898 A JP 2006524898A JP 2007504719 A JP2007504719 A JP 2007504719A
Authority
JP
Japan
Prior art keywords
red
eye
area
pixel
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006524898A
Other languages
English (en)
Inventor
ルオ,ヒュイタオ
イェン,ジョナサン
トレッター,ダニエル,アール
パヴェル,ニアツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of JP2007504719A publication Critical patent/JP2007504719A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/62Retouching, i.e. modification of isolated colours only or in isolated picture areas only
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/193Preprocessing; Feature extraction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/62Retouching, i.e. modification of isolated colours only or in isolated picture areas only
    • H04N1/624Red-eye correction

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Human Computer Interaction (AREA)
  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Image Analysis (AREA)

Abstract

画像における赤目の検出及び補正を行うシステム(10)及び方法が説明される。一態様では、入力画像(12)がサブサンプリングされて、サムネイル画像(44)が生成され、このサムネイル画像(44)において、赤目ピクセルエリア(18)が検出される。別の態様では、当初の色値を備えたピクセルのラインを有する入力画像(12)が処理される。入力画像(12)の各エリアに対応する1つ又は複数の赤目ピクセルエリアが検出される。検出された赤目ピクセルエリアに対応する入力画像(12)の各ピクセルは、隣接するライン(262)のピクセルに関係なくライン(260)ごとに赤目ピクセル又は非赤目ピクセルとして分類される。赤目ピクセルとして分類された入力画像(12)のピクセルの当初の色値は補正される。
【選択図】図1

