[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007335972A - Driving method of ccd solid-state imaging element, and ccd solid-state imaging apparatus - Google Patents

Driving method of ccd solid-state imaging element, and ccd solid-state imaging apparatus Download PDF

Info

Publication number
JP2007335972A
JP2007335972A JP2006162471A JP2006162471A JP2007335972A JP 2007335972 A JP2007335972 A JP 2007335972A JP 2006162471 A JP2006162471 A JP 2006162471A JP 2006162471 A JP2006162471 A JP 2006162471A JP 2007335972 A JP2007335972 A JP 2007335972A
Authority
JP
Japan
Prior art keywords
charge transfer
charge
transfer path
vertical
state imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006162471A
Other languages
Japanese (ja)
Other versions
JP4759450B2 (en
Inventor
Masaru Sato
優 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006162471A priority Critical patent/JP4759450B2/en
Publication of JP2007335972A publication Critical patent/JP2007335972A/en
Application granted granted Critical
Publication of JP4759450B2 publication Critical patent/JP4759450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a CCD solid-state imaging element provided with an electric charge storage means for preventing the generation of longitudinal lines in an imaged image. <P>SOLUTION: In a driving method for transferring electric charges in a vertical direction while changing applied voltages to two electrodes in pairs at the same time among transfer electrodes V1 to V8 configuring vertical electric charge transfer paths of the CCD solid-state imaging element provided with: the vertical electric charge transfer paths; the electric charge storage means LM for receiving the signal electric charges transferred through each vertical electric charge transfer path and temporarily storing the signal electric charges; and a horizontal electric charge transfer path for receiving the stored electric charges in the electric charge storage means LM and transferring the electric charges in the direction of an output stage, the applied voltages to the two electrodes V3, V7 in pairs are changed in different timing (shifted by a time t) for time zones (time zones of timings g to j) when the stored electric charges in the electric charge storage means LM are transferred to the horizontal electric charge transfer path. Thus, potential variations of a semiconductor substrate whereon the electric charge storage means LM is formed are suppressed and a defect such as the formation of the longitudinal lines can be avoided. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、垂直電荷転送路(垂直シフトレジスタ)と水平電荷転送路(水平シフトレジスタ)との接続部分に転送電荷を一時蓄積保持するラインメモリを備えるCCD(Charge Coupled Devices:電荷結合素子)型固体撮像装置に係り、特に、高品質な画像を撮像することが可能なCCD型固体撮像装置及びその駆動方法に関する。   The present invention relates to a CCD (Charge Coupled Devices) type comprising a line memory for temporarily storing and holding transfer charges at a connecting portion between a vertical charge transfer path (vertical shift register) and a horizontal charge transfer path (horizontal shift register). The present invention relates to a solid-state imaging device, and more particularly to a CCD solid-state imaging device capable of capturing a high-quality image and a driving method thereof.

垂直電荷転送路と水平電荷転送路との接続部分に転送電荷を一時蓄積保持するラインメモリを備えるCCD型固体撮像装置の一例が下記の特許文献1に記載されている。このようなCCD型固体撮像装置を図5で説明する。   An example of a CCD type solid-state imaging device having a line memory that temporarily stores and holds transfer charges at a connection portion between a vertical charge transfer path and a horizontal charge transfer path is described in Patent Document 1 below. Such a CCD type solid-state imaging device will be described with reference to FIG.

CCD型固体撮像装置100の半導体基板上には、多数のフォトダイオード101(R,G,Bは、各フォトダイオード上に積層されたカラーフィルタの色(赤,緑,青)を示している。)が二次元アレイ状、図示の例では正方格子状に配列形成されており、フォトダイオード101の各列に沿って垂直電荷転送路102が形成されている。垂直電荷転送路102は、埋め込みチャネルと、その上に絶縁膜を介して積層された垂直転送電極V1,V2,…,V8によって構成される。   On the semiconductor substrate of the CCD type solid-state imaging device 100, a large number of photodiodes 101 (R, G, B indicate the colors (red, green, blue) of the color filters stacked on each photodiode. ) Are arranged in a two-dimensional array, in the example shown in a square lattice, and a vertical charge transfer path 102 is formed along each column of the photodiodes 101. The vertical charge transfer path 102 includes a buried channel and vertical transfer electrodes V1, V2,..., V8 stacked thereon via an insulating film.

各垂直電荷転送路102は、1つのフォトダイオード101に対して2枚の垂直転送電極を備え、図示する例では、垂直方向上側の垂直転送電極とフォトダイオード101とが読出ゲート103によって接続され、フォトダイオード101の受光電荷(信号電荷)が読出ゲート103を通して対応の垂直転送電極下に形成される電位パケット内に読み出される。読み出された信号電荷は、各垂直転送電極V1,V2,…,V8に転送パルスφV1,φV2,…φV8が印加されることで、半導体基板の下辺部方向に転送される。   Each vertical charge transfer path 102 includes two vertical transfer electrodes for one photodiode 101. In the illustrated example, the vertical transfer electrode on the upper side in the vertical direction and the photodiode 101 are connected by a read gate 103. The light receiving charge (signal charge) of the photodiode 101 is read out into a potential packet formed under the corresponding vertical transfer electrode through the reading gate 103. The read signal charges are transferred in the direction of the lower side of the semiconductor substrate by applying transfer pulses φV1, φV2,... ΦV8 to the vertical transfer electrodes V1, V2,.

半導体基板100の下辺部には、各垂直電荷転送路102の端部に接続されるラインメモリ104が設けられ、このラインメモリ104と並行に水平電荷転送路105が設けられる。ラインメモリ104は、各垂直電荷転送路対応に素子分離部で区画された不純物領域と、その上に絶縁膜を介して積層され上記の転送パルスとは独立のパルス信号φLMが印加される電極とで構成され、垂直電荷転送路102によって転送されてきた信号電荷を受け取り一時蓄積する。   A line memory 104 connected to the end of each vertical charge transfer path 102 is provided on the lower side of the semiconductor substrate 100, and a horizontal charge transfer path 105 is provided in parallel with the line memory 104. The line memory 104 includes an impurity region partitioned by an element isolation unit corresponding to each vertical charge transfer path, an electrode stacked thereon via an insulating film, and an electrode to which a pulse signal φLM independent of the transfer pulse is applied. The signal charge transferred by the vertical charge transfer path 102 is received and temporarily stored.

