JP2007315810A - Repeated stress sensor - Google Patents
Repeated stress sensor Download PDFInfo
- Publication number
- JP2007315810A JP2007315810A JP2006143279A JP2006143279A JP2007315810A JP 2007315810 A JP2007315810 A JP 2007315810A JP 2006143279 A JP2006143279 A JP 2006143279A JP 2006143279 A JP2006143279 A JP 2006143279A JP 2007315810 A JP2007315810 A JP 2007315810A
- Authority
- JP
- Japan
- Prior art keywords
- stress
- crack
- metal pieces
- foil portion
- sensor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
Description
本発明は、繰返し荷重を受ける構造物で疲労損傷するおそれがある各種の部位において実地条件下で発生している繰返し応力を簡便に検知する貼付け型の繰返し応力センサに関する。 The present invention relates to an affixing type repetitive stress sensor that easily detects repetitive stresses generated under actual conditions at various sites where there is a risk of fatigue damage in a structure subjected to repetitive loads.
現実に供用に付されている橋梁その他の構造物、機械装置、車両、航空機、船舶などの現状の強度や残りの寿命を正確に推定することにより、余寿命が十分あるのに造り直したり大幅な改修工事をしたりする無駄を省くことができ、メンテナンス計画を的確に作成することができる。しかし、構造物や車両などの強度や余寿命を正確に推定するためには、実際の環境下で構成する部材に発生する繰返し応力の状態を把握する必要がある。 By accurately estimating the current strength and remaining life of bridges and other structures, machinery and equipment, vehicles, aircraft, ships, etc. that are actually in service, they can be rebuilt or greatly increased with sufficient remaining life. This makes it possible to eliminate wasteful repair work and to create a maintenance plan accurately. However, in order to accurately estimate the strength and remaining life of structures, vehicles, etc., it is necessary to grasp the state of repetitive stress generated in members that are configured in an actual environment.
材料における応力状態を推定するために従来から利用される方法に、測定対象とする部位に歪みゲージを貼付して、その部位に発生する実際の応力を測定する方法がある。
この方法は、変換器など精密な計測装置を用いなければならないので、一度に多数の部位について計測することは難しいため、大型の構造物等について全体的に応力状態を把握することが難しい。
As a method conventionally used for estimating a stress state in a material, there is a method in which a strain gauge is attached to a region to be measured and an actual stress generated in the region is measured.
In this method, since a precise measuring device such as a transducer must be used, it is difficult to measure a large number of parts at a time, so it is difficult to grasp the overall stress state of a large structure or the like.
特許文献1には、実構造物に犠牲試験片を貼付して犠牲試験片に生じた疲労損傷状況から構造物の疲労損傷を予知する方法が開示されている。開示方法に使用する犠牲試験片は、疲労損傷を予知しようとする構造物と同じ材料で作られ、長さ方向中央部に人工亀裂を設けた長さ70mm幅20mm厚さ約0.25mmの薄板状の試験片で、2枚の樹脂製薄板の間に挟んで構成したものである。 Patent Document 1 discloses a method for predicting fatigue damage of a structure from the state of fatigue damage caused on the sacrificial test piece by attaching a sacrificial test piece to an actual structure. A sacrificial specimen used in the disclosed method is a thin plate made of the same material as that of a structure for which fatigue damage is to be predicted, and has a length of 70 mm, a width of 20 mm, and a thickness of about 0.25 mm provided with an artificial crack at the center in the longitudinal direction A test piece having a shape and sandwiched between two resin thin plates.
事前に構造部材と犠牲試験片のS−N線図を求めておいて、部材に設置した犠牲試験片に損傷が生じたときの荷重繰返し数を求めてS−N線図に当て嵌めるとその時の応力振幅、もしくは分布のある応力振幅を1つの応力振幅値で代表した代表応力振幅が求まるので、これを構造部材のS−N線図に代入すると、溶接部端部などのホットスポット部における寿命が推定できる。
しかし、特許文献1に記載された犠牲試験片は、評価対象物と1対1対応する代替計測用センサで、試験結果は破断あるいは亀裂が発生するまで待たなければならないので、試験期間は不定期間になる。
When the SN diagram of the structural member and the sacrificial test piece is obtained in advance, the number of load repetitions when the sacrificial test piece installed on the member is damaged is applied to the SN diagram at that time Or a representative stress amplitude represented by one stress amplitude value is substituted into the SN diagram of the structural member, so that in a hot spot portion such as a welded portion end portion. Lifetime can be estimated.
However, the sacrificial test piece described in Patent Document 1 is an alternative measurement sensor that has a one-to-one correspondence with the evaluation object, and the test result must wait until a fracture or a crack occurs. become.