Description

本発明は、画像における赤目を検出して補正するシステム及び方法に関する。
関連出願の相互参照
本出願は、次の同時係属出願に関連する。即ち、Huitao Luo等によって2003年4月28日に出願され、「DETECTING AND CORRECTING RED-EYE IN A DIGITAL IMAGE」と題する米国特許出願第10/424,419号、及びHuitao Luo等によって本出願と同日付で出願され、「DETECTING AND CORRECTING RED-EYE IN AN IMAGE」と題する米国特許出願第10/653,019号(代理人整理番号第200313342−1号)に関連する。これらの出願のそれぞれは、参照により本明細書に組み込まれる。
背景
赤目は、フラッシュ照明を有するカメラによって取り込まれた画像に見られる人の瞳孔の不自然な赤みがかった着色の現れである。赤目は、フラッシュからの光が、人の網膜の血管に反射してカメラに戻ることにより生じる。
赤目の影響を低減するためのいくつかの技術が提案されている。レンズからフラッシュまでの距離が小さなカメラの共通の赤目低減の解決法は、最終フラッシュを用いて露光して画像を取り込む前に、1回又は複数回の前露光フラッシュを使用することである。各前露光フラッシュは、人の瞳孔のサイズを縮小することに貢献し、したがって、最終フラッシュからの光が人の網膜から反射して、カメラにより取り込まれる可能性が低減される。一般に、前露光フラッシュ技術は通常、赤目を低減するだけであり、無くすことはない。
カラー画像における赤目の検出及び補正を行うための多数の画像処理技術が提案されている。一般に、これらの技術は通常、半自動又は自動である。半自動の赤目検出技術は、人間の入力に依存する。例えば、いくつかの半自動赤目低減システムでは、不具合が補正可能となる前に、ユーザが、システムに対して、赤目を含む画像のエリアを手動で特定しなければならない。多くの自動赤目低減システムは、赤目エリアが検出される前の予備的な顔検出ステップに依存する。共通の自動的手法は、画像において顔を検出すること、及びその後に、検出された各顔内で目を検出することを含む。目の位置が突き止められた後、検出された目の位置に対応する画像エリアの形状、着色、及び明るさに基づいて、赤目が特定される。一般に、顔検出に基づく自動赤目低減技術は、高度な計算資源要件及びメモリ資源要件を有する。さらに、顔検出アルゴリズムのほとんどは、直立した正面像に向きを合わせた顔しか検出できず、これらの手法は、画像平面に対して面内又は面外に回転した顔を検出することはできない。
組み込みシステムは、多くの場合、デバイス、機器、又はツール等のより大きなシステムに組み込まれる処理システムである。組み込みシステムは通常、限られた処理能力を提供し、且つ通例は限られたメモリ資源にアクセスするコンピュータハードウェア、ソフトウェア、又はファームウェアを含む。コンピュータプリンタは一般に、基本ユーザインターフェースを提供する組み込みシステムを含み、この基本ユーザインターフェースによって、ユーザは、手動でボタンを押下し、印刷の開始及び停止を行い、それ以外にプリンタの制御及びプリンタのステータスの検査を行うことが可能になる。組み込みアプリケーション環境において機能を実施するためのどの解決法も、組み込みシステムの限られた処理能力の制約条件、及び限られたメモリ資源の制約条件内で動作しなければならない。その結果、画像における赤目の検出及び補正等の機能を実施することは、組み込みアプリケーション環境における課題となる。
概要
本発明は、画像における赤目の検出及び補正を行うシステム及び方法を特徴とする。
一態様では、本発明は、入力画像を処理するための方式(システム及び方法)を特徴とする。本発明の方式によれば、入力画像がサブサンプリングされて、サムネイル画像が生成され、このサムネイル画像において、赤目ピクセルエリアが検出される。
別の態様では、本発明は、当初の色値を備えたピクセルのラインを有する入力画像を処理するための方式(システム及び方法)を特徴とする。本発明の方式によれば、入力画像の各エリアに対応する1つ又は複数の赤目ピクセルエリアが検出される。検出された赤目ピクセルエリアに対応する入力画像の各ピクセルは、隣接するラインのピクセルに関係なくラインごとに赤目ピクセル又は非赤目ピクセルとして分類される。赤目ピクセルとして分類された入力画像のピクセルの当初の色値は補正される。
本発明の他の特徴及び利点は、図面及び特許請求の範囲を含めて、以下の説明から明らかになるであろう。
詳細な説明
以下の説明では、同じ参照番号を用いて同じ要素が特定される。さらに、図面は、例示的な実施形態の主要な特徴を図的な態様で示すことが意図されている。図面は、実際の実施形態のあらゆる特徴を示すことが意図されておらず、示された要素の相対的な寸法を示すことが意図されていない。図面は一律の縮尺に従わずに描かれている。
一般に、本明細書で説明される赤目の検出及び補正の実施形態は、このような機能が望まれる任意のシステム又は方法に組み込まれ得る。しかしながら、これらの実施形態は、一般に限られた処理資源及びメモリ資源を有する組み込み環境への組み込みに特に適している。
I.システムの概観
図1は、デジタル入力画像12における赤目ピクセルの検出及び補正を行うためのシステム10の一実施形態を示し、このシステム10は、赤目検出モジュール14及び赤目補正モジュール16を含む。赤目検出モジュール14は、赤目を含む可能性のある、入力画像12におけるエリア18を自動的に検出する。赤目補正モジュール16は、検出された赤目エリア18を自動的に補正して、補正画像20を生成する。一般に、システム10の赤目検出モジュール14及び赤目補正モジュール16は、任意の特定のハードウェア又はソフトウェア構成に限定されず、むしろ、それらモジュールは、デジタル電子回路又はコンピュータのハードウェア、ファームウェア、デバイスドライバ、若しくはソフトウェアを含む、任意のコンピューティング環境又は処理環境で実施され得る。これらの赤目検出モジュール14及び赤目補正モジュール16は、デジタルカメラ、プリンタ、及びポータブル電子デバイス(例えば、携帯電話及び携帯情報端末)を含む、多種多様な電子デバイスのいずれかのハードウェアに組み込まれ得る。
図2は、本明細書で説明される検出及び補正の実施形態の例示的なアプリケーション環境30を示す。デジタルカメラ32(例えば、米国カリフォルニア州パロアルトのHewlett-Packard社から販売されているHP(登録商標)PHOTOSMART(登録商標)デジタルカメラ)は、シーンの画像を取り込み、取り込まれた画像をメモリカード34(例えば、安全デジタル(SD(secured digital))マルチメディアカード(MMC))に格納する。このメモリカード34は、プリンタシステム38(例えば、米国カリフォルニア州パロアルトのHewlett-Packard社から販売されているPHOTOSMART(登録商標)プリンタ)のスロット36に差し込まれ得る。プリンタシステム38は、メモリカード34に格納された入力画像に対応するデータにアクセスし、入力画像における赤目を自動的に検出して補正し、補正画像20のハードコピー40を印刷する。いくつかの具現化形態では、プリンタシステム38は、補正画像20を印刷する前に補正画像20のプレビューを表示し、印刷を続行するためにユーザの確認を待つ。
図3は、図2のプリンタシステムアプリケーション環境30に適合した赤目の検出及び補正のプロセスの具現化形態の作業フロー図を示す。このプロセスの具現化形態では、入力画像12がサブサンプリングされて、サムネイル画像が生成される(ステップ42)。このサムネイル画像は、任意に圧縮されて、圧縮サムネイル画像が生成され、それによって、サムネイル画像44を格納するのに必要なメモリが低減される(ステップ46)。この圧縮サムネイル画像は、その後の処理のために圧縮解除される(ステップ47)。赤目検出モジュール14は、圧縮サムネイル画像44において赤目領域18を検出する(ステップ48)。検出された赤目エリア18に基づいて、赤目補正モジュール16は、圧縮サムネイル画像44を補正し、補正された(及び、必要に応じて圧縮解除された)サムネイル画像50を生成する(ステップ52)。赤目検出モジュール14は、当初の入力画像12のサムネイルに対して作用するので、処理資源及びメモリ資源の一方又は双方が限られている環境において赤目領域を迅速に検出することができる。
印刷を続行するためのユーザ確認に応答して、赤目補正モジュール16は、検出された赤目エリア18を、所定の出力解像度にスケーリングされた入力画像のバージョンにマッピングする(ステップ54)。赤目補正モジュール16は、所定の出力解像度で入力画像の赤目を補正して、補正画像20を生成する(ステップ56)。以下で詳述されるように、いくつかの具現化形態では、赤目補正モジュール16は、隣接するラインのピクセルデータに関係なくラインごとに赤目を補正する。このように、赤目補正モジュール16は、処理資源及びメモリ資源の一方又は双方が厳しく制限される組み込み環境で動作できると同時に、それにもかかわらず、並外れた実時間の赤目補正結果を提供することができる。
いくつかの具現化形態では、赤目補正モジュール16は、ユーザの確認を待つことなしに、検出された赤目ピクセルエリアを自動的に補正する。
以下で詳述されるように、赤目検出モジュール14は、サブサンプリングステップ、圧縮ステップ、及びスケーリングステップによって本質的に導入されるエラー及び他のアーティファクトを補償する態様で赤目領域を検出し、その結果、入力画像における赤目が高精度で検出される。さらに、赤目補正モジュール16は、入力画像12において検出された赤目ピクセルを、自然に見える態様で、及び赤目検出モジュール14によって検出された真っ赤な赤目等の特別な部類の赤目を処理する態様で補正する。
II.赤目ピクセルエリアの検出
図4及び図5を参照すると、いくつかの具現化形態では、赤目検出モジュール14は、以下のように、サムネイル画像44において赤目を自動的に検出する。赤目検出モジュール14は、サムネイル画像44に基づいて赤さマップ60を計算し(ステップ62)、赤さマップ60をフィルタリングして、候補赤目ピクセルエリアマップ64を生成する(ステップ66)。赤目検出モジュール14は、赤さ検証フィルタに基づいて、マップ64から候補赤目ピクセルエリアをフィルタリングする(ステップ68)。さらに、赤目検出モジュール14は、グレースケールマップ70を計算し、候補赤目ピクセルエリアマップ64から、サムネイル画像44のエリアに位置する各候補赤目ピクセルエリアをフィルタリングし、このフィルタリングされる各候補赤目ピクセルエリアは、少なくとも1つの各隣接ピクセルエリアに対して、所定のグレースケールコントラストしきい値よりも小さな、計算されたグレースケールのコントラストを有する(ステップ72)。また、赤目検出モジュール14は、1つ又は複数のローカル検証フィルタに基づいて、候補赤目ピクセルエリアマップ64の候補赤目ピクセルエリアをフィルタリングし、この1つ又は複数のローカル検証フィルタは、セグメント化検証フィルタ(ステップ73)及びスキントーン(肌の色合い)検証フィルタ(ステップ74)を含む。また、候補赤目ピクセルエリアは、ペアにされ、ペアにされていないあらゆる候補赤目ピクセルエリアも、マップ64からフィルタリングされる(ステップ76)。赤目ピクセルエリアマップ64に残っている候補赤目ピクセルエリアは、検出された赤目ピクセルエリア18に対応し、赤目補正モジュール16によって使用されて、補正画像20が生成される。
A.グローバルスクリーニング
「グローバル候補赤目ピクセルエリアの検出」
図6を参照すると、動作中、赤目検出モジュール14は最初に、サムネイル画像44のピクセルの赤さの程度(measure:尺度、基準)を計算して、赤さマップ60を生成する(ステップ80)。ピクセルの赤さのさまざまな異なる程度のいずれも、サムネイル画像44から赤さマップ60を生成するために使用することができる。いくつかの実施形態では、ピクセルの赤さの程度は、全ピクセルエネルギーの程度に対する赤成分のピクセルエネルギーの程度の比に基づいて計算される。例えば、一具現化形態では、ピクセルの赤さの程度(R)は、次のようにして計算される。
R=(α・r+β・g+γ・b)/(r+g+b+d) (1)
ここで、r、g、及びbは、それぞれ入力画像12の赤成分のピクセル値、緑成分のピクセル値、及び青成分のピクセル値であり、α、β、及びγは重み係数であり、dは、特異点を回避して、より高い重みを明るいピクセルに与えるために選択された値を有する所定のコントラストである。r、g、及びbのそれぞれが[0,255]の範囲の値を有する1つの例示的な具現化形態では、α=255、β=γ=0であり、dは8の値を有する。図7A及び図7Bに示されるように、式(1)のマッピングに基づいて、赤目検出モジュール14は、サムネイル画像44の各ピクセルの赤さを、式(1)によって与えられた赤さの値を有する赤さマップ60の対応するピクセルにマッピングする。
1つの例示的な具現化形態では、赤さマップ60のピクセルの赤さの程度(R0)は、次のようにして計算される。即ち、r>g、r>bの場合には、R0=(255・r)/(r+g+b+d)で計算され、そうでない場合には、R0=0である。赤さマップ60を計算するのに使用され得る他の代表的な赤さの程度(R1、R2、R3、R4)は、以下の式(2)〜(5)で表される。
R1=r/(r+g+b+1) (2)
R2=r/(g+b) (3)
R3=(r+b)/(r+g+b+1) (4)
R4=Cr/(Cb+1) (5)
ここで、r、g、及びbは、それぞれ入力画像12の赤成分のピクセル値、緑成分のピクセル値、及び青成分のピクセル値であり、Cr及びCbは、YCbCr色空間における入力画像12の赤クロミナンス成分のピクセル値及び青クロミナンス成分のピクセル値である。
図6に戻って参照し、並びに図8A及び図8Bを参照すると、赤目検出モジュール14は、赤さマップ60において、予備的な一組の候補赤目ピクセルを特定する(ステップ82;図6)。いくつかの具現化形態では、この予備的な一組の候補赤目ピクセルは、赤さマップ60に2次元赤さフィルタを適用することによって特定される。1つの例示的な具現化形態では、以下の2次元赤さ有限インパルス応答(FIR)フィルタが、赤さマップ60のピクセルの赤さの程度に適用される。
Figure 2007504719
この2次元赤さフィルタは、中央のカーネルピクセルエリア、及びカーネルピクセルエリアの周囲のピクセルエリアに関して定義される。図8A及び図8Bに示されるように、式(6)の特定のFIRフィルタの具現化形態は、辺の長さd1の正方形のカーネルエリア84(AR1)、及び辺の長さd2の正方形のピクセルエリアと中央のカーネルピクセルエリア84との間に画定された長方形の経路に対応する周囲のピクセルエリア86(AR2)に関して定義され、この場合、d1<d2(例えば、d2=2・d1)である。いくつかの具現化形態では、カーネルエリアAR1内、及び周囲のエリアAR2内のピクセルの平均値を、積分画像処理を使用して計算することができ、ここで、入力画像I(x,y)の積分画像S(x,y)は、次のように定義される。
Figure 2007504719
積分画像Sが与えられると、任意の長方形(x1,x2]及び(y1,y2]内の画像ピクセルの合計は、以下の式によって得られることができる。
Sum(x1,x2,y1,y2)=S(x2,y2)−S(x2,y1)−S(x1,y2)+S(x1,y1) (8)
式(8)に基づいて、任意の長方形内のピクセルの平均値を、3つの整数の加算/減算及び1つの除算で効率的に得ることができる。上述した具現化形態では、エリアAR1及びAR2にそれぞれわたる平均ピクセル値APVR1及びAPVR2が計算され、式(6)の2次元FIRが、赤さマップ60に適用されて、赤さマップの対応する各領域の以下の赤さスコア(RS1)が生成される。
RS1=AR1−AR2 (9)
別の具現化形態では、非線形FIRフィルタが赤さマップ60に適用されて、赤さマップの対応する各領域の以下の赤さスコア(RS2)が生成される。
RS2=APVR1+w・(APVR1/APVR2 (10)