水平電荷転送路105は、埋め込みチャネルとその上に絶縁膜を介して積層された水平転送電極H1,H2とで構成され、ラインメモリ104から移された信号電荷を、転送パルスφH1,φH2によって出力段方向に転送する。   The horizontal charge transfer path 105 includes a buried channel and horizontal transfer electrodes H1 and H2 stacked on the insulating channel via an insulating film. The signal charge transferred from the line memory 104 is output by transfer pulses φH1 and φH2. Transfer in the column direction.

水平電荷転送路105の出力段には、出力アンプ106が設けられる。この出力アンプ106は、水平電荷転送路105の出力段まで転送されてきた信号電荷の電荷量に応じた電圧値信号を画像信号として出力する。   An output amplifier 106 is provided at the output stage of the horizontal charge transfer path 105. The output amplifier 106 outputs a voltage value signal corresponding to the amount of signal charges transferred to the output stage of the horizontal charge transfer path 105 as an image signal.

図6は、図5に示すフォトダイオード略1.5個分の断面模式図である。この固体撮像素子100は、n型シリコン基板110の表面部にpウェル層111が形成され、このpウェル層111の表面部に、pウェル層111との間でpn接合(フォトダイオード:光電変換素子)を構成するn領域112が形成される。   FIG. 6 is a schematic cross-sectional view of approximately 1.5 photodiodes shown in FIG. In this solid-state imaging device 100, a p-well layer 111 is formed on the surface portion of an n-type silicon substrate 110, and a pn junction (photodiode: photoelectric conversion) is formed between the surface portion of the p-well layer 111 and the p-well layer 111. An n region 112 constituting the device is formed.

図示の例では、n領域112の左脇に素子分離領域を構成する高濃度p領域113が形成され、n領域112の表面に、p領域113に連続する表面p層115が設けられる。pウェル層111には、n領域112に蓄積された信号電荷を受け取り転送する垂直電荷転送路を構成するn領域(埋め込みチャネル)116が、当該n領域112の右側に離間して設けられる。   In the illustrated example, a high-concentration p region 113 constituting an element isolation region is formed on the left side of the n region 112, and a surface p layer 115 continuous with the p region 113 is provided on the surface of the n region 112. In the p-well layer 111, an n region (buried channel) 116 constituting a vertical charge transfer path for receiving and transferring the signal charge accumulated in the n region 112 is provided on the right side of the n region 112.

これらの各領域112,113,115,116が形成された半導体基板110の最表面には、酸化シリコンでなるゲート絶縁膜120が積層され、その上に、フォトダイオード(n領域112)の受光面上に開口121aを有する遮光膜121が積層される。遮光膜121の下に、垂直電荷転送路を構成する転送電極膜(ポリシリコン膜)122が絶縁層123を介して埋設される。遮光膜121の上には平坦化層125が積層され、その上にカラーフィルタ層126が積層され、最上部に、トップマイクロレンズ127が積層される。   A gate insulating film 120 made of silicon oxide is stacked on the outermost surface of the semiconductor substrate 110 on which these regions 112, 113, 115, and 116 are formed, and a light receiving surface of a photodiode (n region 112) is formed thereon. A light shielding film 121 having an opening 121a is laminated thereon. Under the light shielding film 121, a transfer electrode film (polysilicon film) 122 constituting a vertical charge transfer path is embedded via an insulating layer 123. A planarizing layer 125 is laminated on the light shielding film 121, a color filter layer 126 is laminated thereon, and a top microlens 127 is laminated on the top.

特開2000―350099号公報JP 2000-350099 A

図5,図6で説明したようなCCD型固体撮像素子では、奇数列目及び偶数列目の各垂直電荷転送路によってラインメモリ104に転送されてきた信号電荷を水平電荷転送路に移す場合、奇数列目の垂直電荷転送路による信号電荷と、偶数列目の垂直電荷転送路による信号電荷とを交互にラインメモリ104の該当箇所から水平電荷転送路に移す動作を行う場合がある。   In the CCD type solid-state imaging device described with reference to FIGS. 5 and 6, when the signal charges transferred to the line memory 104 by the vertical charge transfer paths in the odd-numbered columns and even-numbered columns are transferred to the horizontal charge transfer paths, There is a case where an operation of alternately transferring a signal charge on the odd-numbered vertical charge transfer path and a signal charge on the even-numbered vertical charge transfer path from the corresponding part of the line memory 104 to the horizontal charge transfer path may be performed.

この場合、例えば奇数列目(または偶数列目)の信号電荷を水平電荷転送路に移すとき、偶数列目(または奇数列目)の信号電荷はラインメモリ104上に保持しておき水平電荷転送路105側に漏れない様に固体撮像素子を駆動しないと、不具合が発生する。これを図7,図8で説明する。   In this case, for example, when the signal charges in the odd-numbered columns (or even-numbered columns) are transferred to the horizontal charge transfer path, the signal charges in the even-numbered columns (or odd-numbered columns) are held on the line memory 104 and transferred horizontally. If the solid-state imaging device is not driven so as not to leak to the path 105 side, a problem occurs. This will be described with reference to FIGS.

図5に示す様なCCD型固体撮像素子を4相駆動する場合、図7に示す様に、通常、垂直転送電極V1に印加する転送パルスφV1を垂直転送電極V5に印加する転送パルスφV5と同じにし、同様に、φV2=φV6,φV3=φV7,φV4=φV8とする。即ち、対となる2電極(V1とV5、V2とV6、V3とV7、V4とV8)に同じ転送パルスを印加する。   When the CCD type solid-state imaging device as shown in FIG. 5 is driven in four phases, the transfer pulse φV1 applied to the vertical transfer electrode V1 is usually the same as the transfer pulse φV5 applied to the vertical transfer electrode V5 as shown in FIG. Similarly, φV2 = φV6, φV3 = φV7, and φV4 = φV8. That is, the same transfer pulse is applied to two pairs of electrodes (V1 and V5, V2 and V6, V3 and V7, V4 and V8).

各転送パルスφV1〜φV4を各電極V1,V2,…,V8に印加することで、図8に示す様に、信号電荷を収容した電位パケットの垂直電荷転送路に沿う方向の長さは、2電極分→3電極分→2電極分→…と伸縮しながら、ラインメモリ(LM)104の方向に進むことになる。   By applying the transfer pulses φV1 to φV4 to the electrodes V1, V2,..., V8, the length of the potential packet containing the signal charge in the direction along the vertical charge transfer path is 2 as shown in FIG. The process proceeds in the direction of the line memory (LM) 104 while expanding / contracting the electrode portion → the three electrode portion → the two electrode portion →.