また、特許文献2には、長さ13mm幅6mm厚さ0.05mmの金属箔基板の上に中央部に幅2mm厚さ0.02mmの亀裂進展部を有する長さ12mm幅5mm厚さ0.1mmの破断片を形成した、極めて小型で薄いクラック型疲労センサが開示されている。例示された実施例には、亀裂進展部には側端から先端が鋭く加工されたスリットが形成されていて、被測定部材にわずかな歪みが生じても直ぐにスリット先端から亀裂が生じて進展するような感度の高いセンサが記載されている。
特許文献2に開示された疲労センサは、小型で感度が高いため、対象部位の極めて近傍に貼付して貼付部分における繰返し応力により疲労センサの疲労損傷度を測定して対象部位の疲労損傷度を推定したり実寿命を推定することができる。
特に、溶接部におけるホットスポットのように極めて応力集中率が大きく亀裂発生期間が殆ど無いものについて疲労損傷度を推定する場合は、スリット最奥に鋭い先端部を形成したものを利用して亀裂発生期間を無くすことによりホットスポットのよい先行指標として機能し、十分信頼できる推定値を得ることができる。
Since the fatigue sensor disclosed in
In particular, when estimating the degree of fatigue damage for a stress spot with a large stress concentration rate such as a hot spot in a welded part and having almost no crack initiation period, cracks are generated using a sharp tip formed at the back of the slit. By eliminating the period, it functions as a leading indicator of a hot spot, and a sufficiently reliable estimated value can be obtained.
しかし、構造物や輸送機械など測定対象には各種の部材が溶接ばかりでなく機械加工、押出し成型、鋳造など様々な形態で使用されており、これらの部材についてそれぞれ疲労損傷度や寿命を推定しようとすると、測定対象部材によって応力集中率が異なるので、溶接部の測定に適した疲労センサをそのまま使用しても十分正しい結果を得ることができない。 However, various members such as structures and transport machines are used in various forms such as machining, extrusion molding, and casting, as well as welding. Let's estimate the fatigue damage and life of these members. Then, since the stress concentration rate differs depending on the measurement target member, a sufficiently correct result cannot be obtained even if a fatigue sensor suitable for measurement of a welded part is used as it is.
そこで、本願出願人は別途、溶接部に限らず各種形状の部材や機械加工面、押出し成型面、鋳造面などの金属加工面についても疲労評価ができる疲労センサとして、図8に示すように、中央部を横断して両側のベース部より薄く形成された疲労検出部を有しこの疲労検出部に先端が亀裂の始点となるスリットを設けた破断片と、この破断片の両端部を固定する箔状の基板を備えたセンサで、疲労検出部が亀裂進展度合いに従って選択された厚さを持ち、スリットの先端形状が応力集中率と亀裂発生期間を調整するように選択された曲率を有する疲労センサを開示しようとしている。 Therefore, the applicant of the present application separately as a fatigue sensor that can perform fatigue evaluation not only on the welded part but also on variously shaped members, machined surfaces, extruded surfaces, cast surfaces, etc., as shown in FIG. A fracture piece that has a fatigue detection part that is formed thinner than the base parts on both sides across the center part, and that has a slit whose tip is the starting point of the crack, and fixes both ends of the fracture piece Fatigue sensor with a foil-like substrate, fatigue detector with a thickness selected according to the degree of crack growth, and fatigue with the slit tip shape selected to adjust the stress concentration rate and crack generation period Trying to disclose a sensor.
この疲労センサは、基板面を被検体表面に貼付して適当期間後に観察して疲労検出部の破断あるいは亀裂進展度を検知し、得られた疲労センサの疲労損傷から被検体の実際の応力状態を知り、被検体の寿命などを推定するために利用する。
しかし、これら従来の疲労センサ等は、測定対象毎に適当な性能を満たすものを設計製作して、あるいは選択して適用しなければならない。このように、センサとして汎用性がなく、使用する疲労センサの仕様を整えることに専門的知識や高度な技術が要求される。 However, these conventional fatigue sensors and the like must be designed, manufactured, or selected and applied to satisfy the appropriate performance for each measurement object. Thus, there is no versatility as a sensor, and specialized knowledge and advanced technology are required to prepare the specifications of the fatigue sensor to be used.
そこで、本発明が解決しようとする課題は、繰返し荷重を受ける、橋梁などの構造物、機械装置、車両、航空機、船舶などを構成する部材に貼付して、それら部材に生成する繰返し応力の程度を推定する繰返し応力センサを供給することであり、特に対象部材の如何に限らず1個のセンサを適用することにより繰返し応力が評価対象部材の疲労限界を超えているか否かを検知する汎用性の高い繰返し応力センサを供給することである。 Therefore, the problem to be solved by the present invention is to apply a repeated load to a member constituting a structure such as a bridge, a mechanical device, a vehicle, an aircraft, a ship, etc. The versatility to detect whether the repeated stress exceeds the fatigue limit of the evaluation target member by applying one sensor, not limited to the target member, in particular. High repetitive stress sensor.