ここで、wは、一定の重み係数であり、実験的に求められ得る。この式では、APVR1は、中央のカーネル正方形AR1の絶対的な赤さを表し、(APVR1/APVR2)は、中央の正方形AR1と周囲のエリアAR2との間のコントラストを表す。式(10)の赤さスコアRS2は、赤いドット領域がどれくらい十分に赤くなければならないかを定式化すると同時に、その周囲の領域に対してどれくらい高いコントラストを呈さなければならないかも定式化する。上述した具現化形態では、赤目エリアは、正方形の候補ピクセルエリアによって近似される。他の実施形態では、赤目エリアは、異なる形状(例えば、長方形、円、又は楕円)によって近似され得る。
図9を参照すると、一組の赤さスコアが、選択されたカーネルサイズd1について計算された後、実験的に求められたしきい値が、計算された赤さスコアに適用されて、候補赤目ピクセルを特定する2値マップが生成される。一具現化形態では、この2値マップの「0」(黒のピクセル)は背景ピクセルを表し、「1」(白のピクセル)は候補赤目ピクセルを表す。異なるカーネルサイズについて赤さスコアの計算、及びしきい値化のプロセスを繰り返すことにより、複数の2値マップが生成される。これらの結果としての2値マップは、すべての2値マップにわたって各ピクセル位置にOR論理演算子を適用することにより結合され、候補赤目ピクセルを特定する最終2値マップ88が作成される。この最終2値マップ88の候補赤目ピクセルは、多種多様な既知のピクセル接続性アルゴリズムの任意の1つを使用して、ピクセル接続性に基づき、赤目クラス及び非赤目クラスにセグメント化され、赤目クラスにセグメント化された各ピクセルエリアは、候補赤目エリアとしてラベル付けされる。いくつかの実施形態では、添付の付録で説明されるストライプベースのセグメント化手法を用いて、最終2値マップ88の赤目ピクセルをセグメント化する。本明細書に示された実施形態では、各候補赤目エリアは、境界長方形(又はボックス)によって表される。他の実施形態では、候補赤目ピクセルエリアは、長方形でない形状によって表され得る。
いくつかの実施形態では、多数の高速なヒューリスティックスが、最終2値マップ88の候補赤目エリアに適用されて、フォールスアラームが排除される。フォールスアラーム(即ち、実際の赤目エリアに対応する可能性のない候補赤目ピクセルエリア)を排除するために、縦横比検査技術、及び形状解析技術を含む、既知の赤目ピクセル技術を使用することができる。例えば、いくつかの具現化形態では、非定型的に伸長された候補赤目エリアが、候補赤目ピクセルエリアマップ64から除去される。
「グローバル候補赤目ピクセルエリアの検証」
図10、図11、図12A、及び図12Bを参照すると、赤目検出モジュール14は、マップ64の各候補赤目エリアに検証テストを適用して、各候補赤目エリアがそれ自体十分に赤く、且つその周囲よりも赤いことを保証する。これらの検証テストは、候補赤目エリアに適用され、個々のピクセルには適用されない。
最初に、小さな赤目エリアを候補赤目ピクセルエリアマップ64に保持するために、小さな候補赤目ピクセルエリアが処理される(ステップ90)。図11に示されるように、各候補赤目ピクセルエリアのサイズがしきい値と比較される(ステップ92、94)。候補赤目ピクセルエリアのサイズがしきい値よりも小さい場合、候補赤目ピクセルエリアは拡大される(ステップ96)。例えば、いくつかの具現化形態では、1ピクセルに等しい候補赤目ピクセルエリアの各サイズの寸法(例えば、図示された実施形態における長方形の候補赤目ピクセルエリアの幅又は高さ)が、2ピクセルに拡大される。拡大された候補赤目ピクセルエリアの周囲のピクセルエリアが生成される(ステップ98)。いくつかの具現化形態では、拡大されたピクセルエリアの周囲の領域は、拡大された候補赤目ピクセルエリアと同じサイズを有する8つの最も近い隣接ピクセルエリアに分割される。拡大された候補赤目ピクセルエリア、及び最も近い隣接ピクセルエリアのそれぞれから成るピクセルエリアの組について、平均の赤さの値が計算される(ステップ100)。最も高い平均の赤さの値を有する、この組におけるピクセルエリアが、候補赤目ピクセルエリアとして選択されて、当初の候補赤目ピクセルエリアに取って代わる(ステップ102)。いくつかの具現化形態では、当初の候補赤目ピクセルエリアが、幅及び高さにおいてdw及びdhだけそれぞれ拡大されるべきである場合、最も近い隣接ピクセルエリアの周囲の領域と重なる不確定領域が作成される。拡大された候補赤目ピクセルエリアの新たな位置は、不確定領域内の拡大されたボックスを、最も高い平均の赤さの値を有する位置へ移動させることによって求められる。
図10に戻って参照し、並びに図12A及び図12Bを参照すると、候補赤目ピクセルエリアは、赤さのコントラストしきい値に基づいて、予備的な一組の赤目候補エリアからフィルタリングされる(ステップ104)。従来の欲張り(greedy)探索プロセスが、最初に、各候補赤目ピクセルエリア106に適用されて、新しい赤目ピクセルエリア内のピクセルの平均の赤さが減少しない条件の下で、候補赤目ピクセルエリア106のサイズを最大にする。上述した整合フィルタリングプロセスによって特定された候補赤目ピクセルエリアは通常、サムネイル画像44の実際の赤目エリアよりも小さいので、欲張り探索プロセスは、拡大された候補赤目エリア108がサムネイル画像44の赤目(もしあれば)を覆う可能性を増加させる。
次に、拡大された各候補赤目ピクセルエリア108の平均の赤さが、その8つの隣接ボックス110の平均の赤さと比較され、これら8つの隣接ボックスのそれぞれは、対応する拡大された候補赤目エリア108と同じサイズを有する(図12Bを参照)。所与の候補赤目エリア108と周囲のボックスとの間の最小のペアになったコントラストがしきい値未満である場合、この所与の候補赤目エリアは、予備的な赤目候補マップから除去される。候補赤目エリア108のピクセルの平均の赤さ(CenterAverage)と隣接エリアのそれぞれのピクセルの平均の赤さ(NeighborAverage[k]、ここで、k=1,2,…,8)との差に基づいて、コントラスト値が計算される。以下の条件が満たされる場合、候補赤目ピクセルエリアは、候補赤目ピクセルマップ64から除去される。
MIN(CenterAverage−NeighborAverage[k])<CMIN (11)
ここで、k=1,2,…,8であり、MINは、計算されたコントラストの程度の最小値を計算する関数であり、CMINは、実験的に求められた最小の赤さのコントラストしきい値である。式(11)の条件が満たされない場合、テスト対象の候補赤目エリアは、さらに検証のために送られる。
図10、図13A、図13B、及び図14を参照すると、いくつかの実施形態では、赤目検出モジュール14は、上述した赤さ検証プロセス後に残っている候補赤目ピクセルエリアを、グレースケールコントラストしきい値に基づいて、候補赤目エリアマップ64からフィルタリングする(ステップ112;図10)。このプロセスでは、候補赤目ピクセルエリアは、周囲のエリアよりも暗いか否かに基づいてフィルタリングされる。最初に、G=MIN(G1,G2)によって与えられるグレースケールマッピングGに従ってサムネイル画像44のピクセルをマッピングすることにより、グレースケールマップ70(図5)が計算され、ここで、MINは、G1及びG2の最小値を出力する関数である。G1及びG2は、以下によって与えられる。
G1=0.299×r+0.587×g+0.114×b (12)
G2=0.299×(255−r)+0.587×g+0.114×b (13)
ここで、r、g、及びbは、領域内の各ピクセルの赤値、緑値、及び青値であり、グレースケール値は、各ピクセルについて得られ、領域にわたって平均化される。このグレースケールマッピングでは、G1は、(r,g,b)から計算された従来のグレースケールマッピングであるのに対して、G2は、(255−r,g,b)から計算されたグレースケールマッピングである。グレースケールマッピングG2は、「真っ赤な」赤目の場合(即ち、赤目エリアがその周囲よりもずっと明るく見える場合)を取り扱う。上記手法によれば、このような非定型的な「真っ赤な」赤目は、通常の赤目と同じ態様で処理することを可能にするグレースケールチャネルにマッピングされる。
既知の探索技術が、計算されたグレースケールマップ70に対して実行され、虹彩に対応する1つ又は複数のエリアの位置が突き止められる。図示された実施形態では、虹彩エリアは正方形として表される。この実施形態では、上述した赤さ検証プロセス後に残っている各候補赤目ピクセルエリア108は、各瞳孔エリアに対応するものと仮定され、各瞳孔エリアは、対応する虹彩エリア114(図13Aでは正方形として示される)と等しいか、又はそれよりも小さなサイズを有する。各候補赤目エリア108は、必ずしもその関連したグレースケール虹彩エリア114と同一であるとは限らないことに留意されたい。この探索アルゴリズムの設計では、虹彩エリア114は、その候補赤目エリア108と同じ中心を共有するものと仮定される。虹彩エリア114のサイズは、候補正方形ボックス116を、その8つの最も近くの隣接体(図13Bの番号0〜7)のそれぞれと比較することに基づいて求められる。特に、周囲のエリア0〜7を包含する初期エリアが、9つの等しいサイズの最も近くの隣接ボックス(0〜9と付番された)に区分化される。最終の最適グレースケールボックス114(又は正方形)のサイズは、中央のボックス116(ボックス8)とその周囲の隣接体(ボックス0〜7)との間のグレースケールコントラストを最大にするサイズを選択することによって求められる。この探索プロセスでは、1つの変数しか必要とされない。即ち、中央のボックス116の辺の長さしか必要とされない。一具現化形態では、総当り探索技術を用いて、グレースケール虹彩エリア114の最終のサイズが求められる。
グレースケール虹彩エリア(又はボックス)114の最終のサイズが求められると、最終のグレースケール虹彩エリア114と周囲のボックス(0〜7)との間のグレースケールコントラストを使用して、その虹彩エリアがサムネイル画像44の実際の虹彩に対応することが検証される。図14に示されるように、候補虹彩エリア114の周囲のエリアは、8つの等しいサイズのボックスに区分化される。ボックスkの平均グレースケールをN(k)として示し、k=0,1,…,8である(ここで、N[8]は、中央の虹彩ボックスに対応する)。それぞれの一組の5つの連続した隣接ボックスから成る循環的なサブセット120、122、124、126、128、130、132、134のそれぞれは、以下によって示され得る。
{N(k%8),N((k+1)%8),…,N((k+4)%8)} (14)
ここで、%はモジュロ演算子であり、k=0,1,…,7である。これによって、赤目が、処理されるべきサムネイル画像44における顔のエッジに位置する状況が可能になる。周囲のボックスの8つのサブセットから、最も均一なサブセット120〜134が、中央の候補ボックスとのグレースケールコントラスト(CGRAY)の程度を計算するための基準として選択される。即ち、
CGRAY=AVER{N(m%8),N((m+1)%8),…,,N((m+4)%8)}/N(8) (15)
ここで、m=argmin STD{N(k%8),N((k+1)%8),…,N((k+4)%8)}であり、k=0,1,…,7であり、AVER{a(1),a(2),…,a(n)}は配列{a(k)}の平均を表し、STD{a(1),a(2),…,a(n)}は配列{a(k)}の標準偏差を表す。式(15)のグレースケールコントラスト計算に基づいて、実験的に決定されたしきい値未満の、計算されたコントラストの程度を備えた、対応する候補虹彩エリアを有する候補赤目ピクセルエリアは、候補赤目ピクセルエリアマップ64から除去される。
B.ローカル検証
図4に戻って参照すると、上述したグローバル赤さ検証フィルタ及びグレースケール検証フィルタが適用された(ステップ68、72)後、候補赤目ピクセルエリアマップ64は、一組の候補赤目ピクセルエリア108を含み、これらの候補赤目ピクセルエリア108のそれぞれは、サムネイル画像44における赤目エリアのおおよその位置及びサイズに対応する可能性がある。いくつかの実施形態では、赤目検証モジュール14は、候補赤目ピクセルエリアマップ64に1つ又は複数のローカル検証プロセスを適用して、候補赤目ピクセルエリアマップ64から候補赤目ピクセルエリアをさらにフィルタリングする。以下の実施形態では、セグメント化検証フィルタ及びスキントーン検証フィルタが、サムネイル画像44の局所的なエリアに適用されて、候補赤目ピクセルエリアマップ64の候補が検証される(ステップ73、74)。これらの分類技術は、通常の赤目が、非赤領域(即ち、目の白い領域)によって取り囲まれた赤領域(即ち、虹彩)であり、さらにスキントーン領域(即ち、顔)によって大部分取り囲まれた赤領域であるという観察に少なくとも部分的に基づいてモデル化される。
「セグメント化検証」
セグメント化検証フィルタは、赤さマップ60に適用されて、候補赤目ピクセルエリア108のそれぞれが周囲の隣接エリアに対して高いコントラストを呈することを保証する(ステップ73;図4)。
図15Aに示されるように、候補赤目ピクセルエリア108が、所定の比率で拡大され、隣接ピクセルエリア142が生成される。一具現化形態では、隣接ピクセルエリア142は、所与の候補赤目ピクセルエリア108の寸法を120%拡大する(即ち、新しい幅/高さは、当初の幅/高さの220%である)ことによって得られる。隣接ピクセルエリア142に対応する赤さマップ60の領域は、赤さピクセルエリア108内の赤さの値の統計値に基づいて計算されたしきい値を適用することによって2値化される。例えば、一具現化形態では、2値化しきい値は次のように計算される。
Figure 2007504719
ここで、R,R,…,Rは、所与の候補赤目ピクセルエリア内に位置するn個のピクセルの赤さを示し、AVE(.)関数は入力配列の平均を計算し、MED(.)関数は入力配列のメジアンを計算する。
隣接ピクセルエリア142に対応する赤さマップ60の例示的な2値化領域を図15B及び図15Cに示し、図15B及び図15Cでは、白のエリアは「赤」として分類されたピクセルに対応し、暗い領域は「非赤」として分類されたピクセルに対応する。セグメント化検証フィルタは、以下のようにピクセルエリア142に対応する2値領域の形態学的特徴を解析する。まず、2値領域は、ピクセルの接続性に基づいてオブジェクトにセグメント化される。いくつかの実施形態では、添付の付録で説明されるストライプベースのセグメント化手法を用いて、2値化された赤さマップ60の領域をセグメント化する。赤目ピクセルエリア108と重なる最も大きなエリアを有するオブジェクトが検査されて、2値領域の境界(即ち、142の境界)に接触するか否かが確かめられる。接触する状況が検出された場合、対応する候補赤目ピクセルエリアが、候補赤目ピクセルマップ64から除去される。したがって、セグメント化検証フィルタを、図15B及び図15Cに示された例示的な隣接ピクセルエリアに適用すると、図15Bの隣接ピクセルエリアに対応する候補赤目ピクセルエリアは、候補赤目ピクセルエリアマップ64からフィルタリングされないのに対して、図15Cの隣接ピクセルエリアに対応する候補赤目ピクセルエリアは、候補赤目ピクセルエリアマップ64からフィルタリングされる。
「スキントーン検証」
赤目がスキントーン領域(即ち、顔)によって取り囲まれた非スキントーン領域(即ち、目)であるという観察に少なくとも部分的に基づきモデル化されたスキントーン検証プロセスに基づいて、候補赤目ピクセルエリアマップ64から候補をフィルタリングすることができる。このプロセスでは、サムネイル画像44のピクセルが、スキントーンエリア又は非スキントーンエリアのいずれかに対応するものとして分類される。サムネイル画像44のピクセルを分類するために、任意のスキントーン分類技術を使用することができる。