垂直電荷転送路が停止している期間すなわち電荷保持期間には、信号電荷は4電極中の2電極分の電位パケット内に蓄積されており、その1つ手前の状態は3電極分の電位パケット内に蓄積されている。   During the period in which the vertical charge transfer path is stopped, that is, the charge holding period, the signal charge is accumulated in the potential packet for two electrodes of the four electrodes, and the state immediately before that is the potential packet for three electrodes. Is accumulated within.

電位パケットを3電極状態から2電極状態に変化させるときに、即ち、図8(a)(b)に示す電極V3,V7を電位VM(例えば0V)から電位VL(例えば−8V)に変化させるタイミングkで、奇数列目のラインメモリから水平電荷転送路に電荷転送を行うためにラインメモリ104の電極に印加するパルスφLMがLo状態になっていると(ラインメモリの電位パケットが浅くなっていると)、電極V3,V7に印加するVL電圧の影響で、図6に示すpウェル層111の電位が大きく揺さぶられる。   When the potential packet is changed from the three-electrode state to the two-electrode state, that is, the electrodes V3 and V7 shown in FIGS. 8A and 8B are changed from the potential VM (for example, 0V) to the potential VL (for example, −8V). At timing k, when the pulse φLM applied to the electrode of the line memory 104 for transferring charges from the odd-numbered line memory to the horizontal charge transfer path is in the Lo state (the potential packet of the line memory becomes shallow). 6), the potential of the p-well layer 111 shown in FIG. 6 is greatly shaken by the influence of the VL voltage applied to the electrodes V3 and V7.

この結果、pウェル層111に設けられたラインメモリ104の電位パケットのポテンシャルが更に浅くなる瞬間が生じる。この電位パケット内に蓄積されている信号電荷量が少ない場合には、即ち、暗いシーンを撮影した信号電荷量であれば問題ないが、明るいシーンを撮影し電位パケット内に飽和量に近い信号電荷が蓄積されている場合には、図8(b)に示す様に、偶数列目のラインメモリに保持されている信号電荷が水平電荷転送路側に溢れ出してしまう。   As a result, there occurs a moment when the potential of the potential packet of the line memory 104 provided in the p-well layer 111 becomes further shallow. When the amount of signal charge accumulated in the potential packet is small, that is, there is no problem if the signal charge amount is obtained by photographing a dark scene, but the signal charge is close to the saturation amount in the potential packet after photographing a bright scene. Is accumulated, as shown in FIG. 8B, the signal charge held in the line memory of the even-numbered column overflows to the horizontal charge transfer path side.

つまり、奇数列目の信号電荷に偶数列目の信号電荷の溢れ分が加算され、偶数列目の信号電荷の電荷量は溢れ分だけ少なくなってしまう。この現象が、信号電荷を垂直方向に転送する毎に発生すると、奇数列目の信号電荷量が多くなり、偶数列目の信号電荷量が少なくなり、明るいシーンの撮像画像中に縦線が発生してしまうという不具合が生じる。   That is, the overflow of the even-numbered signal charge is added to the odd-numbered signal charge, and the amount of the even-numbered signal charge is reduced by the overflow. If this phenomenon occurs every time signal charge is transferred in the vertical direction, the signal charge amount in the odd-numbered columns increases, the signal charge amount in the even-numbered columns decreases, and vertical lines occur in the captured image of the bright scene. This causes the problem of end up.

本発明の目的は、明るいシーンを撮影した場合でも縦線の発生を防止することができるCCD型固体撮像素子の駆動方法及びCCD型固体撮像装置を提供することにある。   An object of the present invention is to provide a driving method of a CCD solid-state imaging device and a CCD solid-state imaging device capable of preventing the occurrence of vertical lines even when a bright scene is photographed.

本発明のCCD型固体撮像素子の駆動方法及びCCD型固体撮像装置は、複数の垂直電荷転送路と、各垂直電荷転送路によって転送されてきた信号電荷を受け取り一時保持する電荷保持手段と、該電荷保持手段の蓄積電荷を受け取り出力段方向に転送する水平電荷転送路とを備えるCCD型固体撮像素子の前記垂直電荷転送路を構成する垂直転送電極のうち対となる2電極への印加電圧を同時に変化させながら垂直方向への電荷転送を行う駆動方法等において、前記電荷保持手段の蓄積電荷を前記水平電荷転送路に転送するために該電荷保持手段の電位レベルを電荷転送レベルに保持している時間帯では、前記対となる2電極に印加する電圧を各電極毎に異なるタイミングで変化させることを特徴とする。   A method for driving a CCD solid-state imaging device and a CCD solid-state imaging device according to the present invention include a plurality of vertical charge transfer paths, charge holding means for receiving and temporarily holding signal charges transferred by the vertical charge transfer paths, A voltage applied to two pairs of electrodes among the vertical transfer electrodes constituting the vertical charge transfer path of a CCD type solid-state imaging device having a horizontal charge transfer path that receives the stored charge of the charge holding means and transfers it in the direction of the output stage. In a driving method or the like that performs charge transfer in the vertical direction while changing simultaneously, the potential level of the charge holding means is held at the charge transfer level in order to transfer the accumulated charge of the charge holding means to the horizontal charge transfer path. In a certain time zone, the voltage applied to the pair of two electrodes is changed at different timing for each electrode.

本発明のCCD型固体撮像素子の駆動方法及びCCD型固体撮像装置は、前記垂直電荷転送路によって転送され前記電荷保持手段に保持された信号電荷を、奇数列目の前記垂直電荷転送路による信号電荷と偶数列目の前記垂直電荷転送路による信号電荷とを異なるタイミングで前記水平電荷転送路に転送することを特徴とする。   In the CCD solid-state imaging device driving method and the CCD solid-state imaging device according to the present invention, the signal charges transferred by the vertical charge transfer path and held in the charge holding means are converted into signals by the vertical charge transfer paths in odd columns. Charges and signal charges from the vertical charge transfer paths in even columns are transferred to the horizontal charge transfer paths at different timings.