上記課題を解決するため、本発明に係る繰返し応力センサは、応力集中形状に基づき互いに異なる応力集中度を有する複数の短冊状の金属片を、基板上に応力集中度の大きさの順に並列に配置されるもので、金属片の両端部同士が固着され、この固着した両端部がさらに基板に固着されたものである。
繰返し応力センサは、応力集中係数が異なる金属片を応力集中係数の大きさの順に配置したものである。金属片は箔状の基板の上に固定されているので、基板を被検体に貼付すれば金属片に余分な応力を与えることが無く、金属片は被検体の歪みを正確に反映することができる。
In order to solve the above problems, a repetitive stress sensor according to the present invention includes a plurality of strip-shaped metal pieces having different stress concentrations based on a stress concentration shape, arranged in parallel on the substrate in the order of the stress concentration. In this arrangement, both end portions of the metal piece are fixed to each other, and both the fixed end portions are further fixed to the substrate.
In the repetitive stress sensor, metal pieces having different stress concentration factors are arranged in the order of the stress concentration factors. Since the metal piece is fixed on the foil-like substrate, if the substrate is affixed to the subject, no extra stress is applied to the metal piece, and the metal piece can accurately reflect the distortion of the subject. it can.
この繰返し応力センサを対象部材の表面に貼付して一定期間観察すると、基板を介してその部位に発生する歪みを伝達して、応力集中係数の大きい順に強い応力が働くので金属片は順番に破断する。
そこで、所定の期間が経過した後にセンサのどの金属片までが破断したかを知れば、予め解析あるいは実験により作成したS−N線図を用いて、センサを貼付した部位の応力状態におけるその部材の寿命を推定することができる。
When this repetitive stress sensor is attached to the surface of the target member and observed for a certain period of time, the strain generated in that part is transmitted through the substrate, and the strong stress works in descending order of the stress concentration coefficient, so the metal pieces break in order. To do.
Therefore, if it is known which metal piece of the sensor broke after a lapse of a predetermined period, the member in the stress state of the site where the sensor was attached using an SN diagram prepared in advance by analysis or experiment Lifespan can be estimated.
金属片毎の疲労限界は、肉厚や応力集中形状により変化し、一般に、応力集中率が大きいほど疲労限界も低い。
本発明の繰返し応力センサを応力場に置くと、端部間に作用する応力振幅が形状等の条件に従って決まる疲労限界より低ければ、金属片は永久的に疲労損傷を来さず破断しない。また、金属片は細いので、応力振幅が疲労限界より高ければ、比較的短期間で金属片は破断する。
The fatigue limit for each metal piece varies depending on the thickness and the stress concentration shape. Generally, the greater the stress concentration rate, the lower the fatigue limit.
When the repetitive stress sensor of the present invention is placed in a stress field, if the stress amplitude acting between the end portions is lower than the fatigue limit determined according to the shape and other conditions, the metal piece does not cause fatigue damage and does not break. Further, since the metal piece is thin, if the stress amplitude is higher than the fatigue limit, the metal piece breaks in a relatively short period of time.
すなわち、金属片の感度が十分高ければ、部材に働く主要な応力振幅の上限値は、破断した金属片と破断しなかった金属片の疲労限界の中間にある。
部材の疲労限界が知れているときは、部材の応力振幅が部材の疲労限界より上にあるか下にあるかが判明し、恒久的に破損しないか、将来的には損傷を受けるかが推定できる。さらに、金属片の各々のS−N曲線を用いて、金属片破断する時期を基に、部材の疲労寿命を推定することが可能である。
That is, if the sensitivity of the metal piece is sufficiently high, the upper limit value of the main stress amplitude acting on the member is in the middle of the fatigue limit of the broken metal piece and the non-ruptured metal piece.
When the fatigue limit of a member is known, it is determined whether the stress amplitude of the member is above or below the fatigue limit of the member, and it is estimated whether it will not be permanently damaged or will be damaged in the future it can. Furthermore, it is possible to estimate the fatigue life of the member based on the time when the metal piece breaks using the SN curve of each metal piece.