図16Aに示されるように、上述したグレースケール検証プロセス中に得られたグレースケール虹彩エリア114は、候補赤目ピクセルエリアの基準エリアとして使用される。隣接ピクセルエリア144は、一定の比率で基準エリアを拡張することによって画定され、この隣接ピクセルエリア144内に位置するサムネイル画像44のピクセルは、スキントーン分類アルゴリズムによって分類される。一具現化形態では、スキントーン検証フィルタは、C. Garcia及びG. Tziritas著、「Face detection using quantized skin color regions merging and wavelet packet analysis」、1999年9月、IEEE Trans. Multimedia, vol. 1, no. 3に記載されたスキントーン分類アルゴリズムに基づいてピクセルを分類し、この文献は、参照により本明細書に組み込まれる。スキントーンピクセルとして分類されたピクセルの割合は、予め定義された、実験的に決定されたしきい値と比較される。このしきい値未満の、スキントーンピクセルの割合を有する領域に対応する候補赤目ピクセルエリアは、候補赤目ピクセルエリアマップ64からフィルタリングされる。
図16Bを参照すると、スキントーン検証フィルタの別の具現化形態では、隣接ピクセルエリア144が、9つの長方形に均一に分割される。一具現化形態では、隣接ピクセルエリア144は、グレースケール虹彩エリア144を140%拡張することによって得られる。中央の長方形を除外した後、残りの長方形に0〜7の番号が付けられる。これら8つの周囲の長方形0〜7のそれぞれの内部のスキントーンピクセルの割合が個別にカウントされ、s(k)として示され、k=0,1,…,7である。スキントーン検証フィルタは、次のように、配列s(k)の循環的な合計を計算する。即ち、
CS(k)=s(k%8)+s((k+1)%8)+s((k+2)%8)+…+s((k+4)%8)、k=0,1,…,7 (17)
CS(k)の最大値が所定のしきい値を超える場合にのみ、所与の候補赤目ピクセルエリアは、このスキントーン検証テストを通過する(即ち、候補赤目ピクセルエリアマップ64からフィルタリングされない)。
「ペアリング検証」
図4に戻って参照すると、上述したグローバル赤さ検証フィルタ、グローバルグレースケール検証フィルタ、ローカルセグメント化検証フィルタ、及びスキントーン検証フィルタが適用された(ステップ66、68、72、73、74)後、候補赤目ピクセルエリアマップ64は、一組の候補赤目ピクセルエリアを含み、これらの候補赤目ピクセルエリアのそれぞれは、サムネイル画像44における赤目エリアのおおよその位置及びサイズに対応する可能性がある。いくつかの実施形態では、赤目検証モジュール14は、ローカルペア整合検証フィルタ76を適用して、候補赤目ピクセルエリアマップ64から候補赤目ピクセルエリアをさらにフィルタリングする。これらの実施形態では、候補赤目ピクセルエリアはペアにグループ化される。このプロセスによって、フォールスアラームの回数が低減され、ペアにされた赤目のみが補正されて、入力画像12に現れる一対の人の目の一方のみの補正から生じる可能性がある任意の不自然な状況が確実に回避される。このペアリングローカル検証プロセスの1つの例示的な具現化形態のステップに対応する擬似コードを以下に提供する。
1.For each redeye candidate (b1){
2.If its red box has not been paired with any other box{
3.Search in the neighborhood of this red box for other red boxes
4.For each redeye candidate (b2) whose red box totally inside the neighborhood{
5.if boxes of (b1) and (b2) have similar size{
6.if (b1) and (b2) pass texture pattern verification{
7.mark (b1) and (b2) as paired
8. }
9. }
10. }
11. }
12.For each redeye candidate (b){
13.If (b) is not paired{
14.remove (b) from the candidate list
15. }
16. }
上述したプロセスでは、現在の候補に関して一定の距離範囲内に位置する隣接エリアで、候補赤目ピクセルエリアマップ64の他の候補赤目ピクセルエリアを探索することにより、ペアリング候補が現在の各赤目候補について検出される(上記ライン3)。図17を参照すると、いくつかの具現化形態では、候補赤目エリア152に関して隣接探索エリア150は、網掛けされた円形の領域として示され、この領域は、2つの同心円によって画定される。これら2つの円は、テスト対象の候補赤目エリア152の中央に置かれる。同心円の半径(r1,r2)は、現在の赤ボックスのサイズに基づいて決定され得る。例えば、いくつかの具現化形態では、現在の候補赤目エリア152の高さ及び幅がh及びwである場合、同心円の半径(r1,r2)は、以下に設定される。即ち、
r1=(h+w)×1.5 (18)
r2=(h+w)×6.5 (19)
いくつかの実施形態では、ペアにされた候補赤目ピクセルエリアには、サイズが類似していることも必要とされる。例えば、上述したペアリングローカル検証プロセスの擬似コードの具現化形態(ライン5)では、2つの候補赤目ピクセルエリアのサイズが比較されて、それらの2つの候補赤目ピクセルエリアが十分類似していることが確認される。例えば、いくつかの実施形態では、ペアにされている候補赤目ピクセルエリアが、それぞれ長さs1及びs2の正方形であり、s1≦s2である場合に、s2/s1の比が所定の不一致しきい値よりも小さいとき、2つの候補赤目ピクセルエリアは、ペアとしてラベル付けされる。1つの例示的な具現化形態では、この不一致しきい値は、2.6の値に設定される。
上記擬似コードのライン6のテキスチャパターン検証ステップは、2つのペアリング候補によって画定された隣接テンプレートのグレースケールテキスチャが、人間の目のパターンに十分類似していることを検証する。図18A及び図18Bを参照すると、候補ペアの赤目候補ピクセルエリア154、156の位置によって、標準化されたテンプレート160に対応する隣接領域158が決定される。標準化されたテンプレート160の形状因子d1及びd2は、目の距離2・dに基づいて決定される。例えば、一具現化形態では、d1は3dに設定され、d2はdに設定される。標準化されたテンプレートの設計が与えられると、赤目候補の任意のペアの隣接領域158を、図18Aに示すように構築することができる。
図19及び図18Aを参照すると、次のように、従来のオフライントレーニング段階で基準テキスチャパターンを生成することができる。一組の複数のサンプルサムネイル画像における各サンプルサムネイル画像174について、特徴点の位置(即ち、ペアにされた目の位置)に、人間の管理者によってラベルが付けられる(ステップ176)。ラベルが付けられた特徴点に基づいて、目のペアに対応する隣接ピクセル領域158が計算され、サンプルサムネイル画像174がクロッピングされ、回転され、そしてスケーリングされる(ブロック178)。また、隣接ピクセル領域は、線形正規化され(ブロック180)、ヒストグラム均等化されて(ブロック182)、基準赤目ペア領域が生成される。任意のタイプの線形正規化プロセス及びヒストグラム均等化プロセスを使用することができる。いくつかの具現化形態では、基準赤目ペア領域は、そのピクセルグレースケール値を積み重ねることによって特徴ベクトルに変換される。次に、サンプルサムネイル画像174から生成された特徴ベクトルの分布を表すように、統計モデルがトレーニングされる(ブロック184)。
一実施形態では、テンプレートサイズは7×21ピクセルに設定され(即ち、図18Bではd=7)、これは、147個の成分の特徴ベクトルを形成する。特徴ベクトルの分布は、ガウス分布としてモデル化される。PCA(主成分分析(Principle Component Analysis))を使用して、特徴空間は、最初の数個の固有ベクトルがまたぐ低次元部分空間と、固有ベクトル空間に直交する部分空間とに分解される(ブロック184)。PCAから得られる例示的な固有ベクトル(又は固有画像)を図20に示す。
ペア整合検証プロセスの期間中、ペア整合フィルタは、候補赤目ピクセルエリアマップ64において検出された赤目ピクセルエリアに基づいて、サムネイル画像44における隣接領域158(図18A)を特定する(ブロック162)。グレースケールチャネル(このグレースケールチャネルは、いくつかの実施形態では、RGB色空間の緑チャネルによって近似され得る)において計算された隣接領域158に対応するサムネイル画像44の領域は、クロッピングされ、スケーリングされ、そして回転されて、標準サイズの候補ペア領域が生成される(ブロック164)。一具現化形態では、候補ペア領域のサイズは、21ピクセル×7ピクセルである。候補ペア領域はさらに、線形正規化(ブロック166)及びヒストグラム均等化(ブロック168)を使用して正規化される。トレーニング段階で使用されたのと同じ線形正規化プロセス及びヒストグラム均等化プロセスが、検証段階で使用される。147個の標準的な長さの特徴ベクトルが生成される(ステップ170)。
生成された統計モデル(ブロック170)は、トレーニング段階で生成された統計モデル(ブロック184)を使用してテストされて、候補ペア領域が目のパターンに対応するか否かが検証される(ブロック172)。例えば、一具現化形態では、低次元固有ベクトル空間内の距離、及び低次元固有ベクトル空間からの距離の2つの距離特徴が計算されて、トレーニングされた、基準の目のペアパターンとのその類似性が評価される。これについては、例えば、K. -K. Sung著、「Learning and example selection for object and pattern detection」、1996年、Ph.D. thesis, MIT AI Labを参照されたい。この文献は、参照により本明細書に組み込まれる。
C.複数の解像度における赤目検出
図21を参照すると、いくつかの実施形態では、入力画像12がサブサンプリングされて、サムネイル画像44が生成され、このサムネイル画像44は、圧縮される場合もあるし、されない場合もある(ブロック190)。サムネイル画像44において、上述した方法の1つ又は複数を使用して、赤目ピクセルエリアが検出される(ブロック192)。さらに、入力画像12においても、赤目ピクセルエリアが検出される(ブロック194)。入力画像12における赤目ピクセルエリアは、上述した赤目検出プロセスの1つを使用して検出され得るか、又はHuitao Luo等によって2003年4月28日に出願され、「DETECTING AND CORRECTING RED-EYE IN A DIGITAL IMAGE」と題する米国特許出願第10/424,419号に記載された赤目検出プロセスを使用して検出されることができ、この米国特許出願は、参照により本明細書に組み込まれる。サムネイル画像44及び入力画像12において検出された二組の赤目ピクセルエリアはマージされて、最終的な一組の検出赤目ピクセルエリアが生成される(ブロック196)。この最終的な一組の検出赤目ピクセルエリアは、例えば、二組の検出赤目ピクセルエリアの論理的な和集合に対応することができる。複数の解像度で赤目を検出して、それらの結果をマージするプロセスによって、全体的な赤目検出精度が高い頻度で改善されることがわかっている。
図21の実施形態は、組み込みアプリケーション環境に組み込まれ得る。代案として、これらの実施形態は、コンピュータシステム(例えば、パーソナルコンピュータ又はワークステーション)で実行可能な1つ又は複数のソフトウェアモジュールの形態で実施され得る。
III.赤目補正
A.検出された赤目ピクセルのマッピング
図22は、赤目検出モジュール14により検出された赤目ピクセルエリア18に基づいて、入力画像12の赤目を補正する方法の一実施形態を示す。この実施形態では、検出された赤目ピクセルエリア18、及び関連付けられたグレースケール虹彩ピクセルエリア114は、所定の出力解像度にマッピングされる(ブロック200)。例えば、図2のアプリケーション環境では、検出された赤目ピクセルエリア18、及び関連付けられたグレースケール虹彩ピクセルエリア114は、サムネイル画像44の解像度から、プリンタシステム30が画像20を生成する出力解像度にマッピングされる。一般に、プリンタシステム30の出力解像度は、選択された印刷モード(例えば、「ドラフト」印刷品質、「通常」印刷品質、及び「高い」印刷品質)、並びに画像20が印刷される媒体の選択されたサイズに依存する。例えば、画像20が、300dpi(dots per inch)のプリンタ解像度で、4インチ×6インチの1枚の写真用紙に印刷されると仮定すると、検出された赤目ピクセルエリア18、及び関連付けられたグレースケール虹彩ピクセルエリア114は、幅384ピクセル×高さ288ピクセルのサムネイルサイズから、幅1800ピクセル×高さ1200ピクセルの印刷画像サイズへ拡大される。
いくつかの具現化形態では、検出されてマッピングされた赤目ピクセルエリアは、マッピングエリアに含まれる、量子化プロセスの固有の不正確さの結果として発生し得る誤差を補償するように、サムネイル画像44の解像度から出力解像度へ拡大される。これらの具現化形態では、マッピングされた赤目ピクセルエリアの水平方向の寸法及び縦方向の寸法は、マッピングされた赤目ピクセルエリアの当初の水平方向、及び縦方向の寸法と共に減少する拡大量の分だけ拡大される。例えば、一具現化形態では、マッピングされた赤目ピクセルエリアの寸法は、次のように拡大される。即ち、
200%、当初のマッピングされた寸法サイズが1ピクセルである場合
100%、当初のマッピングされた寸法サイズが2ピクセルである場合
40%、当初のマッピングされた寸法サイズが3ピクセルである場合
20%、当初のマッピングされた寸法サイズが4ピクセルから10ピクセルである場合
5%、当初のマッピングされた寸法サイズが10ピクセルを超える場合。
図23に示されるように、いくつかの具現化形態では、マッピングされて拡大された赤目ピクセルエリア201のコーナがクロッピングされて、人間の目の瞳孔を象徴する楕円形状を近似する八角形が形成される。コーナをクロッピングする量は実験的に決定される。1つの例示的な実例では、各コーナ領域の辺の寸法は、マッピングされて拡大された赤目ピクセルエリア201の対応する辺(水平方向又は縦方向)の寸法の15%に相当する。
B.赤目ピクセルの分類
図22に戻って参照すると、検出された赤目ピクセルエリア、及び関連付けられたグレースケール虹彩ピクセルエリアが出力解像度にマッピングされた(及び、必要に応じて、拡大されてクロッピングされた)後に、結果としてのマッピングされた赤目ピクセルエリア201のピクセルは、赤目ピクセル及び非赤目ピクセルとして分類される(ブロック202)。図示された実施形態において、マッピングされた赤目ピクセルエリア201内の各ピクセルは、他のマッピングされた赤目ピクセルエリアとは無関係に分類される。さらに、ピクセル分類は、隣接する(上又は下の)ピクセルラインを全く考慮せずに(即ち、隣接するピクセルとの一貫性なしに)ピクセルごとに、及びピクセルラインごとに実行される。
図24は、マッピングされた赤目ピクセルエリア201の赤目ピクセルを分類する逐次プロセスの一実施形態を示す。
マッピングされた各赤目ピクセルエリア201について(ステップ210)、そのマッピングされた赤目ピクセルエリアが、非定型的な大きさでない場合(ステップ212)、そのマッピングされた赤目ピクセルエリアのピクセルは、スキントーン着色に基づいて候補赤目ピクセルとして分類される(ステップ214)。一具現化形態では、マッピングされた赤目ピクセルエリア201は、いずれかの寸法(例えば、幅又は高さ)が10ピクセルよりも大きい場合に、非定型的な大きさであるとみなされる。赤目ピクセルエリア201が、非定型的な大きさであるが(ステップ212)、マッピングされた赤目ピクセルエリアに対する、対応するグレースケール虹彩エリアのサイズが非定型的な大きさでない場合(ステップ216)、そのマッピングされた赤目ピクセルエリアのピクセルも、スキントーン着色に基づいて候補赤目ピクセルとして分類される(ステップ214)。一具現化形態では、マッピングされたグレースケール虹彩エリアが、その対応するマッピングされた赤目ピクセルエリア201よりも50%大きい場合に、そのグレースケール虹彩エリアは非定型的な大きさであるとみなされる。スキントーン分類プロセスでは、入力画像12のピクセルは、任意のタイプのスキントーン分類技術、又はセグメント化技術を使用して、スキントーンエリア又は非スキントーンエリアのいずれかに対応するものとして分類される。
赤目ピクセルエリア201が非定型的な大きさであり(ステップ212)、及びマッピングされた赤目ピクセルエリアに対する、対応するグレースケール虹彩エリアのサイズが非定型的な大きさである場合(ステップ216)、そのマッピングされた赤目ピクセルエリア201は、まぶた及び人の顔の周囲のスキントーン領域から完全に分離されると仮定される。この場合、スキントーン着色に基づくピクセル分類ステップ(ステップ214)は、処理中の、マッピングされた赤目ピクセルエリア201について省略される。
マッピングされた赤目ピクセルエリアの候補赤目ピクセルは、ピクセルに基づく赤さ分類プロセスに基づいて分類される(ステップ218)。一具現化形態では、以下の基準を満たす色成分を有する入力画像12の候補赤目ピクセルが、候補赤目ピクセルとして分類され、他の候補赤目ピクセルは、候補の集合からフィルタリングされる。即ち、
Cr>128、
Cr>Cb、及び (20)
Cr>Y
ここで、Cr、Cb、及びYは、YCbCr色空間で表された入力画像ピクセルの色成分である。
マッピングされた赤目ピクセルエリアのピクセルが、赤さしきい値に基づいて分類された(ステップ218)後、候補赤目ピクセルは、水平方向の一貫性に基づいてラインごとに分類される(ステップ220)。例えば、一具現化形態では、所与の候補赤目ピクセルが、候補赤目ピクセルとして以前に分類されたピクセルに隣接して位置し、且つ実験的に決定されたしきい値よりも大きい赤さの値を有する場合、その所与のピクセルも、候補赤目ピクセルとして分類される。
図24、図25A、及び図25Bを参照すると、内側境界領域222と外側境界領域224との間に位置するピクセルは、上述した赤さの分類ステップ及びスキントーン分類ステップ、並びにグレースケールしきい値に基づいて、赤ピクセル又は非赤ピクセルとして分類される(ステップ221)。
いくつかの実施形態では、内側境界領域222は、その中心が処理中のマッピングされた赤目ピクセルエリア201の中心に置かれ、マッピングされた赤目ピクセルエリア201の寸法とその対応するグレースケール虹彩エリア226との平均に対応する寸法(例えば、幅及び高さ)を有する。即ち、内側境界領域22の幅は、マッピングされた赤目ピクセルエリア201の幅と、対応するグレースケール虹彩エリア226の幅との合計の2分の1に等しい。同様に、内側境界領域22の高さは、マッピングされた赤目ピクセルエリア201の高さと、対応するグレースケール虹彩エリア226の高さとの合計の2分の1に等しい。また、外側境界領域224も、その中心が、マッピングされた赤目ピクセルエリア201の中心に置かれる。一具現化形態では、内側境界領域222が2ピクセルより大きい場合には、外側境界領域の寸法は、内側境界領域222の対応する寸法よりも50%大きい。そのほかの点では、外側境界領域の寸法は、内側境界領域222の対応する寸法よりも200%大きい。
赤さ及びスキントーンの着色に加えて、内側境界領域222と外側境界領域224との間のピクセルは、次のようにピクセルのグレースケール値に対してグレースケールしきい値を適用することに基づいて分類される。いくつかの具現化形態では、RGB色空間の緑チャネルを使用して、ピクセルのグレースケール値が近似される。一具現化形態では、適用されたグレースケールしきい値は、内側境界領域22内のグレースケール値の平均と、内側境界領域222と外側境界領域226との間のグレースケール値の平均との平均に相当する。例えば、内側境界領域222内のグレー値の平均が90であり、且つ内側境界領域222の外側であるが、外側境界領域の内側であるグレー値の平均が224である場合、平均グレー値105((90+120)/2)が、内側境界領域222と外側境界領域224との間にピクセルをセグメント化するために使用されるグレースケールしきい値である。計算されたグレースケールしきい値未満のグレースケール値を有する、内側境界領域222と外側境界領域224との間のピクセルは、候補赤目ピクセルとして分類される。
外側境界領域224内のすべての候補赤目ピクセルは、フラグメント(断片)、外れ値、及び雑音を除去するための厳密な要件で、接続性に基づいて赤目ピクセルとして分類される。いくつかの実施形態では、添付の付録に記載されたストライプベースのセグメント化手法を使用して、赤目ピクセルがセグメント化される。図25Bを参照すると、赤目ピクセルとして分類された外側境界領域224内のすべてのピクセルを包含する(即ち、取り囲む)赤目ピクセル補正領域228が特定される(ステップ230)。いくつかの具現化形態では、赤目ピクセル補正領域228は楕円形を有する。内側境界領域内のピクセルは、赤さ及びスキントーン着色によって分類される。図示された例では、赤目ピクセル補正領域228は円形を有する。赤目ピクセル補正領域228に加えて、赤目ピクセル補正領域228の周囲の赤目ピクセル平滑化領域232も計算される。図25Bに示される例では、赤目ピクセル平滑化領域232は、円形の境界234によって画定され、この円形の境界234は、赤目ピクセル補正領域228と同心であり、赤目ピクセル補正領域228の半径よりも50%大きい半径を有する。
C.赤目ピクセルの再着色
図24に戻って参照すると、赤目ピクセルが分類された後、赤目ピクセルとして分類された、マッピングされた赤目ピクセルエリアのピクセルは再着色される(ステップ236)。赤目ピクセル補正領域228の赤目ピクセルは、以下で詳細に説明するように、当初の色値に彩度を減じて暗くすることによって補正される。赤目ピクセル平滑化領域232の赤目ピクセルの当初の色値も、補正の相対的な量が、赤目ピクセル補正領域228との境界における90%から、赤目ピクセル平滑化領域232の境界234における20%まで変化する点を除いて、同様に補正される。この平滑化プロセス又はフェザリングプロセスによって、補正画像20の補正された赤目の近くでバラバラのエッジの形成が低減される。
最初に、色補正の暗化係数、及び重みが、補正されるべき赤目ピクセルについて計算される。暗化係数及び重みは、赤目ピクセルの当初の色値の彩度をどれだけ強く減じる(即ち、中間色の値又はグレー値に向かって進められる)かを示す。以下で詳細に説明されるように、これら2つの係数は、アーティファクトを回避するために、変更される入力画像12のピクセルと変更されない入力画像12のピクセルとの間の滑らかな遷移を与えるように、赤目ピクセル補正領域228の中心を基準としたピクセル位置と共に変化する。
暗化係数は、入力画像ピクセルの輝度(又はグレー)値に基づいて計算される。一具現化形態では、暗化係数は、図26に示されるグラフに基づいて計算され、この場合、各赤目ピクセルの輝度(又はグレー)レベルが、[lummin,lummax]=[0,1]の範囲にわたって変化するものと仮定される。一具現化形態では、緑色チャネルを使用して、輝度値が推定される。他の具現化形態は、輝度値の異なる推定値又は尺度を使用することができる。図示された具現化形態では、最小の暗化係数(m)が0.6に設定され、最大の暗化係数(m)が1.0に設定される。これらのパラメータは、他の具現化形態では異なる値に設定され得る。この定式化では、暗化係数の値は、ピクセルの暗さレベルと共に減少する。即ち、より小さい(即ち、暗い)輝度(又はグレー)値は、より小さい暗さ係数に関連付けられる。暗さ係数は、後述する具現化形態では乗算の態様でピクセル値に影響を与えるので、赤目ピクセルとして特定されたピクセル(即ち、より小さな輝度値を有するピクセル)が暗ければ暗いほど、明るいピクセル(即ち、より大きな輝度値を有するピクセル)よりも暗くされる。
重み(wt)は、所与のピクセルに隣接する赤目ピクセルの数に基づいて、その所与の赤目ピクセルについて設定される。例えば、一具現化形態では、重みは次のように設定され得る。
Figure 2007504719
ここで、redeye neighbors(赤目の隣接体)は、重み係数を割り当てられている所与のピクセルに隣接する赤目ピクセルの数に対応する。この定式化では、赤目ピクセル補正領域228の中心に近い赤目ピクセルには、赤目ピクセル補正領域228の境界に近い赤目ピクセルよりも高い重みが割り当てられる。
計算された暗化係数及び重み係数に従って当初の色値の彩度を減じて暗くすることにより、赤目ピクセルの色値は補正される。いくつかのRGB色空間の具現化形態では、赤目ピクセルとして特定された各入力画像ピクセルの色値(red,green,blue)は、次のような最終色値(R,G,B)に補正される。即ち、
If ( mask = 1 ), tmp = dark[green − grnmin]
Else tmp = 1
R1 = (wt * tmp * green + (1 − wt) * red)
G1 = (wt * tmp * green + (1 − wt) * green)
B1 = (wt * tmp * green + (1 − wt) * blue)
これらの実施形態では、入力画像ピクセルの色成分がRGB色空間について定義されるものと仮定される。これらの実施形態は、他の色空間の表現に容易に拡張され得る。wt=1の場合、ピクセル値は、中間値までずっと近づけられる(即ち、ピクセル値は、同じ中間調に設定される)ことに留意されたい。wt=0の場合、対応するピクセルの色成分値のいずれも変更されない。この具現化形態では、一般に、ピクセルの輝度が小さければ小さいほど(即ち、緑値が小さいほど)、より大きな輝度のピクセルよりも暗くされ、係るより大きな輝度のピクセルは、変更されない輝度を有する。
IV.結論
他の実施形態は、特許請求の範囲の範囲内にある。
付録
この付録は、1つ又は複数のピクセルラインのストライプにおける2値マップを走査して、ストライプにわたって接続された前景ピクセルを含むオブジェクトを追跡することにより、2値画像(又はピクセルマップ)の背景ピクセルから前景ピクセルをセグメント化する方法を記載している。この手法の一具現化形態では、前景ピクセルに「1」の値が割り当てられ、背景ピクセルに「0」の値が割り当てられる。接続されたピクセルのすべてが同じラベルを有し、且つ各ラベルが1つのオブジェクトを表すために使用されるように、前景ピクセルにラベルを付けることによって、前景ピクセルはオブジェクトにセグメント化される。
実験は、以下の方法が、通常のスタックベースのセグメント化手法よりも3倍〜5倍高速であることを示した。さらに、いくつかの具現化形態では、この方法は、速度要件及びメモリ要件の点でスケーラブルである。
I.定義及びデータ構造体
ストライプベースのセグメント化方法を、以下の用語及びデータ構造体に関して説明する。
「STRIPE(ストライプ)」
ストライプは、前景ピクセルの連続的な水平方向のラン(run:一続き)として定義される。図27は、画像252を横切るラスタ走査ライン250、及び走査ライン150上の2つのストライプ254、256を示す。画像152は、ラスタ走査表現に従って一群のストライプに変換される。一具現化形態では、ストライプが、左側のその最初のピクセルの位置(row, col)、及びそのラン長(length)によって表される。この具現化形態のSTRIPE構造の擬似コード定義は、次の通りである。即ち、
STRIPE {
row, col
length
object_pointer
next_stripe_pointer
}
この定義において、object_pointerデータフィールドは、対応するストライプが属するオブジェクトを指し示し、next_stripe_pointerフィールドは、複数のストライプをリンクリストにリンクする。
ストライプオブジェクト「S」について、関数O=OBJECT(S)が、Sのobject_pointerフィールドを返すように定義される。即ち、オブジェクトOは、ストライプSが属するオブジェクトである。
「OBJECT」
OBJECTは、画像解析で定義されるオブジェクトを表す論理データ構造である。オブジェクトは次の属性を有する。即ち、収容長方形、その全サイズ、及びそのオブジェクトに属するストライプにリンクするポインタを有する。OBJECT構造の擬似コード定義は次の通りである。即ち、
OBJECT {
rect
size
stripe_pointer
next_object_pointer
}
stripe_pointerフィールドは、STRIPEオブジェクトのリンクリストのヘッダを指し示し、これらのSTRIPEオブジェクトは、このオブジェクトに属する。next_object_pointerフィールドは、複数のオブジェクトをリンクリストにリンクする。
2つのオブジェクトO1及びO2について、マージ関数が次のように定義される。即ち、
O = MERGE_OBJECT(O1,O2)
このMERGE_OBJECT関数は、2つのオブジェクトO1、O2を1つのオブジェクトOにマージする。結果としてのオブジェクトOは、結合されたサイズ、並びにO1及びO2の収容長方形を包含する収容長方形を有する。さらに、O1及びO2に属するストライプは、Oの1つのリンクリストにマージされる。
「CONTAINER(コンテナ)」
CONTAINERは、OBJECTデータ構造体のリンクリストである。コンテナCについて、ADD(C,O)演算は、OBJECT OをコンテナCに追加し、DELETE(C,O)演算は、OBJECT OをコンテナCから削除する。
II.ストライプベースのセグメント化
この手法では、画像はラインごとに走査される。各走査ラインにおいて、複数のストライプが画定され、以前に走査された隣接するライン上のストライプとのそれらの接続性が解析される。所与のストライプが、以前に走査された隣接するライン上の任意のストライプと接続されている場合、その所与のストライプに関連付けられたオブジェクトは、現在の走査ラインへ拡張される。図28は、例示的な現在の走査ライン260、及び以前に走査された隣接する走査ライン162を例示的に示す。図28では、ボックス264、266、268、270が、以前に画定された、オブジェクトの収容長方形を表し、ボックス272、274、276が、走査ライン260、262にわたって広がるオブジェクトを表すために画定された新しい収容長方形を表す。図28は、収容ボックス272〜276を有するオブジェクトが、3つの異なる場合にどのように拡張されるかを示す。特に、ボックス272では、現在の走査ライン160上の1つのストライプ278が、以前のライン上の1つのストライプ280と接続されている。ボックス274では、現在の走査ライン260上の2つのストライプ282、284が、以前に走査された隣接するライン162上の1つのストライプ186と接続されている。ボックス176では、現在の走査ライン160上の1つのストライプ288が、以前に走査された隣接する走査ライン262上の2つのストライプ290、292と接続されている。
この手法では、各オブジェクトのサイズ及び収容長方形が、画像の1パス走査で決定される。第2のパスは、各ピクセルにラベル付けするために使用される。
以下の擬似コードは、ストライプベースのセグメント化方法の一具現化形態を記述する。この記述では、入力は2値画像であり、出力はコンテナ「C」である。コンテナ「C」は、生成されたすべてのオブジェクトを収容する。
A.メイン処理ループの擬似コード
raster scan the input image line by line {
define stripes in the current line;
process the current line(詳細には2.2.IIを参照されたい);