本発明によれば、電荷保持手段から水平電荷転送路に信号電荷を転送するために該電荷保持手段の電位パケットを浅くしている時間帯では、対となる2電極の電位を同時に変化させずに異なるタイミングで変化させるので、半導体基板の電位の揺れを抑制することができる。これにより、この電位の揺れに起因する不具合が抑制される。   According to the present invention, in the time zone in which the potential packet of the charge holding means is shallow in order to transfer the signal charge from the charge holding means to the horizontal charge transfer path, the potentials of the paired two electrodes are not changed simultaneously. Therefore, fluctuations in the potential of the semiconductor substrate can be suppressed. Thereby, the malfunction resulting from this fluctuation of potential is suppressed.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係るCCD型固体撮像装置の表面模式図である。図示するCCD型固体撮像装置は、CCD型固体撮像素子10と、撮像素子駆動回路30とからなる。CCD型固体撮像素子10の断面構造は図6と同様であるので図示及び説明は省略する。   FIG. 1 is a schematic view of the surface of a CCD solid-state imaging device according to an embodiment of the present invention. The illustrated CCD solid-state imaging device includes a CCD solid-state imaging device 10 and an imaging device driving circuit 30. Since the cross-sectional structure of the CCD type solid-state imaging device 10 is the same as that shown in FIG.

このCCD型固体撮像素子10は、n型半導体基板11の表面部に、多数のアレイ状に形成されたフォトダイオード12を備える。図示する例では、偶数行のフォトダイオード12に対して奇数行のフォトダイオード12が1/2ピッチづつずらして形成され、所謂、ハニカム画素配列となっている。   The CCD solid-state imaging device 10 includes a large number of photodiodes 12 formed in an array on the surface of an n-type semiconductor substrate 11. In the illustrated example, the odd-numbered photodiodes 12 are formed so as to be shifted by 1/2 pitch with respect to the even-numbered photodiodes 12 to form a so-called honeycomb pixel array.

尚、本実施形態は、ハニカム画素配列の固体撮像素子を例に説明するが、図5で説明した正方格子配列の固体撮像素子にも適用可能である。   Although the present embodiment will be described by taking a solid-state image sensor having a honeycomb pixel array as an example, the present embodiment is also applicable to the solid-state image sensor having a square lattice array described with reference to FIG.

各フォトダイオード12内に記載したR,G,Bは、夫々、当該フォトダイオード上に積層されたカラーフィルタの色(R=赤,G=緑,B=青)を示している。   R, G, and B described in each photodiode 12 indicate the color (R = red, G = green, B = blue) of the color filter laminated on the photodiode, respectively.

水平方向に隣接する各フォトダイオード12間には、垂直方向に蛇行して延びる垂直電荷転送路(垂直シフトレジスタ:VCCD)13が形成され、半導体基板11の下辺部には、各垂直電荷転送路13の端部に連絡するラインメモリ(電荷保持手段)14が設けられる。   A vertical charge transfer path (vertical shift register: VCCD) 13 extending meandering in the vertical direction is formed between the photodiodes 12 adjacent in the horizontal direction, and each vertical charge transfer path is formed on the lower side of the semiconductor substrate 11. A line memory (charge holding means) 14 communicating with the end of 13 is provided.

垂直電荷転送路13は、半導体基板11の図6で説明したpウェル層に形成されたn型の埋め込みチャネルと、この埋め込みチャネル上に絶縁膜を介して設けられた垂直転送電極とで構成される。   The vertical charge transfer path 13 includes an n-type buried channel formed in the p-well layer described with reference to FIG. 6 of the semiconductor substrate 11 and a vertical transfer electrode provided on the buried channel via an insulating film. The

ラインメモリ14は、半導体基板11の図6で説明したpウェル層に形成されたn型の不純物領域と、この不純物領域の上に絶縁膜を介して設けられた電極LMとで構成される。ラインメモリ14の不純物領域は、素子分離部によって各垂直電荷転送路対応に区画されている。   The line memory 14 includes an n-type impurity region formed in the p-well layer described with reference to FIG. 6 of the semiconductor substrate 11 and an electrode LM provided on the impurity region via an insulating film. The impurity region of the line memory 14 is partitioned corresponding to each vertical charge transfer path by the element isolation portion.

ラインメモリ14には、水平電荷転送路(水平シフトレジスタ:HCCD)15が併設されている。水平電荷転送路15も、pウェル層に形成されたn型の埋め込みチャネルと、この埋め込みチャネル上に絶縁膜を介して設けられた水平転送電極H1,H2とで構成される。水平電荷転送路15の出力段には出力アンプ16が設けられている。   The line memory 14 is provided with a horizontal charge transfer path (horizontal shift register: HCCD) 15. The horizontal charge transfer path 15 is also composed of an n-type buried channel formed in the p-well layer and horizontal transfer electrodes H1 and H2 provided on the buried channel via an insulating film. An output amplifier 16 is provided at the output stage of the horizontal charge transfer path 15.

各フォトダイオード12が受光量に応じて蓄積した信号電荷は、隣接の垂直電荷転送路13に読み出されたあとラインメモリ14方向に転送され、ラインメモリ14に一時蓄積される。この信号電荷は、ラインメモリ14の電極LMに駆動パルスφLMが印加されることで水平電荷転送路15に転送され、水平電荷転送路15に移された信号電荷は、水平電荷転送路15に沿って出力端まで転送される。そして、水平電荷転送路出力端に設けられた出力アンプ16が、信号電荷量に応じた電圧値信号を出力する。   The signal charges accumulated in accordance with the amount of light received by each photodiode 12 are read out to the adjacent vertical charge transfer path 13, transferred in the direction of the line memory 14, and temporarily accumulated in the line memory 14. This signal charge is transferred to the horizontal charge transfer path 15 by applying a drive pulse φLM to the electrode LM of the line memory 14, and the signal charge transferred to the horizontal charge transfer path 15 is transferred along the horizontal charge transfer path 15. Are transferred to the output terminal. Then, the output amplifier 16 provided at the output terminal of the horizontal charge transfer path outputs a voltage value signal corresponding to the signal charge amount.

尚、「垂直」「水平」という用語を用いているが、これは単に「一方向」「この一方向に対して略直角の方向」という意味である。   The terms “vertical” and “horizontal” are used, but this simply means “one direction” or “a direction substantially perpendicular to this one direction”.

