JP2007330431A - 生体情報判定システム及び生体情報判定方法並びに生体情報判定プログラム - Google Patents
生体情報判定システム及び生体情報判定方法並びに生体情報判定プログラム Download PDFInfo
- Publication number
- JP2007330431A JP2007330431A JP2006164591A JP2006164591A JP2007330431A JP 2007330431 A JP2007330431 A JP 2007330431A JP 2006164591 A JP2006164591 A JP 2006164591A JP 2006164591 A JP2006164591 A JP 2006164591A JP 2007330431 A JP2007330431 A JP 2007330431A
- Authority
- JP
- Japan
- Prior art keywords
- biological information
- pulse wave
- pulse
- apnea
- pulse rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
【課題】脈波に基づいて無呼吸判定を行えるようにする。
【解決手段】生体情報判定システム1は、人体の指に装着した脈波センサユニット4で検出した脈波信号を送受信ユニット5を介して解析装置3に送信する。解析装置3では、脈波の時系列データから脈拍数を算出し、波形解析部45で脈拍数の平均値を求める。脈拍数の平均値をバンドパスフィルタでフィルタリングして無呼吸時の周波数に相当する信号を抽出し、この信号強度を2乗した後に平均化処理し、信号強度と頻度から無呼吸の時間帯を判定する。
【選択図】図1
【解決手段】生体情報判定システム1は、人体の指に装着した脈波センサユニット4で検出した脈波信号を送受信ユニット5を介して解析装置3に送信する。解析装置3では、脈波の時系列データから脈拍数を算出し、波形解析部45で脈拍数の平均値を求める。脈拍数の平均値をバンドパスフィルタでフィルタリングして無呼吸時の周波数に相当する信号を抽出し、この信号強度を2乗した後に平均化処理し、信号強度と頻度から無呼吸の時間帯を判定する。
【選択図】図1
Description
本発明は、生体の脈波に基づいて生体情報を判定する生体情報判定システム、生体情報判定方法、生体情報判定プログラムに関する。
生体情報としては、脈拍や体温、血圧などが知れられており、これらの情報を取得することで健康状態などのチェックを行うことができる。ここで、生体情報として脈拍を判定する場合には、光電センサなどで検出した脈波を一定の時間取り込んでデータ処理を行うことで脈拍数を算出している。この際、脈波に体動などによるノイズが重畳し易いので、このようなノイズを除去してから脈拍数を算出する必要がある。そこで、脈波を検出する従来の装置には、脈波センサに加えて圧力センサを設け、静脈起因の体動を検出できるようにしたものがある(例えば、特許文献1参照)。脈波センサ及び圧力センサは、人体の指に装着して使用され、腕部に装着される装置本体にデータを出力するように構成される。脈波センサは、発光ダイオードと光電素子とを有し、装置本体に設けたA/D変換回路を通してアナログ信号をデジタル信号に変換してからデータ処理を行う。具体的には、脈波センサで検出した脈波検出データと、圧力センサで検出した体動検出データを時系列順に並べ、両者の差を演算する。このとき得られる残差データをFFT(フーリエ変換)して脈波の高調波成分を抽出し、その周波数から脈拍数を算出していた。
また、生体情報として睡眠時の無呼吸時間を判定する場合には、血中酸素飽和度計を用いることが知られている。血中の酸素飽和度は、血液中にあるヘモグロビンの酸素結合最大能力に対して、酸素が実際に取り込まれて結合している比率をいい、この比率が小さいと血中に酸素が充分取り込まれていない酸欠状態、つまり無呼吸状態であると判定できる。ヘモグロビン酸素飽和度は、等吸光波長の吸光度と、酸素結合型ヘモグロビンと還元型ヘモグロビンのモル吸光係数の比が既知である波長の吸光度とをそれぞれ測定して連立方程式を解くことで測定されていた(例えば、特許文献2参照)。
特開2005−131426号公報
特開2006−115948号公報
しかしながら、血中酸素飽和度計を用いる従来のシステムでは、波長の異なる2種類の光を使用する必要があるので装置構成が複雑であった。さらに、2種類の光のそれぞれで検出した脈波データの同期を取る必要があるので解析処理が複雑であった。
この発明は、このような事情に鑑みてなされたものであり、1種類の光で検出した脈波の信号に基づいて無呼吸判定を行えるようにすることを主な目的とする。
この発明は、このような事情に鑑みてなされたものであり、1種類の光で検出した脈波の信号に基づいて無呼吸判定を行えるようにすることを主な目的とする。
上記の課題を解決する本発明の請求項1に係る発明は、生体から取得した脈波の信号に基づいて生体情報を判定する生体情報判定システムであって、脈波の時系列データから1周期分の始点に相当する信号と終点に相当する信号を基準点として抽出する基準点決定部と、基準点間の時間間隔から脈波数を算出する脈拍数算出部と、一定時間毎の脈拍数の平均値を、無呼吸時の脈拍数変化の周波数に相当するカットオフ周波数をもつバンドパスフィルタでフィルタリングし、無呼吸時の脈拍数に相当する信号を抽出する無呼吸判定部と、を有することを特徴とする生体情報判定システムとした。
この生体情報判定システムは、呼吸状態が脈拍数に影響を与えるという生理現象に注目したものである。一般に、正常な呼吸状態に比べ、無呼吸時には脈拍数変化がゆっくりとなる。すなわち、脈波数変化の周期が無呼吸時に低周波数側にシフトすることに着目している。このため、無呼吸時の脈拍数に相当する信号を周波数フィルタで抽出し、抽出した信号から無呼吸の有無や、無呼吸が頻発に発生する時間帯を判定する。
この生体情報判定システムは、呼吸状態が脈拍数に影響を与えるという生理現象に注目したものである。一般に、正常な呼吸状態に比べ、無呼吸時には脈拍数変化がゆっくりとなる。すなわち、脈波数変化の周期が無呼吸時に低周波数側にシフトすることに着目している。このため、無呼吸時の脈拍数に相当する信号を周波数フィルタで抽出し、抽出した信号から無呼吸の有無や、無呼吸が頻発に発生する時間帯を判定する。
請求項2に係る発明は、請求項1に記載の生体情報判定システムにおいて、前記無呼吸判定部は、バンドパスフィルタによるフィルタリング処理後の信号強度を2乗した信号を作成するように構成したことを特徴とする。
この生体情報判定システムでは、フィルタ処理した後の信号強度を2乗することで無呼吸状態に相当する信号と、正常な呼吸状態に相当する信号との差が明確にし、両者を区別し易くする。
この生体情報判定システムでは、フィルタ処理した後の信号強度を2乗することで無呼吸状態に相当する信号と、正常な呼吸状態に相当する信号との差が明確にし、両者を区別し易くする。
請求項3に係る発明は、請求項2に記載の生体情報判定システムにおいて、前記無呼吸判定部は、信号強度を2乗した信号に対して一定時間毎に平均化処理を行うように構成したことを特徴とする
この生体情報判定システムでは、信号強度を2乗した後で平均化処理を行ってノイズの影響を低減させる。
この生体情報判定システムでは、信号強度を2乗した後で平均化処理を行ってノイズの影響を低減させる。
請求項4に係る発明は、請求項1から請求項3のいずれか一項に生体情報判定システムにおいて、生体から脈波を取得するために用いられる脈波センサユニットを有し、前記脈波センサユニットは、指を指先から少なくとも第二関節まで挿入可能なユニット本体と、前記ユニット本体内に配置された発光素子及び光電素子と、指を前記ユニット本体に挿入するために設けられた開口部に配置され、指と前記開口部の間の隙間を塞ぐように配置された斜光部材と、を有することを特徴とする。
この生体情報判定システムは、指の先端を覆うと共に、斜光部材で開口部側からの光の進入を防止する。指を少なくとも第二関節まで挿入させることで、指先が動いて測定位置が大きく変動することを防止する。
この生体情報判定システムは、指の先端を覆うと共に、斜光部材で開口部側からの光の進入を防止する。指を少なくとも第二関節まで挿入させることで、指先が動いて測定位置が大きく変動することを防止する。
請求項5に係る発明は、請求項4に記載の生体情報判定システムにおいて、前記ユニット本体の内面に外部からの光を遮断する遮蔽層が設けられていることを特徴とする。
この生体情報判定システムでは、ユニット本体を透過する光があった場合に、遮蔽層が透過光を遮蔽することで受光素子に迷光が入射しないようにする。
この生体情報判定システムでは、ユニット本体を透過する光があった場合に、遮蔽層が透過光を遮蔽することで受光素子に迷光が入射しないようにする。