B.ライン処理ループの擬似コード
for each stripe S in the current line {
if it is connected to only one stripe S1 in the above line {
link stripe A to the object OBJECT (S1)(ストライプS1が属する)
update the containing rectangle (rect) and object size (size) of the object

else if it is connected to multiple stripes (S1, S2,...,Sn) in the above line {
O = MERGE_OBJECT(OBJECT(S1), OBJECT(S2), …, OBJECT(Sn))
link stripe A to O
update the containing rectangle (rect) and object size (size) of O
DELETE(C, OBJECT(S1))
DELETE(C, OBJECT(S2))

DELETE(C, OBJECT(Sn))
ADD(C, O)

else {
allocate a new object O
link stripe A to O
update the containing rectangle (rect) and object size (size) of O
ADD(C, O)

デジタル画像における赤目の検出及び補正を行うためのシステムの一実施形態のブロック図である。 デジタル画像における赤目の検出及び補正を行うためのシステムの組み込み式の実施形態を組み込むプリンタシステムの略図である。 デジタル画像における赤目の検出及び補正の方法の一実施形態のフロー図である。 デジタル画像における赤目を検出するプロセスの一実施形態におけるステップのフロー図である。 デジタル画像における赤目の検出及び補正のプロセスの一実施形態において、入力画像から導出される異なる画像マップ及び該画像マップに適用される異なる処理ステップの情報フロー図である。 デジタル画像における赤目を検出するプロセスの一実施形態におけるステップのフロー図である。 入力画像に対応する例示的なサムネイル画像である。 図7Aのサムネイル画像から導出された赤さマップである。 カーネルピクセルエリア及び周囲のピクセルエリアを含む2次元赤さフィルタの略図である。 カーネルピクセルエリアにAR1のラベルが付けられ、周囲のピクセルエリアにAR2のラベルが付けられた、図5Aの2次元赤さフィルタの略図である。 図6Bの赤さマップから導出された2値の候補赤目ピクセルマップである。 デジタル画像における赤目を検出するプロセスの一実施形態におけるグローバル検証ステップのフロー図である。 デジタル画像における赤目を検出するプロセスの一実施形態の候補赤目ピクセルエリアを選択する方法のフロー図である。 候補赤目ピクセルエリアが拡大された略図である。 一組の8つの隣接ピクセルエリアによって取り囲まれた図12Aの拡大された候補赤目ピクセルエリアの略図である。 候補グレースケール虹彩ピクセルエリアによって取り囲まれた候補赤目ピクセルエリアの略図である。 一組の8つの隣接ピクセルエリアによって取り囲まれた候補グレースケール虹彩ピクセルエリアの略図である。 グレーにハイライトされた5つの隣接ピクセルエリアの異なるサブセットを有する候補グレースケール虹彩ピクセルエリアの異なる略図である。 隣接エリアによって取り囲まれた例示的な候補赤目ピクセルエリアである。 図15Aの隣接エリア及び候補赤目ピクセルエリアに対応する例示的な入力画像の領域の赤さ分類マップをしきい値処理することによって生成された画像である。 図15Aの隣接エリア及び候補赤目ピクセルエリアに対応する別の例示的な入力画像の領域の赤さ分類マップをしきい値処理することによって生成された画像である。 隣接エリアによって取り囲まれた例示的なグレースケール虹彩エリアである。 一組の8つの隣接エリアによって取り囲まれた別の例示的なグレースケール虹彩エリアである。 赤目候補ペアリングプロセスの一実施形態で使用される幾何学的形状を示す2つの同心円の略図である。 入力画像において検出された候補赤目ペア領域の略図である。 標準化された候補赤目ペアテンプレートの略図である。 基準テキスチャパターン及び候補赤目ピクセルエリアの候補ペアについて計算された候補テキスチャパターンの統計モデルを生成する方法のフロー図である。 例示的な、目のペアの基準テキスチャパターンに対応する一組の固有画像を示す図である。 複数の画像解像度での赤目検出に基づいて入力画像における赤目を検出する方法の一実施形態のフロー図である。 検出された赤目ピクセルを補正する方法の一実施形態のフロー図である。 コーナ領域のクロッピングラインを示す、出力画像解像度にマッピングされた、検出された赤目ピクセルエリアを示す図である。 デジタル画像における赤目ピクセルのセグメント化及び補正を行う方法のフロー図である。 マッピングされた赤目ピクセルエリア及び対応するマッピングされたグレースケール虹彩ピクセルエリアから導出された内側境界領域及び外側境界領域を示す図である。 デジタル画像における赤目を補正する方法の一実施形態で使用される内側赤目ピクセル補正領域及び外側赤目ピクセル補正領域を示す図である。 入力画像のピクセルの緑色成分値の関数としてプロットされた暗化係数のグラフである。 2値画像にわたって重ね合わされた走査ライン、及びピクセルをセグメント化する、ストライプに基づく方法の一実施形態で特定された収容ストライプを示す図である。 ピクセルをセグメント化する、ストライプに基づく方法の一実施形態で生成されたオブジェクトの収容長方形を示す図である。

