[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007330413A - Image diagnostic device - Google Patents

Image diagnostic device Download PDF

Info

Publication number
JP2007330413A
JP2007330413A JP2006164171A JP2006164171A JP2007330413A JP 2007330413 A JP2007330413 A JP 2007330413A JP 2006164171 A JP2006164171 A JP 2006164171A JP 2006164171 A JP2006164171 A JP 2006164171A JP 2007330413 A JP2007330413 A JP 2007330413A
Authority
JP
Japan
Prior art keywords
tissue
image
contrast medium
contrast agent
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006164171A
Other languages
Japanese (ja)
Inventor
Kazuaki Sasaki
一昭 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2006164171A priority Critical patent/JP2007330413A/en
Publication of JP2007330413A publication Critical patent/JP2007330413A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an image diagnostic device to display tissue affinity of a contrast medium by measuring a contrast medium luminance change of an object aimed at and pharmacokinetically analyzing a contrast medium concentration change in accordance with its result. <P>SOLUTION: This image diagnostic device has an ultrasonic probe to acquire a reflection signal from the object aimed at by transmitting an ultrasonic wave to the object aimed at, a contrast medium luminance measuring part to constitute a two-dimensional ultrasonic image by using the reflection signal acquired by the ultrasonic probe, to set a plural number of measuring regions to carry out contrast medium luminance measurement of the object aimed at within an image surface and to measure contrast medium luminance within the measuring regions, a pharmacokinetics analyzing part to pharmacokinetically analyze the contrast medium concentration change measured in the contrast medium luminance measuring part and to pharmacokinetically compute the tissue affinity of an attended tissue and an image display part to image and display information to show the tissue of the object aimed at and the affinity of the contrast medium acquired in the pharmacokinetics analyzing part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、超音波を用いて着目対象組織の経時的造影剤濃度変化を計測し、注目組織の血液−組織親和度を薬物動態学的に解析処理し、組織と造影剤の親和度を画像化して表示する画像診断装置に関する。   The present invention measures the contrast agent concentration change of the target tissue over time using ultrasound, analyzes the blood-tissue affinity of the target tissue pharmacokinetically, and images the affinity between the tissue and the contrast agent. The present invention relates to a diagnostic imaging apparatus that displays images in an integrated manner.

通常の超音波エコー画像は、組織の音響インピーダンスの相違に起因する組織構造の違いを画像化しており、非侵襲的な診断ツールとして、広く生体組織の形態把握に利用されている。さらに近年、直径数μm以下程度の微小な気泡製剤からなる超音波造影剤が登場し、臨床的に使用されるようになってきた。超音波造影剤は、超音波が照射されると強い反射源となる。その結果、造影剤の存在する部位において、強調された高コントラストな画像を得ることができる。また、気泡の特性から、送信波に対する強い非線形信号を生じることも知られており、たとえば、送信波の2倍の周波数成分のみを画像化することで、組織画像と切り離して、造影剤からの信号のみを強調して画像化できる。   A normal ultrasonic echo image visualizes a difference in tissue structure caused by a difference in acoustic impedance of a tissue, and is widely used as a non-invasive diagnostic tool for grasping the form of a living tissue. Furthermore, in recent years, an ultrasound contrast agent composed of a microbubble preparation having a diameter of about several μm or less has appeared and has been clinically used. The ultrasound contrast agent becomes a strong reflection source when irradiated with ultrasound. As a result, an enhanced high-contrast image can be obtained at the site where the contrast agent is present. In addition, it is also known that a strong nonlinear signal for the transmission wave is generated due to the characteristics of the bubbles. For example, by imaging only the frequency component twice the transmission wave, it is separated from the tissue image, and from the contrast agent. Only the signal can be enhanced and imaged.

造影剤は、通常、四肢の静脈から投与されることがほとんどである。静脈投与された造影剤は、右心系・肺循環を経由して、左心系により動脈血と一緒に各組織へ伝達される。   Contrast agents are usually administered from the limb veins. The intravenously administered contrast agent is transmitted to each tissue together with arterial blood by the left heart system via the right heart system and pulmonary circulation.