請求項6に係る発明は、請求項4又は請求項5に記載の生体情報判定システムにおいて、前記ユニット本体内で指を前記発光素子及び前記受光素子に向けて押圧する部材を有することを特徴とする。
この生体情報判定システムでは、ユニット本体内に挿入した指先が発光素子及び受光素子に向けて押圧されるので、指の移動が抑制される。脈波を安定して取得することが可能になる。
この生体情報判定システムでは、ユニット本体内に挿入した指先が発光素子及び受光素子に向けて押圧されるので、指の移動が抑制される。脈波を安定して取得することが可能になる。
請求項7に係る発明は、請求項4から請求項6いずれか一項に記載の生体情報判定システムにおいて、前記受光素子として光周波数変換素子を用いたことを特徴とする。
この生体情報判定システムでは、受光素子がパルス信号を出力するので、脈波センサユニットにA/D変換回路が不要になり、回路構成が簡略化される。
この生体情報判定システムでは、受光素子がパルス信号を出力するので、脈波センサユニットにA/D変換回路が不要になり、回路構成が簡略化される。
請求項8に係る発明は、生体から取得した脈波を解析して生体情報を判定するための方法であって、脈波の時系列データから1周期分の始点に相当する信号と終点に相当する信号を基準点として抽出するステップと、前記始点と前記終点の間の時間間隔から脈波の周期を算出するステップと、脈波の周期から算出される脈拍数の平均値を一定時間毎に算出するステップと、無呼吸帯時の脈拍数変化に相当するカットオフ周波数をもつバンドパスフィルタで脈拍数の平均値をフィルタリングし、無呼吸時の脈拍数に相当する信号を抽出するステップと、を有することを特徴とする生体情報判定方法とした。
この生体情報判定方法では、脈波の時系列データから脈拍数を求め、一定時間毎の平均値を周波数フィルタで信号処理し、無呼吸状態に相当する信号を抽出する。このときに抽出された信号を用い、例えば信号の大きさや信号の頻度などを指標として無呼吸状態や、無呼吸が頻発する時間帯を判定する。
この生体情報判定方法では、脈波の時系列データから脈拍数を求め、一定時間毎の平均値を周波数フィルタで信号処理し、無呼吸状態に相当する信号を抽出する。このときに抽出された信号を用い、例えば信号の大きさや信号の頻度などを指標として無呼吸状態や、無呼吸が頻発する時間帯を判定する。
請求項9に係る発明は、生体から取得した脈波の時系列データを取り込んで生体情報を判定する装置に、脈波の時系列データから1周期分の始点に相当する信号と終点に相当する信号を基準点として抽出する機能と、前記始点と前記終点の間の時間間隔から脈波の周期を算出する機能と、脈波の周期から算出される脈拍数の平均値を一定時間毎に算出する機能と、無呼吸帯時の脈拍数変化に相当するカットオフ周波数をもつバンドパスフィルタで脈拍数の平均値をフィルタリングし、無呼吸時の脈拍数に相当する信号を抽出する機能と、を実現させるための生体情報判定プログラムとした。
この生体情報判定プログラムを実行すると、脈波の時系列データから脈拍数の平均値が一定時間毎に算出され、周波数フィルタで処理を行うことで無呼吸状態に相当する脈拍数に相当する信号を抽出することが可能になる。
この生体情報判定プログラムを実行すると、脈波の時系列データから脈拍数の平均値が一定時間毎に算出され、周波数フィルタで処理を行うことで無呼吸状態に相当する脈拍数に相当する信号を抽出することが可能になる。
本発明によれば、脈波の信号から無呼吸状態を判定することが可能になり、従来のように2つ以上の波長の光を同期させながら測定を行う必要がなくなる。装置構成やデータ処理が簡略化される。
発明を実施するための最良の形態について図面を参照しながら詳細に説明する。
図1に示すように、生体情報判定システム1は、人体に装着して使用される脈波検出装置2と、脈波検出装置2で検出したデータに基づいて波形解析を行う解析装置3とを有する。なお、脈波検出装置2と解析装置3は、無線通信によってデータを送受信しているが有線で通信しても良い。
図1に示すように、生体情報判定システム1は、人体に装着して使用される脈波検出装置2と、脈波検出装置2で検出したデータに基づいて波形解析を行う解析装置3とを有する。なお、脈波検出装置2と解析装置3は、無線通信によってデータを送受信しているが有線で通信しても良い。
脈波検出装置2は、人体の指に装着される脈波センサユニット4と、腕部に装着される送受信ユニット5とをケーブル6で接続した構成を有する。
図2及び図3に示すように、脈波センサユニット4は、人差し指などの特定の指を第二関節まで挿入可能なユニット本体10を有する。指の挿入量は第一関節を越える量であれば良く、指全体を挿入する構成でも良く、ユニット本体10を一体に製造しても良い。
ユニット本体10は、ヒンジ11で連結された一対のカバー10A,10Bを閉じてネジ固定されており、その内部に指を挿入する空間が形成されている。一対のカバー10A,10Bの固定方法は、溶着等の公知の他の方法であっても良い。
ユニット本体10の先端は、閉鎖され、基端には指を内部に挿入するための開口部12が1つ形成されている。開口部12には、外部からの迷光の進入を防止するための遮光部材13,14が取り付けられている。遮光部材13,14は、指の形状に合わせて変形可能で、かつ指に密着する弾性部材から製造されている。遮光部材13は、中央部分がカバー10B側に突出するように延びており、側縁部及び上縁部はカバー10Aに固定されている。
図2及び図3に示すように、脈波センサユニット4は、人差し指などの特定の指を第二関節まで挿入可能なユニット本体10を有する。指の挿入量は第一関節を越える量であれば良く、指全体を挿入する構成でも良く、ユニット本体10を一体に製造しても良い。
ユニット本体10は、ヒンジ11で連結された一対のカバー10A,10Bを閉じてネジ固定されており、その内部に指を挿入する空間が形成されている。一対のカバー10A,10Bの固定方法は、溶着等の公知の他の方法であっても良い。
ユニット本体10の先端は、閉鎖され、基端には指を内部に挿入するための開口部12が1つ形成されている。開口部12には、外部からの迷光の進入を防止するための遮光部材13,14が取り付けられている。遮光部材13,14は、指の形状に合わせて変形可能で、かつ指に密着する弾性部材から製造されている。遮光部材13は、中央部分がカバー10B側に突出するように延びており、側縁部及び上縁部はカバー10Aに固定されている。
ユニット本体10のカバー10A,10Bのそれぞれの内面には、弾性部材15,16(押圧部材)が1つずつ、指を挟んで密着するように貼り付けられている。カバー10B側の弾性部材15は、指の腹に密着する。弾性部材15の先端部分は、一部が切り取られており、ここに発光素子20と受光素子21とが配置されている。発光素子20は、赤外光又は赤色光を照射するLED(発光ダイオード)が使用されている。受光素子21は、光周波数変換素子(LFC素子)が用いられている。この受光素子21は、脈圧の大きさに応じて周波数が変化するデジタル信号を出力するので、アナログ信号を出力する受光素子を使用する場合に比べて回路構成が簡単になると共に、耐ノイズ性が向上し、脈波信号の振幅の飽和や、フィルタ時定数による遅延などを考慮する必要がなくなる。カバー10B側の弾性部材16は、指の背に密着するようにカバー10Aに向けて突出して配置され、指をカバー10A側の弾性部材15に押し付ける役割を有する。
ユニット本体10は、例えば、樹脂材料から製造されており、ユニット本体10の内面は遮光層22で覆われている。遮光層22は、例えば、アルミニウム箔からなり、カバー10A、10Bを透過する光を反射し、カバー10A、10Bを透過した光が受光素子21に入射しないようにしている。なお、遮光層22は、その他の金属箔は、遮光塗料を塗布して形成した層や、蒸着膜であっても良い。
図1に示す送受信ユニット5は、マイコン31と、電源32と、無線通信制御部33とを有する。マイコン31は、受光素子21の発光制御と、受光素子21から出力されるパルス信号の受け取りを行い、脈波の信号を無線通信制御部33に受け渡す処理を行う。マイコン31は、エッジ検出部と、周期計測部と、デジタルローパスフィルタとを有し、発光素子20が出力するパルス信号から脈波信号を生成する。無線通信制御部33は、公知の短距離無線通信のプロトコルを使用して解析装置3に脈波信号を送信する構成を有する。電源32には、電池等を使用できる。なお、送受信ユニット5にメモリを設け、メモリをバッファとして使用すると解析装置3との通信をスムーズに行えるようになる。
また、送受信ユニット5には、腕に巻き付ける際に使用するバンド34が取り付けられている。バンド34には、面ファスナ(不図示)などの係止部が設けられており、送受信ユニット5の着脱を容易にしたり、バンド34の締め付け強さを調整したりできるようになっている。
また、送受信ユニット5には、腕に巻き付ける際に使用するバンド34が取り付けられている。バンド34には、面ファスナ(不図示)などの係止部が設けられており、送受信ユニット5の着脱を容易にしたり、バンド34の締め付け強さを調整したりできるようになっている。
解析装置3は、脈波のデータを受信する無線通信制御部40と、フーリエ変換器(FFT)41と、周波数フィルタ42と、逆フーリエ変換器(IFFT)43と、パターンマッチング部44と、波形解析部45とを有し、解析結果が出力部46に出力されるようになっている。出力部46は、ディスプレイや、紙などの記録媒体に出力する装置、他の装置にデータを出力する装置などがあげられる。解析装置3は、専用の装置又は汎用のコンピュータ装置で生体情報判定プログラムを実行することで実現される。
次に、この実施の形態に作用について説明する。
生体情報を取得するときには、解析装置3を起動させ、腕に送受信ユニット5を装着する。脈波センサユニット4には、指を第二関節まで挿入する。マイコン31の指令に基づいて発光素子20が発光し、指先の血管で反射した光が受光素子21に受光される。受光素子21は、受光した光の光量が多いほど、高い周波数の信号を出力する。マイコン31は、無線通信制御部33をコントロールして受光素子21から出力された時間の経過に従って順次、脈波に起因して変動する信号(脈波信号)を解析装置3に送信する。
生体情報を取得するときには、解析装置3を起動させ、腕に送受信ユニット5を装着する。脈波センサユニット4には、指を第二関節まで挿入する。マイコン31の指令に基づいて発光素子20が発光し、指先の血管で反射した光が受光素子21に受光される。受光素子21は、受光した光の光量が多いほど、高い周波数の信号を出力する。マイコン31は、無線通信制御部33をコントロールして受光素子21から出力された時間の経過に従って順次、脈波に起因して変動する信号(脈波信号)を解析装置3に送信する。
図4に、この生体情報判定システム1の解析装置3で主に行われる処理のメインフローを示す。解析装置3は、脈波検出装置2から送信される脈波信号を受信し、所定の取り込み時間の間、脈波信号をメモリに取り込む。取り込み時間は、予め定められており、所定の取り込み時間が経過するまで待機する(ステップS101)。この際に、脈波信号が時系列に複数取り込まれることで、脈圧に相当する信号強度が時間軸に沿って変化する時系列データが作成される。
取り込み時間が経過したら(ステップS101でYes)、周波数フィルタ処理(ステップS102)を実施し、脈波に重畳したノイズを低減すると共に体動などによる低周波のうねりを軽減させる。
取り込み時間が経過したら(ステップS101でYes)、周波数フィルタ処理(ステップS102)を実施し、脈波に重畳したノイズを低減すると共に体動などによる低周波のうねりを軽減させる。
次に、波形パターンマッチング処理(ステップS103)を実施して脈波の周期を複数回調べると共に、ここまでの処理で得られた脈波の時系列データに対して脈波解析(ステップS104)を実施する。その後、現在のデータを以降の処理で活用できるように周波数スペクトル重み付け処理(ステップS105)を実施し、継続して波形解析をする場合(ステップS106でNo)、ステップS101に戻る。波形解析を終了するときには(ステップS106でYes)、ここでの処理を終了する。
以下、各処理の詳細について説明する。
ステップS102周波数フィルタ処理は、フーリエ変換器(FFT)41と、周波数フィルタ42と、逆フーリエ変換器(IFFT)5とで行われる。周波数フィルタ処理の詳細を図5に示す。周波数フィルタ処理(ステップS102)では、最初にフーリエ変換器41がFFT処理するときのデータサイズ(FFTサイズ)を決定する(ステップS201)。
ステップS102周波数フィルタ処理は、フーリエ変換器(FFT)41と、周波数フィルタ42と、逆フーリエ変換器(IFFT)5とで行われる。周波数フィルタ処理の詳細を図5に示す。周波数フィルタ処理(ステップS102)では、最初にフーリエ変換器41がFFT処理するときのデータサイズ(FFTサイズ)を決定する(ステップS201)。
そして、FFTサイズの範囲内で取得した脈波の時系列データに対してFFT処理(直行変換)を実施し(ステップS202)、周波数スペクトルを取得する。この周波数スペクトルは周波数フィルタ42に受け渡され、人体の脈拍の周波数に相当する0.5〜3.0Hzの範囲の信号のみが抽出される(ステップS203)。抽出した信号に対してスペクトル移動平均処理(ステップS204)を実施し、過去のデータ(図2のステップS105で重み付けをしたデータ)を用いて移動平均を演算する。移動平均は、例えば、過去のデータに対して現在のデータに3倍の重み付けを持たせて平均をとる。移動平均を取得することで、外乱などによる不規則な変動の影響を抑え、脈拍数の検出結果が急激に変動することを防止する。
さらに、移動平均後の信号に対してスペクトル最大値検索(ステップS205)を実施し、最大ピークの周波数を抽出し、この周波数から仮の周期Taを演算する。ここまでの処理が終了したら、逆フーリエ変換器43で逆フーリエ変換(IFFT)処理(ステップS206)を実施し、周波数スペクトルから時系列データに直行変換する。
ここまでの処理の具体例を図6から図8を参照して説明する。
まず、図6は、FFTサイズ内で得られたアナログの時系列データを示す。横軸に時間経過を示し、縦軸に信号強度を示す。脈拍に起因する周期的な波に、体動等によるノイズやうねりが重畳されたデータになっている。この時系列波形をフーリエ変換器41で直行変換すると図7に示すようなスペクトルが得られる。横軸は周波数を示し、縦軸は振幅(強度)を示す。通常の人間の脈拍の周波数である0.5Hzから3.0Hzの間に最も強度が大きいピーク信号があり、ピーク信号の強度が、他の信号よりも2倍の強度を有すれば次の処理に進む。0.5Hzから3.0Hzのデータのみを抽出するときには、周波数フィルタ42で0.5Hz未満の信号、及び3.0Hz以上の信号にマスクし、マスク後の周波数スペクトルに対して逆フーリエ変換器43で直行変換(逆フーリエ変換)する。これによって、図8に示すような時系列に変化する波形が作成される。この時系列波形は、当初の時系列波形(図6参照)に比べてノイズが低減されると共に低周波のうねりが軽減されている。
まず、図6は、FFTサイズ内で得られたアナログの時系列データを示す。横軸に時間経過を示し、縦軸に信号強度を示す。脈拍に起因する周期的な波に、体動等によるノイズやうねりが重畳されたデータになっている。この時系列波形をフーリエ変換器41で直行変換すると図7に示すようなスペクトルが得られる。横軸は周波数を示し、縦軸は振幅(強度)を示す。通常の人間の脈拍の周波数である0.5Hzから3.0Hzの間に最も強度が大きいピーク信号があり、ピーク信号の強度が、他の信号よりも2倍の強度を有すれば次の処理に進む。0.5Hzから3.0Hzのデータのみを抽出するときには、周波数フィルタ42で0.5Hz未満の信号、及び3.0Hz以上の信号にマスクし、マスク後の周波数スペクトルに対して逆フーリエ変換器43で直行変換(逆フーリエ変換)する。これによって、図8に示すような時系列に変化する波形が作成される。この時系列波形は、当初の時系列波形(図6参照)に比べてノイズが低減されると共に低周波のうねりが軽減されている。
次に、図4の波形パターンマッチング処理(ステップS103)の詳細について図9を参照して説明する。ここでの処理は、検索範囲設定部、基準点決定部として機能するパターンマッチング部44において行われる。
最初にリミットをFFTデータサイズに設定すると共に、ステータスに初期値として「0」を設定し(ステップS301)、検索範囲の設定(ステップS302)を実施する。検索範囲としては、例えば、スペクトル最大値検索(図5に示すステップS205)で設定された仮周期Taに許容誤差を加算した時間を算出する。この時間領域が以下の処理で初期点などの検索範囲(検索ウィンドウSW)になる。なお、許容誤差は、仮周期Taの25%に相当する値を取得すると精度の良い結果が得られるが、これに限定されず例えば、20〜35%の範囲内の値を採用しても良い。さらに、被測定者の脈拍の安定状態に対応して許容誤差を可変させてもよい。例えば、脈拍が不安定な場合は、許容誤差を大きくとり、安定するにつれて許容誤差を小さくするようにしてもよい。
最初にリミットをFFTデータサイズに設定すると共に、ステータスに初期値として「0」を設定し(ステップS301)、検索範囲の設定(ステップS302)を実施する。検索範囲としては、例えば、スペクトル最大値検索(図5に示すステップS205)で設定された仮周期Taに許容誤差を加算した時間を算出する。この時間領域が以下の処理で初期点などの検索範囲(検索ウィンドウSW)になる。なお、許容誤差は、仮周期Taの25%に相当する値を取得すると精度の良い結果が得られるが、これに限定されず例えば、20〜35%の範囲内の値を採用しても良い。さらに、被測定者の脈拍の安定状態に対応して許容誤差を可変させてもよい。例えば、脈拍が不安定な場合は、許容誤差を大きくとり、安定するにつれて許容誤差を小さくするようにしてもよい。
さらに、検索ウィンドウSWが時系列波形の終点に達しているか境界チェックを行い(ステップS303)、終点に達していたらここでの処理を抜ける。初期段階では、検索ウィンドウSWは終点に達していないので、ステップS303に進んでステータスチェックを実施する(ステップS304)。処理の初期段階ではステータスが「0」であるので、初期点導出処理(ステップS305)を実施する。初期点導出処理では、仮周期Ta内で最も信号強度が低い点を初期点P1(第一の基準点)に定める。また、初期点導出処理では、初期点P1の適合性もチェックする。すなわち、初期点P1として認められたデータが、検索ウィンドウSWの始点から所定のエラー範囲内や、検索ウィンドウSWの終点から所定のエラー範囲内にある場合には、実際には下り勾配の途中であるのに最小値とみなす危険があるので、初期点P1がこの範囲内にあった場合には不適合と判定する。なお、エラー範囲とは、例えば、検索ウィンドウSWの時間範囲の5%に相当する大きさを有する。この値は、計測条件に応じて、例えば、2%から7%の範囲で変更することが可能である。なお、健常者でない場合にはこの限りでなく、エラー範囲をより大きな範囲とすることも考えられる。
具体的には、例えば図8に示すように、時系列に変化する波形の始点から開始する検索ウィンドウSW1を設定し、この検索ウィンドウSW1内で信号強度が最小になる点P1を抽出する。点P1は、検索ウィンドウSW1の最初のエラー範囲E1や、最後のエラー範囲E2には存在しないので、この点P1を初期点とする。
以降の処理は、図9に示すように、初期点P1を導出(ステップS305)したときに判定した初期点P1の適合性のチェック結果に応じて処理が分かれる(ステップS306)。チェック結果が不適合であった場合(ステップS306でNo)については、後述するものとし、初期点P1が適合である場合(ステップS306でYes)について説明する。
この場合には、初期点P1は適合であるとみなし、初期最小点保持処理(ステップS307)を実施する。初期最小点保持処理では、初期点P1をメモリに保持する処理と、新しい検索ウィンドウSWとして、初期点P1を始点として仮周期Taに許容誤差を加えた領域を設定する処理と、ステータスを「1」に設定する処理とを行う。これらの処理が終了したら、ステップS303に戻る。なお、ステータスの「1」は、初期点P1が定まり、かつ適合性が認められたことを示す。
この場合には、初期点P1は適合であるとみなし、初期最小点保持処理(ステップS307)を実施する。初期最小点保持処理では、初期点P1をメモリに保持する処理と、新しい検索ウィンドウSWとして、初期点P1を始点として仮周期Taに許容誤差を加えた領域を設定する処理と、ステータスを「1」に設定する処理とを行う。これらの処理が終了したら、ステップS303に戻る。なお、ステータスの「1」は、初期点P1が定まり、かつ適合性が認められたことを示す。
初期最小点保持処理から戻るステップS303で処理を続行するときには、ステップS304のステータスチェックから次点導出処理(ステップS310)に進む。
ステップS310の次点導出処理の詳細を図10及び図11を例にして説明する。図10に示すように、新しい検索ウィンドウSW2を設定したら、図11に示すように検索ウィンドウSW2中で最小点P2を次点(第2の基準点)として導出し、この最小点P2の適合性を前記と同様にして判定する。ただし、最小点P2を検索する範囲(検査範囲)は、検索ウィンドウSWの75%から100%に相当する最小値検索範囲SL2内とする。また、この最小値検索範囲SL2内においてもエラー範囲を設定し、下り勾配の途中を最小値とみなさないようにする。
さらに、新しい検索ウィンドウSW2中の最大値Q1を導出し、この最大値Q1の適合性を前記と同様にして判定する。ただし、最大値Q1を検索する範囲(検査範囲)は、検索ウィンドウSW2の始点から検索ウィンドウSW2の45%に相当する時間までに相当する最大値検索範囲SU2内とする。また、この最大値検索範囲SU2内においてもエラー範囲E1,E2を設定し、上がり勾配の途中を最大値とみなさないようにする。
ステップS310の次点導出処理の詳細を図10及び図11を例にして説明する。図10に示すように、新しい検索ウィンドウSW2を設定したら、図11に示すように検索ウィンドウSW2中で最小点P2を次点(第2の基準点)として導出し、この最小点P2の適合性を前記と同様にして判定する。ただし、最小点P2を検索する範囲(検査範囲)は、検索ウィンドウSWの75%から100%に相当する最小値検索範囲SL2内とする。また、この最小値検索範囲SL2内においてもエラー範囲を設定し、下り勾配の途中を最小値とみなさないようにする。
さらに、新しい検索ウィンドウSW2中の最大値Q1を導出し、この最大値Q1の適合性を前記と同様にして判定する。ただし、最大値Q1を検索する範囲(検査範囲)は、検索ウィンドウSW2の始点から検索ウィンドウSW2の45%に相当する時間までに相当する最大値検索範囲SU2内とする。また、この最大値検索範囲SU2内においてもエラー範囲E1,E2を設定し、上がり勾配の途中を最大値とみなさないようにする。
そして、最小点P2の適合性と、最大値Q1の適合性の両方を満たす場合には、次点導出処理全体としての適合性が認められたものとし、それ以外の場合は不適合とみなす。これは、先の処理で設定した初期点P1を基準点にした場合、検索ウィンドウSWの後半25%に相当する範囲内に最小点P2が現れなければ周期ずれを起こしているとみなせるからである。同様に、先の処理で設定した初期点P1を基準点にした場合、検索ウィンドウSWの前半45%に相当する範囲内に最大値Q1が現れなければ周期ずれを起こしているとみなせるからである。
以降の処理は、図9に示すように、適合性のチェック結果に応じて処理が分かれる(ステップS311)。不適合と判定された場合(ステップS311でNo)については、後述するものとし、次点が適合である場合(ステップS311でYes)について説明する。
この場合には、最小点間時間の導出・保持処理(ステップS312)を実施する。ここでは、例えば、初期点P1を始点として次の最小値P2を終点とする1周期分の脈波のデータにおいて、始点から終点までの時間を演算し、演算結果を脈拍の周期として記憶する。また、次点の最小値P2を次の周期を求める演算の始点として登録し、検索ウィンドウSW分だけずらした領域を新しい検索ウィンドウSWに設定する。さらに、波形補正アルゴリズムを実行させ、歪んでいる脈波の波形を補正する。
この場合には、最小点間時間の導出・保持処理(ステップS312)を実施する。ここでは、例えば、初期点P1を始点として次の最小値P2を終点とする1周期分の脈波のデータにおいて、始点から終点までの時間を演算し、演算結果を脈拍の周期として記憶する。また、次点の最小値P2を次の周期を求める演算の始点として登録し、検索ウィンドウSW分だけずらした領域を新しい検索ウィンドウSWに設定する。さらに、波形補正アルゴリズムを実行させ、歪んでいる脈波の波形を補正する。
波形補正アルゴリズムでは、パターンマッチング部44が波形補正部として機能することで実施される。具体的には、1周期分の波形の各データを以下に示す変換関数(回転行列)で変換する処理を実行する。
ここで、A=(P2y−P1y)/(P2x−P1x)である。(U(i)x、U(i)y)は、初期点Pからi番目のデータの波形補正後の座標(時間、信号強度)を示す。(P1x、P1y)は、初期点P1の座標(時間、信号強度)を示す。(P2x、P2y)は、初期点P1から一周期後の点P2の座標(時間、信号強度)を示す。したがって、傾斜角度Aは、最小点同士を結ぶ仮想線fAの傾斜角度を示す。図12に示すように、脈波の波形が初期点P1から時間の経過と共に全体的に下がるように歪んでいた場合、パターンマッチング部44による波形変換後には、P1点及びP2点のそれぞれの信号強度の差がゼロになり、その間の各点の信号強度が補正される。時間方向では、データの変化はない。なお、変換関数は、1周期分の脈波の波形に応じて傾斜角度A及びP1yが更新される。
この処理を実施した後、図9に示す波形の妥当性の検証処理(ステップS313)が実施される。この処理では、最小値P1又は最小値P2と最大値Q1の信号強度の差(波高値)を調べ、過去の波高値と比較する。最初の処理では過去の波高値は存在しないが、2回目以降の処理では、このプロセスが実施される。波高値が予め設定されている許容誤差内であれば、妥当であるとみなし、ステップS314からステップS303に戻る。この場合には、前記した処理を繰り返して、その都度ステップS312で周期を演算する。一方、現在の波高値が過去の波高値に対して大きく異なる場合には、波形の妥当性エラーとして、ステップS314からステップ315に進む。
ここで、前記した処理で不適合とみなされた場合(ステップS306、S311、S314のそれぞれでNo)には、パターンマッチング部44が補正部として機能してエラー補正処理(ステップS315)を実行する。この処理では、仮周期Taの25%分だけ検索ウィンドウSWを進める。さらに、ステータスを「0」に設定して初期点導出からやりなおす。
そして、検索ウィンドウSWがFFTサイズの終点に達したら、ここでの処理を終了して図2のメインフローに戻る。
そして、検索ウィンドウSWがFFTサイズの終点に達したら、ここでの処理を終了して図2のメインフローに戻る。
次に、図2の波形解析処理(ステップS104)について説明する。
この処理は、波形解析部45において実施され、脈拍の平均値及び分散値の演算処理と、入眠判定処理と、入眠後の無呼吸判定処理を実施する。なお、波形解析処理は、3つの処理のいずれか1つ、又は2つを実施するように構成しても良い。
この処理は、波形解析部45において実施され、脈拍の平均値及び分散値の演算処理と、入眠判定処理と、入眠後の無呼吸判定処理を実施する。なお、波形解析処理は、3つの処理のいずれか1つ、又は2つを実施するように構成しても良い。
脈拍の平均値及び分散値の演算処理では、波形解析部45が脈拍数算出部として機能し、波形パターンマッチング処理(ステップS103)で波形補正してから算出した脈波の周期の平均値(平均周期)から脈拍数を算出する。さらに、脈拍数の分散値を算出する。脈拍数や脈拍数の分散値は、メモリに記憶したり、出力部46に出力したりする。
図13に入眠判定処理のフローチャートを示す。入眠判定処理は、脈波検出装置2を装着した人がそのまま寝る場合に、その人が眠りに入ったことを判定する処理である。
最初に、波形補正後の脈波から一定時間ごとに脈拍数の平均値と、分散値を算出する(ステップS401)。この処理は、前記した脈拍数の平均値及び分散値の演算処理と同じである。ステップS401の処理結果を図示すると、例えば図14のようになる。図14では、横軸に時間をとり、縦軸には脈波数と脈拍数の分散値をとっている。脈拍数は、所々にノイズによる急峻な増減が存在するが、全体としては時間の経過と共に減少傾向にあることがわかる。脈拍数の分散値は、ノイズによる急峻な立ち上がりの数が時間の経過と共に減少する傾向にあることがわかる。
最初に、波形補正後の脈波から一定時間ごとに脈拍数の平均値と、分散値を算出する(ステップS401)。この処理は、前記した脈拍数の平均値及び分散値の演算処理と同じである。ステップS401の処理結果を図示すると、例えば図14のようになる。図14では、横軸に時間をとり、縦軸には脈波数と脈拍数の分散値をとっている。脈拍数は、所々にノイズによる急峻な増減が存在するが、全体としては時間の経過と共に減少傾向にあることがわかる。脈拍数の分散値は、ノイズによる急峻な立ち上がりの数が時間の経過と共に減少する傾向にあることがわかる。
なお、処理の開始時間は、測定開始から10分後になっている。これは、データがある程度安定するまでの時間を考慮したものであり、例えば測定開始の分散値の25%に下がるのに要する時間である。このような待機時間を5分〜10分程度にすれば安定してデータを取得できるようになる。なお、被験者の体格や年齢性別などに応じて待機時間を変更できるようにしても良い。
次に、図13のステップS402に示すように、脈拍数と、脈拍数の分散値のそれぞれについての移動平均をとる。過去のデータに対して現在のデータを重み付けした状態で平均をとる。その結果、図15に示すように、急峻に立ちあがるノイズが低減されたデータが得られる。さらに、移動平均処理後の脈拍数及び脈拍数の分散値に対して一定時間の平均値をとって間引き処理をする(ステップS403)。図16に300秒ごとに平均値を取得した場合を図示する。脈拍数は、時間の経過に伴って減少傾向を示す。脈拍数の分散値は、時間の経過に伴って減少傾向を示した後に、少しだけ増加している。
したがって、入眠判定(ステップS404)では、脈拍数の分散値が減少傾向で、かつ脈拍数の分散値が減少した後に増加に転じたタイミング(図16に丸印で示すタイミング)で入眠したとみなす。脈拍数の分散値が増加に転じたタイミングは、例えば、分散値の最小値をラッチしておき、新たに算出した分散値とラッチされているデータと比較することで調べることができる。このようにして判定した入眠したタイミングは、必要に応じてメモリに記憶したり、出力部46に出力したりする。
また、図17に無呼吸判定処理のフローチャートを示す。無呼吸判定とは、入眠後に無呼吸状態になったことを判定したり、無呼吸が頻発に発生する時間帯を調べたりする処理である。
最初に、パターンマッチングで波形補正した脈波から一定時間ごとの脈拍数の平均値を算出する(ステップS501)。図18に示すように、時間の経過によって脈拍数が変動するデータが得られるので、バンドパスフィルタで特定の周波数に相当するデータのみを抽出する(ステップS502)。無呼吸状態にあるときは、呼吸が停止した状態が10秒から30秒、多い場合で3分ほど続く。このため、通常の呼吸状態に比べて呼吸の周期が長くなるので、脈拍数変化の周期が低周波側にシフトする。したがって、図19に示すように、バンドパスフィルタは、無呼吸帯域に相当する低周波数帯がカットオフ周波数になるように設計されている。この場合には、0.0067Hzから0.025Hzの間のゲインが約1になっている。本実施の形態に係るバンドパスフィルタは、ローパスフィルタとハイパスフィルタを組み合わせることで実現しており、ローパスフィルタのカットオフ周波数の0.0067Hzは脈拍数変化の周期が150秒の場合に相当し、一方、ハイパスフィルタ側の0.25Hzは脈拍数変化の周期が40秒の場合に相当する。但し、高周波側の周期はハイパスフィルタの信号強度が3dB下がる周波数を0.1Hzに選ぶことにより得ている。このようなバンドパスフィルタを使用すると、図20に示すようなデータが得られる。縦軸は、無呼吸帯域の脈拍数成分を示し、バンドパスフィルタを通過した成分であって、無呼吸状態である可能性がある信号(無呼吸信号)を示す。無呼吸の帯域の脈拍数成分が大きい領域は、180分よりも早い領域TL1と、225〜270分の領域TL2と、310分以降の領域TL3であることが分かる。
最初に、パターンマッチングで波形補正した脈波から一定時間ごとの脈拍数の平均値を算出する(ステップS501)。図18に示すように、時間の経過によって脈拍数が変動するデータが得られるので、バンドパスフィルタで特定の周波数に相当するデータのみを抽出する(ステップS502)。無呼吸状態にあるときは、呼吸が停止した状態が10秒から30秒、多い場合で3分ほど続く。このため、通常の呼吸状態に比べて呼吸の周期が長くなるので、脈拍数変化の周期が低周波側にシフトする。したがって、図19に示すように、バンドパスフィルタは、無呼吸帯域に相当する低周波数帯がカットオフ周波数になるように設計されている。この場合には、0.0067Hzから0.025Hzの間のゲインが約1になっている。本実施の形態に係るバンドパスフィルタは、ローパスフィルタとハイパスフィルタを組み合わせることで実現しており、ローパスフィルタのカットオフ周波数の0.0067Hzは脈拍数変化の周期が150秒の場合に相当し、一方、ハイパスフィルタ側の0.25Hzは脈拍数変化の周期が40秒の場合に相当する。但し、高周波側の周期はハイパスフィルタの信号強度が3dB下がる周波数を0.1Hzに選ぶことにより得ている。このようなバンドパスフィルタを使用すると、図20に示すようなデータが得られる。縦軸は、無呼吸帯域の脈拍数成分を示し、バンドパスフィルタを通過した成分であって、無呼吸状態である可能性がある信号(無呼吸信号)を示す。無呼吸の帯域の脈拍数成分が大きい領域は、180分よりも早い領域TL1と、225〜270分の領域TL2と、310分以降の領域TL3であることが分かる。
次に、無呼吸状態をさらに明確に判定するために、無呼吸信号を2乗してマグニチュード(大きさを表す指標値)を算出する(ステップS503)。図21に示すように、3つの領域TL1〜TL3における無呼吸信号の強度が他の領域に比べてさらに顕著に現れるようになる。さらに、一定時間ごとの平均値をとって(ステップS504)、急激に変化している信号を取り除くと、図22に示すようになる。無呼吸判定(ステップS505)では、無呼吸信号の強度と発生頻度から無呼吸状態の発生の有無や、無呼吸状態が頻発する時間帯を判定する。この際に、信号強度の閾値を予め設定しておき、無呼吸信号のマグニチュードが閾値を越えたときに無呼吸状態と判定するようにすると判定処理が容易になる。同様に、単位時間当たりの発生頻度の閾値を予め設定しておき、無呼吸信号の発生頻度が閾値を越えたときに、その時間帯を無呼吸が頻発する時間帯と判定するようにすると判定処理が容易になる。信号強度及び発生頻度が共に閾値を越えた場合に、無呼吸が頻発する時間帯と判定するようにしても良い。さらに判定精度を向上できる。これら閾値は、年齢や、無呼吸の症状によって異なる値を設定できることが好ましい。
以上説明したように解析処理を実行したら、波形解析部45が周波数スペクトル重み付け処理(図4のステップS105)を実施する。ここでの処理では、FFTしたときの周波数スペクトルにおいて平均周期に相当するピーク周波数と、ピーク周波数から1つ離れた周波数(両隣りの周波数)、及びピーク周波数から2つ離れた周波数に対して、予め設定されている重み付けを行う。例えば、ピーク周波数は1.25倍とし、1つ離れた周波数は1.1倍、2つ離れた周波数は1.05倍とする。そして、これらのデータを連続して脈拍を検出するときに、過去のFFTデータとして使用する。なお、重み付けの係数や、過去のFFTデータとして保持する周波数の範囲は、これに限定されない。また、周波数スペクトル重み付け処理は、解析処理を実施している間の所定のタイミングで実施しても良い。
このようにして作成した過去のFFTデータは、次に実施する周波数フィルタ処理(ステップS102)でFFTデータの移動平均を取得する際に使用される。
このようにして作成した過去のFFTデータは、次に実施する周波数フィルタ処理(ステップS102)でFFTデータの移動平均を取得する際に使用される。
なお、本実施の形態に係る生体情報判定システム1の評価のために、従来の複数の検査方法と比較したところ、入眠の確認及び無呼吸時間の特定を行うことができた。
入眠判定をする際には、生体情報判定システム1に加え、従来の検査方法として被験者をビデオ撮影すると共に、脳波測定と、鼻呼吸による温度変化測定とを実施した。ビデオ撮影では体が動かなくなった時間から落ち着いた寝息が聞こえてくるまでの間の時間帯でおよその入眠時間を判定した。脳波測定では、α波の出現頻度が増加するタイミングとβ波の出現頻度が減少するタイミングから入眠時間を判定した。温度変化から測定される鼻呼吸は入眠するとうねりが小さくなるので、うねりが小さくなるタイミングで入眠と判定した。その結果、これら3つのそれぞれの従来の測定方法で判定した入眠時間が一致する時間帯と、生体情報判定システム1で判定した入眠時間は略一致した。なお、脈拍数の分散値が減少傾向にある段階で入眠判定をすると、α波の出現頻度が低くて入眠に至っていない段階で入眠判定をしてしまうことがあった。したがって、脈拍数が減少傾向で、かつ脈拍数の分散値が減少傾向から増加傾向に転じたタイミングが入眠判定の最適なタイミングである。
入眠判定をする際には、生体情報判定システム1に加え、従来の検査方法として被験者をビデオ撮影すると共に、脳波測定と、鼻呼吸による温度変化測定とを実施した。ビデオ撮影では体が動かなくなった時間から落ち着いた寝息が聞こえてくるまでの間の時間帯でおよその入眠時間を判定した。脳波測定では、α波の出現頻度が増加するタイミングとβ波の出現頻度が減少するタイミングから入眠時間を判定した。温度変化から測定される鼻呼吸は入眠するとうねりが小さくなるので、うねりが小さくなるタイミングで入眠と判定した。その結果、これら3つのそれぞれの従来の測定方法で判定した入眠時間が一致する時間帯と、生体情報判定システム1で判定した入眠時間は略一致した。なお、脈拍数の分散値が減少傾向にある段階で入眠判定をすると、α波の出現頻度が低くて入眠に至っていない段階で入眠判定をしてしまうことがあった。したがって、脈拍数が減少傾向で、かつ脈拍数の分散値が減少傾向から増加傾向に転じたタイミングが入眠判定の最適なタイミングである。
また、無呼吸時間の判定では、生体情報判定システム1に加え、従来の検査方法として血中酸素飽和度の測定と、鼻呼吸による温度変化測定とを実施した。血中酸素の飽和度の測定では、飽和度の変動が大きくなると共に、平均値が低下した時間帯から無呼吸頻発時間帯を判定した。また、鼻呼吸によって変化するサーミスタ温度の上昇が高い時間帯を無呼吸頻発時間帯とした。その結果、これら2つのそれぞれの従来の測定方法で判定した無呼吸頻発時間帯が一致する時間帯と、生体情報判定システム1で判定した無呼吸頻発時間帯は略一致した。
この実施の形態によれば、脈波センサユニット4のユニット本体10の内面に遮蔽部22を設けて外部からの光を遮蔽するようにしたので、受光素子21に迷光が入射することを防止でき、測定精度を向上できる。受光素子21にLFC素子を用いたので、デジタル信号による処理が可能になり、回路構成を簡略化できると共に処理を迅速に行える。ユニット本体10は、指を第二関節まで挿入するように構成されているので、脈波センサユニット4に挿入した指の動きを抑制でき、開口部12側からの迷光の混入が防止される。このため、安定してデータを取得できるようになる。
脈波の波形の最小点から1周期分の脈波を特定する際に、1周期分の脈波の始点と終点を結ぶ仮想線faの傾斜角度Aを求め、この傾斜角度Aがゼロになるように脈波のデータを変換するようにしたので、実際の脈波のデータに対してノイズとして重畳した状態で測定された低周波数成分を除去した波形を得ることが可能になる。このように波形を補正することで、脈波の面積や波形を他の脈波と比較することが可能になる。さらに、低周波数成分によって波形が歪んだ状態では検出が難しくなるような波形も正しく抽出することが可能になり、従来で利用不能と判定されるデータも波形解析に利用することが可能になる。さらに、脈拍の算出やその他の解析の精度を向上させることができる。
脈波の波形の最小点から1周期分の脈波を特定する際に、1周期分の脈波の始点と終点を結ぶ仮想線faの傾斜角度Aを求め、この傾斜角度Aがゼロになるように脈波のデータを変換するようにしたので、実際の脈波のデータに対してノイズとして重畳した状態で測定された低周波数成分を除去した波形を得ることが可能になる。このように波形を補正することで、脈波の面積や波形を他の脈波と比較することが可能になる。さらに、低周波数成分によって波形が歪んだ状態では検出が難しくなるような波形も正しく抽出することが可能になり、従来で利用不能と判定されるデータも波形解析に利用することが可能になる。さらに、脈拍の算出やその他の解析の精度を向上させることができる。
波形解析部45が入眠判定部として機能して入眠判定を行う際に、脈拍数の平均値と、脈拍数の分散値の平均値の時間変化を調べ、脈拍数及び分散値が減少傾向で、かつ脈波数の分散値が減少傾向から増加傾向に転じたタイミングで入眠と判定するようにしたので、他の判定方法の判定結果との比較において、信頼性の高い判定結果が得られるようになる。判定処理の過程で移動平均を算出することでノイズの影響を除去でき、誤判定を防止できる。さらに、移動平均後に平均化処理を実施することで、微小な変動による影響を受けずに入眠判定を正確に行える。
波形解析部45が無呼吸判定部として機能して1つの発光素子20で検出した脈波の時系列データをデータ処理することで無呼吸判定が行えるようになるので、従来のように特定の2波長の光を使用する場合に比べて装置構成や処理を簡略化することができる。周波数フィルタを無呼吸時の脈拍に相当する周波数に設定したので、フィルタ処理で必要な信号を簡単に抽出することが可能になる。フィルタ処理後の信号強度を2乗したり、平均化処理を行ったりすることでノイズの影響を受け難くなり、判定の信頼性を向上させることが可能になる。
波形解析部45が無呼吸判定部として機能して1つの発光素子20で検出した脈波の時系列データをデータ処理することで無呼吸判定が行えるようになるので、従来のように特定の2波長の光を使用する場合に比べて装置構成や処理を簡略化することができる。周波数フィルタを無呼吸時の脈拍に相当する周波数に設定したので、フィルタ処理で必要な信号を簡単に抽出することが可能になる。フィルタ処理後の信号強度を2乗したり、平均化処理を行ったりすることでノイズの影響を受け難くなり、判定の信頼性を向上させることが可能になる。
なお、本発明は、前記の実施の形態に限定されずに広く応用することができる。
例えば、脈波センサユニットは、実施の形態の構成に限定されずに他の構成でも良い。遮光特性の高い材料からユニット本体10を製造した場合には、遮光層22を有しない構成でも良い。脈波センサユニットは、耳等に装着して用いる構成でも良い。
解析装置3は、脈波の入力を受けて脈拍数計算や、入眠判定、無呼吸判定の少なくとも1つを実施する装置であれば良い。生体情報判定システム1は、脈拍数計算のみを実施する場合には脈拍数測定システムになる。入眠判定のみを実施する場合は入眠判定システムになり、無呼吸判定のみを実施する場合には、無呼吸判定システムになる。
例えば、脈波センサユニットは、実施の形態の構成に限定されずに他の構成でも良い。遮光特性の高い材料からユニット本体10を製造した場合には、遮光層22を有しない構成でも良い。脈波センサユニットは、耳等に装着して用いる構成でも良い。
解析装置3は、脈波の入力を受けて脈拍数計算や、入眠判定、無呼吸判定の少なくとも1つを実施する装置であれば良い。生体情報判定システム1は、脈拍数計算のみを実施する場合には脈拍数測定システムになる。入眠判定のみを実施する場合は入眠判定システムになり、無呼吸判定のみを実施する場合には、無呼吸判定システムになる。
解析装置3を実現するためのプログラムは、予め解析装置3に記憶させても良いし、記録媒体に記録して後からインストールするようにしても良い。また、公知のネットワークを通じて解析装置3に取り込めるようにしても良い。プログラムは、脈拍数の算出に使用されるプログラムと、入眠判定に使用されるプログラムと、無呼吸判定に使用されるプログラムの全てを備えても良いし、いずれか1つ又は2つを備える構成でも良い。
発光素子は、LCF素子に限定されずに、アナログ信号を出力する光電素子であっても良い。脈波センサユニットは、指を挿入可能な構成にする代わりに指に巻きつける構成にすることもできる。
脈波の周期の計算する際に、脈波の最大点に着目して1周期分のデータを抽出する構成でも良い。
脈波を補正するときの変換関数は、始点と終点の間を結ぶ仮想線がベースになるように座標変換をする関数に限定されずに、始点と終点を通る曲線を仮想し、この曲線を特定する要素を変換関数に使用しても良い。
無呼吸判定時には、フィルタリング処理後の信号強度を2乗したが、これは信号の大きさを得るための手法なので単に絶対値をとるなどの別の手法でもよい。
脈波の周期の計算する際に、脈波の最大点に着目して1周期分のデータを抽出する構成でも良い。
脈波を補正するときの変換関数は、始点と終点の間を結ぶ仮想線がベースになるように座標変換をする関数に限定されずに、始点と終点を通る曲線を仮想し、この曲線を特定する要素を変換関数に使用しても良い。
無呼吸判定時には、フィルタリング処理後の信号強度を2乗したが、これは信号の大きさを得るための手法なので単に絶対値をとるなどの別の手法でもよい。
入眠判定及び無呼吸判定は、波形補正せずに脈波の時系列データから算出した脈波の周期を用いて判定処理を行うように構成しても良い。波形解析する際の脈拍数の値は、一定時間毎の平均値に限定されず、1回の計算で算出された脈拍数を使用しても良い。入眠判定では、移動平均又は平均化処理の一方のみを行ってから判定をしても良い。無呼吸判定では、無呼吸信号を2乗した後に平均化処理を行わずに判定を行っても良い。
1 生体情報判定システム
2 脈波検出装置
3 解析装置
4 脈波センサユニット
5 送受信ユニット
10 ケース本体
12 開口部
13,14 遮光部材
16 弾性部材(押圧部材)
20 発光素子
21 受光素子(光周波数変換素子)
22 遮蔽層
44 パターンマッチング部(検索範囲設定部、基準点決定部)
45 波形解析部(脈拍数算出部、無呼吸判定部)
P1 初期点(始点)
P2 次点(終点)
S104 波形解析処理(脈拍数算出部)
S302 検索範囲の設定(検索範囲設定部)
S305 初期点導出(基準点決定部)
S310 次点導出(基準点決定部)
S501 脈拍数の平均値の算出(脈拍数算出部)
S502 バンドパスフィルタでデータ抽出(無呼吸判定部)
S503 無呼吸信号の強度算出(無呼吸判定部)
S504 平均化処理(無呼吸判定部)
S505 無呼吸判定(無呼吸判定部)
2 脈波検出装置
3 解析装置
4 脈波センサユニット
5 送受信ユニット
10 ケース本体
12 開口部
13,14 遮光部材
16 弾性部材(押圧部材)
20 発光素子
21 受光素子(光周波数変換素子)
22 遮蔽層
44 パターンマッチング部(検索範囲設定部、基準点決定部)
45 波形解析部(脈拍数算出部、無呼吸判定部)
P1 初期点(始点)
P2 次点(終点)
S104 波形解析処理(脈拍数算出部)
S302 検索範囲の設定(検索範囲設定部)
S305 初期点導出(基準点決定部)
S310 次点導出(基準点決定部)
S501 脈拍数の平均値の算出(脈拍数算出部)
S502 バンドパスフィルタでデータ抽出(無呼吸判定部)
S503 無呼吸信号の強度算出(無呼吸判定部)
S504 平均化処理(無呼吸判定部)
S505 無呼吸判定(無呼吸判定部)
Claims (9)
- 生体から取得した脈波の信号に基づいて生体情報を判定する生体情報判定システムであって、
脈波の時系列データから1周期分の始点に相当する信号と終点に相当する信号を基準点として抽出する基準点決定部と、
基準点間の時間間隔から脈波数を算出する脈拍数算出部と、
一定時間毎の脈拍数の平均値を、無呼吸時の脈拍数変化の周波数に相当するカットオフ周波数をもつバンドパスフィルタでフィルタリングし、無呼吸時の脈拍数に相当する信号を抽出する無呼吸判定部と、
を有することを特徴とする生体情報判定システム。 - 前記無呼吸判定部は、バンドパスフィルタによるフィルタリング処理後の信号強度を2乗した信号を作成するように構成したことを特徴とする請求項1に記載の生体情報判定システム。
- 前記無呼吸判定部は、信号強度を2乗した信号に対して一定時間毎に平均化処理を行うように構成したことを特徴とする請求項2に記載の生体情報判定システム。
- 生体から脈波を取得するために用いられる脈波センサユニットを有し、
前記脈波センサユニットは、指を指先から少なくとも第二関節まで挿入可能なユニット本体と、
前記ユニット本体内に配置された発光素子及び受光素子と、
指を前記ユニット本体に挿入するために設けられた開口部に配置され、指と前記開口部の間の隙間を塞ぐように配置された斜光部材と、
を有することを特徴とする請求項1から請求項3のいずれか一項に生体情報判定システム。 - 前記ユニット本体の内面に外部からの光を遮断する遮蔽層が設けられていることを特徴とする請求項4に記載の生体情報判定システム。
- 前記ユニット本体内で指を前記発光素子及び前記受光素子に向けて押圧する部材を有することを特徴とする請求項4又は請求項5に記載の生体情報判定システム。
- 前記受光素子として光周波数変換素子を用いたことを特徴とする請求項4から請求項6いずれか一項に記載の生体情報判定システム。
- 生体から取得した脈波を解析して生体情報を判定するための方法であって、
脈波の時系列データから1周期分の始点に相当する信号と終点に相当する信号を基準点として抽出するステップと、
前記始点と前記終点の間の時間間隔から脈波の周期を算出するステップと、
脈波の周期から算出される脈拍数の平均値を一定時間毎に算出するステップと、
無呼吸帯時の脈拍の周波数に相当するカットオフ周波数をもつバンドパスフィルタで脈拍数の平均値をフィルタリングし、無呼吸時の脈拍数に相当する信号を抽出するステップと、
を有することを特徴とする生体情報判定方法。 - 生体から取得した脈波の時系列データを取り込んで生体情報を判定する装置に、
脈波の時系列データから1周期分の始点に相当する信号と終点に相当する信号を基準点として抽出する機能と、
前記始点と前記終点の間の時間間隔から脈波の周期を算出する機能と、
脈波の周期から算出される脈拍数の平均値を一定時間毎に算出する機能と、
無呼吸帯時の脈拍の周波数に相当するカットオフ周波数をもつバンドパスフィルタで脈拍数の平均値をフィルタリングし、無呼吸時の脈拍数に相当する信号を抽出する機能と、
を実現させるための生体情報判定プログラム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006164591A JP2007330431A (ja) | 2006-06-14 | 2006-06-14 | 生体情報判定システム及び生体情報判定方法並びに生体情報判定プログラム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006164591A JP2007330431A (ja) | 2006-06-14 | 2006-06-14 | 生体情報判定システム及び生体情報判定方法並びに生体情報判定プログラム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007330431A true JP2007330431A (ja) | 2007-12-27 |
Family
ID=38930467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006164591A Withdrawn JP2007330431A (ja) | 2006-06-14 | 2006-06-14 | 生体情報判定システム及び生体情報判定方法並びに生体情報判定プログラム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007330431A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2204119A1 (en) * | 2008-12-31 | 2010-07-07 | Industrial Technology Research Institute | Drowsiness detection method and apparatus thereof |
CN102647940A (zh) * | 2009-10-29 | 2012-08-22 | Cn体系药物技术有限公司 | 测量血压的数字控制方法 |
WO2014041939A1 (ja) * | 2012-09-13 | 2014-03-20 | オムロンヘルスケア株式会社 | 脈拍測定装置、脈拍測定方法、および脈拍測定プログラム |
WO2014041913A1 (ja) * | 2012-09-13 | 2014-03-20 | オムロンヘルスケア株式会社 | 脈拍測定装置、ならびに、脈拍測定方法および脈拍測定プログラム |
CN105615858A (zh) * | 2014-10-31 | 2016-06-01 | 西安深迈瑞医疗电子研究院有限公司 | 一种血压/脉率平均值获取方法及电子血压计 |
CN116058813A (zh) * | 2021-10-29 | 2023-05-05 | 疆域康健创新医疗科技成都有限公司 | 生理参数测量方法及电子装置 |
-
2006
- 2006-06-14 JP JP2006164591A patent/JP2007330431A/ja not_active Withdrawn
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2204119A1 (en) * | 2008-12-31 | 2010-07-07 | Industrial Technology Research Institute | Drowsiness detection method and apparatus thereof |
JP2010155058A (ja) * | 2008-12-31 | 2010-07-15 | Ind Technol Res Inst | 眠気検知方法およびその装置 |
CN102647940A (zh) * | 2009-10-29 | 2012-08-22 | Cn体系药物技术有限公司 | 测量血压的数字控制方法 |
JP2013509225A (ja) * | 2009-10-29 | 2013-03-14 | シーエヌシステムズ メディジンテクニク アクチェンゲゼルシャフト | 血圧測定のデジタル式制御方法 |
JP2016025935A (ja) * | 2009-10-29 | 2016-02-12 | シーエヌシステムズ メディジンテクニク アクチェンゲゼルシャフト | 血圧測定のデジタル式制御方法 |
JP2014054447A (ja) * | 2012-09-13 | 2014-03-27 | Omron Healthcare Co Ltd | 脈拍測定装置、ならびに、脈拍測定方法および脈拍測定プログラム |
WO2014041913A1 (ja) * | 2012-09-13 | 2014-03-20 | オムロンヘルスケア株式会社 | 脈拍測定装置、ならびに、脈拍測定方法および脈拍測定プログラム |
JP2014054449A (ja) * | 2012-09-13 | 2014-03-27 | Omron Healthcare Co Ltd | 脈拍測定装置、脈拍測定方法、および脈拍測定プログラム |
CN104602596A (zh) * | 2012-09-13 | 2015-05-06 | 欧姆龙健康医疗事业株式会社 | 脉搏测定装置、脉搏测定方法和脉搏测定程序 |
CN104602595A (zh) * | 2012-09-13 | 2015-05-06 | 欧姆龙健康医疗事业株式会社 | 脉搏测定装置、脉搏测定方法和脉搏测定程序 |
WO2014041939A1 (ja) * | 2012-09-13 | 2014-03-20 | オムロンヘルスケア株式会社 | 脈拍測定装置、脈拍測定方法、および脈拍測定プログラム |
US9924881B2 (en) | 2012-09-13 | 2018-03-27 | Omron Healthcare Co., Ltd. | Pulse measurement device, pulse measurement method, and pulse measurement program |
US10646124B2 (en) | 2012-09-13 | 2020-05-12 | Omron Healthcare Co., Ltd. | Pulse measurement device, pulse measurement method, and pulse measurement program |
CN105615858A (zh) * | 2014-10-31 | 2016-06-01 | 西安深迈瑞医疗电子研究院有限公司 | 一种血压/脉率平均值获取方法及电子血压计 |
CN116058813A (zh) * | 2021-10-29 | 2023-05-05 | 疆域康健创新医疗科技成都有限公司 | 生理参数测量方法及电子装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2010239127B2 (en) | Discrimination of Cheyne -Stokes breathing patterns by use of oximetry signals | |
US20210353221A1 (en) | Method for detecting and discriminating breathing patterns from respiratory signals | |
US20210186371A1 (en) | Method and apparatus for assessing respiratory distress | |
US10512429B2 (en) | Discrimination of cheyne-stokes breathing patterns by use of oximetry signals | |
JP2007330430A (ja) | 生体情報判定システム及び生体情報判定方法並びに生体情報判定プログラム | |
CN105658142B (zh) | 咽下推测装置 | |
US8398555B2 (en) | System and method for detecting ventilatory instability | |
US20100331715A1 (en) | Systems and methods for detecting effort events | |
EP4114264A1 (en) | Sleep apnea detection system and method | |
JP2007330432A (ja) | 生体情報判定システム及び生体情報判定方法並びに生体情報判定プログラム | |
WO2020072434A1 (en) | Methods and systems for monitoring sleep apnea | |
JP2007330431A (ja) | 生体情報判定システム及び生体情報判定方法並びに生体情報判定プログラム | |
CN106175695B (zh) | 一种睡眠呼吸暂停综合征的检测系统 | |
WO2016104538A1 (ja) | 呼吸状態推定装置、携帯機器、装着型デバイス、プログラム、媒体、呼吸状態推定方法及び呼吸状態推定器 | |
CN107847185A (zh) | 使用光电体积描记术传感器监测呼吸的方法和设备 | |
EP3229673B1 (en) | Pulse wave analyzing apparatus | |
WO2011023961A1 (en) | Relational thermorespirometer spot vitals monitor | |
JP4731031B2 (ja) | 睡眠解析装置及びプログラム並びに記録媒体 | |
KR20200050530A (ko) | 혈관 건강도 측정 시스템 및 그 방법 | |
Castillo-Escario et al. | Automatic silence events detector from smartphone audio signals: A pilot mHealth system for sleep apnea monitoring at home | |
JP2007275349A (ja) | 睡眠時無呼吸症候群スクリーニングシステム、方法、及び動作プログラム | |
JP2010213809A (ja) | 生体信号分析装置 | |
WO2022045174A1 (ja) | 生体検出装置、生体検出方法、及び、プログラム | |
JP2009095486A (ja) | 無呼吸状態判定装置 | |
KR102270546B1 (ko) | 무호흡 탐지 시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20090901 |