Claims (10)

  1. サムネイル画像(44)を生成するために、前記入力画像(12)をサブサンプリングし、及び
    前記サムネイル画像(44)において赤目ピクセルエリア(18)を検出することを含む、入力画像(12)を処理する方法。
  2. 前記赤目ピクセルエリア(18)を検出することが、前記サムネイル画像(44)のピクセルの赤さの程度を計算し、及び前記計算されたピクセルの赤さの程度に基づいて、予備的な一組の候補赤目ピクセルエリアを特定することを含み、前記予備的な一組の候補赤目ピクセルエリアを特定することが、拡大されたピクセルエリアを生成するために、しきい値サイズ未満の寸法を有する所与の候補赤目ピクセルエリアを拡大することを含む、請求項1に記載の方法。
  3. 前記予備的な一組の候補赤目ピクセルエリアを特定することが、前記拡大されたピクセルエリアを、前記拡大されたピクセルエリアの周囲の複数のピクセルエリアと比較し、及び前記拡大されたピクセルエリア及び前記周囲のピクセルエリアのそれぞれについて計算された赤さの程度に基づいて、前記拡大されたピクセルエリア及び前記周囲のピクセルエリアの中から、前記所与の候補赤目ピクセルエリアに取って代わるピクセルエリアを選択することを含む、請求項2に記載の方法。
  4. 所与の候補赤目ピクセルエリア(108)の周囲のピクセル領域(142)のピクセル境界を特定し、
    前記計算されたピクセルの赤さの程度に対してしきい値を適用することによって、前記ピクセル境界内のピクセルを赤ピクセルと非赤ピクセルとに分類し、及び
    一組の連続した赤ピクセルが、前記所与の候補赤目ピクセルエリア(108)から前記ピクセル境界へ伸びる場合に、前記予備的な一組から前記所与の候補赤目ピクセルエリアをフィルタリングすることをさらに含む、請求項2に記載の方法。
  5. 前記予備的な一組における候補赤目ピクセルエリアの候補ペアについて計算された候補テキスチャパターンの基準テキスチャパターンとの比較に基づいて、前記予備的な一組における候補赤目ピクセルエリアをペアにし、及びペアにされていない候補赤目ピクセルエリアを前記予備的な一組からフィルタリングすることをさらに含む、請求項2に記載の方法。
  6. 前記入力画像(12)において赤目ピクセルエリアを検出し、及び前記入力画像(12)において検出された赤目ピクセルエリアを、前記サムネイル画像(44)において検出された赤目ピクセルエリアとマージすることによって、一組の検出された赤目ピクセルエリア(18)を生成することをさらに含む、請求項1に記載の方法。
  7. 前記サムネイル画像(44)において検出された赤目ピクセルエリア(18)に基づいて、前記入力画像(12)における赤目を補正することをさらに含み、前記赤目を補正することが、前記検出された赤目ピクセルエリア(18)を前記入力画像(12)にマッピングし、前記入力画像にマッピングされた赤目ピクセルエリア(18)を拡大し、及びグレースケールしきい値に基づいて、同心の内側境界領域(222)と外側境界領域(224)との間にピクセルを分類することを含む、請求項1に記載の方法。
  8. 赤目ピクセルとして分類されたピクセルを包含する赤目ピクセル補正領域(228)のピクセルの当初の色値を補正し、及び前記赤目ピクセル補正領域(228)の周囲の平滑化領域(232)のピクセルの当初の色値を補正することをさらに含み、前記平滑化領域(232)のピクセルの当初の色値が、前記所与の赤目ピクセル補正領域(228)からの距離が減少する量によって補正され、前記赤目ピクセル補正領域(228)のピクセルの当初の色値が、前記赤目ピクセル補正領域(228)内の位置に関係なく補正される、請求項37に記載の方法。
  9. 当初の色値を有するピクセルのラインを有する入力画像(12)を処理する方法であって、
    前記入力画像(12)の各エリアに対応する1つ又は複数の赤目ピクセルエリアを検出し、
    隣接するライン(262)のピクセルに関係なくライン(260)ごとに、前記検出された赤目ピクセルエリアに対応する前記入力画像(12)の各ピクセルを、赤目ピクセル又は非赤目ピクセルとして分類し、及び
    赤目ピクセルとして分類された、前記入力画像(12)のピクセルの前記当初の色値を補正することを含む、方法。
  10. 入力画像(12)を処理するためのシステムであって、
    サムネイル画像(44)を生成するために、前記入力画像(12)をサブサンプリングし、及び
    前記サムネイル画像(44)において赤目ピクセルエリア(18)を検出するように動作可能な赤目検出モジュールを含む、システム。
JP2006524898A 2003-08-29 2004-08-26 組み込みアプリケーションに適した、画像における赤目の検出と補正を行うシステム及び方法 Pending JP2007504719A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/653,021 US7454040B2 (en) 2003-08-29 2003-08-29 Systems and methods of detecting and correcting redeye in an image suitable for embedded applications
PCT/US2004/027962 WO2005022466A2 (en) 2003-08-29 2004-08-26 Detecting and correcting redeye in an image

Publications (1)

Publication Number Publication Date
JP2007504719A true JP2007504719A (ja) 2007-03-01

Family

ID=34217805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006524898A Pending JP2007504719A (ja) 2003-08-29 2004-08-26 組み込みアプリケーションに適した、画像における赤目の検出と補正を行うシステム及び方法

Country Status (4)

Country Link
US (1) US7454040B2 (ja)
EP (1) EP1658590A2 (ja)
JP (1) JP2007504719A (ja)
WO (1) WO2005022466A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011458A (ja) * 2008-06-27 2010-01-14 Toshiba Corp 画像処理装置、画像処理方法及び画像処理プログラム