センサの基板上に配列される複数の金属片は、互いに等長で、端部で相互に固着され、ベース箔部と亀裂箔部がそれぞれ同じ幅を有し、亀裂箔部の長さが異なることにより各金属片の応力集中度が異なるように調整されるようにしてもよい。
応力集中係数は、ベース箔部と亀裂箔部の断面積の比にほぼ比例するが、ベース箔部の長さに対する亀裂箔部の長さの比に反比例する。
そこで、ベース箔部と亀裂箔部を合わせた長さは変えずに、亀裂箔部の長さが順に大きくなるように金属片を並べると、応力集中係数の大きさに従って金属片が並ぶことになる。また、これは同時に疲労限界の高さの順に並んでいることになる。
The plurality of metal pieces arranged on the sensor substrate are equal in length to each other and are fixed to each other at the ends, and the base foil portion and the crack foil portion have the same width, and the length of the crack foil portion is different. Thus, the stress concentration of each metal piece may be adjusted to be different.
The stress concentration factor is substantially proportional to the ratio of the cross-sectional area of the base foil portion and the crack foil portion, but is inversely proportional to the ratio of the length of the crack foil portion to the length of the base foil portion.
Therefore, without changing the combined length of the base foil portion and the crack foil portion, if the metal pieces are arranged so that the length of the crack foil portion increases in order, the metal pieces are arranged according to the magnitude of the stress concentration coefficient. Become. In addition, these are arranged in the order of the fatigue limit height.
この繰返し応力センサを部材に貼付して観察すると、経時に従って亀裂箔部の長さが短い方から破断していき、やがていくら時間が経ってもそれ以上金属片が破断しないようになる。疲労限界が部材の応力振幅より大きい金属片まで到達したことを意味する。
このデータから、部材に働く主要な応力振幅の上限値を簡単に知ることができ、部材の寿命が推定できる。測定した応力振幅値を部材の疲労限界と比較することにより、将来的に部材に疲労損傷を生じるか否かを判定することができる。
When this repetitive stress sensor is attached to a member and observed, the cracked foil portion breaks from the shorter length as time passes, and the metal piece does not break any longer even after a long time. It means that the fatigue limit has reached a metal piece larger than the stress amplitude of the member.
From this data, the upper limit value of the main stress amplitude acting on the member can be easily known, and the life of the member can be estimated. By comparing the measured stress amplitude value with the fatigue limit of the member, it can be determined whether or not fatigue damage will occur in the member in the future.
また、センサの基板上に配列される複数の金属片は、亀裂箔部が金属片毎に先端の曲率半径が異なるスリットを備えることにより各金属片の応力集中度が異なるように調整されるようにしてもよい。
亀裂箔部全体がスリットで構成されるようにしても良い。また、亀裂箔部をベース箔部より薄く形成してもよい。
スリットの深さにより応力伝達の断面積が減少するので応力集中係数が調整できる。また、スリット先端部の曲率半径が小さくなれば先端部の応力が集中することは周知である。このように、他の条件を変えずに、スリットの形状、特に先端部の曲率半径によって簡単に応力集中係数を調整することができる。
Further, the plurality of metal pieces arranged on the sensor substrate are adjusted so that the stress concentration degree of each metal piece is different by providing the crack foil portion with a slit having a different curvature radius at the tip for each metal piece. It may be.
You may make it the whole crack foil part be comprised with a slit. Moreover, you may form a crack foil part thinner than a base foil part.
The stress concentration factor can be adjusted because the cross-sectional area of stress transmission is reduced by the depth of the slit. Further, it is well known that the stress at the tip is concentrated if the curvature radius of the slit tip is reduced. As described above, the stress concentration coefficient can be easily adjusted by changing the shape of the slit, particularly the radius of curvature of the tip without changing other conditions.
金属片の幅方向が基板面に垂直になるように金属片を配置することが好ましい。金属片の厚みは極めて小さいので、幅方向が基板面に垂直になるように配列することで、繰返し応力センサ全体が十分小型に形成され、各金属片が互いに極く近辺の応力状態を受けることができる。繰返し応力センサを対象部位に貼付する場合にも、全ての金属片をより的確に測定部位近傍に当るようにして、的確な測定をすることができる。 It is preferable to arrange the metal pieces so that the width direction of the metal pieces is perpendicular to the substrate surface. Since the thickness of the metal pieces is extremely small, the entire repetitive stress sensor is formed sufficiently small by arranging the width direction to be perpendicular to the substrate surface, and each metal piece is subjected to a stress state very close to each other. Can do. Even when the repetitive stress sensor is affixed to the target site, it is possible to accurately measure all the metal pieces so as to contact the vicinity of the measurement site more accurately.
なお、ベース箔部と亀裂箔部の形状差によって複数の金属片にそれぞれ異なる応力集中度を生じさせるようにしてもよい。スリットの形状によって応力集中度を調整することは簡単にかつ論理的に隣同士の金属片がわずかずつ異なる応力集中度を有するように形成することができる。しかし、より大きなレンジで応力集中度を変化させようとすると、スリットの先端曲率の調整では不足することもある。したがって、たとえば、ベース箔部の幅を変えたりすることも含めて応力集中度を調整することが効果的である。 In addition, you may make it produce a different stress concentration degree to a some metal piece with the shape difference of a base foil part and a crack foil part, respectively. Adjustment of the stress concentration level according to the shape of the slit can be easily and logically formed so that adjacent metal pieces have slightly different stress concentration levels. However, if the stress concentration is to be changed within a larger range, adjustment of the curvature of the slit tip may be insufficient. Therefore, for example, it is effective to adjust the stress concentration including changing the width of the base foil portion.
また、亀裂箔部とベース箔部の長さの比を調整することによって各金属片に互いに異なる応力集中度を生じさせるようにしてもよい。また、亀裂箔部の長さを変化させずに亀裂箔部とベース箔部の長さの比を調整するようにしてもよい。
亀裂箔部とベース箔部では亀裂箔部の方が歪みやすい。すなわち、金属片全体に生ずる歪みは、亀裂箔部の長さが小さいほど亀裂箔部に多くの歪みが集中する。さらに、応力センサ全体の大きさが一定で亀裂箔部の長さが同じである場合、ベース箔部の長さが小さいほど亀裂箔部に多くの歪みが集中する。
Further, by adjusting the ratio of the length of the crack foil portion and the base foil portion, different stress concentrations may be generated in each metal piece. Moreover, you may make it adjust the ratio of the length of a crack foil part and a base foil part, without changing the length of a crack foil part.
The crack foil part is more easily distorted in the crack foil part and the base foil part. That is, the strain generated in the entire metal piece is more concentrated in the crack foil portion as the length of the crack foil portion is smaller. Furthermore, when the size of the entire stress sensor is constant and the length of the crack foil portion is the same, more strain is concentrated on the crack foil portion as the length of the base foil portion is smaller.
したがって、亀裂箔部とベース箔部の長さの比を調整することによって金属片に生ずる応力集中度を大きく調整することができる。
なお、亀裂箔部の形状をそれぞれ変化させる場合はセンサの製造上困難が多い。これに対して、ベース箔部は単純な形状をしているので、ベース箔部の長さを変化させることにより亀裂箔部とベース箔部の長さ比を調整することは簡単であり、製造コストも低廉化する。
Therefore, the stress concentration degree generated in the metal piece can be largely adjusted by adjusting the ratio of the lengths of the crack foil part and the base foil part.
In addition, when changing the shape of a crack foil part, there are many difficulties on manufacture of a sensor. On the other hand, since the base foil part has a simple shape, it is easy to adjust the length ratio of the crack foil part and the base foil part by changing the length of the base foil part, and it is manufactured. Costs will also be reduced.
本発明の繰返し応力センサは、評価対象部材にただ1個を貼付することにより、応力集中係数の異なる複数の金属片を簡単に適用することができ、所定期間経過後に一度金属片の破断状況を観察することにより、部材に生ずる応力振幅を推定することができ、また部材の寿命や将来の疲労損傷の有無を予測することができる、簡単で取扱いも簡便な繰返し応力センサである。 The repetitive stress sensor of the present invention can easily apply a plurality of metal pieces having different stress concentration factors by attaching only one piece to a member to be evaluated. By observation, the stress amplitude generated in the member can be estimated, and the lifetime of the member and the presence or absence of future fatigue damage can be predicted.
以下、本発明について実施例に基づき図面を参照して詳細に説明する。 Hereinafter, the present invention will be described in detail based on examples with reference to the drawings.
図1は本発明の第1実施例に係る繰返し応力センサの斜視図、図2は正面断面図、図3は一部平面断面図、図4は本実施例の別の態様に係るに係る繰返し応力センサの正面断面図である。
図1,2,3から分かるように、本実施例の繰返し応力センサ10は、検出素子ブロック18の端部を接合部13を介して基板12の表面に固定したものである。検出素子ブロック18は、短冊状の金属片11を並列に多数並べて、金属片11の端部14で金属片同士を固定したものである。
1 is a perspective view of a repetitive stress sensor according to a first embodiment of the present invention, FIG. 2 is a front cross-sectional view, FIG. 3 is a partial plan cross-sectional view, and FIG. 4 is a repetitive embodiment according to another aspect of the present embodiment. It is front sectional drawing of a stress sensor.
As can be seen from FIGS. 1, 2, and 3, the
金属片11は、図2に表示されているように、厚みの小さいベース箔部15が両側の端部14から中央に向かって延出し、中央部が幅の小さい亀裂箔部16を形成している。
検出素子ブロック18の金属片11は、亀裂箔部16が短い方から長い方に順に並んでいる。
検出素子ブロック18は、ベース箔部15と亀裂箔部16、さらに端部14に延長した部分を同じ厚さで形成した短冊状の金属片11の端部14の位置を、金属片11の間隔分の厚さを持つスペーサを挟んで固定することにより形成することができる。
また、図3に表示されるように、微細加工技術により直方体ブロックから切り出して形成することも可能である。
As shown in FIG. 2, the
The
The
Further, as shown in FIG. 3, it can be cut out from a rectangular parallelepiped block by a fine processing technique.
評価対象部材19に生ずる繰返し応力に伴い発生する歪みは、薄い基板12と接合部13を介して検出素子ブロック18に伝達する。金属片11の端部14は金属片同士が互いに接合された部分で殆ど歪みを生じないので、対象部材19から伝達された歪みはベース箔部15と亀裂箔部16に分配される。
両箔部15,16が同じ厚さの同じ材料で形成されている場合は応力の強さは箔部の幅にほぼ反比例して亀裂箔部16に応力集中し、箔部15,16の伸びは箔部の長さと箔部における応力の積に比例するから、部材の伸びδmは亀裂箔部16とベース箔部15に亀裂箔部の長さLsと応力集中係数αの積αLsとベース箔部の長さLbの比(αLs:Lb)で配分される。
したがって、亀裂箔部16の伸びをδs、kを定数としたとき、亀裂箔部の伸びδsに対応する応力σs=kδs/Lsは、誤差を恐れず表現すれば
σs=kαδm/(αLs+Lb)
とすることができ、亀裂箔部に作用する応力は、亀裂箔部16の長さが短いほど強く現れることが分かる。
The distortion generated with the repetitive stress generated in the
When both the
Therefore, when the elongation of the cracked
It can be seen that the stress acting on the cracked foil portion appears stronger as the length of the cracked
繰返し応力センサ10は基板12の裏面を評価対象部材19の表面に貼付して、対象部材19における実際の繰返し応力の状態を検査するために使用される。
繰返し応力センサ10を貼付した後、十分な試験期間が経過したところで、センサの金属片11のうちで亀裂箔部16が破断したもののうち最大の長さを有するものを確認する。繰返しセンサ10の感度は十分高いので、試験期間が十分長ければ、対象部材19における実際の繰返し負荷が疲労限界を超えている金属片は全て破断している。そこで、破断した金属片の疲労限界を調べることにより、実際の応力振幅Δσmを知ることができる。ただし、実際の繰返し負荷は1値でなく分布するので、ここで求められるのは代表的な応力振幅である。
The
After affixing the repeated
こうして得られた代表応力振幅Δσmが評価対象部材の疲労限界を超えていれば、対象部材はいずれ疲労損傷を表わすことが確実であり、疲労限界より低ければ永久的に疲労障害を表わさないということができる。
また、繰返し応力センサ10の金属片11のS−N曲線が対象部材のS−N曲線とほぼ同等の傾きを持っている場合は、センサを使用した測定で部材の寿命を推定することができる。
If the representative stress amplitude Δσm obtained in this way exceeds the fatigue limit of the evaluation target member, it is certain that the target member will eventually exhibit fatigue damage, and if it is lower than the fatigue limit, it will not permanently indicate fatigue failure. Can do.
In addition, when the SN curve of the
なお、本実施例における金属片は、本願出願人が別途開示しようとする図8に示した疲労センサの構造に倣って、図4に示すような構成を有するものであっても良い。図4の金属片21は、中央部を横断して両側のベース部25より薄く形成された疲労検出部26を有しこの疲労検出部に先端が亀裂の始点となるスリット27を設けたもので、端部24同士を金属片21相互間で固定し、金属片21の両端部24を接合部23で箔状の基板22に固定したものである。
The metal piece in the present embodiment may have a configuration as shown in FIG. 4 following the structure of the fatigue sensor shown in FIG. 8 that the applicant of the present application separately discloses. The
スリット27の形状と先端曲率が応力集中率と亀裂発生期間を調整し、隣の金属片21とわずかずつ異なるようになっている。金属片21は、図1に表示された繰返し応力センサ10と同様、応力集中率の大きさの順に配列されている。
図4に示した実施態様の繰返し応力センサも、図1のものと同じ機能を有し、同様に評価対象部材29の表面に貼付して利用することができる。
The shape of the
The repetitive stress sensor of the embodiment shown in FIG. 4 has the same function as that of FIG. 1 and can be used by being stuck on the surface of the
図5は本発明の第2実施例に係る繰返し応力センサの一部を表わす平面図である。
第2実施例の繰返し応力センサは、金属片毎に応力集中率が順に変化するように応力集中形状を変化させたものを、応力集中率の大きさ順に配列したセンサである。
FIG. 5 is a plan view showing a part of a repetitive stress sensor according to the second embodiment of the present invention.
The repetitive stress sensor of the second embodiment is a sensor in which the stress concentration shape is changed so that the stress concentration rate sequentially changes for each metal piece, and arranged in order of the magnitude of the stress concentration rate.
図5に示した繰返し応力センサ30は、多数の金属片31を並列に形成した1枚の金属膜の両端部34を基板32に固定したもので、金属片31はそれぞれ中央部に等長の亀裂箔部36を備え、亀裂箔部の両側にベース箔部35を備える。亀裂箔部36は両側から円弧状に切り欠きを有する応力集中形状を持ち、切り欠きの曲率は配列された順に大きくなり、これに従って応力集中係数が順に大きくなるようになっている。また、ベース箔部35は、順に幅wが大きくなるように配列されている。
The
ベース箔部35の幅の変化と亀裂箔部36の応力集中形状の変化が相俟って、1枚の金属膜中に形成する金属片31の間で、大きな範囲に亘って応力集中係数を変化させることができる。
なお、図5に表示した金属片31の1枚ずつをそれぞれ分離した形で形成して、図1に示したように、各金属片の幅方向が基板に垂直になるように配列して端部で固定する構成の高密度な繰返し応力センサとしても良いことはいうまでもない。
The change in the width of the
In addition, each of the
図6は本発明の第3実施例に係る繰返し応力センサの一部を表わす平面図である。
第3実施例の繰返し応力センサは、評価対象部材の歪みに対して金属片毎に発生する応力を変化させるため金属片の長さを調整したものを、長さ順に配列したセンサである。
図6に示した繰返し応力センサ40は、多数の金属片41を並列に形成した1枚の金属膜の両端部44を基板42に固定したもので、金属片41はそれぞれ中央部に両側から円弧状に切り欠きを有する同じ形状の亀裂箔部46を備える。亀裂箔部46の両側のベース箔部45は、順に長さLが小さくなるように配列されている。
FIG. 6 is a plan view showing a part of a repetitive stress sensor according to the third embodiment of the present invention.
The repetitive stress sensor of the third embodiment is a sensor in which the lengths of the metal pieces are adjusted in order of length in order to change the stress generated for each metal piece with respect to the distortion of the evaluation target member.
In the
評価対象部材に貼付したときは、対象部材と密着する基板42を介して基板42に固結された金属片41の両端部44に歪みが伝達されるが、端部44は殆ど変形しないので、ベース箔部45と亀裂箔部46の部分でこの歪みを分配する。したがって、金属片41に発生する応力は、ベース箔部45と亀裂箔部46の部分の長さLが短いほど大きくなる。
第3実施例の繰返し応力センサ40も第1実施例のものと同じ機能を有し、評価対象部材の表面に貼付して経時後観察して破断した金属片の番号を知ることにより、対象部材の疲労損傷の可能性を予測したり、寿命を推定したりすることができる。
When affixed to the evaluation target member, strain is transmitted to both
The
図7は本発明の第4実施例に係る繰返し応力センサの一部を表わす平面図である。
第4実施例の繰返し応力センサは、第1実施例のセンサにおける亀裂箔部の長さによる応力集中係数変化と第3実施例のセンサにおける金属片の有効長による応力調整の技術的思想を複合して、計測範囲を拡大したところに特徴を有する。
本実施例の繰返し応力センサ50は、検出素子ブロック58の端部54を接合部を介して基板52の表面に固定して形成する。検出素子ブロック58は、短冊状の金属片51を並列に多数並べて、金属片51を端部54で互いに固定したものである。
FIG. 7 is a plan view showing a part of a repetitive stress sensor according to the fourth embodiment of the present invention.
The repetitive stress sensor of the fourth embodiment combines the technical idea of the stress adjustment by the effective length of the metal piece in the sensor of the third embodiment and the stress concentration factor change due to the length of the crack foil portion in the sensor of the first embodiment. And it has the feature in the place which expanded the measurement range.
The
金属片51は中央に亀裂箔部56を備え、亀裂箔部56の両側にベース箔部55を備える。亀裂箔部56はベース箔部55より幅が狭く、応力集中が生じるようになっている。
本実施例の繰返し応力センサ50では、金属片51を亀裂箔部56が短い方から長い方に順に並べている。なお、亀裂箔部56と両側のベース箔部55を合わせた金属片の長さLは、亀裂箔部が短いほど短くなるようにして、応力集中度の変化を大きくして広い測定範囲を確保している。
The
In the
したがって、本実施例の繰返し応力センサ50における亀裂箔部56の長さと金属片の有効長さLの比率は、第1実施例および第3実施例の繰返し応力センサより広い範囲で変化し、金属片51における応力集中度もしくは応力の増加率は、第1および第3実施例のものより大きく変化させることができる。
Accordingly, the ratio of the length of the cracked
10 繰返し応力センサ
11 金属片
12 基板
13 接合部
14 端部
15 ベース箔部
16 亀裂箔部
18 検出素子ブロック
19 評価対象部材
21 金属片
22 基板
23 接合部
24 端部
25 ベース部
26 疲労検出部
27 スリット
29 評価対象部材
30 繰返し応力センサ
31 金属片
32 基板
34 端部
35 ベース箔部
36 亀裂箔部
40 繰返し応力センサ
41 金属片
42 基板
44 端部
45 ベース箔部
46 亀裂箔部
50 繰返し応力センサ
52 基板
54 端部
55 ベース箔部
56 亀裂箔部
DESCRIPTION OF
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006143279A JP2007315810A (en) | 2006-05-23 | 2006-05-23 | Repeated stress sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006143279A JP2007315810A (en) | 2006-05-23 | 2006-05-23 | Repeated stress sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007315810A true JP2007315810A (en) | 2007-12-06 |
Family
ID=38849811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006143279A Pending JP2007315810A (en) | 2006-05-23 | 2006-05-23 | Repeated stress sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007315810A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013092427A (en) * | 2011-10-25 | 2013-05-16 | Minebea Co Ltd | Fatigue degree detecting strain gauge |
JP2013517468A (en) * | 2010-01-16 | 2013-05-16 | オズクル タリック | Wireless fatigue sensor for monitoring the health of structures |
CN112694008A (en) * | 2020-12-22 | 2021-04-23 | 中冶建筑研究总院有限公司 | Early warning method and device for fatigue failure of steel crane beam |
CN113916406A (en) * | 2021-11-03 | 2022-01-11 | 贵州贵飞飞机设计研究院有限公司 | Method for reflecting structural stress range |
-
2006
- 2006-05-23 JP JP2006143279A patent/JP2007315810A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013517468A (en) * | 2010-01-16 | 2013-05-16 | オズクル タリック | Wireless fatigue sensor for monitoring the health of structures |
US8746077B2 (en) | 2010-01-16 | 2014-06-10 | Tarik Ozkul | Wireless enabled fatigue sensor for structural health monitoring |
JP2013092427A (en) * | 2011-10-25 | 2013-05-16 | Minebea Co Ltd | Fatigue degree detecting strain gauge |
CN112694008A (en) * | 2020-12-22 | 2021-04-23 | 中冶建筑研究总院有限公司 | Early warning method and device for fatigue failure of steel crane beam |
CN113916406A (en) * | 2021-11-03 | 2022-01-11 | 贵州贵飞飞机设计研究院有限公司 | Method for reflecting structural stress range |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3342467B2 (en) | Crack-type fatigue detecting element, method of manufacturing the same, and damage estimation method using crack-type fatigue detecting element | |
JP4799267B2 (en) | Fatigue sensor and fatigue damage degree estimation method | |
EP3203211B1 (en) | Remaining life estimation method for estimating remaining life of high-chromium steel pipe | |
US6532825B1 (en) | Fatigue damage detection sensor for structural materials and mounting method thereof | |
US20110283804A1 (en) | Measuring device including detection of deformations | |
EP0452573B1 (en) | Fatigue monitoring | |
JP2007315810A (en) | Repeated stress sensor | |
US6983660B2 (en) | Fatigue measurement device and method | |
JP2013250120A (en) | Damage detection method for structure | |
JP5192095B2 (en) | Strain sensor | |
JPH095175A (en) | Stress measuring sensor | |
US6172511B1 (en) | Measuring device | |
JP6648836B2 (en) | Method for producing CTOD test piece and jig for adjusting plastic strain | |
JP2013160500A (en) | Defect inspection apparatus and inspection method | |
JP2007078364A (en) | Strain sensitive sensor | |
JP2008164515A (en) | Crack length detection method and crack length detection device | |
KR100798100B1 (en) | Fatigue Load Level Detecting Gauge | |
JP2010112942A (en) | Method for monitoring of steel structure | |
EP3657148B1 (en) | A sensor for determining fatigue lifetime of a welded joint of a structure | |
KR100679416B1 (en) | Fatigue measurement device and method | |
RU2716173C1 (en) | Method of determining deformations, stresses, forces and operating loads in elements of operated metal structures | |
US20240295397A1 (en) | Method and detector for identifying a moment of plastic deformation of material | |
CN108469453B (en) | Crack resolution detection method | |
JP2004101192A (en) | Fluctuation load sensor | |
JP4519578B2 (en) | Method for monitoring crack growth and estimation of remaining life of actual steel structure |