撮像素子駆動回路30は、このCCD型固体撮像装置が組み込まれるデジタルカメラ等の装置側に設けられる制御CPUからの指示を受けて、CCD型固体撮像素子10の垂直電荷転送路13を駆動する垂直転送パルスφV1〜φV8、水平電荷転送路15を駆動する水平転送パルスφH1,φH2、ラインメモリ14の電極LMを駆動するパルスφLMを生成し、CCD型固体撮像素子10に出力する。   The image sensor driving circuit 30 receives a command from a control CPU provided on the side of a device such as a digital camera in which the CCD solid-state imaging device is incorporated, and drives the vertical charge transfer path 13 of the CCD solid-state imaging device 10. Transfer pulses φV 1 to φV 8, horizontal transfer pulses φH 1 and φH 2 that drive the horizontal charge transfer path 15, and a pulse φLM that drives the electrode LM of the line memory 14 are generated and output to the CCD solid-state imaging device 10.

図2は、図1に示す点線矩形枠II内の拡大模式図である。ハニカム配列されたフォトダイオード12の各列の側部には、垂直方向に蛇行する垂直電荷転送路13が設けられる。図示するV1,V2,…,V8は、垂直電荷転送路13に設けられる垂直転送電極である。   FIG. 2 is an enlarged schematic diagram in the dotted rectangular frame II shown in FIG. A vertical charge transfer path 13 meandering in the vertical direction is provided on the side of each column of photodiodes 12 arranged in a honeycomb. V <b> 1, V <b> 2,..., V <b> 8 illustrated are vertical transfer electrodes provided in the vertical charge transfer path 13.

ラインメモリ14に最も近いフォトダイオード12に対しラインメモリ14を近接して設けず、所定距離だけ離れた位置に設けているのは、この所定距離の間で、各列の垂直電荷転送路13の間隔を等間隔にし、ラインメモリ14や水平電荷転送路15に接続するためである。この所定距離の間における垂直電荷転送路の延長部分にも、垂直電荷転送電極V5,V6,V7,V8,V1,V2が設けられる。   The line memory 14 is not provided in proximity to the photodiode 12 closest to the line memory 14 but is provided at a position separated by a predetermined distance between the vertical charge transfer paths 13 of each column. This is because the intervals are equal and connected to the line memory 14 or the horizontal charge transfer path 15. Vertical charge transfer electrodes V5, V6, V7, V8, V1, and V2 are also provided in the extended portion of the vertical charge transfer path between the predetermined distances.

これにより、ラインメモリ14の各電極LM(分離して図示しているが、同一パルスφLMで駆動される。)が水平方向に等間隔で並び、各電極LMは、水平電荷転送路15に等間隔に交互に設けられる水平転送電極H1,H2に整列することになる。   As a result, the electrodes LM of the line memory 14 (shown separately but driven by the same pulse φLM) are arranged at equal intervals in the horizontal direction, and the electrodes LM are arranged in the horizontal charge transfer path 15 and so on. The horizontal transfer electrodes H1 and H2 are alternately arranged at intervals.

図3は、本実施形態に係るCCD型固体撮像装置における駆動タイミングを示す図である。概略の動作は次の通りである。   FIG. 3 is a diagram illustrating drive timing in the CCD solid-state imaging device according to the present embodiment. The general operation is as follows.

垂直電荷転送路(垂直シフトレジスタ)で電荷転送を行うと、1行分の各フォトダイオードの信号電荷が各垂直電荷転送路からラインメモリに転送され、蓄積保持される。   When charge transfer is performed in the vertical charge transfer path (vertical shift register), the signal charge of each photodiode for one row is transferred from each vertical charge transfer path to the line memory and stored and held.

次に、ラインメモリ上の信号電荷のうち、奇数列目の信号電荷が水平電荷転送路(水平シフトレジスタ)に転送され、次に、水平電荷転送路がこの信号電荷を出力段側に転送する。これにより、奇数列目の各信号電荷の電荷量に応じた画像信号が出力アンプから出力される。   Next, among the signal charges on the line memory, the signal charges in the odd-numbered columns are transferred to the horizontal charge transfer path (horizontal shift register), and then the horizontal charge transfer path transfers this signal charge to the output stage side. . Thereby, an image signal corresponding to the charge amount of each signal charge in the odd-numbered column is output from the output amplifier.

次に、空になった水平電荷転送路上に偶数列目の信号電荷をラインメモリから水平電荷転送路に転送する。そして、水平電荷転送路がこの信号電荷を出力段側に転送する。これにより、偶数列目の各信号電荷の電荷量に応じた画像信号が出力アンプから出力される。   Next, the signal charges in the even-numbered columns are transferred from the line memory to the horizontal charge transfer path on the empty horizontal charge transfer path. The horizontal charge transfer path transfers this signal charge to the output stage side. As a result, an image signal corresponding to the charge amount of each signal charge in the even column is output from the output amplifier.

以上の動作を、繰り返すことにより、図1に示す各行のフォトダイオードの信号電荷に応じた画像信号が撮像装置外部に出力される。   By repeating the above operation, an image signal corresponding to the signal charge of each row of photodiodes shown in FIG. 1 is output to the outside of the imaging apparatus.

上述した撮像素子の駆動制御を行うときに、本実施形態では、ラインメモリの電位パケットが浅くなっている時間帯(ラインメモリの電極LMが電荷転送レベル(Loレベル)に維持されている時間帯)で、次の様に垂直転送パルスのタイミング制御を行うことを特徴とする。   In the present embodiment, when the above-described drive control of the image sensor is performed, in the present embodiment, a time zone in which the potential packet of the line memory is shallow (a time zone in which the electrode LM of the line memory is maintained at the charge transfer level (Lo level)). ), The timing control of the vertical transfer pulse is performed as follows.

図4(a)(b)の最上段に図示する電位パケットの状態すなわち電極V4,V5と電極V8,V1の下に電位パケットが形成され、各電位パケット内に信号電荷が蓄積された状態で、図3に示すタイミングaにより電極V2,V6の電位が電位VLから電位VMに変化する。   In the state of the potential packet shown in the uppermost stage of FIGS. 4A and 4B, that is, the potential packet is formed under the electrodes V4 and V5 and the electrodes V8 and V1, and the signal charge is accumulated in each potential packet. The potentials of the electrodes V2 and V6 change from the potential VL to the potential VM at the timing a shown in FIG.

これにより、各電位パケットは3電極分に広がり、ラインメモリに近接する電位パケットは、ラインメモリとの間のバリアが消失して、この電位パケット内の信号電荷がラインメモリの電位パケット内に流れ込む。   As a result, each potential packet spreads over three electrodes, and the potential packet close to the line memory loses its barrier to the line memory, and the signal charge in this potential packet flows into the potential packet of the line memory. .

次のタイミングbで、電極V4,V8の電位が電位VMから電位VLに変化すると、垂直電荷転送路上の電位パケットは3電極分から2電極分に縮まり、次のタイミングcで電極V7,V3の電位が電位VMから電位VLに変化すると、電位パケットはラインメモリ方向に3電極分に広がる。   When the potential of the electrodes V4 and V8 changes from the potential VM to the potential VL at the next timing b, the potential packet on the vertical charge transfer path is reduced from three electrodes to two electrodes, and at the next timing c, the potentials of the electrodes V7 and V3. Changes from the potential VM to the potential VL, the potential packet spreads over three electrodes in the line memory direction.

以下、電極V1,V5の電位がVM→VLとなるタイミングd,電極V4,V8の電位がVL→VMとなるタイミングe,電極V2,V6の電位がVM→VLとなるタイミングf,電極V1,V5の電位がVL→VMとなるタイミングgと進むことで、電位パケットは2電極分→3電極分→2電極分→3電極分と伸縮を繰り返し、信号電荷のラインメモリ方向への転送が行われる。   Hereinafter, timing d when the potentials of the electrodes V1 and V5 are changed from VM to VL, timing e when the potentials of the electrodes V4 and V8 are changed from VL to VM, timing f when the potentials of the electrodes V2 and V6 are changed from VM to VL, electrodes V1, By proceeding with the timing g at which the potential of V5 changes from VL to VM, the potential packet repeats expansion and contraction of 2 electrodes → 3 electrodes → 2 electrodes → 3 electrodes, and signal charges are transferred in the direction of the line memory. Is called.

図3に示すタイミングg1,g2は同タイミングであるが、タイミングg1は電極V1,V5が電位VLから電位VMに変化したタイミングを示し、タイミングg2はラインメモリLMの電位がHiレベル(電荷蓄積レベル)からLoレベル(電荷転送レベル)に変化したタイミングを示している。   The timings g1 and g2 shown in FIG. 3 are the same timing, but the timing g1 indicates the timing when the electrodes V1 and V5 change from the potential VL to the potential VM, and the timing g2 indicates that the potential of the line memory LM is at the Hi level (charge accumulation level). ) To Lo level (charge transfer level).

図4に示す様に、タイミングg1で電極V1,V5の電位が電位VMに変化すると、電位パケットが3電極分に広がる。そして、同じタイミングg2で、ラインメモリLMの電位がLoレベルに変化する。このとき、奇数列目のラインメモリに整列する水平電荷転送路の水平転送電極H1の電位はHiレベルになっており、偶数列目のラインメモリに整列する水平転送電極H2の電位はLoレベルになっている。   As shown in FIG. 4, when the potentials of the electrodes V1 and V5 change to the potential VM at the timing g1, the potential packet spreads over three electrodes. At the same timing g2, the potential of the line memory LM changes to the Lo level. At this time, the potential of the horizontal transfer electrode H1 of the horizontal charge transfer path aligned with the line memory of the odd-numbered column is at the Hi level, and the potential of the horizontal transfer electrode H2 aligned with the line memory of the even-numbered column is at the Lo level. It has become.

水平転送電極H1,H2とラインメモリLMとの間にはバリアBAが形成されており、このバリアBAは、水平転送電極H1,H2の電位レベルと一緒に変動する。このため、ラインメモリLMの電位がタイミングg2でLoレベルに変化すると、奇数列目のラインメモリLMの蓄積電荷が水平転送電極H1下に形成された電位パケットに流れ込む。   A barrier BA is formed between the horizontal transfer electrodes H1, H2 and the line memory LM, and this barrier BA varies with the potential levels of the horizontal transfer electrodes H1, H2. For this reason, when the potential of the line memory LM changes to the Lo level at the timing g2, the accumulated charges of the odd-numbered line memory LM flow into the potential packet formed under the horizontal transfer electrode H1.

しかし、ラインメモリLMの電位がLoレベルに変化しても、偶数列目のラインメモリLMの電位パケットと水平転送電極H2下に形成されている電位パケットとの間にはバリアBAが存在するため、偶数列目のラインメモリLMの蓄積電荷は、ラインメモリLMの電位パケットに蓄積されたままとなる。   However, even if the potential of the line memory LM changes to the Lo level, a barrier BA exists between the potential packet of the even-numbered line memory LM and the potential packet formed under the horizontal transfer electrode H2. The accumulated charge in the line memory LM in the even-numbered column remains accumulated in the potential packet of the line memory LM.

しかしながら、このとき(ラインメモリがLoレベルになっておりその電位パケットが浅くなっているとき)、ラインメモリLMが形成されているpウェル層の電位が大きく変動し、また、偶数列目のラインメモリLMに蓄積されている信号電荷量が飽和電荷量に近いと、偶数列目のラインメモリの蓄積電荷がバリアBAを越えて水平転送電極H2下の電位パケットに漏れてしまう。この漏れた電荷は、水平電荷転送路の電荷転送に伴って奇数列目の信号電荷と混合され、上述した〔発明が解決しようとする課題〕で述べた不具合が発生する。   However, at this time (when the line memory is at the Lo level and the potential packet is shallow), the potential of the p-well layer in which the line memory LM is formed fluctuates greatly, and the lines in the even-numbered columns If the signal charge amount stored in the memory LM is close to the saturation charge amount, the charge stored in the line memory of the even-numbered column leaks to the potential packet below the horizontal transfer electrode H2 over the barrier BA. This leaked charge is mixed with the signal charges in the odd-numbered columns along with the charge transfer in the horizontal charge transfer path, and the above-mentioned problem described in [Problems to be solved by the invention] occurs.

そこで、ラインメモリの電位がLoレベルに保持されている時間帯では、タイミングhで垂直転送電極V3の電位を電位VMから電位VLに変化させ、タイミングhから時間tだけずらしたタイミングiで垂直転送電極V7の電位を電位VMから電位VLに変化させる。   Therefore, in the time zone in which the potential of the line memory is held at the Lo level, the potential of the vertical transfer electrode V3 is changed from the potential VM to the potential VL at the timing h, and the vertical transfer is performed at the timing i shifted from the timing h by the time t. The potential of the electrode V7 is changed from the potential VM to the potential VL.

これにより、電極V3,V7の電位を同時に電位VMから電位VLに変化させる場合(図7の場合)と比較してpウェル層の電位変動が抑制され、偶数列目のラインメモリLMの蓄積電荷の水平電荷転送路への漏れが抑制される。   As a result, compared to the case where the potentials of the electrodes V3 and V7 are simultaneously changed from the potential VM to the potential VL (in the case of FIG. 7), the potential fluctuation in the p-well layer is suppressed, and the accumulated charge in the line memory LM in the even-numbered columns Leakage to the horizontal charge transfer path is suppressed.

次のタイミングjでは、ラインメモリLMの電位がLoレベルからHiレベルに変化され、以後、図3に示す様に、水平電荷転送路による奇数列目の信号電荷の出力、偶数列目のラインメモリLMから水平電荷転送路への電荷転送、水平電荷転送路による偶数列目の信号電荷の出力が行われる。これにより、垂直電荷転送路上の電位状態は、図4(a)(b)の最上段の状態になり、以後、上記と同様の動作が繰り返されることで、1画面分の画像信号が水平電荷転送路から出力される。   At the next timing j, the potential of the line memory LM is changed from the Lo level to the Hi level. Thereafter, as shown in FIG. 3, the output of the signal charges in the odd-numbered columns through the horizontal charge transfer path, the line memories in the even-numbered columns. Charge transfer from the LM to the horizontal charge transfer path, and output of the signal charges in the even-numbered columns through the horizontal charge transfer path are performed. As a result, the potential state on the vertical charge transfer path becomes the uppermost state in FIGS. 4A and 4B, and thereafter, the same operation as described above is repeated, so that the image signal for one screen becomes the horizontal charge. Output from the transfer path.

以上述べた様に、本実施形態によれば、垂直電荷転送とラインメモリから水平電荷転送路への電荷転送とを同時並行的に行うことができるため、高フレームレートで画像信号を撮像素子外部に読み出すことができる。しかも、このとき、ウェル層の電位変動を抑制して垂直電荷転送を行うことができるため、この電位変動に起因する撮像画像の画質劣化を抑制することが可能となる。   As described above, according to the present embodiment, since the vertical charge transfer and the charge transfer from the line memory to the horizontal charge transfer path can be performed simultaneously in parallel, the image signal is transmitted to the outside of the image sensor at a high frame rate. Can be read out. In addition, since the vertical charge transfer can be performed while suppressing the potential fluctuation of the well layer at this time, it is possible to suppress the degradation of the image quality of the captured image due to the potential fluctuation.

本発明に係るCCD型固体撮像素子の駆動方法及びCCD型固体撮像装置は、高画質の撮像画像データを高フレームレートで出力することができるため、デジタルカメラ等に搭載するCCD型固体撮像装置に適用すると有用である。   Since the CCD solid-state imaging device driving method and the CCD solid-state imaging device according to the present invention can output high-quality captured image data at a high frame rate, the CCD solid-state imaging device mounted on a digital camera or the like can be used. It is useful to apply.

本発明の一実施形態に係るラインメモリを備えるCCD型固体撮像装置の説明図である。It is explanatory drawing of a CCD type solid-state imaging device provided with the line memory which concerns on one Embodiment of this invention. 図1に示す点線矩形枠IIの拡大模式図である。It is an expansion schematic diagram of the dotted-line rectangular frame II shown in FIG. 図1に示すCCD型固体撮像装置の駆動タイミングチャートである。2 is a drive timing chart of the CCD type solid-state imaging device shown in FIG. 1. 図3の駆動タイミングチャートによって駆動される電荷転送路,ラインメモリの電位状態の遷移図である。FIG. 4 is a transition diagram of potential states of charge transfer paths and line memories driven by the drive timing chart of FIG. 3. 従来のラインメモリを備えるCCD型固体撮像装置の説明図である。It is explanatory drawing of the CCD type solid-state imaging device provided with the conventional line memory. 図1または図5に示すCCD型固体撮像装置の略1画素分の断面模式図である。FIG. 6 is a schematic cross-sectional view of approximately one pixel of the CCD solid-state imaging device shown in FIG. 1 or FIG. 5. 本発明の課題を説明するタイミングチャートである。It is a timing chart explaining the subject of the present invention. 図7の駆動タイミングチャートによって駆動される電荷転送路,ラインメモリの電位状態の遷移図である。FIG. 8 is a transition diagram of potential states of a charge transfer path and line memory driven by the drive timing chart of FIG. 7.

符号の説明Explanation of symbols

10 CCD型固体撮像素子
11,110 半導体基板
12,103 フォトダイオード(光電変換素子)
13 垂直電荷転送路
14 ラインメモリ
15 水平電荷転送路
16 出力アンプ
30 撮像素子駆動回路
111 pウェル層
116 垂直電荷転送路の埋め込みチャネル
10 CCD type solid-state imaging device 11, 110 Semiconductor substrate 12, 103 Photodiode (photoelectric conversion device)
13 vertical charge transfer path 14 line memory 15 horizontal charge transfer path 16 output amplifier 30 image sensor drive circuit 111 p well layer 116 embedded channel of vertical charge transfer path

Claims (4)