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630006B2 (en) 1997-10-09 2009-12-08 Fotonation Ireland Limited Detecting red eye filter and apparatus using meta-data
US7738015B2 (en) 1997-10-09 2010-06-15 Fotonation Vision Limited Red-eye filter method and apparatus
US7042505B1 (en) 1997-10-09 2006-05-09 Fotonation Ireland Ltd. Red-eye filter method and apparatus
US7352394B1 (en) * 1997-10-09 2008-04-01 Fotonation Vision Limited Image modification based on red-eye filter analysis
US7792970B2 (en) 2005-06-17 2010-09-07 Fotonation Vision Limited Method for establishing a paired connection between media devices
US8170294B2 (en) 2006-11-10 2012-05-01 DigitalOptics Corporation Europe Limited Method of detecting redeye in a digital image
US7680342B2 (en) 2004-08-16 2010-03-16 Fotonation Vision Limited Indoor/outdoor classification in digital images
US7536036B2 (en) * 2004-10-28 2009-05-19 Fotonation Vision Limited Method and apparatus for red-eye detection in an acquired digital image
US7920723B2 (en) 2005-11-18 2011-04-05 Tessera Technologies Ireland Limited Two stage detection for photographic eye artifacts
US7689009B2 (en) 2005-11-18 2010-03-30 Fotonation Vision Ltd. Two stage detection for photographic eye artifacts
US7970182B2 (en) 2005-11-18 2011-06-28 Tessera Technologies Ireland Limited Two stage detection for photographic eye artifacts
US7587085B2 (en) * 2004-10-28 2009-09-08 Fotonation Vision Limited Method and apparatus for red-eye detection in an acquired digital image
US7574016B2 (en) 2003-06-26 2009-08-11 Fotonation Vision Limited Digital image processing using face detection information
US8254674B2 (en) 2004-10-28 2012-08-28 DigitalOptics Corporation Europe Limited Analyzing partial face regions for red-eye detection in acquired digital images
US8036458B2 (en) 2007-11-08 2011-10-11 DigitalOptics Corporation Europe Limited Detecting redeye defects in digital images
US7336821B2 (en) * 2006-02-14 2008-02-26 Fotonation Vision Limited Automatic detection and correction of non-red eye flash defects
US9412007B2 (en) 2003-08-05 2016-08-09 Fotonation Limited Partial face detector red-eye filter method and apparatus
US8520093B2 (en) 2003-08-05 2013-08-27 DigitalOptics Corporation Europe Limited Face tracker and partial face tracker for red-eye filter method and apparatus
JP2005092759A (ja) * 2003-09-19 2005-04-07 Fuji Photo Film Co Ltd 画像処理装置、画像処理方法、および赤目検出方法ならびにプログラム
JP4470434B2 (ja) * 2003-10-06 2010-06-02 富士ゼロックス株式会社 動作識別装置、及び対象物の姿勢識別装置
JP4345622B2 (ja) * 2003-11-05 2009-10-14 オムロン株式会社 瞳色推定装置
US20110102643A1 (en) * 2004-02-04 2011-05-05 Tessera Technologies Ireland Limited Partial Face Detector Red-Eye Filter Method and Apparatus
JP4306482B2 (ja) * 2004-02-09 2009-08-05 株式会社ニコン 赤目画像補正装置、電子カメラおよび赤目画像補正プログラム
US7684642B2 (en) * 2004-03-03 2010-03-23 Eastman Kodak Company Correction of redeye defects in images of humans
JP4505362B2 (ja) * 2004-03-30 2010-07-21 富士フイルム株式会社 赤目検出装置および方法並びにプログラム
US7852377B2 (en) * 2004-04-16 2010-12-14 Arcsoft, Inc. Automatic red eye removal
JP4337614B2 (ja) * 2004-04-26 2009-09-30 カシオ計算機株式会社 電子カメラおよびプログラム
EP1766581A4 (en) * 2004-06-14 2010-11-03 Agency Science Tech & Res DETECTION METHOD BY A DESIRED OBJECT OBSERVATION SYSTEM IN A VERY DYNAMIC ENVIRONMENT
US20060008169A1 (en) * 2004-06-30 2006-01-12 Deer Anna Y Red eye reduction apparatus and method
US7627146B2 (en) * 2004-06-30 2009-12-01 Lexmark International, Inc. Method and apparatus for effecting automatic red eye reduction
JP4599110B2 (ja) * 2004-07-30 2010-12-15 キヤノン株式会社 画像処理装置及びその方法、撮像装置、プログラム
US7403654B2 (en) * 2004-10-04 2008-07-22 Arcsoft, Inc. Enhanced automatic red eye removal
JP4901229B2 (ja) * 2005-03-11 2012-03-21 富士フイルム株式会社 赤目検出方法および装置並びにプログラム
US7747071B2 (en) * 2005-10-27 2010-06-29 Hewlett-Packard Development Company, L.P. Detecting and correcting peteye
US7599577B2 (en) 2005-11-18 2009-10-06 Fotonation Vision Limited Method and apparatus of correcting hybrid flash artifacts in digital images
JP2007164617A (ja) * 2005-12-15 2007-06-28 Yamaguchi Univ ガウス関数を用いたテンプレート作成方法および眼球運動を用いた視力入力コミュニケーション方法
JP4367418B2 (ja) * 2006-01-20 2009-11-18 セイコーエプソン株式会社 印刷制御装置
JP5087936B2 (ja) * 2006-02-16 2012-12-05 株式会社ニコン カメラ
US7903870B1 (en) * 2006-02-24 2011-03-08 Texas Instruments Incorporated Digital camera and method
JP4701111B2 (ja) * 2006-03-16 2011-06-15 Hoya株式会社 パターンマッチングシステム及び被写体追尾システム
JP2007305030A (ja) * 2006-05-15 2007-11-22 Fujifilm Corp 赤目処理方法および装置ならびにプログラム
EP2033142B1 (en) 2006-06-12 2011-01-26 Tessera Technologies Ireland Limited Advances in extending the aam techniques from grayscale to color images
US8064694B2 (en) * 2006-06-21 2011-11-22 Hewlett-Packard Development Company, L.P. Nonhuman animal integument pixel classification
JP4757116B2 (ja) * 2006-06-30 2011-08-24 キヤノン株式会社 パラメータ学習方法及びその装置、パターン識別方法及びその装置、プログラム
KR100834669B1 (ko) * 2006-10-20 2008-06-02 삼성전자주식회사 썸네일 이미지 생성을 위한 웨이블릿 변환 기반 이미지부호화기, 복호화기 및 그 방법
US7859708B2 (en) * 2006-12-14 2010-12-28 Xerox Corporation Method and multi-function machine having capability of generating and printing thumbnails corresponding to scanned documents
US20080170778A1 (en) * 2007-01-15 2008-07-17 Huitao Luo Method and system for detection and removal of redeyes
US8055067B2 (en) 2007-01-18 2011-11-08 DigitalOptics Corporation Europe Limited Color segmentation
JP2010520567A (ja) 2007-03-05 2010-06-10 フォトネーション ビジョン リミテッド 顔の位置および向きを用いた赤目の誤検出フィルタリング
US8503818B2 (en) 2007-09-25 2013-08-06 DigitalOptics Corporation Europe Limited Eye defect detection in international standards organization images
JP4956452B2 (ja) * 2008-01-25 2012-06-20 富士重工業株式会社 車両用環境認識装置
JP4876080B2 (ja) * 2008-01-25 2012-02-15 富士重工業株式会社 環境認識装置
US8212864B2 (en) 2008-01-30 2012-07-03 DigitalOptics Corporation Europe Limited Methods and apparatuses for using image acquisition data to detect and correct image defects
CN101527040B (zh) * 2008-03-05 2012-12-19 华为终端有限公司 图像处理方法及系统
US9066054B2 (en) * 2008-05-27 2015-06-23 Xerox Corporation Image indexed rendering of images for tuning images from single or multiple print engines
US20090324127A1 (en) * 2008-06-30 2009-12-31 Madhukar Budagavi Method and System for Automatic Red-Eye Correction
US8396261B2 (en) 2008-08-01 2013-03-12 Hewlett-Packard Development Company, L.P. Method for red-eye detection
US8081254B2 (en) 2008-08-14 2011-12-20 DigitalOptics Corporation Europe Limited In-camera based method of detecting defect eye with high accuracy
US8295637B2 (en) * 2009-01-07 2012-10-23 Seiko Epson Corporation Method of classifying red-eye objects using feature extraction and classifiers
US8295593B2 (en) * 2009-01-07 2012-10-23 Seiko Epson Corporation Method of detecting red-eye objects in digital images using color, structural, and geometric characteristics
JP4656238B2 (ja) * 2009-01-19 2011-03-23 株式会社ニコン 画像処理装置およびデジタルカメラ
WO2010138121A1 (en) * 2009-05-28 2010-12-02 Hewlett-Packard Development Company, L.P. Image processing
US8687911B2 (en) * 2009-06-24 2014-04-01 Nokia Corporation Adaptive method for processing digital images, and an image processing device
US8300929B2 (en) * 2009-10-07 2012-10-30 Seiko Epson Corporation Automatic red-eye object classification in digital photographic images
US9721160B2 (en) 2011-04-18 2017-08-01 Hewlett-Packard Development Company, L.P. Manually-assisted detection of redeye artifacts
US9041954B2 (en) 2011-06-07 2015-05-26 Hewlett-Packard Development Company, L.P. Implementing consistent behavior across different resolutions of images
US8970902B2 (en) 2011-09-19 2015-03-03 Hewlett-Packard Development Company, L.P. Red-eye removal systems and method for variable data printing (VDP) workflows
JP5000781B1 (ja) * 2011-11-09 2012-08-15 楽天株式会社 画像処理装置、画像処理装置の制御方法、プログラム、及び情報記憶媒体
US8938116B2 (en) * 2011-12-08 2015-01-20 Yahoo! Inc. Image cropping using supervised learning
US8855427B2 (en) * 2011-12-16 2014-10-07 Harris Corporation Systems and methods for efficiently and accurately detecting changes in spatial feature data
US8832593B2 (en) 2011-12-16 2014-09-09 Harris Corporation Systems and methods for efficient spatial feature analysis
US8755606B2 (en) 2011-12-16 2014-06-17 Harris Corporation Systems and methods for efficient feature extraction accuracy using imperfect extractors
US8441548B1 (en) * 2012-06-15 2013-05-14 Google Inc. Facial image quality assessment
KR101491461B1 (ko) * 2013-08-02 2015-02-23 포항공과대학교 산학협력단 공분산 기술자를 이용하는 물체 인식 방법 및 장치
GB2555268A (en) * 2015-06-12 2018-04-25 Chand Mathur Ashok Method and apparatus of very much faster 3D printer
CN109993115B (zh) * 2019-03-29 2021-09-10 京东方科技集团股份有限公司 图像处理方法、装置及可穿戴设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772537A (ja) * 1993-07-19 1995-03-17 Eastman Kodak Co フラッシュ発光による瞳の色調不良の自動検出及び補正
JP2001148780A (ja) * 1999-09-07 2001-05-29 Fuji Photo Film Co Ltd 赤目修正対象領域の設定方法および赤目修正方法
JP2003150961A (ja) * 2001-09-03 2003-05-23 Agfa Gevaert Ag 赤目欠陥の自動識別方法を含むデジタル写真画像データの処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6009209A (en) 1997-06-27 1999-12-28 Microsoft Corporation Automated removal of red eye effect from a digital image
US6292574B1 (en) * 1997-08-29 2001-09-18 Eastman Kodak Company Computer program product for redeye detection
US6016354A (en) 1997-10-23 2000-01-18 Hewlett-Packard Company Apparatus and a method for reducing red-eye in a digital image
US6873743B2 (en) 2001-03-29 2005-03-29 Fotonation Holdings, Llc Method and apparatus for the automatic real-time detection and correction of red-eye defects in batches of digital images or in handheld appliances
US7174034B2 (en) * 2001-04-13 2007-02-06 Seiko Epson Corporation Redeye reduction of digital images
US7035461B2 (en) * 2002-08-22 2006-04-25 Eastman Kodak Company Method for detecting objects in digital images
US20040196503A1 (en) * 2003-04-07 2004-10-07 Eastman Kodak Company Index print having a correction indicator thereon and a method of making the index print

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0772537A (ja) * 1993-07-19 1995-03-17 Eastman Kodak Co フラッシュ発光による瞳の色調不良の自動検出及び補正
JP2001148780A (ja) * 1999-09-07 2001-05-29 Fuji Photo Film Co Ltd 赤目修正対象領域の設定方法および赤目修正方法
JP2003150961A (ja) * 2001-09-03 2003-05-23 Agfa Gevaert Ag 赤目欠陥の自動識別方法を含むデジタル写真画像データの処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010011458A (ja) * 2008-06-27 2010-01-14 Toshiba Corp 画像処理装置、画像処理方法及び画像処理プログラム

Also Published As

Publication number Publication date
US7454040B2 (en) 2008-11-18
WO2005022466A3 (en) 2006-03-09
WO2005022466A2 (en) 2005-03-10
US20050047656A1 (en) 2005-03-03
EP1658590A2 (en) 2006-05-24

Similar Documents

Publication Publication Date Title
US7454040B2 (en) Systems and methods of detecting and correcting redeye in an image suitable for embedded applications
US8861845B2 (en) Detecting and correcting redeye in an image
EP1918872B1 (en) Image segmentation method and system
US6389155B2 (en) Image processing apparatus
US8086031B2 (en) Region detection
US7116820B2 (en) Detecting and correcting red-eye in a digital image
JP4954081B2 (ja) 人間の画像における虹彩及び瞳孔の検出方法
JP4423298B2 (ja) デジタル画像におけるテキスト状エッジの強調
US7428331B2 (en) Page background estimation using color, texture and edge features
US20030174869A1 (en) Image processing apparatus, image processing method, program and recording medium
JP2005202562A (ja) 画像処理方法、画像処理装置及び画像処理プログラム
CN105339951A (zh) 用于检测文档边界的方法
US6771836B2 (en) Zero-crossing region filtering for processing scanned documents
JP7557169B2 (ja) 方法、システム、および、コンピュータプログラム
US20070098260A1 (en) Detecting and correcting peteye
EP2782065B1 (en) Image-processing device removing encircling lines for identifying sub-regions of image
US8300929B2 (en) Automatic red-eye object classification in digital photographic images
JP4599110B2 (ja) 画像処理装置及びその方法、撮像装置、プログラム
JP3820751B2 (ja) 画像処理装置および方法ならびに画像処理プログラムを記録した記録媒体
US20230316697A1 (en) Association method, association system, and non-transitory computer-readable storage medium
US9225876B2 (en) Method and apparatus for using an enlargement operation to reduce visually detected defects in an image
JP2006048223A (ja) 画像処理装置及び画像処理方法及びコンピュータプログラム
WO2008119368A1 (en) Method for red eye detection in a digital image

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20091118

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20091126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100623

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101026