たとえば、正常な肝臓組織とそれに隣接する肝臓腫瘍が存在した場合を考えてみる。肝臓組織と腫瘍組織が通常のエコー画像では類似の音響インピーダンスを有しているならば鑑別は困難である。ここで、超音波造影剤が投与されると、肝臓組織と腫瘍組織では、血流の分布に違いがあるため、造影剤の分布に違いが生じる。従来、術者はその違いを視覚的に記憶することで、組織性状診断の助けとしている。   For example, consider the case where there is normal liver tissue and an adjacent liver tumor. If liver tissue and tumor tissue have similar acoustic impedance in normal echo images, it is difficult to distinguish them. Here, when an ultrasound contrast agent is administered, there is a difference in the distribution of blood flow between the liver tissue and the tumor tissue, and thus there is a difference in the distribution of the contrast agent. Conventionally, the surgeon has memorized the difference visually to assist in the diagnosis of tissue characteristics.

末梢組織に到達した造影剤の一部は、末梢血管とその周囲組織の構造に起因して、血管から濾出し、組織間隙に存在する。ここで一部造影剤は、組織との特定の親和度に従い、組織に結合する。超音波造影剤の多くは、アルブミン等のたんぱく質、あるいはリン脂質などの脂質成分が、微小気泡周囲に存在するよう構成されているため、組織と造影剤の親和度を決定する主たる要因は、造影剤周囲のたんぱく質あるいは脂質である。   Part of the contrast medium that has reached the peripheral tissue is filtered out of the blood vessel and present in the tissue gap due to the structure of the peripheral blood vessel and the surrounding tissue. Here, a part of the contrast agent binds to the tissue according to a specific affinity with the tissue. Most ultrasound contrast agents are composed of proteins such as albumin or lipid components such as phospholipids around microbubbles, so the main factor that determines the affinity between tissue and contrast agent is contrast Proteins or lipids around the drug.

組織の種類により造影剤が結合する親和度が異なる。あるいは、同一組織でも、強力超音波を利用した組織加熱凝固治療やラジオ波による凝固治療などの治療行為で、組織が熱変性することがある。一般的に、組織を構成するたんぱく質や組織の表面に存在するたんぱく質は、60度以上の高温に一定時間暴露されることで、変性し、その機能を喪失する。その結果、造影剤などの薬物との結合親和性に変化が生じる。しかしながら、従来の画像診断装置では、組織への造影剤の分布の時間的な変化を術者が視覚的に把握するだけで組織と造影剤の親和度を表示することはできない。   The affinity with which the contrast agent binds differs depending on the tissue type. Alternatively, even in the same tissue, the tissue may be thermally denatured by a therapeutic action such as tissue heating coagulation treatment using high-intensity ultrasonic waves or coagulation treatment by radio waves. In general, a protein constituting a tissue or a protein existing on the surface of a tissue is denatured and loses its function when exposed to a high temperature of 60 ° C. or more for a certain period of time. As a result, a change occurs in the binding affinity with a drug such as a contrast agent. However, in the conventional diagnostic imaging apparatus, the operator cannot display the affinity between the tissue and the contrast medium only by visually grasping the temporal change in the distribution of the contrast medium to the tissue.

そこで、本発明の目的は、超音波を用いて着目対象組織の経時的造影剤濃度変化を計測し、注目組織の組織親和度を薬物動態学的に算出する手段により、着目対象の組織と造影剤の親和度を示す情報を抽出・画像化する、画像診断装置を提供することである。   Therefore, an object of the present invention is to measure the contrast agent concentration change over time of the target tissue using ultrasound and to calculate the tissue affinity of the target tissue pharmacokinetically, and to contrast the target tissue with the contrast medium. To provide an image diagnostic apparatus for extracting and imaging information indicating the affinity of an agent.

上記目的を達成するために、本発明の画像診断装置では、超音波を用いて着目対象組織の経時的な造影剤輝度変化を計測し、注目組織の血液−組織親和度を薬物動態学的に解析処理し、着目対象の組織と造影剤の親和度を示す情報を画像化し、表示する。   In order to achieve the above object, in the diagnostic imaging apparatus of the present invention, the contrast agent luminance change over time of the target tissue is measured using ultrasound, and the blood-tissue affinity of the target tissue is pharmacokinetically determined. Analysis processing is performed, and information indicating the affinity between the target tissue and the contrast agent is imaged and displayed.

以下、本発明の画像診断装置の代表的な構成例について列挙する。   Hereinafter, typical configuration examples of the diagnostic imaging apparatus of the present invention will be listed.

(1)着目対象に対して超音波を送信し、前記着目対象からの反射信号を取得するための超音波探触子と、前記超音波探触子によって取得した反射信号を用いて二次元超音波画像を構成し、その画像面内に前記着目対象の造影剤輝度計測を行なう計測領域を設定し、前記計測領域内における造影剤輝度を計測する造影剤輝度計測部と、前記造影剤輝度計測部において計測した造影剤輝度変化を薬物動態的に解析し、注目組織の組織親和度を薬物動態学的に算出する薬物動態解析部と、前記薬物動態解析部において得られた着目対象の組織と造影剤の親和度を示す情報を画像化し表示する画像表示部とを有する。   (1) An ultrasonic probe for transmitting an ultrasonic wave to the target object and acquiring a reflection signal from the target object, and a two-dimensional super-wave using the reflection signal acquired by the ultrasonic probe Contrast agent luminance measurement unit configured to measure a contrast agent luminance in the measurement region by configuring a sound wave image, setting a measurement region for measuring the contrast agent luminance of the target object in the image plane, and measuring the contrast agent luminance Pharmacokinetic analysis of contrast agent luminance change measured in the region, and pharmacokinetic analysis unit for calculating the tissue affinity of the tissue of interest pharmacokinetically, and the tissue of interest obtained in the pharmacokinetic analysis unit and And an image display unit that images and displays information indicating the affinity of the contrast agent.

(2)前記(1)の画像診断装置において、前記造影剤輝度計測部は、超音波の送受信により得られた二次元超音波画像の面内に、組織親和度を算出する領域を複数個設定し、算出値の比を求めることを特徴とする。   (2) In the diagnostic imaging apparatus according to (1), the contrast medium luminance measurement unit sets a plurality of regions for calculating tissue affinity within a plane of a two-dimensional ultrasonic image obtained by transmitting and receiving ultrasonic waves. The ratio of the calculated values is obtained.

(3)前記(1)の画像診断装置において、超音波信号を送受信するための超音波探触子は、複数の圧電素子が1次元もしくは2次元のアレイ状に配列された超音波探触子であることを特徴とする。   (3) In the diagnostic imaging apparatus of (1), the ultrasonic probe for transmitting and receiving ultrasonic signals is an ultrasonic probe in which a plurality of piezoelectric elements are arranged in a one-dimensional or two-dimensional array. It is characterized by being.

(4)前記(1)の画像診断装置において、注目組織の造影剤濃度変化から薬物動態学的に算出された着目領域の組織と造影剤の親和関係を示す情報を画像化することを特徴とする。   (4) The diagnostic imaging apparatus according to (1), wherein information indicating an affinity relationship between a tissue of a region of interest and a contrast agent calculated pharmacokinetically from a change in contrast agent concentration of the tissue of interest is imaged. To do.

(5)前記(4)の画像診断装置において、造影剤輝度変化を薬物動態学的に解析する画像は、超音波画像、PET画像、MRI画像またはX線画像などの造影剤を利用した機能画像であることを特徴とする。   (5) In the diagnostic imaging apparatus according to (4), the image for pharmacokinetic analysis of contrast agent luminance change is a functional image using a contrast agent such as an ultrasound image, a PET image, an MRI image, or an X-ray image. It is characterized by being.

(6)着目対象に対して超音波を送受信し、前記着目対象の2次元断層像を得る超音波探触子と、前記超音波探触子によって取得した超音波画像から、前記着目対象の造影剤輝度を計測するための手段と、計測した造影剤濃度変化を薬物動態的に解析し、注目組織の組織親和度を薬物動態学的に算出する手段と、前記薬物動態学的解析において得られた着目対象の組織と造影剤の親和度を示す情報を画像化し表示する画像表示部とを具備してなることを特徴とする。   (6) Ultrasound probe that transmits / receives ultrasonic waves to / from the target object and obtains a two-dimensional tomographic image of the target object, and contrast imaging of the target object from an ultrasonic image acquired by the ultrasonic probe A means for measuring the agent brightness, a pharmacokinetic analysis of the measured contrast agent concentration change, and a pharmacokinetic calculation of the tissue affinity of the tissue of interest; And an image display unit for imaging and displaying information indicating the affinity between the target tissue and the contrast medium.

本発明によれば、従来技術のエコー画像では反映できない組織性状変化に応じた造影剤結合親和度の表示が可能となり、組織鑑別、治療効果判定に有用である。   According to the present invention, it is possible to display the contrast agent binding affinity in accordance with a change in tissue properties that cannot be reflected in the echo image of the prior art, which is useful for tissue discrimination and treatment effect determination.

以下、本発明の実施例について、図面を参照して詳述する。
図1は、本発明の一実施例になる画像診断装置の構成を示すブロック図である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing the configuration of an image diagnostic apparatus according to an embodiment of the present invention.

まず、着目対象の超音波画像の取得から、造影剤輝度変化から薬物動態学的に解析した組織と造影剤の親和度の表示に至るまでの装置構成について、図1のブロック図を用いて説明する。   First, an apparatus configuration from acquisition of an ultrasound image of a target object to display of the affinity of a tissue and contrast medium analyzed from pharmacokinetic analysis from contrast medium luminance change will be described with reference to the block diagram of FIG. To do.

超音波探触子(以下、探触子)2は複数の圧電素子が並べられた構造を持つ。送信ビームフォーマ3からD/A変換器4を経由して、各圧電素子にアナログ送波信号が送られ、着目対象1に向けて超音波を照射する。各圧電素子から送信される超音波は、送信ビームフォーマ3によって電子的に遅延が掛けられており、所定の深度で集束する。送波信号は、着目対象1内で反射され、再び探触子の各圧電素子で受信される。各圧電素子で受信した反射エコーは、TGC(Time Gain Control)部5で、送波の到達深度による減衰分が補正された後、A/D変換器6でデジタル信号に変換され、受信ビームフォーマ7に送られる。   An ultrasonic probe (hereinafter referred to as a probe) 2 has a structure in which a plurality of piezoelectric elements are arranged. An analog transmission signal is sent to each piezoelectric element from the transmission beamformer 3 via the D / A converter 4 and irradiates the target object 1 with ultrasonic waves. The ultrasonic wave transmitted from each piezoelectric element is electronically delayed by the transmission beam former 3 and is focused at a predetermined depth. The transmitted wave signal is reflected within the object of interest 1 and received again by each piezoelectric element of the probe. The reflected echo received by each piezoelectric element is corrected by the TGC (Time Gain Control) unit 5 for attenuation due to the arrival depth of the transmission wave, then converted to a digital signal by the A / D converter 6, and received beamformer. 7 is sent.

受信ビームフォーマ7では、焦点位置から各圧電素子までの距離に応じた遅延時間を掛けて加算結果が出力される。この集束超音波を2次元走査させることで、着目対象1の2次元的な反射エコー分布が得られる。受信ビームフォーマ7からは実部と虚部に分けられたRF信号が出力され、包絡線検波部8と計測領域設定部11に送られる。包絡線検波部8に送られた信号は、ビデオ信号に変換された後、スキャンコンバータ9で走査線間の補間が加えられ、2次元画像データに再構成された後、画像表示部10に表示される。計測領域設定部11では、造影剤輝度を計測するための計測領域が、組織形態に応じた最適な大きさに任意に設定され、造影剤輝度計測部12に送られる。造影剤輝度計測部12では、前記計測領域内の造影剤輝度変化が計測される。薬物動態解析部13では、前記造影剤輝度計測部で計測された着目領域の造影剤輝度変化すなわち造影剤濃度変化から薬物動態学的に解析された組織と造影剤の親和度が算出され、表示部10に表示される。   The reception beamformer 7 outputs the addition result by multiplying a delay time according to the distance from the focal position to each piezoelectric element. By performing two-dimensional scanning with this focused ultrasonic wave, a two-dimensional reflected echo distribution of the subject of interest 1 is obtained. An RF signal divided into a real part and an imaginary part is output from the reception beamformer 7 and sent to the envelope detection unit 8 and the measurement region setting unit 11. The signal sent to the envelope detection unit 8 is converted into a video signal, and then interpolated between scan lines by the scan converter 9 and reconstructed into two-dimensional image data, and then displayed on the image display unit 10. Is done. In the measurement region setting unit 11, a measurement region for measuring contrast agent luminance is arbitrarily set to an optimum size according to the tissue form, and is sent to the contrast agent luminance measurement unit 12. The contrast agent luminance measurement unit 12 measures a change in contrast agent luminance within the measurement region. The pharmacokinetic analysis unit 13 calculates the affinity of the tissue and the contrast agent analyzed pharmacokinetically from the contrast agent luminance change of the region of interest measured by the contrast agent luminance measurement unit, that is, the contrast agent concentration change, and displays it. Displayed on the unit 10.

図2は、観察された2次元超音波画像14を示す模式図である。図中の肝臓15の内部には血管16があり、術者は、血管の一部分に、関心血管領域17および血管外の組織上に、関心組織領域18,19を設定できる。   FIG. 2 is a schematic diagram showing the observed two-dimensional ultrasonic image 14. There is a blood vessel 16 inside the liver 15 in the figure, and the surgeon can set the region of interest region 18 and 19 on a portion of the blood vessel on the region of interest 17 and the tissue outside the vessel.

次に、フローチャート(図3)と血液組織親和度算出に関わる装置構成の一形態を示すブロック図(図4)を用いて、本発明の具体的な工程について説明する。術者は、表示された画像から、観察したい領域である、2次元超音波画像14を指定する(工程S1)。指定された画像の中の肝臓15の内部には、血管16が観察される。ここで、観察する画像上で、術者は入力部26により、血管上の一部分に、関心血管領域17を指定し(S2)、引き続き第一の関心組織領域18を指定し(S3)、第2の関心組織領域19を指定することができる(S4)。指定された前記関心血管領域17および関心組織領域18、19は、制御部20で制御されたコンピュータ27内部に設置された計測領域設定部11に設定される。また、術者は、必要に応じて、第3・第4の関心組織領域を指定することもできる。   Next, specific steps of the present invention will be described with reference to a flowchart (FIG. 3) and a block diagram (FIG. 4) showing an embodiment of a device configuration related to blood tissue affinity calculation. The surgeon designates a two-dimensional ultrasonic image 14 that is an area to be observed from the displayed image (step S1). A blood vessel 16 is observed inside the liver 15 in the designated image. Here, on the image to be observed, the operator designates the blood vessel region 17 of interest in a part of the blood vessel by the input unit 26 (S2), and subsequently designates the first tissue region of interest 18 (S3). Two interested tissue regions 19 can be designated (S4). The designated blood vessel region 17 of interest and tissue regions 18 and 19 of interest are set in the measurement region setting unit 11 installed in the computer 27 controlled by the control unit 20. The surgeon can also designate the third and fourth tissue regions of interest as necessary.

続いて、S2で指定した関心血管領域における血管内造影剤輝度を造影剤輝度計測部12にて、経時的に取得する(S5)。複数の経時的造影剤輝度データは、メモリ部25に蓄積することができる(S6)。この際、経時的に取得した造影剤時間輝度データを使い、造影剤濃度時間曲線作成部21において、血液中の造影剤輝度変化を曲線化することも可能であり、表示部10に表示させることも可能である。   Subsequently, the contrast medium brightness measurement unit 12 acquires the intravascular contrast medium brightness in the blood vessel region of interest designated in S2 over time (S5). A plurality of temporal contrast agent luminance data can be stored in the memory unit 25 (S6). At this time, using the contrast agent time luminance data acquired over time, the contrast agent concentration time curve creating unit 21 can also curve the change in contrast agent luminance in the blood and display it on the display unit 10. Is also possible.

S7は、造影剤血管内消失速度パラメータを算出する工程である。算出方法は、S5にて取得し、メモリ部25に蓄積した血流造影剤輝度時間実データを演算部22において、次式に最小二乗法によりフィッティングさせ、造影剤消失速度パラメータ算出部23において、造影剤の分布速度を示すパラメータαおよび、造影剤の血液中からの消失速度を表すパラメータβを算出する。
CP(t) = A exp(-αt) + B exp(-βt)
同様に、S3で指定した第一の関心組織領域における組織内造影剤輝度を造影剤輝度計測部12にて、経時的に取得する(S9)。経時的に取得した造影剤輝度データは、メモリ部25に蓄積する(S10)。S10にて蓄積した組織内造影剤輝度時間実データを演算部22において、次式に対して最小二乗フィッティングさせ、造影剤消失速度パラメータ算出部23において、造影剤組織内消失速度パラメータを算出できる(S11)。この際、経時的に取得した組織内の造影剤時間輝度データを使い、造影剤濃度時間曲線作成部21において、関心組織中の造影剤輝度変化を曲線化することも可能であり、表示部10に表示させることも可能である。
S7 is a step of calculating a contrast medium intravascular disappearance rate parameter. In the calculation method, the blood flow contrast agent luminance time actual data acquired in S5 and accumulated in the memory unit 25 is fitted by the following equation in the arithmetic unit 22 by the least square method, and in the contrast agent disappearance rate parameter calculation unit 23, A parameter α indicating the distribution speed of the contrast medium and a parameter β indicating the disappearance speed of the contrast medium from the blood are calculated.
C P (t) = A exp (-αt) + B exp (-βt)
Similarly, the contrast medium brightness measurement unit 12 acquires the contrast medium brightness in the first tissue region of interest designated in S3 over time (S9). The contrast agent luminance data acquired over time is accumulated in the memory unit 25 (S10). The intra-tissue contrast agent luminance time actual data accumulated in S10 is subjected to the least square fitting to the following expression in the calculation unit 22, and the contrast agent disappearance rate parameter calculation unit 23 can calculate the intra-tissue disappearance rate parameter ( S11). At this time, using the contrast agent time luminance data in the tissue acquired over time, the contrast agent concentration time curve creation unit 21 can also curve the contrast agent luminance change in the tissue of interest. Can also be displayed.

Figure 2007330413
+ B{exp(-β t)- exp(-K2n t) } / (K2n - β) ].
実際には、上記式は、次式に書き換えることができる。
CT (t) = RB [ K1 A {exp(-α t) - exp(-K2 t) } / (K2 -α) + K1 B {exp(-β t)- exp(-K2 t) } / (K2 -β)+ K3 A {exp(-α t)- exp(-K4 t) } / (K4 -α) + K3 B {exp(-β t) - exp(-K4 t) } / (K4 -β) ],
同様にして、第二の関心組織領域における造影剤組織消失速度パラメータの算出は工程S12からS14にて算出することができる。
ここで、工程S8にて、上記にて算出された各パラメータから、第一の関心組織の造影剤親和度を示す値Dnを造影剤血液組織親和度算出部24において、次式を使い算出する。言い換えると、Dnは、血液と組織の間での、造影剤の親和性を示す値である。
Figure 2007330413
+ B {exp (-β t)-exp (-K 2n t)} / (K 2n -β)].
In practice, the above equation can be rewritten as:
C T (t) = R B [K 1 A {exp (-α t)-exp (-K 2 t)} / (K 2 -α) + K 1 B {exp (-β t)-exp (- K 2 t)} / (K 2 -β) + K 3 A (exp (-α t)-exp (-K 4 t)} / (K 4 -α) + K 3 B (exp (-β t) -exp (-K 4 t)} / (K 4 -β)],
Similarly, the calculation of the contrast medium tissue disappearance rate parameter in the second region of interest can be performed in steps S12 to S14.
Here, in step S8, a value Dn indicating the contrast agent affinity of the first tissue of interest is calculated from the parameters calculated above using the following formula in the contrast agent blood tissue affinity calculation unit 24. . In other words, Dn is a value indicating the affinity of the contrast agent between blood and tissue.

Dn = CT(t) / CP(t)
実際には、次式に書き換えられる。
Dn = K1 / K2 + K3 / K4 .
同様に、第2の関心組織の組織親和度を算出する(S15)。
Dn = C T (t) / C P (t)
Actually, it can be rewritten as:
Dn = K 1 / K 2 + K 3 / K 4 .
Similarly, the tissue affinity of the second tissue of interest is calculated (S15).

以上から、S16にて、第1および第2の関心組織間における組織親和度を組織親和度比較部28において比較することもできる。比較した結果を任意エコー像上の対応する領域に表示部10において、重畳表示することもできる。あるいは、閾値設定部29にて、工程S18にて設定した閾値に応じて、関心領域ごとの親和度を閾値と比較した色識別にて、任意のエコー画像上に重畳表示することもできる。   As described above, the tissue affinity comparison unit 28 can also compare the tissue affinity between the first and second tissues of interest in S16. The comparison result can be superimposed and displayed on the corresponding area on the arbitrary echo image on the display unit 10. Alternatively, the threshold setting unit 29 can superimpose and display on an arbitrary echo image by color identification in which the affinity for each region of interest is compared with the threshold according to the threshold set in step S18.

本発明の実施例1になる画像診断装置の構成を示すブロック図。1 is a block diagram showing the configuration of an image diagnostic apparatus that is Embodiment 1 of the present invention. 観察された超音波断層像の模式図。The schematic diagram of the observed ultrasonic tomogram. 実施例1の画像診断装置において、造影剤輝度データ取得から造影剤の組織親和度算出に至る動作を説明するフローチャート図。The flowchart figure explaining the operation | movement from the contrast agent brightness | luminance data acquisition to the tissue affinity calculation of a contrast agent in the diagnostic imaging apparatus of Example 1. FIG. 血液組織親和度算出に関わる装置構成の一形態を示すブロック図。The block diagram which shows one form of the apparatus structure in connection with blood tissue affinity calculation.

符号の説明Explanation of symbols

1…着目対象、2…超音波探触子、3…送信ビームフォーマ、4…D/A変換機、5…TGC、6…A/D変換機、7…受信ビームフォーマ、8…包絡線検波部、9…スキャンコンバータ、10…表示部、11…計測領域設定部、12…造影剤輝度計測部、13…薬物動態解析部、14…2次元超音波画像、15…肝臓、16…血管、17…関心血管領域、18…第一の関心組織領域、19…第二の関心組織領域、20…制御部、21…造影剤濃度時間曲線作成部、22…演算部、23…造影剤消失速度パラメータ算出部、24…造影剤血液組織親和度算出部、25…メモリ部、26…入力部、27…コンピュータ、28…組織親和度比較部、29…閾値設定部。
DESCRIPTION OF SYMBOLS 1 ... Target object, 2 ... Ultrasonic probe, 3 ... Transmission beam former, 4 ... D / A converter, 5 ... TGC, 6 ... A / D converter, 7 ... Reception beam former, 8 ... Envelope detection 9, a scan converter, 10 a display unit, 11 a measurement region setting unit, 12 a contrast medium luminance measurement unit, 13 a pharmacokinetic analysis unit, 14 a two-dimensional ultrasound image, 15 a liver, 16 a blood vessel, DESCRIPTION OF SYMBOLS 17 ... Blood vessel region of interest, 18 ... First interest tissue region, 19 ... Second interest tissue region, 20 ... Control unit, 21 ... Contrast medium concentration time curve creation unit, 22 ... Calculation unit, 23 ... Contrast agent disappearance rate Parameter calculation unit, 24: Contrast medium blood tissue affinity calculation unit, 25 ... Memory unit, 26 ... Input unit, 27 ... Computer, 28 ... Tissue affinity comparison unit, 29 ... Threshold setting unit.

Claims (3)

医用画像面内に着目対象の造影剤輝度計測に用いる計測領域を設定する計測領域設定部と、前記計測領域設定部で設定された計測領域内の造影剤輝度変化を検出する造影剤輝度変化計測部と、前記造影剤輝度変化計測部で計測された造影剤輝度時間曲線に基づき、設定組織の造影剤親和度を算出する薬物動態解析部と、前記薬物動態解析部で処理された画像を表示する画像表示部とを有することを特徴とする画像診断装置。   A measurement region setting unit for setting a measurement region used for measuring the contrast agent luminance of a target object in the medical image plane, and a contrast agent luminance change measurement for detecting a contrast agent luminance change in the measurement region set by the measurement region setting unit A contrast medium brightness time curve measured by the contrast medium brightness change measuring section, a pharmacokinetic analysis section for calculating contrast medium affinity of a set tissue, and an image processed by the pharmacokinetic analysis section And an image display unit that performs image diagnosis. 前記前記計測領域設定部は、前記威容画像ないに着目対象の造影剤輝度計測に用いる計測領域を複数設定し、前記薬物動態解析部は、前記複数の計測領域の各造影剤親和度の比を算出し、その結果を前記画像表示部に表示させることを特徴とする請求項1に記載の画像診断装置。   The measurement area setting unit sets a plurality of measurement areas to be used for measuring the contrast agent luminance of the target object in the presence image, and the pharmacokinetic analysis unit calculates a ratio of the contrast medium affinity in the plurality of measurement areas. The image diagnostic apparatus according to claim 1, wherein the image diagnostic apparatus calculates and displays the result on the image display unit. 前記計測領域設定部は、着目対象の構造に応じて領域設定を行なうことを特徴とする請求項1に記載の画像診断装置。
The image diagnostic apparatus according to claim 1, wherein the measurement region setting unit performs region setting according to a structure of a target object.
JP2006164171A 2006-06-14 2006-06-14 Image diagnostic device Pending JP2007330413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006164171A JP2007330413A (en) 2006-06-14 2006-06-14 Image diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006164171A JP2007330413A (en) 2006-06-14 2006-06-14 Image diagnostic device

Publications (1)

Publication Number Publication Date
JP2007330413A true JP2007330413A (en) 2007-12-27

Family

ID=38930449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006164171A Pending JP2007330413A (en) 2006-06-14 2006-06-14 Image diagnostic device

Country Status (1)

Country Link
JP (1) JP2007330413A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177837A (en) * 1987-01-19 1988-07-22 株式会社 日立メデイコ X-ray ct apparatus
JPH06269424A (en) * 1993-03-16 1994-09-27 Toshiba Corp Medical image processor
JP2001054520A (en) * 1999-08-19 2001-02-27 Toshiba Corp Ultrasonic diagnostic device and medical image diagnostic device
JP2004097665A (en) * 2002-09-12 2004-04-02 Hitachi Medical Corp Blood flow dynamics analysis apparatus
JP2004202229A (en) * 2002-12-20 2004-07-22 Ge Medical Systems Global Technology Co Llc Method and apparatus for contrast agent time intensity curve analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177837A (en) * 1987-01-19 1988-07-22 株式会社 日立メデイコ X-ray ct apparatus
JPH06269424A (en) * 1993-03-16 1994-09-27 Toshiba Corp Medical image processor
JP2001054520A (en) * 1999-08-19 2001-02-27 Toshiba Corp Ultrasonic diagnostic device and medical image diagnostic device
JP2004097665A (en) * 2002-09-12 2004-04-02 Hitachi Medical Corp Blood flow dynamics analysis apparatus
JP2004202229A (en) * 2002-12-20 2004-07-22 Ge Medical Systems Global Technology Co Llc Method and apparatus for contrast agent time intensity curve analysis

Similar Documents

Publication Publication Date Title
JP6994494B2 (en) Elastography measurement system and its method
JP4842933B2 (en) Diagnostic imaging equipment
EP1974672B9 (en) Ultrasonic imaging apparatus and ultrasonic velocity optimization method
US8460192B2 (en) Ultrasound imaging apparatus, medical image processing apparatus, display apparatus, and display method
JP5972569B2 (en) Ultrasonic diagnostic apparatus, ultrasonic image treatment apparatus, medical image diagnostic apparatus, and ultrasonic image processing program
EP1614387B1 (en) Ultrasonic diagnostic apparatus, image processing apparatus and image processing method
JP5680654B2 (en) Ultrasonic diagnostic apparatus and ultrasonic image display method
JP6430498B2 (en) System and method for mapping of ultrasonic shear wave elastography measurements
EP1953566B1 (en) Ultrasonic diagnostic apparatus and ultrasonic image display method
CN109310399B (en) Medical ultrasonic image processing apparatus
US20140081142A1 (en) Ultrasound diagnostic apparatus and control method for ultrasound diagnostic device
US9201139B2 (en) Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus, and medical image diagnostic apparatus
WO2007114375A1 (en) Ultrasound diagnostic device and control method for ultrasound diagnostic device
JP2011505898A (en) Method and system for angiographic imaging
KR100932472B1 (en) Ultrasound Diagnostic System for Detecting Lesions
JP7237079B2 (en) Quantification of multiparametric tissue stiffness
US8047989B2 (en) Medical imaging diagnosis apparatus and medical imaging diagnosis method
KR20090081340A (en) Contrast agent destruction effectiveness determination for medical diagnostic ultrasound imaging
US7666141B2 (en) Ultrasonic diagnostic apparatus
JP2012176232A (en) Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus, and ultrasonic image processing program
JP2007195867A (en) Ultrasonic diagnostic equipment and ultrasonic image display program
JP5606025B2 (en) Ultrasonic diagnostic apparatus, ultrasonic image processing apparatus, and ultrasonic image processing program
JP2005111258A (en) Ultrasonic diagnostic apparatus
JP2015006260A (en) Ultrasonic diagnostic apparatus
JP2007330413A (en) Image diagnostic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110518

A131 Notification of reasons for refusal

Effective date: 20110531

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110823