複数の垂直電荷転送路と、各垂直電荷転送路によって転送されてきた信号電荷を受け取り一時保持する電荷保持手段と、該電荷保持手段の蓄積電荷を受け取り出力段方向に転送する水平電荷転送路とを備えるCCD型固体撮像素子の前記垂直電荷転送路を構成する垂直転送電極のうち対となる2電極への印加電圧を同時に変化させながら垂直方向への電荷転送を行う駆動方法において、前記電荷保持手段の蓄積電荷を前記水平電荷転送路に転送するために該電荷保持手段の電位レベルを電荷転送レベルに保持している時間帯では、前記対となる2電極に印加する電圧を各電極毎に異なるタイミングで変化させることを特徴とするCCD型固体撮像素子の駆動方法。   A plurality of vertical charge transfer paths, charge holding means for receiving and temporarily holding signal charges transferred by each vertical charge transfer path, and a horizontal charge transfer path for receiving accumulated charges of the charge holding means and transferring them in the direction of the output stage. In the driving method of performing charge transfer in the vertical direction while simultaneously changing the applied voltage to two pairs of vertical transfer electrodes constituting the vertical charge transfer path of the CCD solid-state imaging device comprising: In the time zone in which the potential level of the charge holding means is held at the charge transfer level in order to transfer the accumulated charge of the means to the horizontal charge transfer path, the voltage applied to the pair of two electrodes is set for each electrode. A method for driving a CCD type solid-state imaging device, characterized by being changed at different timings. 前記垂直電荷転送路によって転送され前記電荷保持手段に保持された信号電荷を、奇数列目の前記垂直電荷転送路による信号電荷と偶数列目の前記垂直電荷転送路による信号電荷とを異なるタイミングで前記水平電荷転送路に転送することを特徴とする請求項1に記載のCCD型固体撮像素子の駆動方法。   The signal charge transferred by the vertical charge transfer path and held in the charge holding means is changed at different timings between the signal charge by the vertical charge transfer path in the odd-numbered column and the signal charge by the vertical charge transfer path in the even-numbered column. 2. The method for driving a CCD type solid-state imaging device according to claim 1, wherein the transfer is performed to the horizontal charge transfer path. 複数の垂直電荷転送路と各垂直電荷転送路によって転送されてきた信号電荷を受け取り一時保持する電荷保持手段と該電荷保持手段の蓄積電荷を受け取り出力段方向に転送する水平電荷転送路とを備えるCCD型固体撮像素子と、前記垂直電荷転送路を構成する垂直転送電極のうち対となる2電極への印加電圧を同時に変化させながら垂直方向への電荷転送を行う撮像素子駆動手段とを備えるCCD型固体撮像装置において、前記撮像素子駆動手段は、前記電荷保持手段の蓄積電荷を前記水平電荷転送路に転送するために該電荷保持手段の電位レベルを電荷転送レベルに保持している時間帯では前記対となる2電極に印加する電圧を各電極毎に異なるタイミングで変化させる手段を備えることを特徴とするCCD型固体撮像装置。   A plurality of vertical charge transfer paths; charge holding means for receiving and temporarily holding signal charges transferred by the vertical charge transfer paths; and a horizontal charge transfer path for receiving stored charges of the charge holding means and transferring them in the direction of the output stage. A CCD comprising a CCD solid-state imaging device and imaging device driving means for transferring charges in the vertical direction while simultaneously changing applied voltages to two pairs of vertical transfer electrodes constituting the vertical charge transfer path In the type solid-state imaging device, the image sensor driving means is in a time zone in which the potential level of the charge holding means is held at the charge transfer level in order to transfer the accumulated charge of the charge holding means to the horizontal charge transfer path. A CCD type solid-state imaging device comprising means for changing the voltage applied to the pair of two electrodes at different timings for each electrode. 前記垂直電荷転送路によって転送され前記電荷保持手段に保持された信号電荷を、奇数列目の前記垂直電荷転送路による信号電荷と偶数列目の前記垂直電荷転送路による信号電荷とを異なるタイミングで前記水平電荷転送路に転送することを特徴とする請求項3に記載のCCD型固体撮像装置。   The signal charge transferred by the vertical charge transfer path and held in the charge holding means is changed at different timings between the signal charge by the vertical charge transfer path in the odd-numbered column and the signal charge by the vertical charge transfer path in the even-numbered column. 4. The CCD solid-state image pickup device according to claim 3, wherein the image is transferred to the horizontal charge transfer path.
JP2006162471A 2006-06-12 2006-06-12 Method for driving CCD solid-state imaging device and CCD solid-state imaging device Expired - Fee Related JP4759450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162471A JP4759450B2 (en) 2006-06-12 2006-06-12 Method for driving CCD solid-state imaging device and CCD solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162471A JP4759450B2 (en) 2006-06-12 2006-06-12 Method for driving CCD solid-state imaging device and CCD solid-state imaging device

Publications (2)

Publication Number Publication Date
JP2007335972A true JP2007335972A (en) 2007-12-27
JP4759450B2 JP4759450B2 (en) 2011-08-31

Family

ID=38935065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162471A Expired - Fee Related JP4759450B2 (en) 2006-06-12 2006-06-12 Method for driving CCD solid-state imaging device and CCD solid-state imaging device

Country Status (1)

Country Link
JP (1) JP4759450B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234569A (en) * 1998-02-13 1999-08-27 Sony Corp Drive method for solid-state image pickup device, solid-state image pickup element and camera
JP2005039561A (en) * 2003-07-15 2005-02-10 Sharp Corp Solid-state imaging device and driving method therefor
JP2006094285A (en) * 2004-09-27 2006-04-06 Sharp Corp Solid-state imaging apparatus and its driving method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11234569A (en) * 1998-02-13 1999-08-27 Sony Corp Drive method for solid-state image pickup device, solid-state image pickup element and camera
JP2005039561A (en) * 2003-07-15 2005-02-10 Sharp Corp Solid-state imaging device and driving method therefor
JP2006094285A (en) * 2004-09-27 2006-04-06 Sharp Corp Solid-state imaging apparatus and its driving method

Also Published As

Publication number Publication date
JP4759450B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
US7659933B2 (en) Imaging device and driving method for solid-state imaging device
US8373780B2 (en) Solid-state image sensor and camera
JP4444754B2 (en) Driving method of solid-state imaging device
JP4759450B2 (en) Method for driving CCD solid-state imaging device and CCD solid-state imaging device
JP2007294734A (en) Solid-state imaging element
US7804539B2 (en) Solid-state imaging device and method of driving same
JP4763424B2 (en) Driving method of solid-state imaging device
US20070285546A1 (en) Method of driving CCD type solid-state imaging device and solid-state imaging apparatus
JP2007201092A (en) Solid state imaging element and its driving method
JP2008252791A (en) Driving method of ccd type solid-state imaging device, and imaging device
JP4303950B2 (en) Method for driving charge transfer device and method for driving solid-state imaging device
US20060268141A1 (en) Method for driving solid-state imaging device and solid-state imaging device
JP2006157624A (en) Solid-state imaging apparatus and method for driving same
KR20100032836A (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
JP4465309B2 (en) CCD type solid-state imaging device and transfer control method thereof
JP3416309B2 (en) Imaging device and driving method of imaging device
JP4682439B2 (en) Driving device and driving method of solid-state imaging device
JP2003060188A (en) Solid-state image pickup element and drive method therefor
JP2009159634A (en) Solid-state imaging apparatus, driving method thereof and camera system
JP2009290721A (en) Imaging apparatus, and driving method for imaging apparatus
JP2007189440A (en) Method of driving ccd type solid-state imaging device, and driving device therefor
JP2008042629A (en) Method of driving solid-state image pickup element
JP2007311945A (en) Method for driving solid-state imaging device
JP2007036516A (en) Method for driving charge transfer device, and solid-state imaging device
JP2006013709A (en) Driving method of solid state image sensor, solid state imaging device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140610

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees