[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007335792A - Thin-film solar cell - Google Patents

Thin-film solar cell Download PDF

Info

Publication number
JP2007335792A
JP2007335792A JP2006168570A JP2006168570A JP2007335792A JP 2007335792 A JP2007335792 A JP 2007335792A JP 2006168570 A JP2006168570 A JP 2006168570A JP 2006168570 A JP2006168570 A JP 2006168570A JP 2007335792 A JP2007335792 A JP 2007335792A
Authority
JP
Japan
Prior art keywords
semiconductor layer
layer
film
band gap
solar cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006168570A
Other languages
Japanese (ja)
Other versions
JP4919710B2 (en
Inventor
Takayuki Negami
卓之 根上
Takuya Sato
琢也 佐藤
Shigeo Hayashi
茂生 林
Yasuhiro Hashimoto
泰宏 橋本
Shinichi Shimakawa
伸一 島川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006168570A priority Critical patent/JP4919710B2/en
Publication of JP2007335792A publication Critical patent/JP2007335792A/en
Application granted granted Critical
Publication of JP4919710B2 publication Critical patent/JP4919710B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thin-film solar cell having a band structure ideal for improving the energy conversion efficiency. <P>SOLUTION: The thin-film solar cell 10 is provided with light absorbing layers 13a, 13b each made of a chalcopyrite structure semiconductor. The light-absorbing layers 13a, 13b include a first semiconductor layer 13a, made of CIGS and a second semiconductor layer 13b made of CIAS. In the first semiconductor layer 13a, a band gap becomes smaller, the closer it comes to the second semiconductor layer 13b. The second semiconductor layer 13b has a band gap larger than the smallest band gap in the first semiconductor layer 13a. A double grated band gap is formed of the first and second semiconductor layers 13a, 13b. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エネルギー変換効率が高い薄膜太陽電池に関する。   The present invention relates to a thin film solar cell having high energy conversion efficiency.

11族、13族および16族元素からなる化合物半導体(いわゆるカルコパイライト構造半導体)の代表例であるCu(In,Ga)Se2(CIGS)は、InとGaの組成比によりバンドギャップを制御することができる。CIGS膜の深さ方向でInとGaの組成比を変化させてグレーデッドバンドギャップを形成することにより、CIGS膜を用いた薄膜太陽電池の高効率化が行われている。 Cu (In, Ga) Se 2 (CIGS), which is a representative example of a compound semiconductor (so-called chalcopyrite structure semiconductor) composed of Group 11, Group 13 and Group 16 elements, controls the band gap by the composition ratio of In and Ga. be able to. The efficiency of a thin film solar cell using a CIGS film is increased by changing the composition ratio of In and Ga in the depth direction of the CIGS film to form a graded band gap.

特許文献1で開示されているように、pn接合側の表面(光入射側の主面)から裏面に向けて、GaとInの組成比であるGa/(In+Ga)が徐々に増加する分布によれば、バンドギャップが表面から裏面に向けて拡大するグレーデッドバンドギャップを形成できる。バンドギャップの変化によって、CIGS膜内部に電界が生じ、その電界により、光励起されたキャリアがCIGS膜の表面に形成されるpn接合へと輸送されるため変換効率が向上する。   As disclosed in Patent Document 1, Ga / (In + Ga), which is a composition ratio of Ga and In, gradually increases from the surface on the pn junction side (main surface on the light incident side) to the back surface. According to this, a graded band gap in which the band gap expands from the front surface to the back surface can be formed. Due to the change in the band gap, an electric field is generated in the CIGS film, and the photoexcited carriers are transported to the pn junction formed on the surface of the CIGS film by the electric field, so that the conversion efficiency is improved.

また、非特許文献2に開示されているように、グレーデッドバンドギャップに加えて、CIGS膜の光入射側の表層部にGa濃度の高い層を形成することにより、pn接合界面でのバンドギャップを拡大し、開放端電圧を向上させるダブルグレーデッドバンドギャップを形成できる。ダブルグレーデッドバンドギャップによれば、より高い変換効率を達成できる。   Further, as disclosed in Non-Patent Document 2, in addition to the graded band gap, a band gap at the pn junction interface is formed by forming a layer with a high Ga concentration in the surface layer portion on the light incident side of the CIGS film. And a double graded band gap that improves the open circuit voltage can be formed. According to the double graded band gap, higher conversion efficiency can be achieved.

11族、13族および16族元素からなる化合物半導体薄膜のバンドギャップの制御は、InとGaだけでなく、例えば、13族元素のAlとInの組成比や16族元素のSeとSの組成比でも行うことができる。ダブルグレーデッドバンドギャップを形成するために、AlとInの組成比を変化させる方法が特許文献3に、SeとSの組成比を変化させる方法が特許文献4や特許文献5に開示されている。
特開平11−163376号公報 M. A. Contreras, J. Tuttle, A. Gabor, A. Tarrant, K. Ramanathan, S. Asher, A. Franz, J. Kean, L. Wang, R. Noufi, "High efficiency graded bandgap thin-film polycrystalline Cu(In,Ga) Se2-based solar cells", Solar Energy Materials & Solar Cells, vol. 41/42, p.231 (1996). 特開平11−274526号公報 特開平9−213977号公報 特開平10−135498号公報 特表平10−513606号公報 特開平10−135495号公報
The band gap of the compound semiconductor thin film composed of the 11th, 13th and 16th group elements is controlled not only by In and Ga but also by, for example, the composition ratio of the 13th group element Al and In or the 16th group element Se and S Ratio can also be done. In order to form a double graded band gap, a method of changing the composition ratio of Al and In is disclosed in Patent Document 3, and a method of changing the composition ratio of Se and S is disclosed in Patent Document 4 and Patent Document 5. .
JP-A-11-163376 MA Contreras, J. Tuttle, A. Gabor, A. Tarrant, K. Ramanathan, S. Asher, A. Franz, J. Kean, L. Wang, R. Noufi, "High efficiency graded bandgap thin-film coated Cu ( In, Ga) Se2-based solar cells ", Solar Energy Materials & Solar Cells, vol. 41/42, p.231 (1996). JP-A-11-274526 Japanese Patent Laid-Open No. 9-213977 JP-A-10-135498 Japanese National Patent Publication No. 10-513606 JP-A-10-135495

ダブルグレーデッドバンドギャップは、カルコパイライト構造半導体を用いた薄膜太陽電池の高効率化に有効である。非特許文献2で開示されているように、好適なダブルグレーデッドバンドギャップを形成するには、Ga濃度が高いバンドギャップ拡大層の厚さをなるべく小さくことが望ましい。例えば、特許文献6で開示されているように、初めの第1段階でInとGaとSeを蒸着し、(In,Ga)2Se3膜を形成した後に、次の第2段階でCuとSeを蒸着してCu過剰のCIGS膜の形成し、最後の第3段階でさらにInとGaとSeを蒸着してCu不足のCIGS膜を形成する方法によれば、第1段階と第3段階のInとGaの蒸着量の制御でバンドギャップ拡大層を形成することができる。 The double graded band gap is effective for increasing the efficiency of a thin film solar cell using a chalcopyrite structure semiconductor. As disclosed in Non-Patent Document 2, in order to form a suitable double graded band gap, it is desirable to reduce the thickness of the band gap expanding layer having a high Ga concentration as much as possible. For example, as disclosed in Patent Document 6, after vapor-depositing In, Ga, and Se in the first first stage to form an (In, Ga) 2 Se 3 film, Cu and in the next second stage. According to the method of depositing Se to form a Cu-excess CIGS film, and further depositing In, Ga and Se in the final third stage to form a Cu-deficient CIGS film, the first stage and the third stage The band gap expansion layer can be formed by controlling the deposition amounts of In and Ga.

しかしながら、上記方法によれば、第3段階でCu過剰のCIGS膜にInとGaを拡散させるため、Ga濃度が高いバンドギャップ拡大層の厚さ(形成深さ)を常に制御することは容易ではない。特に、太陽電池の生産量を増加するためにCIGS膜の成膜速度を高速化する場合は、バンドギャップ拡大層の厚さを制御することは困難である。一例として、約1μm/分で作製したCIGS膜の深さ方向に関するGa/(In+Ga)比の分布を図1に示す。図1のCIGS膜は、特許文献6で開示された方法とは異なるが、InとGaの蒸着量を変化させてGa/(In+Ga)比を変化させている。図1から明らかなように、表面からGa/(In+Ga)比が徐々に低下し、深さ約1μmでGa/(In+Ga)比が最小となっている。そして、1μm以上の深さから裏面に向けてGa/(In+Ga)比が増加する分布となっている。このように、図1に示すCIGS膜では、バンドギャップ拡大層の厚さは約1μmにも達し、蒸着法によるCIGS膜の高速形成では、表面のごく近傍にのみバンドギャップ拡大層を設けることが困難であることがわかる。   However, according to the above method, since In and Ga are diffused in the Cu-excess CIGS film in the third stage, it is not easy to always control the thickness (formation depth) of the band gap expansion layer having a high Ga concentration. Absent. In particular, when increasing the deposition rate of the CIGS film in order to increase the production amount of the solar cell, it is difficult to control the thickness of the band gap widening layer. As an example, FIG. 1 shows a Ga / (In + Ga) ratio distribution in the depth direction of a CIGS film manufactured at about 1 μm / min. The CIGS film in FIG. 1 is different from the method disclosed in Patent Document 6, but the Ga / (In + Ga) ratio is changed by changing the deposition amounts of In and Ga. As is clear from FIG. 1, the Ga / (In + Ga) ratio gradually decreases from the surface, and the Ga / (In + Ga) ratio is minimum at a depth of about 1 μm. And it has distribution which Ga / (In + Ga) ratio increases toward the back surface from the depth of 1 micrometer or more. As described above, in the CIGS film shown in FIG. 1, the thickness of the band gap expansion layer reaches about 1 μm, and in the high-speed formation of the CIGS film by the vapor deposition method, the band gap expansion layer can be provided only in the very vicinity of the surface. It turns out to be difficult.

一方、特許文献7は、ダブルグレーデッドバンドギャップを有するCu(In,Ga)(Se,S)2膜の形成方法について開示している。この方法では、まず、CuとInとGaからなる金属膜をH2Seガスで焼成することによりCu(In,Ga)Se2膜を形成する。得られたCu(In,Ga)Se2膜をH2Sガスでさらに焼成すれば、表面にSの混入したバンドギャップの広いCu(In,Ga)(Se,S)2層を形成できる。ただし、この方法は、焼成後の冷却過程でH2S雰囲気が残留しているため、Cu(In,Ga)(Se,S)2の意図しない形成反応が進み、好適なダブルグレーデッドバンドギャップの再現性が悪い。 On the other hand, Patent Document 7 discloses a method for forming a Cu (In, Ga) (Se, S) 2 film having a double graded band gap. In this method, first, a Cu (In, Ga) Se 2 film is formed by baking a metal film made of Cu, In, and Ga with H 2 Se gas. If the obtained Cu (In, Ga) Se 2 film is further baked with H 2 S gas, a Cu (In, Ga) (Se, S) 2 layer having a wide band gap mixed with S on the surface can be formed. However, in this method, since the H 2 S atmosphere remains in the cooling process after firing, an unintended formation reaction of Cu (In, Ga) (Se, S) 2 proceeds, and a suitable double graded band gap is achieved. The reproducibility of is poor.

また、特許文献3は、ダブルグレーデッドバンドギャップを有するCu(In,Al)Se2膜(CIAS膜)の形成方法について開示している。特許文献3によれば、初めにAlSe膜を形成し、そのAlSe膜上にInSe膜を蒸着により形成した後、Cuを蒸着して加熱しCu過剰のCIAS膜を形成する。その後さらに、AlSe膜を蒸着により形成して熱処理することによりCu不足のCIAS膜を作製する。AlはGaに比べ拡散速度が遅いことから、表層部にAl濃度の高いバンドギャップ拡大層を形成できると記述している。しかしながら、この方法によれば、光入射側のみならず裏面側でもAlの偏析が起こってしまうので、CIAS膜内部にはAlがほとんど拡散せず、実際には、ほぼ均一なバンドギャップ分布となる。従って、バンドギャップが半導体薄膜内で連続的、かつなだらかに変化するグレーデッドバンドギャップ分布による光励起されたキャリアの輸送効果はほとんど得られない。 Patent Document 3 discloses a method for forming a Cu (In, Al) Se 2 film (CIAS film) having a double graded band gap. According to Patent Document 3, an AlSe film is first formed, an InSe film is formed on the AlSe film by vapor deposition, and then Cu is vapor deposited and heated to form a Cu excess CIAS film. Thereafter, an AlSe film is further formed by vapor deposition and heat treatment is performed to produce a Cu-deficient CIAS film. Since Al has a slower diffusion rate than Ga, it is described that a bandgap expansion layer having a high Al concentration can be formed in the surface layer portion. However, according to this method, since Al segregation occurs not only on the light incident side but also on the back surface side, Al hardly diffuses inside the CIAS film, and in practice, a substantially uniform band gap distribution is obtained. . Therefore, the effect of transporting the photoexcited carriers by the graded band gap distribution in which the band gap changes continuously and gently in the semiconductor thin film is hardly obtained.

また、以上に説明した例において、好適なダブルグレーデッドバンドギャップを形成できる元素の濃度や組成比は、必ずしも明らかとなっていない。   Moreover, in the example demonstrated above, the density | concentration and composition ratio of an element which can form a suitable double graded band gap are not necessarily clear.

こうした事情に鑑み、本発明は、エネルギー変換効率の向上に理想的なバンド構造を有する薄膜太陽電池を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a thin-film solar cell having an ideal band structure for improving energy conversion efficiency.

すなわち、本発明は、
GaおよびInからなる群より選ばれる少なくとも1つの元素と、S、SeおよびTeからなる群より選ばれる少なくとも1つの元素と、Cuと、Alとを含みカルコパイライト構造である半導体薄膜を光吸収層として備え、
半導体薄膜は、第1の半導体層と、第1の半導体層よりも光入射側に配置された第2の半導体層とを含み、
第1の半導体層は、第2の半導体層に近づくにつれてバンドギャップが小さくなっており、
第2の半導体層は、半導体薄膜内においてAl濃度の最も大きい領域を含むとともに、第1の半導体層における最小のバンドギャップよりも大きいバンドギャップを有する、薄膜太陽電池を提供する。
That is, the present invention
A semiconductor thin film having a chalcopyrite structure including at least one element selected from the group consisting of Ga and In, at least one element selected from the group consisting of S, Se, and Te, Cu, and Al. Prepared as
The semiconductor thin film includes a first semiconductor layer and a second semiconductor layer disposed closer to the light incident side than the first semiconductor layer,
The first semiconductor layer has a smaller band gap as it approaches the second semiconductor layer,
The second semiconductor layer provides a thin film solar cell including a region having the highest Al concentration in the semiconductor thin film and having a band gap larger than a minimum band gap in the first semiconductor layer.

上記本発明によれば、第2の半導体層がバンドギャップ拡大層として機能し、第1の半導体層のバンドギャップが第2の半導体層に近づくにつれて小さくなっている。つまり、第1の半導体層と第2の半導体層とにより、グレーデッドバンドギャップが形成されている。さらに、第2の半導体層は、Al濃度の最も大きい領域を含むとともに、第1の半導体層における最小のバンドギャップよりも大きいバンドギャップを有する。こうして、理想的なダブルグレーデッドバンドギャップが形成され、pn接合へのキャリアの輸送効果が高まる。   According to the present invention, the second semiconductor layer functions as a band gap expanding layer, and the band gap of the first semiconductor layer becomes smaller as it approaches the second semiconductor layer. That is, a graded band gap is formed by the first semiconductor layer and the second semiconductor layer. Further, the second semiconductor layer includes a region having the highest Al concentration and has a band gap larger than the minimum band gap in the first semiconductor layer. Thus, an ideal double graded band gap is formed, and the effect of transporting carriers to the pn junction is enhanced.

以下、16族元素としてSeを用いたCu(In,Ga,Al)Se2膜(CIGAS膜)を例に、発明の効果をさらに説明する。なお、16族元素として、SやTeあるいはSとSeの2元素を用いても同様な効果が得られる。 Hereinafter, the effect of the invention will be further described by taking a Cu (In, Ga, Al) Se 2 film (CIGAS film) using Se as a group 16 element as an example. Similar effects can be obtained by using S, Te, or two elements of S and Se as group 16 elements.

本発明の薄膜太陽電池によれば、光吸収層の表層部がAlを含有する。Cu−Al−Se、Cu−Ga−Se、Cu−In−Seの系では、二元化合物、例えばCu2Se、Al2Se3、Ga2Se3およびIn2Se3と、三元化合物であるCuAlSe2、CuGaSe2およびCuInSe2が生成される。ここで、二元化合物であるAl2Se3、Ga2Se3およびIn2Se3と、三元化合物であるCuAlSe2、CuGaSe2およびCuInSe2との生成エンタルピーを比較する。 According to the thin film solar cell of the present invention, the surface layer portion of the light absorption layer contains Al. In the system of Cu—Al—Se, Cu—Ga—Se, Cu—In—Se, binary compounds such as Cu 2 Se, Al 2 Se 3 , Ga 2 Se 3 and In 2 Se 3 and ternary compounds Certain CuAlSe 2 , CuGaSe 2 and CuInSe 2 are produced. Here, the formation enthalpies of the binary compounds Al 2 Se 3 , Ga 2 Se 3 and In 2 Se 3 and the ternary compounds CuAlSe 2 , CuGaSe 2 and CuInSe 2 are compared.

Cu−Al−Se系では、Al2Se3とCuAlSe2のAl1モルを標準とした生成エンタルピーは、それぞれ、282kJ/molと232kJ/molである。Cu−Ga−Se系では、Ga2Se3とCuGaSe2のGa1モルを標準とした生成エンタルピーは、それぞれ、219kJ/molと275kJ/molである。Cu−In−Se系では、In2Se3とCuInSe2のIn1モルを標準とした生成エンタルピーは、それぞれ、171kJ/molと280kJ/molである。 In the Cu—Al—Se system, the generation enthalpies of Al 2 Se 3 and CuAlSe 2 based on Al 1 mol as standard are 282 kJ / mol and 232 kJ / mol, respectively. In the Cu—Ga—Se system, the generation enthalpies with Ga 2 Se 3 and CuGaSe 2 as standard are 219 kJ / mol and 275 kJ / mol, respectively. In the Cu—In—Se system, the enthalpies of formation based on In1Se of In 2 Se 3 and CuInSe 2 are 171 kJ / mol and 280 kJ / mol, respectively.

従って、Cu−Al−Se系では、二元化合物Al2Se3の方が生成されやすくなる。また、Cu−Ga−Se系とCu−In−Se系では三元化合物が生成されやすいが、エンタルピーの差からCuInSe2がより生成されやすい。従って、Cu−In−Ga−Al−Seの系の反応では、Al2Se3とGa2Se3とCuGaSe2とCuInSe2が生成され、その後、Cuの拡散でAl2Se3とCu(In,Ga)Se2に反応が進み、最後にCu(In,Ga,Al)Se2の混晶化合物になると考えられる。最後にAl2Se3とCu(In,Ga)Se2が反応するため、Alの偏析した層(第2の半導体層:バンドギャップ拡大層)が形成される。 Therefore, in the Cu—Al—Se system, the binary compound Al 2 Se 3 is more likely to be generated. Although easy ternary compound is produced in the Cu-Ga-Se system and the Cu-In-Se system, the CuInSe 2 from the difference in enthalpy is more generated easily. Therefore, in the reaction of the Cu—In—Ga—Al—Se system, Al 2 Se 3 , Ga 2 Se 3 , CuGaSe 2 and CuInSe 2 are generated, and then Al 2 Se 3 and Cu (In , Ga) Se 2 is considered to be a mixed crystal compound of Cu (In, Ga, Al) Se 2 . Finally, Al 2 Se 3 and Cu (In, Ga) Se 2 react to form an Al segregated layer (second semiconductor layer: bandgap expansion layer).

例えば、CuAlSe2のバンドギャップは2.7eVであり、CuGaSe2のバンドギャップ1.6eVやCuInSe2のバンドギャップ1.01eVより広いので、上記した3つの化合物の混晶系において、薄膜太陽電池に好適なバンドギャップ拡大層を光入射側に形成することができる。 For example, the band gap of CuAlSe 2 is 2.7 eV, since wider than the band gap 1.01eV bandgap 1.6eV and CuInSe 2 of CuGaSe 2, the mixed crystal of the three compounds described above, the thin-film solar cell A suitable band gap expansion layer can be formed on the light incident side.

CIGAS膜の表面から深さ方向の組成比分布の一例を図2に示す。本発明の薄膜太陽電池の構成によれば、CIGAS膜上にCIGAS膜とは導電型の異なる半導体層を積層してpn接合を形成することができる。pn接合に隣接してバンドギャップの大きいCIAS層が形成されることにより、pn接合での漏れ電流あるいは逆飽和電流が低減し、太陽電池の開放端電圧が増加する。   An example of the composition ratio distribution in the depth direction from the surface of the CIGAS film is shown in FIG. According to the configuration of the thin-film solar cell of the present invention, a pn junction can be formed by stacking a semiconductor layer having a conductivity type different from that of the CIGAS film on the CIGAS film. By forming a CIAS layer having a large band gap adjacent to the pn junction, leakage current or reverse saturation current at the pn junction is reduced, and the open-circuit voltage of the solar cell is increased.

以下、本発明の実施の形態について図面を参照しながら説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図3は、本発明にかかる薄膜太陽電池の一例の断面模式図である。薄膜太陽電池10は、基板11、裏面電極層12、第1の半導体層13a、第2の半導体層13b、窓層14、透明導電膜15および取り出し電極16を備えている。各要素は、第1の半導体層13aが裏面電極層12に隣接し、第2の半導体層13bが窓層14に隣接するように、上記の順番で積層されている。第1の半導体層13aおよび第2の半導体層13bは、11族元素であるCuと、13族元素であるAl、GaおよびInと、S、SeおよびTeからなる16族元素群より選ばれる少なくとも1種とからなるカルコパイライト構造半導体薄膜からなり、光吸収層として機能する。第1の半導体層13aと第2の半導体層13bとは直接積層されており、これら半導体層13a,13bの導電型は、いずれもp型である。窓層14は、光吸収層とは反対の導電型であるn型半導体薄膜からなる。窓層14と第2の半導体層13bとの界面にpn接合が形成される。   FIG. 3 is a schematic cross-sectional view of an example of a thin film solar cell according to the present invention. The thin film solar cell 10 includes a substrate 11, a back electrode layer 12, a first semiconductor layer 13 a, a second semiconductor layer 13 b, a window layer 14, a transparent conductive film 15, and an extraction electrode 16. The elements are stacked in the above order so that the first semiconductor layer 13 a is adjacent to the back electrode layer 12 and the second semiconductor layer 13 b is adjacent to the window layer 14. The first semiconductor layer 13a and the second semiconductor layer 13b are at least selected from the group 11 element group consisting of Cu which is a group 11 element, Al, Ga and In which are group 13 elements, and S, Se and Te. It consists of a chalcopyrite structure semiconductor thin film composed of one kind and functions as a light absorption layer. The first semiconductor layer 13a and the second semiconductor layer 13b are directly stacked, and the conductivity types of these semiconductor layers 13a and 13b are both p-type. The window layer 14 is made of an n-type semiconductor thin film having a conductivity type opposite to that of the light absorption layer. A pn junction is formed at the interface between the window layer 14 and the second semiconductor layer 13b.

第1の半導体層13aは、光入射側とは反対側の裏面から第2の半導体層13bに近づくにつれてGaが濃化することにより、グレーデッドバンドギャップが形成されている。第2の半導体層13bのAl濃度は、第2の半導体層13bのバンドギャップが、第1の半導体層13aの表面(光入射側の主面)におけるバンドギャップよりも大きくなるように調整されている。すなわち、第1の半導体層13aと第2の半導体層13bとにより、いわゆるダブルグレーデッドバンドギャップが形成されている。言い換えれば、薄膜太陽電池10の光吸収層は、Al濃度の最も大きい領域を含むAl濃化層(第2の半導体層13b)を光入射側の表層部に有し、かつ光入射側とは反対からAl濃化層(第2の半導体層13b)に近づくにつれてバンドギャップが小さくなっている。   The first semiconductor layer 13a has a graded band gap as Ga is concentrated from the back surface opposite to the light incident side toward the second semiconductor layer 13b. The Al concentration of the second semiconductor layer 13b is adjusted so that the band gap of the second semiconductor layer 13b is larger than the band gap on the surface (main surface on the light incident side) of the first semiconductor layer 13a. Yes. That is, a so-called double graded band gap is formed by the first semiconductor layer 13a and the second semiconductor layer 13b. In other words, the light absorption layer of the thin-film solar cell 10 has an Al concentrated layer (second semiconductor layer 13b) including a region with the highest Al concentration in the surface layer portion on the light incident side, and what is the light incident side? From the opposite side, the band gap becomes smaller as it approaches the Al concentrated layer (second semiconductor layer 13b).

基板11としては、例えば、ガラスや金属板やポリイミド樹脂を用いることができる。金属板としては、ステンレス、Ti、Cr等を用いることができる。また、ステンレス、Ti等の金属板の上にガラス等の絶縁体を被覆した基板を用いることもできる。   As the substrate 11, for example, glass, a metal plate, or a polyimide resin can be used. As the metal plate, stainless steel, Ti, Cr or the like can be used. A substrate in which an insulator such as glass is coated on a metal plate such as stainless steel or Ti can also be used.

裏面電極層12としては、金属膜を用いることができ、例えば、Mo膜を用いることができる。また、例えば、タンデム太陽電池の上部太陽電池のように、光吸収層となる半導体層で吸収されない長波長の太陽光を透過する必要がある場合は、透光性の導電層を用いてもよい。例えば、後述する透明導電膜15に好適な透明導電体を用いることができる。   As the back electrode layer 12, a metal film can be used, for example, a Mo film can be used. In addition, for example, when it is necessary to transmit sunlight having a long wavelength that is not absorbed by the semiconductor layer serving as the light absorption layer, such as an upper solar cell of a tandem solar cell, a light-transmitting conductive layer may be used. . For example, a transparent conductor suitable for the transparent conductive film 15 described later can be used.

第1の半導体層13aとしては、実質的にAlを含有しないカルコパイライト構造半導体、例えば、CuInSe2(CIS)、CISのInをGaで一部置換したCu(In,Ga)Se2(CIGS)、CIGSのSeをSで一部置換したCuIn(Se,S)2(CISS)、Cu(In,Ga)(Se,S)2(CIGSS)またはCuInS2を用いることができる。また、例えば、CIGSにおいては、裏面電極層12の近傍でGa/(In+Ga)比が高く、第2の半導体層13bに向かうにつれてGa/(In+Ga)比が徐々に小さくなる傾斜組成であることが好ましい。同様に、CISSにおいては、裏面電極層12の近傍でS/(Se+S)比が高く、第2の半導体層13bに向かうにつれてS/(Se+S)比が徐々に小さくなる傾斜組成であることが好ましい。 As the first semiconductor layer 13a, a chalcopyrite structure semiconductor that does not substantially contain Al, for example, CuInSe 2 (CIS), Cu (In, Ga) Se 2 (CIGS) in which CIS is partially substituted with Ga. In addition, CuIn (Se, S) 2 (CISS), Cu (In, Ga) (Se, S) 2 (CIGSS), or CuInS 2 in which CIGS Se is partially substituted with S can be used. For example, in CIGS, the Ga / (In + Ga) ratio is high in the vicinity of the back electrode layer 12, and the Ga / (In + Ga) ratio gradually decreases as it goes toward the second semiconductor layer 13b. preferable. Similarly, in the CISS, it is preferable that the S / (Se + S) ratio is high in the vicinity of the back electrode layer 12 and the S / (Se + S) ratio is gradually decreased toward the second semiconductor layer 13b. .

すなわち、第1の半導体層13aは、下記条件(1)および/または(2)を満足することが好ましい。そのような構成によれば、Al濃化によりバンドギャップが拡大された第2の半導体層13bと相俟って、好適なダブルグレーデッドバンドギャップを形成できるため、薄膜太陽電池の漏れ電流が低減し、ひいては変換効率が向上する。
(1)GaとInを必須成分とし、かつ、第2の半導体層13bとの界面において、GaとInの組成比であるGa/(In+Ga)が最小となる。
(2)SとSeを必須成分とし、かつ、第2の半導体層13bとの界面において、SとSeの組成比であるS/(Se+S)が最小となる。
That is, the first semiconductor layer 13a preferably satisfies the following conditions (1) and / or (2). According to such a configuration, a suitable double graded band gap can be formed in combination with the second semiconductor layer 13b whose band gap has been expanded by Al concentration, so that the leakage current of the thin film solar cell is reduced. As a result, the conversion efficiency is improved.
(1) Ga / In is an essential component, and Ga / (In + Ga), which is the composition ratio of Ga and In, is minimized at the interface with the second semiconductor layer 13b.
(2) S / Se is an essential component, and S / (Se + S), which is the composition ratio of S and Se, is minimized at the interface with the second semiconductor layer 13b.

また、第1の半導体層13aは、第2の半導体層13bとの界面をなす表面から裏面に向けてGa/(In+Ga)および/またはS/(Se+S)が連続的に増加していることが好ましい。もちろん、Ga/(In+Ga)および/またはS/(Se+S)を段階的に変化させる構成としてもよいが、連続的な組成の変化により、好適なグレーデッドバンドギャップが形成される。   In the first semiconductor layer 13a, Ga / (In + Ga) and / or S / (Se + S) continuously increase from the front surface forming the interface with the second semiconductor layer 13b toward the back surface. preferable. Of course, Ga / (In + Ga) and / or S / (Se + S) may be changed stepwise, but a suitable graded band gap is formed by a continuous composition change.

なお、実質的に含有しないとは、バンドギャップの変化に寄与しない含有率であることを意味する。例えば、Alの含有率1原子%以下あるいはAl/(In+Ga+Al)比が0.05以下であれば、Alを含有していないCIGSとAlをわずかに含有したCIGSのバンドギャップはほぼ同一である。   In addition, that it does not contain substantially means that it is the content rate which does not contribute to the change of a band gap. For example, when the Al content is 1 atomic% or less or the Al / (In + Ga + Al) ratio is 0.05 or less, the band gaps of CIGS not containing Al and CIGS containing a little Al are almost the same.

光入射側に位置する第2の半導体層13bとしては、例えば、Cu(In,Al)Se2(CIAS)、Cu(In,Ga,Al)Se2(CIGAS)、Cu(In,Al)S2、Cu(In,Ga,Al)S2、Cu(In,Al)(Se,S)2(CIASS)またはCu(In,Ga,Al)(Se,S)2(CIGASS)を用いることができる。 As the second semiconductor layer 13b positioned on the light incident side, for example, Cu (In, Al) Se 2 (CIAS), Cu (In, Ga, Al) Se 2 (CIGAS), Cu (In, Al) S are used. 2, Cu (In, Ga, Al) S 2, Cu (In, Al) (Se, S) 2 (CIASS) or Cu (In, Ga, Al) (Se, S) be used 2 (CIGASS) it can.

第2の半導体層13bの厚さは0.2μm以下が好適である(より好ましくは0.05μm以上0.2μm以下)。カルコパイライト構造半導体を用いた薄膜太陽電池において、光吸収層に生ずる空乏層領域は、通常、pn接合から0.2μmの範囲内である。従って、バンドギャップ拡大層である第2の半導体層13bの厚さをそれ以下とすることが、pn接合での漏れ電流または逆飽和電流の低減に有効である。   The thickness of the second semiconductor layer 13b is preferably 0.2 μm or less (more preferably 0.05 μm or more and 0.2 μm or less). In a thin film solar cell using a chalcopyrite structure semiconductor, a depletion layer region generated in a light absorption layer is usually within a range of 0.2 μm from a pn junction. Therefore, it is effective to reduce the leakage current or reverse saturation current at the pn junction to make the thickness of the second semiconductor layer 13b, which is the band gap expansion layer, smaller than that.

窓層14は、光吸収層である第1および第2の半導体層13a,13bとは異なる導電型の半導体、つまり、n型半導体からなる。具体的には、例えば、CdS、ZnO、Zn(O,S)、Zn1-xMgxO(0<x<1)等を用いることができる。また、これらの半導体薄膜の積層膜、例えば、CdSの上にZnOを積層した積層膜を窓層14に用いてもよい。 The window layer 14 is made of a semiconductor having a different conductivity type from the first and second semiconductor layers 13a and 13b, which are light absorption layers, that is, an n-type semiconductor. Specifically, for example, CdS, ZnO, Zn (O, S), Zn 1-x Mg x O (0 <x <1), or the like can be used. Further, a laminated film of these semiconductor thin films, for example, a laminated film in which ZnO is laminated on CdS may be used for the window layer 14.

太陽光を透過し、励起されたキャリアを収集する透明導電膜15としては、近紫外域〜近赤外域で透光性を有し、かつ導電性を有する材料からなる薄膜を用いることができる。具体的には、例えば、透光性IXO(X添加In23,Xとして、Sn,Mn,Mo,Ti,Zn)、F添加SnO2、Al添加ZnO、Ga添加ZnO等を用いることができる。また、上記材料の複層膜を用いてもよい。 As the transparent conductive film 15 that transmits sunlight and collects excited carriers, a thin film made of a material having translucency in the near ultraviolet region to the near infrared region and having conductivity can be used. Specifically, for example, translucent IXO (X-added In 2 O 3 , X is Sn, Mn, Mo, Ti, Zn), F-added SnO 2 , Al-added ZnO, Ga-added ZnO, or the like is used. it can. Alternatively, a multilayer film of the above material may be used.

取り出し電極16としては、例えば、Al、Ag、Auを用いることができる。また、透明導電膜15との密着性を向上させるために、AlとCr、AlとNi、AlとNiCr等の複層の金属膜を用いてもよい。   As the extraction electrode 16, for example, Al, Ag, or Au can be used. In order to improve the adhesion to the transparent conductive film 15, a multilayer metal film such as Al and Cr, Al and Ni, or Al and NiCr may be used.

一例として、基板11としてガラスを用い、裏面電極層12としてMoを用い、第1の半導体層13aとしてCIGSを用い、第2の半導体層13bとしてCIASを用い、窓層14としてCdSとZnOの積層膜を用い、透明導電膜15としてAl添加ZnOを用いた薄膜太陽電池の特性の数値シミュレーションを行った。第1の半導体層13aをなすCIGS層は、図2に示すように、裏面電極層12の近傍のGa/(In+Ga)比が高く、裏面側から第2の半導体層13bに向けてGa/(In+Ga)比が傾き一定で単調減少する傾斜組成を有している。また、CIAS層中(第2の半導体層13b)でのAl/(In+Al)比は表面からの深さによらず一定であると仮定した。実際の製造では、Alが偏析するので、Alの濃度は第1の半導体層と第2の半導体層との境界で急峻に変化する。従って、Al濃度が第2の半導体層中で一定とするモデルには妥当性がある。   As an example, glass is used as the substrate 11, Mo is used as the back electrode layer 12, CIGS is used as the first semiconductor layer 13a, CIAS is used as the second semiconductor layer 13b, and CdS and ZnO are stacked as the window layer 14. The film was used, and the numerical simulation of the characteristics of the thin film solar cell using Al-added ZnO as the transparent conductive film 15 was performed. As shown in FIG. 2, the CIGS layer forming the first semiconductor layer 13a has a high Ga / (In + Ga) ratio in the vicinity of the back electrode layer 12, and the Ga / (Ga / (from the back side toward the second semiconductor layer 13b). (In + Ga) ratio has a gradient composition in which the gradient is constant and monotonously decreases. In addition, the Al / (In + Al) ratio in the CIAS layer (second semiconductor layer 13b) was assumed to be constant regardless of the depth from the surface. In actual manufacturing, since Al is segregated, the concentration of Al changes sharply at the boundary between the first semiconductor layer and the second semiconductor layer. Therefore, a model in which the Al concentration is constant in the second semiconductor layer is valid.

図4は、CIAS層の表面(光入射側の面)におけるAl/(In+Al)比とCIGS層の裏面(裏面電極層12側の面)におけるGa/(In+Ga)比に対する変換効率の等高線図である。本明細書では、CIAS層の表面におけるAl/(In+Al)比を表面Al/(In+Al)比または単にAl/(In+Al)比という。また、CIGS層の裏面におけるGa/(In+Ga)比を裏面Ga/(In+Ga)比または単にGa/(In+Ga)比という。   FIG. 4 is a contour map of the conversion efficiency with respect to the Al / (In + Al) ratio on the surface of the CIAS layer (surface on the light incident side) and the Ga / (In + Ga) ratio on the back surface of the CIGS layer (surface on the back electrode layer 12 side). is there. In this specification, the Al / (In + Al) ratio on the surface of the CIAS layer is referred to as a surface Al / (In + Al) ratio or simply an Al / (In + Al) ratio. The Ga / (In + Ga) ratio on the back surface of the CIGS layer is referred to as a back surface Ga / (In + Ga) ratio or simply a Ga / (In + Ga) ratio.

薄膜太陽電池の特性は、図2において、CIAS層の厚さを0.1μm、CIGS層で最小となるGa/(In+Ga)比を0.2に固定して計算した。図4中に示す直線は、下記(式1)を満足する。
1.07x+0.62x2=0.42y+0.24y2 ・・・(式1)
The characteristics of the thin film solar cell were calculated by fixing the CIAS layer thickness to 0.1 μm and the minimum Ga / (In + Ga) ratio to 0.2 in the CIGS layer in FIG. The straight line shown in FIG. 4 satisfies the following (Formula 1).
1.07x + 0.62x 2 = 0.42y + 0.24y 2 (Formula 1)

ここで、xとyは、それぞれ、CIAS層の表面Al/(In+Al)比とCIGS層の裏面Ga/(In+Ga)比を表す。図4から明らかなように、直線より上側の領域で高い変換効率が得られる。すなわち、組成比が上記(式1)の(左辺)≦(右辺)を満足し、かつ裏面電極層12の近傍でのCIGS層のバンドギャップがCIAS層のバンドギャップより大きくなる場合に高い変換効率が得られる。具体的には、CIGS層の裏面でのバンドギャップがCIAS層の表面でのバンドギャップよりも大きい場合を示せる。   Here, x and y represent the surface Al / (In + Al) ratio of the CIAS layer and the back surface Ga / (In + Ga) ratio of the CIGS layer, respectively. As is clear from FIG. 4, high conversion efficiency can be obtained in the region above the straight line. That is, when the composition ratio satisfies (left side) ≦ (right side) of the above (Formula 1) and the band gap of the CIGS layer in the vicinity of the back electrode layer 12 is larger than the band gap of the CIAS layer, high conversion efficiency Is obtained. Specifically, the case where the band gap on the back surface of the CIGS layer is larger than the band gap on the surface of the CIAS layer can be shown.

CIAS層のバンドギャップがCIGS層に比べて大きいと、CIGS層で光励起されてpn接合側のCIAS層へと輸送されるキャリアにとってCIAS層が障壁となる。これに対し、本実施形態の構成によれば、CIGS層で光励起されたキャリアのエネルギーは、CIAS層のバンドギャップより大きくなるため、CIAS層が障壁とならず、光励起されたキャリアのエネルギーを、pn接合を介して光電流として取り出すことができる。従って、高変換効率の薄膜太陽電池を実現できる。   When the band gap of the CIAS layer is larger than that of the CIGS layer, the CIAS layer becomes a barrier for carriers that are photoexcited in the CIGS layer and transported to the CIAS layer on the pn junction side. On the other hand, according to the configuration of the present embodiment, the energy of the carrier photoexcited in the CIGS layer is larger than the band gap of the CIAS layer, so the CIAS layer does not become a barrier, and the energy of the photoexcited carrier is It can be taken out as a photocurrent through a pn junction. Therefore, a thin film solar cell with high conversion efficiency can be realized.

次に、図2において、CIAS層の厚さを0.1μm、CIGS層の裏面Ga/(In+Ga)比を0.35に固定して、CIAS層の表面Al/(In+Al)比とCIGS層の中で最小となるGa/(In+Ga)比に対する変換効率の関係を計算した。本明細書では、CIGS層の中で変化しているGa/(In+Ga)比の最小値を、最小Ga/(In+Ga)比ともいう。変換効率の等高線図を図5に示す。図5の中の直線は、下記(式2)を満足する。
1.07x+0.62x2=0.42z+0.24z2 ・・・(式2)
Next, in FIG. 2, the thickness of the CIAS layer is fixed to 0.1 μm, the back surface Ga / (In + Ga) ratio of the CIGS layer is fixed to 0.35, and the surface Al / (In + Al) ratio of the CIAS layer and the CIGS layer The relationship of the conversion efficiency with respect to the Ga / (In + Ga) ratio which becomes the minimum among them was calculated. In the present specification, the minimum value of the Ga / (In + Ga) ratio changing in the CIGS layer is also referred to as the minimum Ga / (In + Ga) ratio. A contour map of the conversion efficiency is shown in FIG. The straight line in FIG. 5 satisfies the following (Formula 2).
1.07x + 0.62x 2 = 0.42z + 0.24z 2 (Formula 2)

ここで、xとzは、それぞれ、CIAS層の表面Al/(In+Al)比とCIGS層の最小Ga/(In+Ga)比を表す。図5から明らかなように、直線より下側の領域で高い変換効率が得られる。すなわち、組成比が上記(式2)の(左辺)≧(右辺)を満足し、CIAS層のバンドギャップがCIGS層のGa/(In+Ga)比が最小となる領域のバンドギャップより大きくなる場合に高い変換効率が得られる。これは、バンドギャップの大きなCIAS層をpn接合に隣接して形成することにより、pn接合での漏れ電流あるいは逆飽和電流が低減し、薄膜太陽電池の開放端電圧が増加するためである。   Here, x and z represent the surface Al / (In + Al) ratio of the CIAS layer and the minimum Ga / (In + Ga) ratio of the CIGS layer, respectively. As is clear from FIG. 5, high conversion efficiency is obtained in the region below the straight line. That is, when the composition ratio satisfies (left side) ≧ (right side) of (Equation 2) and the band gap of the CIAS layer is larger than the band gap of the region where the Ga / (In + Ga) ratio of the CIGS layer is minimum. High conversion efficiency can be obtained. This is because by forming a CIAS layer having a large band gap adjacent to the pn junction, leakage current or reverse saturation current at the pn junction is reduced, and the open circuit voltage of the thin film solar cell is increased.

次に、CIGS層の裏面Ga/(In+Ga)比を0.35に固定して、CIAS層の厚さを0.2μm、0.3μmとした場合のCIAS層の表面Al/(In+Al)比とCIGS層の最小Ga/(In+Ga)比に対する変換効率の関係を計算した結果を図6と図7にそれぞれ示す。図5と比較すれば分かるように、CIAS層の厚さを大きくすると、効率20%が得られる組成領域が狭くなり、CIAS層の厚さ0.3μm(図7)では、上記(式2)を満たす条件でも効率15%の領域が現れてくる。このことからも、CIAS層の厚さは0.2μm以下が薄膜太陽電池の変換効率向上に好適であることがわかる。   Next, the surface Al / (In + Al) ratio of the CIAS layer when the back surface Ga / (In + Ga) ratio of the CIGS layer is fixed to 0.35 and the thickness of the CIAS layer is 0.2 μm and 0.3 μm, The calculation results of the relationship of the conversion efficiency with respect to the minimum Ga / (In + Ga) ratio of the CIGS layer are shown in FIGS. 6 and 7, respectively. As can be seen from comparison with FIG. 5, when the thickness of the CIAS layer is increased, the composition region in which the efficiency of 20% can be obtained is narrowed, and when the thickness of the CIAS layer is 0.3 μm (FIG. 7), A region with an efficiency of 15% appears even under conditions that satisfy the above conditions. This also shows that the thickness of the CIAS layer is preferably 0.2 μm or less for improving the conversion efficiency of the thin film solar cell.

一般に、カルコパイライト構造半導体を用いた薄膜太陽電池で採用されるダブルグレーデッドバンドギャップは、バンドギャップが最小となる領域でキャリアの再結合確率が高くなり、変換効率の向上を阻害するといわれている。本実施形態でいうと、CIAS層とCIGS層との界面では、バンドギャップが最小となることに基づくエネルギー障壁により、励起キャリアが蓄積される。空乏層外にエネルギー障壁が存在する場合は、内部電界が小さいため、エネルギー障壁によりキャリアが蓄積し、再結合確率が高くなる。   In general, double graded band gaps used in thin film solar cells using chalcopyrite structure semiconductors are said to increase the recombination probability of carriers in the region where the band gap is minimized, and hinder the improvement of conversion efficiency. . In this embodiment, excited carriers are accumulated at the interface between the CIAS layer and the CIGS layer due to the energy barrier based on the minimum band gap. When an energy barrier exists outside the depletion layer, the internal electric field is small, so that carriers accumulate due to the energy barrier and the recombination probability increases.

これに対し、バンドギャップが大きいCIAS層の全部が空乏層内に収まっている場合、つまりCIGS層中でバンドギャップが最小となる領域が空乏層内にある場合は、空乏層内の内部電界が大きいため、キャリアは窓層14へと効率よく輸送される。これにより、バンドギャップの最小点での励起キャリアの蓄積による再結合を抑制することができ、変換効率のさらなる向上を図ることができる。   On the other hand, when the entire CIAS layer having a large band gap is contained in the depletion layer, that is, when the region where the band gap is minimum in the CIGS layer is in the depletion layer, the internal electric field in the depletion layer is reduced. Since it is large, the carrier is efficiently transported to the window layer 14. As a result, recombination due to accumulation of excited carriers at the minimum point of the band gap can be suppressed, and conversion efficiency can be further improved.

以上に記載したように、本発明によれば、エネルギー変換効率の高い薄膜太陽電池を安定に提供できる。   As described above, according to the present invention, a thin-film solar cell with high energy conversion efficiency can be provided stably.

(実施例1)
図3に示す構造の薄膜太陽電池を以下に示す方法で製造した。
基板11として、ソーダライムガラスを用いた。ガラス基板11上に、スパッタ法により、裏面電極層12としてのMo膜を約0.4μmの厚さで堆積させた。スパッタは、Moをターゲットとして、Arガス雰囲気中でDC1kWを印加することにより行った。
Example 1
A thin film solar cell having the structure shown in FIG. 3 was manufactured by the method shown below.
As the substrate 11, soda lime glass was used. A Mo film as the back electrode layer 12 was deposited on the glass substrate 11 to a thickness of about 0.4 μm by sputtering. Sputtering was performed by applying DC 1 kW in an Ar gas atmosphere using Mo as a target.

光吸収層となる第1の半導体層13aとして、CIGS膜を蒸着法により作製した。初めに、Ga/(In+Ga)比が約0.35、Cu/(In+Ga)比が約0.8になるように、Cu、In、Ga、Seの各蒸発源からの蒸着レートを制御して、基板温度500℃でCu不足のCIGS膜を作製した。次に、基板温度は一定とし、表面のGa/(In+Ga)比が約0.15、膜全体のCu/(In+Ga)比が約1.2になるように、Cu、In、Ga、Seの各蒸発源からの蒸着レートを制御して、Cu過剰のCIGS膜を形成した。これは、Cu過剰とすることにより、Cu−Se液相を析出させ、CIGS膜の結晶成長を促進するためである。最後に、基板温度を550℃に設定して、InとSeの蒸気を供給して、Cu不足のCIGS膜を形成した。その後、基板温度550℃に設定して、Alを蒸着し拡散させることにより、第2の半導体層13bとしてのCu(In,Al)Se2層を形成した。 As the first semiconductor layer 13a serving as the light absorption layer, a CIGS film was formed by an evaporation method. First, the deposition rate from each evaporation source of Cu, In, Ga, and Se is controlled so that the Ga / (In + Ga) ratio is about 0.35 and the Cu / (In + Ga) ratio is about 0.8. A CI-deficient CIGS film was prepared at a substrate temperature of 500 ° C. Next, the substrate temperature is constant, the surface Ga / (In + Ga) ratio is about 0.15, and the Cu / (In + Ga) ratio of the entire film is about 1.2. The deposition rate from each evaporation source was controlled to form a Cu-excess CIGS film. This is because the Cu—Se liquid phase is precipitated by increasing the Cu content and the crystal growth of the CIGS film is promoted. Finally, the substrate temperature was set to 550 ° C. and In and Se vapors were supplied to form a CI-deficient CIGS film. Thereafter, the substrate temperature was set to 550 ° C., and Al was deposited and diffused to form a Cu (In, Al) Se 2 layer as the second semiconductor layer 13b.

次に、窓層14として、複層の半導体膜を形成した。まず、約70nmの厚さのCdS膜を化学析出法により堆積した。化学析出法は、硝酸Cd、チオ尿素およびアンモニアを含む水溶液を約80℃に温め、表層部にCIAS層が形成されたCIGS膜(要するにCIGAS膜)を上記水溶液に浸漬することにより行った。さらに、CdS膜の上に約80nmの厚さのZnO膜をスパッタ法で形成した。スパッタ法は、ZnO焼結体をターゲットとして、Arガス雰囲気中でRF400Wを印加することにより行った。   Next, a multilayer semiconductor film was formed as the window layer 14. First, a CdS film having a thickness of about 70 nm was deposited by chemical precipitation. The chemical precipitation method was performed by warming an aqueous solution containing Cd nitrate, thiourea and ammonia to about 80 ° C. and immersing a CIGS film (in short, a CIGAS film) having a CIAS layer formed on the surface layer portion in the aqueous solution. Further, a ZnO film having a thickness of about 80 nm was formed on the CdS film by sputtering. The sputtering method was performed by applying RF 400 W in an Ar gas atmosphere using a ZnO sintered body as a target.

次に、スパッタ法により、透明導電膜15として、約200nmの厚さのAl添加ZnO膜を堆積した。スパッタは、Al23を2質量%含有したAl添加ZnO焼結体をターゲットに用い、Arの雰囲気中でRF400Wを印加することにより行った。 Next, an Al-added ZnO film having a thickness of about 200 nm was deposited as the transparent conductive film 15 by sputtering. Sputtering was performed by applying RF 400 W in an Ar atmosphere using an Al-added ZnO sintered body containing 2% by mass of Al 2 O 3 as a target.

最後に、取り出し電極16として、NiCrとAuの積層膜を電子ビーム蒸着法で形成した。NiCrとAuの膜厚は各々50nmと300nmであった。   Finally, a NiCr and Au laminated film was formed as the extraction electrode 16 by an electron beam evaporation method. The film thicknesses of NiCr and Au were 50 nm and 300 nm, respectively.

以上の製造方法によれば、光吸収層としてCIGAS膜を用いた図3に示す構造の薄膜太陽電池を製造できる。   According to the above manufacturing method, the thin film solar cell having the structure shown in FIG. 3 using the CIGAS film as the light absorption layer can be manufactured.

(実施例2)
薄膜太陽電池の製造方法のその他の一例について述べる。
基板11、裏面電極層12、窓層14、透明導電膜15、取り出し電極16の材料と製造方法は実施例1と同じである。重複を避けるために、光吸収層となる第1の半導体層13aと第2の半導体層13bの作製方法についてのみ記載する。
(Example 2)
Another example of the method for manufacturing a thin film solar cell will be described.
The materials and manufacturing methods of the substrate 11, the back electrode layer 12, the window layer 14, the transparent conductive film 15, and the extraction electrode 16 are the same as those in the first embodiment. In order to avoid duplication, only a method for manufacturing the first semiconductor layer 13a and the second semiconductor layer 13b to be the light absorption layer will be described.

裏面電極層12の上に、スパッタ法によりCu−Ga合金とIn金属をターゲットして、Cu−Ga膜とIn膜がこの順番で積層された積層膜を形成した。ここで、Cu−Ga合金のGa含有率は25原子%である。スパッタ法は、Arガス雰囲気中でDC1kWを印加することにより行った。Cu−Ga膜とIn膜の膜厚はそれぞれ約0.3μmと0.5μmであった。なお、Cu−Ga膜とIn膜の積層順序は上記と逆でもよいが、上記順序のほうが、Mo膜とCIGS膜との密着性が高くなるので好ましい。   On the back electrode layer 12, a Cu—Ga alloy and In metal were targeted by a sputtering method to form a laminated film in which a Cu—Ga film and an In film were laminated in this order. Here, the Ga content of the Cu—Ga alloy is 25 atomic%. The sputtering method was performed by applying DC 1 kW in an Ar gas atmosphere. The film thicknesses of the Cu—Ga film and In film were about 0.3 μm and 0.5 μm, respectively. Note that the stacking order of the Cu—Ga film and the In film may be reversed, but the above order is preferable because the adhesion between the Mo film and the CIGS film becomes higher.

次に、このCu−Ga膜とIn膜を積層した基板を電気炉の中に入れて、1体積%のH2Seガスを含むN2ガスの60Paの雰囲気中で約520℃に加熱して熱処理を行い、CIGS膜を作製した。先に説明したように、Cu−In−Ga−Seの系では、二元化合物のGa2Se3と、三元化合物のCuGaSe2およびCuInSe2とが生成されやすい。従って、上記熱処理を行うとGa2Se3が裏面電極12の近傍に析出する。この結果、裏面電極12の近傍のGa/(In+Ga)比が高く、膜表面に向けてGa/(In+Ga)比が徐々に小さくなる傾斜組成となる。 Next, the substrate on which the Cu—Ga film and the In film are laminated is placed in an electric furnace and heated to about 520 ° C. in an atmosphere of N 2 gas containing 1% by volume of H 2 Se gas. Heat treatment was performed to produce a CIGS film. As described above, in the Cu—In—Ga—Se system, the binary compound Ga 2 Se 3 and the ternary compounds CuGaSe 2 and CuInSe 2 are likely to be generated. Therefore, when the heat treatment is performed, Ga 2 Se 3 is deposited in the vicinity of the back electrode 12. As a result, a gradient composition is obtained in which the Ga / (In + Ga) ratio in the vicinity of the back electrode 12 is high and the Ga / (In + Ga) ratio gradually decreases toward the film surface.

このCIGS膜の上にAl膜をスパッタで形成し、さらにSe膜を蒸着にて形成した。Al膜のスパッタは、Alをターゲットして、Arガス雰囲気中でDC1kWを印加することにより行った。また、Seの蒸着は、金属Seを蒸発源として、蒸着るつぼの温度を200〜300℃の範囲内で設定し、Seを蒸発させて行った。AlとSeの膜厚はそれぞれ約50nmと300nmであった。   An Al film was formed on the CIGS film by sputtering, and an Se film was formed by vapor deposition. The Al film was sputtered by targeting Al and applying DC 1 kW in an Ar gas atmosphere. Further, the deposition of Se was performed by setting the temperature of the deposition crucible within a range of 200 to 300 ° C. using metal Se as an evaporation source and evaporating Se. The film thicknesses of Al and Se were about 50 nm and 300 nm, respectively.

次に、CIGS膜とAl膜とSe膜の積層膜をN2ガス雰囲気中、550℃で約1分の急速熱処理を行い、第2の半導体層13bとしてのCIAS層を形成した。先に説明したように、Cu−In−Ga−Al−Seの系では、Alは偏析しやすく、拡散しにくいため、上記急速熱処理を行うと表面近傍にのみCIAS層を形成できる。CIAS層を除いた残部は、実質的にAlを含有しないCIGS層(第1の半導体層13a)となる。 Next, the laminated film of the CIGS film, the Al film, and the Se film was subjected to rapid heat treatment at 550 ° C. for about 1 minute in an N 2 gas atmosphere to form a CIAS layer as the second semiconductor layer 13b. As described above, in the Cu—In—Ga—Al—Se system, Al is easily segregated and difficult to diffuse. Therefore, the CIAS layer can be formed only in the vicinity of the surface when the rapid thermal treatment is performed. The remainder excluding the CIAS layer becomes a CIGS layer (first semiconductor layer 13a) that does not substantially contain Al.

なお、本実施例では、CIAS層を形成するために、AlとSeの積層膜を作製し、熱処理しているが、Al膜をCIGS膜の上に堆積した後、H2Seガスを含む雰囲気中で再度熱処理しても同様な構造の薄膜太陽電池を製造できる。 In this embodiment, in order to form a CIAS layer, a laminated film of Al and Se is produced and heat-treated. After the Al film is deposited on the CIGS film, an atmosphere containing H 2 Se gas is used. A thin-film solar cell having the same structure can be manufactured even if it is heat-treated again.

(実施例3)
図3に示す薄膜太陽電池の製造方法のその他の一例について述べる。
基板11、裏面電極層12、窓層となる半導体層14、透明導電膜15、取り出し電極16の材料と製造方法は実施例1と同じである。光吸収層となる第1の半導体層13aと第2の半導体層13bの作製方法についてのみ記載する。
(Example 3)
Another example of the manufacturing method of the thin film solar cell shown in FIG. 3 will be described.
The materials and manufacturing methods of the substrate 11, the back electrode layer 12, the semiconductor layer 14 serving as the window layer, the transparent conductive film 15, and the extraction electrode 16 are the same as those in the first embodiment. Only a method for manufacturing the first semiconductor layer 13a and the second semiconductor layer 13b to be the light absorption layer will be described.

裏面電極層12の上に、スパッタ法によりCu−Ga合金とIn金属とAl金属をターゲットして、Cu−Ga膜、In膜およびAl膜がこの順番で積層された積層膜を形成した。ここで、Cu−Ga合金のGa含有率は25原子%である。スパッタ法は、Arガス雰囲気中でDC1kWを印加することにより行った。Cu−Ga膜、In膜とAl膜の膜厚はそれぞれ約0.3μm、0.5μm、50nmであった。なお、Cu−Ga膜とIn膜の積層順序は上記と逆でもよいが、上記順序のほうが、Mo膜とCIGS膜との密着性が高くなるので好ましい。また、Al膜については最表面にくることが必要である。   On the back electrode layer 12, a Cu—Ga alloy, In metal, and Al metal were targeted by a sputtering method to form a laminated film in which a Cu—Ga film, an In film, and an Al film were laminated in this order. Here, the Ga content of the Cu—Ga alloy is 25 atomic%. The sputtering method was performed by applying DC 1 kW in an Ar gas atmosphere. The film thicknesses of the Cu—Ga film, In film and Al film were about 0.3 μm, 0.5 μm and 50 nm, respectively. Note that the stacking order of the Cu—Ga film and the In film may be reversed, but the above order is preferable because the adhesion between the Mo film and the CIGS film becomes higher. Further, the Al film needs to come to the outermost surface.

次に、このCu−Ga膜とIn膜とAl膜を積層した基板を電気炉の中に入れて熱処理を行い、第1および第2の半導体層13a,13bとしてのCIGAS膜を作製した。電気炉内の雰囲気は、1体積%のH2Seガスを含むN2ガスの500mTorr、500℃〜530℃とした。先に説明したように、Cu−In−Ga−Al−Seの系では、Alは偏析しやすく、拡散しにくいため、上記熱処理を行うと表面近傍にのみCIAS層を形成できる。また、Ga2Se3が裏面電極層12の近傍に析出するため、裏面電極層12の近傍でGa/(In+Ga)比が高く、膜表面に向けてGa/(In+Ga)比が徐々に小さくなる傾斜組成となる。 Next, the substrate on which the Cu—Ga film, the In film, and the Al film were laminated was placed in an electric furnace and subjected to heat treatment, and CIGAS films as the first and second semiconductor layers 13a and 13b were manufactured. The atmosphere in the electric furnace was set to 500 mTorr and 500 ° C. to 530 ° C. of N 2 gas containing 1% by volume of H 2 Se gas. As described above, in the Cu—In—Ga—Al—Se system, Al is easily segregated and hardly diffuses. Therefore, when the heat treatment is performed, a CIAS layer can be formed only in the vicinity of the surface. Further, since Ga 2 Se 3 is deposited in the vicinity of the back electrode layer 12, the Ga / (In + Ga) ratio is high in the vicinity of the back electrode layer 12, and the Ga / (In + Ga) ratio is gradually reduced toward the film surface. It becomes a gradient composition.

なお、本実施例では、CIAS層を形成するために、H2Seガス雰囲気中で熱処理を行っているが、Cu−Ga膜とIn膜とAl膜とSe膜の積層膜を作製し、N2雰囲気中温度550℃で約1分の急速熱処理を行っても同様な構造の薄膜太陽電池を製造できる。 In this embodiment, in order to form the CIAS layer, heat treatment is performed in an H 2 Se gas atmosphere. However, a stacked film of a Cu—Ga film, an In film, an Al film, and a Se film is formed, and N 2 A thin-film solar cell having the same structure can be manufactured even if rapid thermal processing is performed for about 1 minute at a temperature of 550 ° C. in an atmosphere.

従来のCIGS膜の深さ方向に関するGa/(In+Ga)比の分布図。The distribution map of Ga / (In + Ga) ratio regarding the depth direction of the conventional CIGS film | membrane. 本発明にかかる薄膜太陽電池の光吸収層であるCIGAS膜の深さ方向に関するAl/(In+Al)比とGa/(In+Ga)比の分布を示す模式図。The schematic diagram which shows distribution of Al / (In + Al) ratio and Ga / (In + Ga) ratio regarding the depth direction of the CIGAS film | membrane which is a light absorption layer of the thin film solar cell concerning this invention. 本発明の薄膜太陽電池の一例を示す断面模式図。The cross-sectional schematic diagram which shows an example of the thin film solar cell of this invention. CIAS層の表面Al/(In+Al)比とCIGS層の裏面Ga/(In+Ga)比に対する変換効率の等高線図。The contour map of the conversion efficiency with respect to the surface Al / (In + Al) ratio of a CIAS layer, and the back surface Ga / (In + Ga) ratio of a CIGS layer. CIAS層の厚さを0.1μmとした場合の表面Al/(In+Al)比とCIGS層の最小Ga/(In+Ga)比に対する変換効率の等高線図。The contour map of the conversion efficiency with respect to the surface Al / (In + Al) ratio and CIGS layer minimum Ga / (In + Ga) ratio when the thickness of the CIAS layer is 0.1 μm. CIAS層の厚さを0.2μmとした場合の表面Al/(In+Al)比とCIGS層の最小Ga/(In+Ga)比に対する変換効率の等高線図。The contour map of the conversion efficiency with respect to the surface Al / (In + Al) ratio and the minimum Ga / (In + Ga) ratio of the CIGS layer when the thickness of the CIAS layer is 0.2 μm. CIAS層の厚さを0.3μmとした場合の表面Al/(In+Al)比とCIGA層の最小Ga/(In+Ga)比に対する変換効率の等高線図。The contour map of the conversion efficiency with respect to the surface Al / (In + Al) ratio when the thickness of the CIAS layer is 0.3 μm and the minimum Ga / (In + Ga) ratio of the CIGA layer.

符号の説明Explanation of symbols

10 薄膜太陽電池
11 基板
12 裏面電極層(Mo膜)
13a 第1の半導体層(Cu(In,Ga)Se2層)
13b 第2の半導体層(Cu(In,Al)Se2層)
14 窓層(CdS/ZnO積層膜)
15 透明導電膜(ITO膜)
16 電極(NiCr/Au積層膜)
10 Thin Film Solar Cell 11 Substrate 12 Back Electrode Layer (Mo Film)
13a First semiconductor layer (Cu (In, Ga) Se 2 layer)
13b Second semiconductor layer (Cu (In, Al) Se 2 layer)
14 Window layer (CdS / ZnO laminated film)
15 Transparent conductive film (ITO film)
16 electrode (NiCr / Au laminated film)

Claims (8)

GaおよびInからなる群より選ばれる少なくとも1つの元素と、S、SeおよびTeからなる群より選ばれる少なくとも1つの元素と、Cuと、Alとを含みカルコパイライト構造である半導体薄膜を光吸収層として備え、
前記半導体薄膜は、第1の半導体層と、前記第1の半導体層よりも光入射側に配置された第2の半導体層とを含み、
前記第1の半導体層は、前記第2の半導体層に近づくにつれてバンドギャップが小さくなっており、
前記第2の半導体層は、前記半導体薄膜内においてAl濃度の最も大きい領域を含むとともに、前記第1の半導体層における最小のバンドギャップよりも大きいバンドギャップを有する、薄膜太陽電池。
A semiconductor thin film having a chalcopyrite structure including at least one element selected from the group consisting of Ga and In, at least one element selected from the group consisting of S, Se, and Te, Cu, and Al. Prepared as
The semiconductor thin film includes a first semiconductor layer, and a second semiconductor layer disposed on the light incident side of the first semiconductor layer,
The first semiconductor layer has a smaller band gap as it approaches the second semiconductor layer,
The second semiconductor layer includes a region having the highest Al concentration in the semiconductor thin film, and has a band gap larger than a minimum band gap in the first semiconductor layer.
前記第1の半導体層と前記第2の半導体層とが直接積層され、
前記第1の半導体層は、GaとInとを含み、かつ、前記第2の半導体層との界面において、組成比Ga/(In+Ga)が最小となる、請求項1記載の薄膜太陽電池。
The first semiconductor layer and the second semiconductor layer are directly stacked,
2. The thin film solar cell according to claim 1, wherein the first semiconductor layer contains Ga and In, and a composition ratio Ga / (In + Ga) is minimized at an interface between the first semiconductor layer and the second semiconductor layer.
前記第1の半導体層は、実質的にAlを含有しない層である、請求項1または請求項2記載の薄膜太陽電池。   The thin film solar cell according to claim 1, wherein the first semiconductor layer is a layer that does not substantially contain Al. 前記第2の半導体層の厚さが0.2μm以下である、請求項3記載の薄膜太陽電池。   The thin film solar cell according to claim 3, wherein the thickness of the second semiconductor layer is 0.2 μm or less. 前記第2の半導体層がInを含み、
前記第2の半導体層の光入射側の表面における組成比Al/(In+Al)をxとし、前記第1の半導体層の裏面における組成比Ga/(In+Ga)をyと定義したとき、xとyが下記(式1)の関係を満足する、請求項2記載の薄膜太陽電池。
1.07x+0.62x2≦0.42y+0.24y2 ・・・(式1)
The second semiconductor layer includes In;
When the composition ratio Al / (In + Al) on the light incident side surface of the second semiconductor layer is defined as x and the composition ratio Ga / (In + Ga) on the back surface of the first semiconductor layer is defined as y, x and y The thin film solar cell of Claim 2 which satisfies the relationship of following (Formula 1).
1.07x + 0.62x 2 ≦ 0.42y + 0.24y 2 (Formula 1)
前記第2の半導体層がInを含み、
前記第2の半導体層の光入射側の表面における組成比Al/(In+Al)をxとし、前記第1の半導体層中において変化している組成比Ga/(In+Ga)の最小値をzと定義したとき、xとzが下記(式2)の関係を満足する、請求項2記載の薄膜太陽電池。
1.07x+0.62x2≧0.42z+0.24z2 ・・・(式2)
The second semiconductor layer includes In;
The composition ratio Al / (In + Al) on the light incident side surface of the second semiconductor layer is defined as x, and the minimum value of the composition ratio Ga / (In + Ga) changing in the first semiconductor layer is defined as z. The thin film solar cell according to claim 2, wherein x and z satisfy the following relationship (Formula 2).
1.07x + 0.62x 2 ≧ 0.42z + 0.24z 2 (Formula 2)
前記第1の半導体層は、前記第2の半導体層との界面をなす表面から裏面に向けて組成比Ga/(In+Ga)が連続的に増加している、請求項2記載の薄膜太陽電池。   The thin film solar cell according to claim 2, wherein the first semiconductor layer has a composition ratio Ga / (In + Ga) continuously increasing from the front surface forming the interface with the second semiconductor layer toward the back surface. 基板と、
裏面電極層と、
前記第1および前記第2の半導体層とは反対の導電型の半導体からなる窓層と、
透明導電膜とをさらに備えた、請求項1記載の薄膜太陽電池。
A substrate,
A back electrode layer;
A window layer made of a semiconductor of a conductivity type opposite to the first and second semiconductor layers;
The thin film solar cell according to claim 1, further comprising a transparent conductive film.
JP2006168570A 2006-06-19 2006-06-19 Thin film solar cell Expired - Fee Related JP4919710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006168570A JP4919710B2 (en) 2006-06-19 2006-06-19 Thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006168570A JP4919710B2 (en) 2006-06-19 2006-06-19 Thin film solar cell

Publications (2)

Publication Number Publication Date
JP2007335792A true JP2007335792A (en) 2007-12-27
JP4919710B2 JP4919710B2 (en) 2012-04-18

Family

ID=38934943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006168570A Expired - Fee Related JP4919710B2 (en) 2006-06-19 2006-06-19 Thin film solar cell

Country Status (1)

Country Link
JP (1) JP4919710B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011023520A (en) * 2009-07-15 2011-02-03 Panasonic Electric Works Co Ltd P-type semiconductor film and solar cell
KR20110012954A (en) * 2009-07-31 2011-02-09 삼성전자주식회사 Method of manufacturing thin film solar cell
WO2011052574A1 (en) * 2009-10-27 2011-05-05 キヤノンアネルバ株式会社 Method for manufacturing chalcopyrite type compound thin film and method for manufacturing thin film solar cell using the method
JP2011119478A (en) * 2009-12-03 2011-06-16 Kaneka Corp Compound semiconductor solar cell
WO2012046326A1 (en) 2010-10-07 2012-04-12 グエラテクノロジー株式会社 Photovoltaic cell
WO2012091170A1 (en) * 2010-12-28 2012-07-05 Tdk Corporation Solar cell and solar cell production method
JP2013044049A (en) * 2011-08-26 2013-03-04 Ulvac Japan Ltd Method for producing compound semiconductor thin film, precursor thin film of compound semiconductor thin film, and compound semiconductor thin film
US8581092B2 (en) 2009-07-10 2013-11-12 Samsung Sdi Co., Ltd. Tandem solar cell and method of manufacturing same
CN103887366A (en) * 2014-01-03 2014-06-25 华东师范大学 Preparation method of copper indium aluminum selenium film with adjustable energy band
WO2014125901A1 (en) * 2013-02-12 2014-08-21 日東電工株式会社 Cigs film and cigs solar cell using same
JP2014154759A (en) * 2013-02-12 2014-08-25 Nitto Denko Corp Cigs film and cigs solar cell using the same
JP2014232764A (en) * 2013-05-28 2014-12-11 シャープ株式会社 Solar cell
CN113571594A (en) * 2021-07-16 2021-10-29 北京交通大学 Copper indium gallium selenide battery and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107924959A (en) 2015-08-05 2018-04-17 陶氏环球技术有限责任公司 Include the photovoltaic devices and relative manufacturing process of the photovoltaic light absorber containing chalkogenide

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213977A (en) * 1996-01-29 1997-08-15 Matsushita Electric Ind Co Ltd Production of semiconductor thin film
JPH10135495A (en) * 1996-10-25 1998-05-22 Showa Shell Sekiyu Kk Method and apparatus for manufacturing thin-film solar cell
JPH11274526A (en) * 1998-03-23 1999-10-08 Yazaki Corp Semiconductor thin film with cis-based chalcopyrite, structure, solar battery, with the thin film and their manufacture
WO2004090955A1 (en) * 2003-04-04 2004-10-21 Nikon Corporation Illuminating optical device, projection exposure system and exposure method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213977A (en) * 1996-01-29 1997-08-15 Matsushita Electric Ind Co Ltd Production of semiconductor thin film
JPH10135495A (en) * 1996-10-25 1998-05-22 Showa Shell Sekiyu Kk Method and apparatus for manufacturing thin-film solar cell
JPH11274526A (en) * 1998-03-23 1999-10-08 Yazaki Corp Semiconductor thin film with cis-based chalcopyrite, structure, solar battery, with the thin film and their manufacture
WO2004090955A1 (en) * 2003-04-04 2004-10-21 Nikon Corporation Illuminating optical device, projection exposure system and exposure method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. SONG ET AL.: "Device modeling and simulation of the performance of Cu(In1-x,Gax)Se2 solar cells", SOLID-STATE ELECTRONICS, vol. 48, no. 1, JPN6011019641, January 2004 (2004-01-01), pages 73 - 79, XP004468380, ISSN: 0002112696, DOI: 10.1016/S0038-1101(03)00289-2 *
T. DULLWEBER ET AL.: "A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semic", SOLAR ENERGY MATERIALS & SOLAR CELLS, vol. Vol.67,No.1/4, JPN6011019635, March 2001 (2001-03-01), pages 145 - 150, ISSN: 0001898726 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8581092B2 (en) 2009-07-10 2013-11-12 Samsung Sdi Co., Ltd. Tandem solar cell and method of manufacturing same
JP2011023520A (en) * 2009-07-15 2011-02-03 Panasonic Electric Works Co Ltd P-type semiconductor film and solar cell
KR101631970B1 (en) * 2009-07-31 2016-06-21 삼성에스디아이 주식회사 Method of manufacturing thin film solar cell
KR20110012954A (en) * 2009-07-31 2011-02-09 삼성전자주식회사 Method of manufacturing thin film solar cell
WO2011052574A1 (en) * 2009-10-27 2011-05-05 キヤノンアネルバ株式会社 Method for manufacturing chalcopyrite type compound thin film and method for manufacturing thin film solar cell using the method
JP5378534B2 (en) * 2009-10-27 2013-12-25 キヤノンアネルバ株式会社 Method for producing chalcopyrite type compound thin film and method for producing thin film solar cell using the same
JP2011119478A (en) * 2009-12-03 2011-06-16 Kaneka Corp Compound semiconductor solar cell
WO2012046326A1 (en) 2010-10-07 2012-04-12 グエラテクノロジー株式会社 Photovoltaic cell
US9711668B2 (en) 2010-10-07 2017-07-18 Guala Technology Co., Ltd. Photovoltaic cell
KR20140009977A (en) 2010-10-07 2014-01-23 구엘라 테크놀로지 가부시키가이샤 Photovoltaic cell
WO2012091170A1 (en) * 2010-12-28 2012-07-05 Tdk Corporation Solar cell and solar cell production method
JP2014506391A (en) * 2010-12-28 2014-03-13 Tdk株式会社 Solar cell and method for manufacturing solar cell
JP2013044049A (en) * 2011-08-26 2013-03-04 Ulvac Japan Ltd Method for producing compound semiconductor thin film, precursor thin film of compound semiconductor thin film, and compound semiconductor thin film
WO2014125901A1 (en) * 2013-02-12 2014-08-21 日東電工株式会社 Cigs film and cigs solar cell using same
JP2014154759A (en) * 2013-02-12 2014-08-25 Nitto Denko Corp Cigs film and cigs solar cell using the same
US9614111B2 (en) 2013-02-12 2017-04-04 Nitto Denko Corporation CIGS film, and CIGS solar cell employing the same
JP2014232764A (en) * 2013-05-28 2014-12-11 シャープ株式会社 Solar cell
CN103887366A (en) * 2014-01-03 2014-06-25 华东师范大学 Preparation method of copper indium aluminum selenium film with adjustable energy band
CN113571594A (en) * 2021-07-16 2021-10-29 北京交通大学 Copper indium gallium selenide battery and manufacturing method thereof
CN113571594B (en) * 2021-07-16 2023-06-16 北京交通大学 Copper indium gallium selenium battery and manufacturing method thereof

Also Published As

Publication number Publication date
JP4919710B2 (en) 2012-04-18

Similar Documents

Publication Publication Date Title
JP4919710B2 (en) Thin film solar cell
JP5003698B2 (en) Solar cell and method for manufacturing solar cell
US9087954B2 (en) Method for producing the pentanary compound semiconductor CZTSSe, and thin-film solar cell
EP1492169A2 (en) Solar cell
JP2011100976A (en) Photoelectric conversion element, method of manufacturing the same, and solar cell
AU2011226881B2 (en) Photovoltaic device and method for making
WO2011040645A1 (en) Photoelectric conversion device, method for producing the same, and solar battery
KR20100109457A (en) Method for producing chalcopyrite-type solar cell
US20110162696A1 (en) Photovoltaic materials with controllable zinc and sodium content and method of making thereof
KR20150051181A (en) PREPARATION METHOD OF CZTSSe-BASED THIN FILM SOLAR CELL AND CZTSSe-BASED THIN FILM SOLAR CELL PREPARED BY THE METHOD
JP2011129631A (en) Method of manufacturing cis thin film solar cell
US10211351B2 (en) Photovoltaic cell with high efficiency CIGS absorber layer with low minority carrier lifetime and method of making thereof
US20130327398A1 (en) Thin-Film Photovoltaic Devices and Methods of Manufacture
JP2014209586A (en) Thin film solar cell and manufacturing method for the same
JP6297038B2 (en) Thin film solar cell and method for manufacturing thin film solar cell
US20100210065A1 (en) Method of manufacturing solar cell
JP3468328B2 (en) Manufacturing method of semiconductor thin film
JPH10150212A (en) Precursor for semiconductor thin film formation use and manufacture of semiconductor thin film
JP2011023520A (en) P-type semiconductor film and solar cell
JP2010219097A (en) Solar cell, and method for producing the same
JP2014506391A (en) Solar cell and method for manufacturing solar cell
Schulte et al. Toward efficient Cu (In, Ga) Se2 solar cells prepared by reactive magnetron co‐sputtering from metallic targets in an Ar: H2Se atmosphere
US20150249171A1 (en) Method of making photovoltaic device comprising i-iii-vi2 compound absorber having tailored atomic distribution
Romeo CdTe and CuInGaSe 2 Thin-Film Solar Cells
JP2005117012A (en) Semiconductor film, its manufacturing method, solar cell using the same, and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090518

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R150 Certificate of patent or registration of utility model

Ref document number: 4919710

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees