[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007309665A - Device for measuring load of rolling bearing unit for supporting wheel - Google Patents

Device for measuring load of rolling bearing unit for supporting wheel Download PDF

Info

Publication number
JP2007309665A
JP2007309665A JP2006136192A JP2006136192A JP2007309665A JP 2007309665 A JP2007309665 A JP 2007309665A JP 2006136192 A JP2006136192 A JP 2006136192A JP 2006136192 A JP2006136192 A JP 2006136192A JP 2007309665 A JP2007309665 A JP 2007309665A
Authority
JP
Japan
Prior art keywords
rolling bearing
wheel
raceway
load
bearing unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006136192A
Other languages
Japanese (ja)
Inventor
Koichiro Ono
浩一郎 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006136192A priority Critical patent/JP2007309665A/en
Publication of JP2007309665A publication Critical patent/JP2007309665A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/50Other types of ball or roller bearings
    • F16C19/505Other types of ball or roller bearings with the diameter of the rolling elements of one row differing from the diameter of those of another row
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/49Bearings with both balls and rollers
    • F16C19/492Bearings with both balls and rollers with two or more rows with angular contact
    • F16C19/495Bearings with both balls and rollers with two or more rows with angular contact with two rows
    • F16C19/497Bearings with both balls and rollers with two or more rows with angular contact with two rows in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/18Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
    • F16C19/181Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact
    • F16C19/183Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles
    • F16C19/184Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement
    • F16C19/186Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls with angular contact with two rows at opposite angles in O-arrangement with three raceways provided integrally on parts other than race rings, e.g. third generation hubs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/385Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings
    • F16C19/386Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with two rows, i.e. double-row tapered roller bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2326/00Articles relating to transporting
    • F16C2326/01Parts of vehicles in general
    • F16C2326/02Wheel hubs or castors

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure capable of measuring even a large load also with sufficient accuracy, while suppressing increase in size, dynamic torque, and cost of a rolling bearing unit 1a for supporting a wheel. <P>SOLUTION: Balls are used together as rolling elements 5a and 5b which constitute the rolling bearing 1a for supporting a wheel, and are arranged in a double row, a plurality of balls for each row, respectively. The pitch diameter of balls on the axially outside row is determined so as to be larger than that of balls on the axially inside row, or tapered rollers are used only for the rolling elements on either one of the rows. By this construction, the rigidity of the rolling bearing 1a for supporting a wheel is enhanced, and consequently even a large load can be measured also with sufficient accuracy. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明に係る車輪支持用転がり軸受ユニットの荷重測定装置は、複数個の転動体を介して相対回転自在に組み合わされた静止側軌道輪と回転側軌道輪との間に加わる荷重(ラジアル荷重とアキシアル荷重との一方又は双方)を検出するものである。そして、検出した荷重を表す信号を、自動車の走行安定性確保を図る為に利用する。   A load measuring apparatus for a wheel bearing rolling bearing unit according to the present invention includes a load (radial load and a load) applied between a stationary side raceway and a rotary side raceway combined in a relatively rotatable manner via a plurality of rolling elements. One or both of the axial loads) is detected. And the signal showing the detected load is utilized in order to secure the running stability of the automobile.

例えば自動車の車輪は懸架装置に対し、複列アンギュラ型の玉軸受ユニット等の転がり軸受ユニットにより回転自在に支持する。又、自動車の走行安定性を確保する為に、例えば非特許文献1に記載されている様な、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)、更には、ビークルスタビリティコントロールシステム(VSC)等の車両用走行安定化装置が使用されている。この様な各種車両用走行安定化装置を制御する為には、車輪の回転速度、車体に加わる各方向の加速度等の信号が必要になる。そして、より高度の制御を行なう為には、車輪を介して上記転がり軸受ユニットに加わる荷重(ラジアル荷重とアキシアル荷重との一方又は双方)の大きさを知る事が好ましい場合がある。   For example, automobile wheels are supported rotatably on a suspension by a rolling bearing unit such as a double-row angular ball bearing unit. In order to ensure the running stability of an automobile, an anti-lock brake system (ABS), a traction control system (TCS), or a vehicle stability control system (described in Non-Patent Document 1, for example) VSC) and other vehicle travel stabilization devices are used. In order to control such various vehicle running stabilization devices, signals such as the rotational speed of the wheels and the acceleration in each direction applied to the vehicle body are required. In order to perform higher-level control, it may be preferable to know the magnitude of a load (one or both of a radial load and an axial load) applied to the rolling bearing unit via the wheel.

この様な事情に鑑みて、特許文献1には、ラジアル荷重を測定自在な、荷重測定装置付転がり軸受ユニットが記載されている。この従来構造の第1例の場合には、非接触式の変位センサで、回転しない外輪と、この外輪の内径側で回転するハブとの径方向に関する変位を測定する事により、これら外輪とハブとの間に加わるラジアル荷重を求める様にしている。求めたラジアル荷重は、ABSを適正に制御する他、積載状態の不良を運転者に知らせる為に利用する。   In view of such circumstances, Patent Document 1 describes a rolling bearing unit with a load measuring device capable of measuring a radial load. In the case of the first example of this conventional structure, the outer ring and the hub are measured by measuring the radial displacement between the outer ring that does not rotate and the hub that rotates on the inner diameter side of the outer ring with a non-contact type displacement sensor. The radial load applied between and is calculated. The obtained radial load is used not only to properly control the ABS but also to inform the driver of a bad loading condition.

又、特許文献2には、転がり軸受ユニットに加わるアキシアル荷重を測定する構造が記載されている。この特許文献2に記載された従来構造の第2例の場合、外輪の外周面に設けた固定側フランジの内側面複数個所で、この固定側フランジをナックルに結合する為のボルトを螺合する為のねじ孔を囲む部分に、それぞれ荷重センサを添設している。上記外輪を上記ナックルに支持固定した状態でこれら各荷重センサは、このナックルの外側面と上記固定側フランジの内側面との間で挟持される。この様な従来構造の第2例の転がり軸受ユニットの荷重測定装置の場合、車輪と上記ナックルとの間に加わるアキシアル荷重は、上記各荷重センサにより測定される。更に、特許文献3には、一部の剛性を低くした外輪相当部材に動的歪みを検出する為のストレンゲージを設け、このストレンゲージが検出する転動体の通過周波数から転動体の公転速度を求め、更に、転がり軸受に加わるアキシアル荷重を測定する方法が記載されている。   Patent document 2 describes a structure for measuring an axial load applied to a rolling bearing unit. In the case of the second example of the conventional structure described in Patent Document 2, bolts for connecting the fixed side flange to the knuckle are screwed at a plurality of positions on the inner side surface of the fixed side flange provided on the outer peripheral surface of the outer ring. Each load sensor is attached to a portion surrounding the screw hole. Each load sensor is clamped between the outer surface of the knuckle and the inner surface of the fixed flange in a state where the outer ring is supported and fixed to the knuckle. In the case of the load measuring device for the rolling bearing unit of the second example having such a conventional structure, the axial load applied between the wheel and the knuckle is measured by the load sensors. Further, in Patent Document 3, a strain gauge for detecting dynamic strain is provided in a member corresponding to an outer ring whose rigidity is partially reduced, and the revolution speed of the rolling element is determined from the passing frequency of the rolling element detected by the strain gauge. Furthermore, a method for measuring an axial load applied to a rolling bearing is described.

前述の特許文献1に記載された従来構造の第1例の場合、変位センサにより、外輪とハブとの径方向に関する変位を測定する事で、転がり軸受ユニットに加わる荷重を測定する。但し、この径方向に関する変位量は僅かである為、この荷重を精度良く求める為には、上記変位センサとして、高精度のものを使用する必要がある。高精度の非接触式センサは高価である為、荷重測定装置付転がり軸受ユニット全体としてコストが嵩む事が避けられない。   In the case of the first example of the conventional structure described in Patent Document 1, the load applied to the rolling bearing unit is measured by measuring the displacement in the radial direction between the outer ring and the hub by the displacement sensor. However, since the displacement amount in the radial direction is small, it is necessary to use a highly accurate displacement sensor in order to obtain this load with high accuracy. Since high-precision non-contact sensors are expensive, it is inevitable that the cost of the entire rolling bearing unit with a load measuring device increases.

又、特許文献2に記載された従来構造の第2例の場合、ナックルに対し外輪を支持固定する為のボルトと同数だけ、荷重センサを設ける必要がある。この為、荷重センサ自体が高価である事と相まって、転がり軸受ユニットの荷重測定装置全体としてのコストが相当に嵩む事が避けられない。又、特許文献3に記載された方法は、外輪相当部材の一部の剛性を低くする必要があり、この外輪相当部材の耐久性確保が難しくなる可能性がある他、十分な測定精度を得る事が難しいと考えられる。   In the second example of the conventional structure described in Patent Document 2, it is necessary to provide as many load sensors as the bolts for supporting and fixing the outer ring to the knuckle. For this reason, coupled with the fact that the load sensor itself is expensive, it is inevitable that the cost of the entire load measuring device of the rolling bearing unit is considerably increased. In addition, the method described in Patent Document 3 needs to lower the rigidity of a part of the outer ring equivalent member, which may make it difficult to ensure the durability of the outer ring equivalent member, and obtain sufficient measurement accuracy. Things are considered difficult.

この様な事情に鑑みて本発明者等は先に、複列アンギュラ型の玉軸受ユニットを構成する回転側軌道輪にエンコーダを、この回転側軌道輪と同心に支持固定し、このエンコーダの被検出面の変位を検出する事で、この回転側軌道輪と静止側軌道輪との相対変位量を測定し、更にこの相対変位量に基づいてこれら両軌道輪同士の間に加わる荷重を求める発明(先発明)を行なった(特願2005−147642)。この先発明に係る構造の場合、上記エンコーダの被検出面の特性が円周方向に関して変化するパターン(位相と、ピッチと、検出信号のデューティ比に結び付く、各特性の割合とのうちから選択される1乃至複数)は、検出すべき荷重の作用方向に一致する、上記被検出面の幅方向に関して連続的に変化している。そして、上記静止側軌道輪等の固定部分に支持したセンサの検出部を、上記エンコーダの被検出面に近接対向させて、このセンサの出力信号が、上記相対変位量に応じて変化する様にしている。   In view of such circumstances, the inventors of the present invention first fixed and supported an encoder on the rotation side raceway of the double row angular type ball bearing unit, concentrically with the rotation side raceway. An invention in which the displacement of the detection surface is detected to measure the relative displacement between the rotating raceway and the stationary raceway, and the load applied between the two raceways is obtained based on the relative displacement. (Prior invention) was made (Japanese Patent Application No. 2005-147642). In the case of the structure according to the previous invention, the characteristic of the detected surface of the encoder is selected from a pattern (phase, pitch, and ratio of each characteristic linked to the duty ratio of the detection signal) that changes in the circumferential direction. 1 to 2) continuously change with respect to the width direction of the surface to be detected, which coincides with the acting direction of the load to be detected. Then, the detection unit of the sensor supported on the stationary part such as the stationary side race ring is brought close to and opposed to the detection surface of the encoder so that the output signal of the sensor changes according to the relative displacement amount. ing.

図3〜4は、この様な先発明に係る構造の第1例を示している。この先発明の第1例の車輪支持用転がり軸受ユニットの荷重測定装置は、車輪支持用転がり軸受ユニット1と、回転速度検出装置としての機能を兼ね備えた、荷重測定装置2とを備える。
このうちの車輪支持用転がり軸受ユニット1は、図3に示す様に、外輪3と、ハブ4と、複数個の転動体5、5とを備える。このうちの外輪3は、使用状態で懸架装置に支持固定される静止側軌道輪であって、内周面に複列の外輪軌道6、6を、外周面にこの懸架装置に結合する為の外向フランジ状の取付部7を、それぞれ有する。又、上記ハブ4は、使用状態で車輪を支持固定してこの車輪と共に回転する回転側軌道輪であって、ハブ本体8と内輪9とを組み合わせ固定して成る。この様なハブ4は、外周面の軸方向外端部(懸架装置への組み付け状態で車体の幅方向外側となる端部)に車輪を支持固定する為の取付フランジ10を、軸方向中間部及び内輪9の外周面に複列の内輪軌道11、11を、それぞれ設けている。上記各転動体5、5は、これら各内輪軌道11、11と上記各外輪軌道6、6との間にそれぞれ複数個ずつ、互いに逆方向の(背面組み合わせ型の)接触角を付与した状態で転動自在に設け、上記外輪3の内径側に上記ハブ4を、この外輪3と同心に回転自在に支持している。
3 to 4 show a first example of such a structure according to the prior invention. The load measuring device for a wheel supporting rolling bearing unit of the first example of the present invention includes a wheel supporting rolling bearing unit 1 and a load measuring device 2 having a function as a rotational speed detecting device.
Among these, the wheel support rolling bearing unit 1 includes an outer ring 3, a hub 4, and a plurality of rolling elements 5, 5 as shown in FIG. 3. Of these, the outer ring 3 is a stationary-side bearing ring that is supported and fixed to the suspension device in use. The outer ring 3 has double-row outer ring raceways 6 and 6 connected to the suspension surface on the outer peripheral surface. Each has an outward flange-shaped attachment portion 7. The hub 4 is a rotating raceway that supports and fixes a wheel in use and rotates together with the wheel. The hub body 8 and the inner ring 9 are combined and fixed. Such a hub 4 has a mounting flange 10 for supporting and fixing a wheel at an outer end in the axial direction of the outer peripheral surface (an end on the outer side in the width direction of the vehicle body when assembled to the suspension device). In addition, double-row inner ring raceways 11 are provided on the outer peripheral surface of the inner ring 9. Each of the rolling elements 5 and 5 is provided with a plurality of contact angles in the opposite directions (rear combination type) between the inner ring raceways 11 and 11 and the outer ring raceways 6 and 6, respectively. The hub 4 is rotatably provided, and is supported on the inner diameter side of the outer ring 3 so as to be rotatable concentrically with the outer ring 3.

一方、上記荷重測定装置2は、図3に示す様に、エンコーダ12と、センサ13と、図示しない演算器とを備える。
このうちのエンコーダ12は、軟鋼板等の磁性材製で、それぞれがスリット状である複数の透孔14a、14bを、交互に形成している。これら各透孔14a、14bは、上記エンコーダ12の中心軸の方向に対し傾斜している。又、円周方向に隣り合う透孔14a、14b同士の間で、傾斜方向は互いに逆になっている。又、円周方向に隣り合う透孔14a、14b同士のピッチは、交互に大小を繰り返している。この様なエンコーダ12は、上記ハブ4の中間部に外嵌固定している。一方、上記センサ13は、永久磁石と、ホール素子或いは磁気抵抗素子等の磁気検出素子とを組み込んだ、アクティブ型の磁気センサで、上記外輪3の中間部に形成した取付孔15に、径方向外方から内方に挿通する状態で設けている。そして、上記センサ13の先端部を上記外輪3の内周面から径方向内方に突出させて、この先端部に設けた検出部を、被検出面である、上記エンコーダ12の外周面に近接対向させている。
On the other hand, as shown in FIG. 3, the load measuring device 2 includes an encoder 12, a sensor 13, and a calculator (not shown).
Of these, the encoder 12 is made of a magnetic material such as a mild steel plate, and has a plurality of through holes 14a and 14b each having a slit shape. These through holes 14 a and 14 b are inclined with respect to the direction of the central axis of the encoder 12. Further, the inclination directions are opposite to each other between the through holes 14a and 14b adjacent in the circumferential direction. Further, the pitch between the through holes 14a and 14b adjacent in the circumferential direction alternately repeats the magnitude. Such an encoder 12 is fitted and fixed to the intermediate portion of the hub 4. On the other hand, the sensor 13 is an active type magnetic sensor incorporating a permanent magnet and a magnetic detection element such as a Hall element or a magnetoresistive element. The sensor 13 is formed in the mounting hole 15 formed in the intermediate portion of the outer ring 3 in the radial direction. It is provided in a state of being inserted from the outside to the inside. And the front-end | tip part of the said sensor 13 is protruded radially inward from the internal peripheral surface of the said outer ring | wheel 3, and the detection part provided in this front-end | tip part is adjoined to the outer peripheral surface of the said encoder 12 which is a to-be-detected surface. They are facing each other.

上述の様に構成する先発明の荷重測定装置の第1例の場合、アキシアル荷重に基づいて上記ハブ4と上記外輪3とが軸方向に相対変位すると、上記センサ13の検出信号が変化するパターン(ピッチ及び位相)が変化する。そこで、このパターンの変化に基づいて、上記相対変位の大きさ、更には上記アキシアル荷重の大きさを求められる。尚、同方向に傾斜した透孔14a、14a(14b、14b)に基づいて上記検出信号が変化する周期は、上記相対変位に拘らず変化しない。従って、この周期に基づいて、上記ハブ4の回転速度を求める事もできる。   In the case of the first example of the load measuring apparatus of the prior invention configured as described above, the detection signal of the sensor 13 changes when the hub 4 and the outer ring 3 are relatively displaced in the axial direction based on the axial load. (Pitch and phase) change. Therefore, the magnitude of the relative displacement and further the magnitude of the axial load can be obtained based on the change in the pattern. Note that the period in which the detection signal changes based on the through holes 14a and 14a (14b and 14b) inclined in the same direction does not change regardless of the relative displacement. Therefore, the rotational speed of the hub 4 can be obtained based on this cycle.

次に、図5〜6は、先発明に係る構造の第2例を示している。本例の場合には、重量の嵩む自動車の駆動輪を支持する為の車輪支持用転がり軸受ユニットを対象としている為に、転動体5a、5aとして円すいころを使用している。又、回転側軌道輪であるハブ4aの中心部に、等速ジョイントに付属のスプライン軸を挿通する為のスプライン孔18を形成している。そして、上記ハブ4aの中間部に、磁性金属材製で円環状のエンコーダ12aを外嵌固定している。このエンコーダ12aの外周面には、凹部19、19と凸部20、20とを、円周方向に関して交互に配置している。これら各凹部19、19と凸部20、20との円周方向に関する幅寸法は、軸方向に関して漸次変化している。   Next, FIGS. 5 to 6 show a second example of the structure according to the previous invention. In the case of this example, since it is intended for a wheel support rolling bearing unit for supporting a driving wheel of a heavy automobile, tapered rollers are used as the rolling elements 5a and 5a. A spline hole 18 is formed in the center of the hub 4a, which is the rotating side raceway, for inserting a spline shaft attached to the constant velocity joint. An annular encoder 12a made of a magnetic metal material is externally fitted and fixed to an intermediate portion of the hub 4a. Concave portions 19 and 19 and convex portions 20 and 20 are alternately arranged on the outer peripheral surface of the encoder 12a in the circumferential direction. The width dimension in the circumferential direction between the concave portions 19 and 19 and the convex portions 20 and 20 gradually changes in the axial direction.

一方、静止側軌道輪である外輪3の中間部に形成した取付孔15に、上述した第1例の場合と同様の、磁気検知式のセンサ13を挿通し、このセンサ13の先端部に設けた検出部を、上記エンコーダ12aの外周面に近接対向させている。このセンサ13の検出信号は、上記検出部の近傍を上記各凹部19、19と上記各凸部20、20とが交互に通過する事に伴って変化するが、この変化のパターン(検出信号のデューティ比=高電位継続時間/1周期)は、上記検出部が対向する、上記エンコーダ12aの外周面の軸方向位置によって変化する。そこで、上記変化のパターンに基づいて、上記外輪3と上記ハブ4aとの間に作用するアキシアル荷重を求められる。   On the other hand, a magnetic detection type sensor 13 similar to the case of the first example described above is inserted into the mounting hole 15 formed in the intermediate part of the outer ring 3 which is a stationary side raceway ring, and provided at the tip of this sensor 13. The detection unit is placed close to and opposed to the outer peripheral surface of the encoder 12a. The detection signal of the sensor 13 changes as the concave portions 19 and 19 and the convex portions 20 and 20 pass alternately in the vicinity of the detection portion. (Duty ratio = high potential duration / one cycle) varies depending on the axial position of the outer peripheral surface of the encoder 12a facing the detection unit. Therefore, an axial load acting between the outer ring 3 and the hub 4a is obtained based on the change pattern.

次に、図7〜8は、先発明に係る構造の第3例を示している。本例の場合には、静止側軌道輪である外輪3の一部に1対のセンサ13a、13bを、回転側軌道輪であるハブ4の回転方向に関する位相を一致させ、且つ、このハブ4の軸方向にずらせた状態で配置している。そして、上記両センサ13a、13bの検出部を、上記ハブ4の中間部に外嵌固定したエンコーダ12bの外周面に近接対向させている。このエンコーダ12bは、磁性金属板により円筒状に形成されたもので、幅方向片半部と他半部とに、それぞれスリット状の透孔14c、14dを、それぞれ上記エンコーダ12bの中心軸の方向に対し傾斜させた状態で、円周方向に関して等間隔に形成している。幅方向片半部の透孔14c、14cの傾斜方向と、他半部の透孔14d、14dの傾斜方向とは互いに逆で、傾斜角度は互いに等しい。又、上記外輪3と上記ハブ4との間にアキシアル荷重が作用していない状態(中立状態)で、上記両列の透孔14c、14dの間に存在するリム部21が、上記両センサ13a、13bの検出部の丁度中央位置に存在する。   7 to 8 show a third example of the structure according to the previous invention. In the case of this example, a pair of sensors 13a and 13b are arranged on a part of the outer ring 3 which is a stationary side raceway so that the phases in the rotational direction of the hub 4 which is a rotation side raceway are matched. It is arranged in a state shifted in the axial direction. And the detection part of both said sensors 13a and 13b is made to adjoin and oppose the outer peripheral surface of the encoder 12b externally fixed to the intermediate part of the said hub 4. FIG. This encoder 12b is formed in a cylindrical shape by a magnetic metal plate, and has slit-shaped through holes 14c and 14d in one half and the other half in the width direction, respectively, and the direction of the central axis of the encoder 12b. Are formed at equal intervals in the circumferential direction. The inclination direction of the through holes 14c, 14c in the half half of the width direction is opposite to the inclination direction of the through holes 14d, 14d in the other half, and the inclination angles are equal to each other. In addition, in a state where an axial load is not acting between the outer ring 3 and the hub 4 (neutral state), the rim portion 21 existing between the two through holes 14c and 14d is formed by the two sensors 13a. , 13b is located just at the center of the detection unit.

上述の様なエンコーダ12bを含んで構成する、先発明の荷重測定装置の第3例の場合、上記中立状態では、上記両センサ13a、13bの検出信号の位相が互いに一致する。これに対して、上記外輪3と上記ハブ4との間にアキシアル荷重が作用すると、これら外輪3とハブ4とが軸方向に相対変位する結果、上記1対のセンサ13a、13bの検出信号の位相がずれる。そこで、このずれの方向及び大きさ(実際の場合には、上記両センサ13a、13bの検出信号の1周期に対するずれの大きさの比)に基づいて、上記アキシアル荷重の方向及び大きさを求められる。尚、上記ハブ4の回転速度は、何れかのセンサ13a(13b)の検出信号の周期或いは周波数に基づいて求められる。   In the case of the third example of the load measuring device according to the present invention configured to include the encoder 12b as described above, the phases of the detection signals of the two sensors 13a and 13b coincide with each other in the neutral state. On the other hand, when an axial load is applied between the outer ring 3 and the hub 4, the outer ring 3 and the hub 4 are relatively displaced in the axial direction. As a result, the detection signals of the pair of sensors 13a and 13b are detected. Out of phase. Therefore, the direction and magnitude of the axial load is obtained based on the direction and magnitude of the deviation (in the actual case, the ratio of the magnitude of deviation with respect to one cycle of the detection signals of the sensors 13a and 13b). It is done. The rotational speed of the hub 4 is obtained based on the period or frequency of the detection signal of any one of the sensors 13a (13b).

次に、図9〜10は、先発明に係る構造の第4例を示している。この先発明の第4例の場合には、ハブ4の内端部に外嵌固定した内輪9の内端部に、図10に示す様なエンコーダ12cの基端部を外嵌して、このエンコーダ12cを上記ハブ4に対し、このハブ4と同心に支持固定している。このエンコーダ12cは、磁性金属板製で、先半部に設けた円筒状部に、それぞれが「く」字形でスリット状の透孔14e、14eを、円周方向に関して等間隔に形成している。又、外輪3の内端部に嵌合固定したカバー16に支持したセンサホルダ17内に1対のセンサを、軸方向に離隔した状態で保持している。そして、これら両センサの検出部を、上記エンコーダ12cの内周面に近接対向させている。   Next, FIGS. 9 to 10 show a fourth example of the structure according to the previous invention. In the case of the fourth example of the prior invention, the base end portion of the encoder 12c as shown in FIG. 10 is externally fitted to the inner end portion of the inner ring 9 which is externally fitted and fixed to the inner end portion of the hub 4. 12c is supported and fixed to the hub 4 concentrically with the hub 4. This encoder 12c is made of a magnetic metal plate, and has slit-shaped through holes 14e and 14e each formed in a cylindrical shape provided in the front half portion at equal intervals in the circumferential direction. . In addition, a pair of sensors are held in an axially separated state in a sensor holder 17 supported by a cover 16 fitted and fixed to the inner end of the outer ring 3. And the detection part of these both sensors is made to adjoin and oppose the inner peripheral surface of the said encoder 12c.

上述の様な先発明の転がり軸受ユニットの荷重測定装置の第4例の場合も、アキシアル荷重に基づいてハブ4と外輪3とが軸方向に相対変位すると、上記1対のセンサの検出信号の位相がずれる。そこで、このずれの大きさに基づいて、上記相対変位の大きさ、更には上記アキシアル荷重の大きさを求められる。尚、上記ハブ4の回転速度は、何れかのセンサの検出信号に基づいて求められる。   Also in the case of the fourth example of the load measuring device of the rolling bearing unit of the prior invention as described above, if the hub 4 and the outer ring 3 are relatively displaced in the axial direction based on the axial load, the detection signal of the pair of sensors is not detected. Out of phase. Therefore, based on the magnitude of the deviation, the magnitude of the relative displacement and further the magnitude of the axial load can be obtained. The rotational speed of the hub 4 is obtained based on the detection signal of any sensor.

次に、図11は、先発明に係る構造の第5例に組み込むエンコーダ12dを示している。このエンコーダ12dは、磁性金属板により円輪状に形成されたもので、それぞれが径方向外側程円周方向に関する幅が大きくなる、台形の透孔14f、14fを、円周方向に関して等間隔に形成している。この様なエンコーダ12dの軸方向片側面にはセンサの検出部を、近接対向させる。   Next, FIG. 11 shows an encoder 12d incorporated in the fifth example of the structure according to the previous invention. The encoder 12d is formed in an annular shape by a magnetic metal plate, and trapezoidal through holes 14f and 14f are formed at equal intervals in the circumferential direction. is doing. The sensor detection unit is placed close to and opposed to one axial side surface of the encoder 12d.

上述の様なエンコーダ12dを含んで構成する、先発明の転がり軸受ユニットの荷重測定装置の第5例の場合、ラジアル荷重に基づいてハブと外輪とが径方向に相対変位すると、上記センサの検出信号のデューティ比(高電位継続時間/1周期)が変化する。そこで、このデューティ比に基づいて、上記相対変位の大きさ、更には上記ラジアル荷重の大きさを求められる。尚、上記ハブの回転速度は、上記センサの検出信号の周期に基づいて求められる。   In the case of the fifth example of the load measuring device for a rolling bearing unit according to the invention, which includes the encoder 12d as described above, if the hub and the outer ring are relatively displaced in the radial direction based on the radial load, the detection of the sensor The duty ratio of the signal (high potential duration / one cycle) changes. Therefore, the magnitude of the relative displacement and further the magnitude of the radial load can be obtained based on the duty ratio. The rotational speed of the hub is determined based on the period of the detection signal of the sensor.

尚、上述の先発明の転がり軸受ユニットの荷重測定装置の第1〜5例は何れも、エンコーダ12〜12dとして単なる磁性材製のものを使用し、センサの側に永久磁石を組み込む事を意図している。これに対して、前記特願2005−147642には、永久磁石製のエンコーダを使用し、センサの側の永久磁石を省略する構造に就いても記載されている。何れの場合でも、エンコーダの被検出面が円周方向に関して変化するパターンは、検出すべき荷重の作用方向に対応して、この被検出面の幅方向に関して連続的に変化している。   It should be noted that any of the first to fifth examples of the load measuring device for the rolling bearing unit of the above-described invention is intended to use a simple magnetic material as the encoder 12 to 12d and to incorporate a permanent magnet on the sensor side. is doing. On the other hand, the Japanese Patent Application No. 2005-147642 describes a structure in which a permanent magnet encoder is used and the permanent magnet on the sensor side is omitted. In any case, the pattern in which the detected surface of the encoder changes in the circumferential direction continuously changes in the width direction of the detected surface, corresponding to the direction of action of the load to be detected.

何れにしても、上述の様な先発明に係る転がり軸受ユニットの荷重測定装置により求めた荷重(ラジアル荷重とアキシアル荷重との一方又は双方)は、路面と車輪(タイヤ)との接触面で生じている荷重と等価である。従って、上記求めた荷重に基づいて車両の走行状態を安定化させる為の制御を行なえば、車両の姿勢が不安定になる事を予防する為のフィードフォワード制御が可能になる等、車両の走行安定性確保の為の高度な制御が可能になる。尚、荷重測定の為のエンコーダを装着する部材は、ハブに限らず、このハブに結合固定されてこのハブと共に回転及び変位する回転部材であっても良い。この様な回転部材としては、ディスクロータ、等速ジョイント等が考えられる。   In any case, the load (one or both of the radial load and the axial load) obtained by the load measuring device of the rolling bearing unit according to the above-described invention is generated on the contact surface between the road surface and the wheel (tire). Is equivalent to the load. Therefore, if the control for stabilizing the running state of the vehicle is performed based on the obtained load, the feed forward control for preventing the posture of the vehicle from becoming unstable becomes possible. Advanced control to ensure stability is possible. The member to which the encoder for load measurement is attached is not limited to the hub, and may be a rotating member that is coupled and fixed to the hub and rotates and displaces together with the hub. As such a rotating member, a disk rotor, a constant velocity joint, or the like can be considered.

上述の様な先発明に係る車輪支持用転がり軸受ユニットの荷重測定装置は、何れの構造の場合も、車輪支持用転がり軸受ユニットの構成各部材の弾性変形を利用して、ハブ(或いはこのハブに固定された回転部材)とセンサとを相対変位させ、この変位に対応した荷重を、このセンサの出力信号の変化から求める様にしている。この荷重を自動車の走行安定性確保の為に有効に利用する為には、走行時に加わると考えられる最も大きな荷重も、上記荷重測定装置により測定できる様にする必要がある。言い換えれば、この荷重測定装置の測定範囲を広くする必要がある。そして、この測定範囲を広くする為には、上記最も大きな荷重が加わった状態でも、上記車輪支持用転がり軸受ユニットの構成各部材の弾性変形が(それ以上弾性変形しない飽和状態に達する事なく)継続して行なわれる必要がある。   The load measuring device for a wheel support rolling bearing unit according to the above-described invention is a hub (or this hub) using elastic deformation of each member constituting the wheel support rolling bearing unit in any structure. The rotation member) fixed to the sensor and the sensor are relatively displaced, and a load corresponding to the displacement is obtained from a change in the output signal of the sensor. In order to effectively use this load for ensuring the running stability of the automobile, it is necessary to be able to measure the largest load that is considered to be applied during running by the load measuring device. In other words, it is necessary to widen the measurement range of this load measuring device. In order to widen the measurement range, even when the largest load is applied, the elastic deformation of each component of the wheel support rolling bearing unit is achieved (without reaching a saturated state where no further elastic deformation occurs). It needs to be done continuously.

ところが、車輪支持用転がり軸受ユニットが小型である等により、この車輪支持用転がり軸受ユニットの剛性が低い場合には、図12に破線aで示す様に、この車輪支持用転がり軸受ユニットに加わる荷重が或る程度迄大きくなると、(荷重と変位との関係を表す線の勾配が小さくなり)ハブと外輪とがそれ以上は変位しなくなる。この事は、この或る程度以上の荷重に就いては、これらハブと外輪との変位に基づいて、十分な精度では求められない事を意味する。この様な問題は、上記荷重が何れの方向に加わる場合も(正負両方向の荷重に就いて)同様である。この様な原因で、大きな荷重を求められない事を防止する為には、車輪支持用転がり軸受ユニットを大型化して、剛性を高める事が有効である。この車輪支持用転がり軸受ユニットの剛性が高くなれば、図12に実線bで示す様に、この車輪支持用転がり軸受ユニットに加わる荷重が大きくなっても、ハブと外輪との変位が継続する(荷重と変位との関係を表す線の勾配が保たれる)。   However, if the rigidity of the rolling bearing unit for wheel support is low due to the small size of the rolling bearing unit for wheel support, the load applied to the rolling bearing unit for wheel support as shown by the broken line a in FIG. When the pressure increases to a certain extent (the gradient of the line representing the relationship between the load and the displacement decreases), the hub and the outer ring are not displaced further. This means that a load of a certain level or more cannot be obtained with sufficient accuracy based on the displacement between the hub and the outer ring. Such a problem is the same when the load is applied in any direction (for both positive and negative directions). In order to prevent a large load from being required due to such a reason, it is effective to increase the rigidity of the wheel bearing rolling bearing unit by increasing its size. If the rigidity of the wheel support rolling bearing unit is increased, as shown by the solid line b in FIG. 12, even if the load applied to the wheel support rolling bearing unit increases, the displacement between the hub and the outer ring continues ( The slope of the line representing the relationship between load and displacement is preserved).

但し、車輪支持用転がり軸受ユニットの大きさは、車輪や懸架装置の大きさ等により決まる設置スペースの面から制約を受け、荷重測定の測定範囲を広くするだけの理由で大きくする事は困難である。特に、外輪3の外周面のうちで取付部7よりも軸方向内側部分に存在する円筒面部22(本発明の実施の形態を示す図1、2参照)は、懸架装置を構成するナックル等の取付孔に内嵌する部分である為、上記円筒面部22の外径を大きくする事は難しい。前述の図5に示した先発明の第2例の様に、転動体5a、5aとして円すいころを使用すれば、転動体として玉を使用する場合に比べて剛性を高くできるが、車輪支持用転がり軸受ユニットの動トルク(転がり抵抗)が大きくなるだけでなく、一般的にはコストも高くなってしまう。   However, the size of the rolling bearing unit for supporting the wheel is limited by the installation space determined by the size of the wheel and suspension, etc., and it is difficult to increase the size only for widening the measurement range of load measurement. is there. In particular, the cylindrical surface portion 22 (see FIGS. 1 and 2 showing the embodiment of the present invention) that exists in the axially inner portion of the outer ring 3 on the outer peripheral surface is a knuckle or the like that constitutes the suspension device. Since it is a part fitted in the mounting hole, it is difficult to increase the outer diameter of the cylindrical surface portion 22. If tapered rollers are used as the rolling elements 5a and 5a as in the second example of the prior invention shown in FIG. 5, the rigidity can be increased compared to the case where balls are used as the rolling elements. Not only does the dynamic torque (rolling resistance) of the rolling bearing unit increase, but the cost generally increases.

特開2001−21577号公報JP 2001-21577 A 特開平3−209016号公報Japanese Patent Laid-Open No. 3-209016 特公昭62−3365号公報Japanese Patent Publication No.62-3365 青山元男著、「レッドバッジスーパー図解シリーズ/クルマの最新メカがわかる本」、p.138−139、p.146−149、株式会社三推社/株式会社講談社、平成13年12月20日Motoo Aoyama, “Red Badge Super Illustrated Series / A book that shows the latest mechanics of cars”, p. 138-139, p. 146-149, Sangensha Co., Ltd./Kodansha Co., Ltd., December 20, 2001

本発明は、上述の様な事情に鑑みて、車輪支持用転がり軸受ユニットの大型化、動トルクの増大、価格の増大を抑えつつ、大きな荷重迄も精度良く測定できる車輪支持用転がり軸受ユニットの荷重測定装置を実現すべく発明したものである。   In view of the circumstances as described above, the present invention provides a wheel support rolling bearing unit that can accurately measure even a large load while suppressing an increase in the size of a wheel support rolling bearing unit, an increase in dynamic torque, and an increase in price. Invented to realize a load measuring device.

本発明の対象となる車輪支持用転がり軸受ユニットの荷重測定装置は、何れも、車輪支持用転がり軸受ユニットと荷重測定装置とを備える。
このうちの車輪支持用転がり軸受ユニットは、静止側軌道輪と、回転側軌道輪と、複数個の転動体とを備える。
上記静止側軌道輪は、使用状態で懸架装置に支持されて回転しない。
又、上記回転側軌道輪は、使用状態で、外周面の軸方向外端寄り部分に設けた取付フランジに車輪を結合固定し、この車輪と共に回転する。
又、上記各転動体は、上記回転側軌道輪と静止側軌道輪との互いに対向する周面に存在する、それぞれ複列の静止側軌道と回転側軌道との間に、両列同士の間で互いに逆方向の接触角を付与された状態で、両列毎にそれぞれ複数個ずつ設けられている。
又、上記荷重測定装置は、エンコーダと、センサと、演算器とを備える。
このうちのエンコーダは、上記回転側軌道輪又はこの回転側軌道輪に結合固定されてこの回転側軌道輪と共に回転及び変位する回転部材(前述した様なディスクロータ或いは等速ジョイント)の一部に、この回転側軌道輪又はこの回転部材と同心に支持されたもので、被検出面の特性を円周方向に関して交互に変化させている。
又、上記センサは、その検出部をこの被検出面に対向させた状態で回転しない部分に支持され、この被検出面の特性変化に対応してその出力信号を変化させる。
更に、上記演算器は、上記センサの出力信号に基づいて、上記静止側軌道輪と上記回転側軌道輪との間に加わる荷重を算出する。
そして、上記被検出面の特性が円周方向に関して変化するパターンは、検出すべき上記荷重の作用方向に対応して、上記被検出面の幅方向に関して連続的に変化している。
Each of the load measuring devices for a wheel-supporting rolling bearing unit that is an object of the present invention includes a wheel-supporting rolling bearing unit and a load measuring device.
Of these, the wheel-supporting rolling bearing unit includes a stationary bearing ring, a rotating bearing ring, and a plurality of rolling elements.
The stationary side raceway is supported by the suspension device in use and does not rotate.
In addition, the rotating side race wheel is used in a state in which a wheel is coupled and fixed to a mounting flange provided on the outer peripheral surface near the axially outer end, and rotates together with the wheel.
Each of the rolling elements is present on the circumferential surfaces of the rotating side raceway and the stationary side raceway facing each other, and between the rows of the stationary side raceway and the rotary side raceway. In the state where the contact angles in opposite directions are given to each other, a plurality of them are provided for each row.
The load measuring device includes an encoder, a sensor, and a calculator.
Of these, the encoder is a part of a rotating member (a disc rotor or a constant velocity joint as described above) that is coupled and fixed to the rotating raceway or the rotating raceway. The rotation-side track ring or the rotation member is supported concentrically, and the characteristics of the detection surface are alternately changed in the circumferential direction.
The sensor is supported by a portion that does not rotate with the detection portion facing the detection surface, and changes its output signal in response to a change in the characteristics of the detection surface.
Further, the computing unit calculates a load applied between the stationary side raceway and the rotation side raceway based on the output signal of the sensor.
The pattern in which the characteristic of the detected surface changes in the circumferential direction continuously changes in the width direction of the detected surface corresponding to the direction of action of the load to be detected.

特に、本発明のうちの請求項1に記載した車輪支持用転がり軸受ユニットの荷重測定装置の場合には、上記車輪支持用転がり軸受ユニットを構成する、複列にそれぞれ複数個ずつ配置された転動体が、何れも玉である。そして、軸方向外側の列の玉のピッチ円直径が、軸方向内側の列の玉のピッチ円直径よりも大きい。
又、請求項2に記載した上記車輪支持用転がり軸受ユニットを構成する、複列にそれぞれ複数個ずつ配置された転動体のうち、何れか一方(例えば軸方向外側)の列の転動体が玉であり、他方(例えば軸方向内側)の列の転動体が円すいころである。
In particular, in the case of the load measuring device for a wheel supporting rolling bearing unit according to claim 1 of the present invention, a plurality of rolling elements arranged in a plurality of rows constituting the wheel supporting rolling bearing unit are arranged. All moving objects are balls. The pitch circle diameter of the balls in the outer row in the axial direction is larger than the pitch circle diameter of the balls in the inner row in the axial direction.
In addition, among the rolling elements arranged in a plurality of rows in the plurality of rolling elements constituting the wheel supporting rolling bearing unit according to claim 2, any one of the rolling elements (for example, axially outside) is a ball. The rolling elements in the other row (for example, the inner side in the axial direction) are tapered rollers.

上述の様に構成する本発明の車輪支持用転がり軸受ユニットの荷重測定装置は、前述した先発明に係る車輪支持用転がり軸受ユニットの荷重測定装置と同様に、エンコーダの被検出面の特性が変化するパターンを検出する事により、車輪支持用転がり軸受ユニットに付加される荷重を測定できる。
更に、本発明によれば、車輪支持用転がり軸受ユニットの大型化、動トルクの増大、価格の増大を抑えつつ、大きな荷重迄も精度良く測定できる車輪支持用転がり軸受ユニットの荷重測定装置を実現できる。
The load measuring device for a wheel supporting rolling bearing unit according to the present invention configured as described above changes the characteristics of the detected surface of the encoder in the same manner as the load measuring device for a wheel supporting rolling bearing unit according to the previous invention. By detecting the pattern to be performed, the load applied to the wheel bearing rolling bearing unit can be measured.
Furthermore, according to the present invention, a load measuring device for a wheel-supporting rolling bearing unit capable of accurately measuring even a large load while suppressing an increase in the size of a wheel-supporting rolling bearing unit, an increase in dynamic torque, and an increase in price is realized. it can.

[実施の形態の第1例]
図1は、請求項1に対応する、本発明の実施の形態の第1例を示している。尚、本例を含めて本発明の特徴は、車輪支持用転がり軸受ユニットのうちでナックル等の取付孔に内嵌する部分の外径を大きくする事なく、この車輪支持用転がり軸受ユニットの剛性を高くして、荷重測定装置による測定可能範囲を広くする(大きな荷重を精度良く測定できる様にする)点にある。荷重測定装置の構造に就いて図1、2には、図9〜10に示した先発明の第4例に則した構造を表しているが、本発明は、前述した先発明の他の構造に組み込んだ荷重測定装置との組み合わせで実施する事もできる。何れにしても、荷重測定装置部分の構造及び作用は、前述した先発明の場合と同様であるから、重複する説明を省略し、以下、車輪支持用転がり軸受ユニット1a部分の剛性を高くする為の構造部分に就いて説明する。
[First example of embodiment]
FIG. 1 shows a first example of an embodiment of the present invention corresponding to claim 1. The feature of the present invention, including this example, is that the rigidity of the wheel support rolling bearing unit is increased without increasing the outer diameter of the portion of the wheel support rolling bearing unit that fits into the mounting hole of the knuckle or the like. To increase the measurable range by the load measuring device (so that a large load can be measured with high accuracy). FIGS. 1 and 2 show the structure of the load measuring device according to the fourth example of the prior invention shown in FIGS. It can also be implemented in combination with a load measuring device incorporated in the. In any case, since the structure and operation of the load measuring device portion are the same as in the case of the above-described prior invention, redundant description will be omitted, and hereinafter, in order to increase the rigidity of the wheel bearing rolling bearing unit 1a portion. The structure part of will be described.

本例の場合には、静止側軌道輪である外輪3aの内周面に、それぞれの断面形状が円弧形である複列の外輪軌道6a、6bを形成している。これら両外輪軌道6a、6bの断面形状のうち、軸方向外側(図1の左側)の外輪軌道6aの曲率半径を、軸方向内側(図1の右側)の外輪軌道6bの曲率半径よりも大きくしている。又、回転側軌道輪であるハブ4bの外周面に、それぞれの断面形状が円弧形である複列の内輪軌道11a、11bを形成している。これら両内輪軌道11a、11bの断面形状のうち、軸方向外側の内輪軌道11aの曲率半径を、軸方向内側の内輪軌道11bの曲率半径よりも大きくしている。そして、上記複列の外輪軌道6a、6bと内輪軌道11a、11bとの間に、それぞれ複数個ずつの転動体5a、5bを、転動自在に設けている。これら各転動体5a、5bは、何れも玉であり、軸方向外側の列の転動体5a、5aの外径を、軸方向内側の列の転動体5b、5bの外径よりも大きくしている。尚、これら各転動体5a、5bの外径と、これら各転動体5a、5bの転動面が転がり接触する上記各軌道6a、6b、11a、11bの曲率半径との関係は、一般的な車輪支持用転がり軸受ユニットの場合と同じ様に規制している。   In the case of this example, double-row outer ring raceways 6a and 6b each having a circular cross section are formed on the inner peripheral surface of the outer ring 3a which is a stationary side race ring. Among the cross-sectional shapes of these outer ring raceways 6a and 6b, the radius of curvature of the outer ring raceway 6a on the outer side in the axial direction (left side in FIG. 1) is larger than the radius of curvature of the outer ring raceway 6b on the inner side in the axial direction (right side in FIG. 1). is doing. In addition, double-row inner ring raceways 11a and 11b each having a circular cross section are formed on the outer peripheral surface of the hub 4b which is the rotation side raceway ring. Of the cross-sectional shapes of the inner ring raceways 11a and 11b, the radius of curvature of the inner ring raceway 11a on the outer side in the axial direction is made larger than the radius of curvature of the inner ring raceway 11b on the inner side in the axial direction. A plurality of rolling elements 5a and 5b are provided to freely roll between the double row outer ring raceways 6a and 6b and the inner ring raceways 11a and 11b. Each of these rolling elements 5a, 5b is a ball, and the outer diameter of the rolling elements 5a, 5a in the axially outer row is made larger than the outer diameter of the rolling elements 5b, 5b in the axially inner row. Yes. The relationship between the outer diameter of each of the rolling elements 5a and 5b and the radius of curvature of each of the tracks 6a, 6b, 11a and 11b where the rolling surfaces of the respective rolling elements 5a and 5b are in rolling contact is generally It is restricted in the same way as in the case of a wheel bearing rolling bearing unit.

更に、上記軸方向外側の列の転動体5a、5aのピッチ円直径を、軸方向内側の列の転動体5b、5bのピッチ円直径よりも大きくしている。この様に軸方向外側の列の転動体5a、5aのピッチ円直径を大きくする事で、この軸方向外側の列の転動体5a、5aの外径を大きくしつつ、この軸方向外側の列の転動体5a、5aの数を確保している。例えば、前述の図9に示した先発明の第4例の構造と本例の構造とを比べた場合、上記軸方向内側の列の転動体5b、5bの外径及びピッチ円直径が、上記先発明の第4例の転動体5、5の外径及びピッチ円直径と同じである。従って、この先発明の第4例の外輪3の外径と本例の外輪3aの外径とを比較した場合、取付部7よりも軸方向内側部分に関しては、同じである。この為、本例の構造に組み込む外輪3aは、上記先発明の第4例の外輪3と、同じ大きさの懸架装置に組み付ける事ができる。   Furthermore, the pitch circle diameters of the rolling elements 5a and 5a in the axially outer row are larger than the pitch circle diameters of the rolling elements 5b and 5b in the axially inner row. In this way, by increasing the pitch circle diameter of the rolling elements 5a and 5a in the axially outer row, the outer diameter of the rolling elements 5a and 5a in the axially outer row is increased, and this axially outer row. The number of rolling elements 5a and 5a is secured. For example, when the structure of the fourth example of the prior invention shown in FIG. 9 is compared with the structure of this example, the outer diameter and pitch circle diameter of the rolling elements 5b and 5b in the axially inner row are It is the same as the outer diameter and pitch circle diameter of the rolling elements 5, 5 of the fourth example of the previous invention. Accordingly, when the outer diameter of the outer ring 3 of the fourth example of the present invention is compared with the outer diameter of the outer ring 3a of the present example, the axially inner portion of the mounting portion 7 is the same. For this reason, the outer ring 3a incorporated in the structure of this example can be assembled to a suspension device having the same size as the outer ring 3 of the fourth example of the above-mentioned invention.

これに対して、本例の構造では、軸方向外側の列の転動体5a、5aの外径及びピッチ円直径が、上記先発明の第4例の構造で軸方向外側の列の転動体5、5の外径及びピッチ円直径よりも大きく、転動体5a、5aの数も十分に確保されている。従って、本例の構造では、軸方向外側の列の剛性が、上記先発明の第4例の構造で軸方向外側の列の剛性よりも十分に高くなっている。自動車の走行状態を安定させる為に利用する荷重のうちで、この走行状態で加わり得る最も大きな荷重は、旋回走行時に旋回半径方向外側の車輪支持用転がり軸受ユニットに加わる、軸方向内向のアキシアル荷重である。背面組み合わせ型の複列転がり軸受ユニットの場合、上記軸方向外側の列の転動体5a、5aが、この方向のアキシアル荷重を支承する。従って、この列の剛性が高い事で、この方向のアキシアル荷重の測定範囲を広くできる。   On the other hand, in the structure of this example, the outer diameter and pitch circle diameter of the rolling elements 5a, 5a in the outer row in the axial direction are the same as the rolling elements 5 in the outer row in the axial direction in the structure of the fourth example. 5 is larger than the outer diameter of 5 and the pitch circle diameter, and the number of rolling elements 5a and 5a is sufficiently secured. Therefore, in the structure of this example, the rigidity of the outer row in the axial direction is sufficiently higher than the rigidity of the outer row in the axial direction in the structure of the fourth example of the above-described invention. Of the loads used to stabilize the running state of the automobile, the largest load that can be applied in this running state is the axial inward axial load that is applied to the wheel bearing rolling bearing unit outside the turning radius during turning. It is. In the case of a rear combination type double row rolling bearing unit, the rolling elements 5a and 5a in the axially outer row support an axial load in this direction. Therefore, the high rigidity of this row can widen the measurement range of the axial load in this direction.

尚、上述の説明は、このアキシアル荷重が軸方向に(純アキシアル荷重として)加わる場合であるが、実際の場合にアキシアル荷重は、車輪支持用転がり軸受ユニットの中心軸から径方向に大きく外れた、タイヤと路面との接触部から加わる。この為、旋回走行時に実際に上記車輪支持用転がり軸受ユニットに加わる荷重は、純アキシアル荷重ではなく、モーメントを伴ったものとなって、この車輪支持用転がり軸受ユニットを構成する上記外輪3a及び前記ハブ4bは、アキシアル方向だけでなくラジアル方向にも変位する。従って、上記各転動体5a、5aの外径及びピッチ円直径を大きくし、上記軸方向外側の列の剛性を高くする事は、上記軸方向内向のアキシアル荷重に対して上記車輪支持用転がり軸受ユニットの剛性を高くするだけに留まらない。即ち、上記軸方向外側の列の剛性を高くする事で、各方向の荷重に対する、上記車輪支持用転がり軸受ユニット全体の剛性を高くできる。   In the above description, this axial load is applied in the axial direction (as a pure axial load). However, in the actual case, the axial load greatly deviates from the central axis of the wheel bearing rolling bearing unit in the radial direction. , Added from the contact portion between the tire and the road surface. For this reason, the load actually applied to the wheel support rolling bearing unit during turning is not a pure axial load but accompanied by a moment, and the outer ring 3a constituting the wheel support rolling bearing unit and the The hub 4b is displaced not only in the axial direction but also in the radial direction. Therefore, increasing the outer diameter and pitch circle diameter of each of the rolling elements 5a, 5a and increasing the rigidity of the outer row in the axial direction can increase the rolling bearing for wheel support against the axial load inward in the axial direction. It doesn't stop at just increasing the rigidity of the unit. That is, by increasing the rigidity of the outer row in the axial direction, it is possible to increase the rigidity of the entire wheel bearing rolling bearing unit against the load in each direction.

本例の場合には、上述の様な構成を採用する事により、車輪支持用転がり軸受ユニット1aの大型化、動トルクの増大、価格の増大を抑えつつ、大きな荷重迄も精度良く測定できる車輪支持用転がり軸受ユニットの荷重測定装置を実現できる。
先ず、懸架装置に装着する部分の内径側に位置する、軸方向内側の転動体5b、5bの外径及びピッチ円直径を従来と同じとしているので、上記外輪3aを従来と同じ大きさの懸架装置に組み付けられる。
又、両列の転動体5a、5bとして、何れも、転がり抵抗が小さく、安価な玉を使用しているので、動トルク及び価格の増大を抑えられる。
更に、車輪支持用転がり軸受ユニット1aの剛性を高くできて、大きな荷重迄も精度良く測定できる。
In the case of this example, by adopting the configuration as described above, a wheel capable of accurately measuring even a large load while suppressing an increase in the size of the wheel bearing rolling bearing unit 1a, an increase in dynamic torque, and an increase in price. A load measuring device for a supporting rolling bearing unit can be realized.
First, since the outer diameter and pitch circle diameter of the rolling elements 5b and 5b on the inner side in the axial direction located on the inner diameter side of the portion to be mounted on the suspension device are the same as the conventional one, the outer ring 3a is suspended by the same size as the conventional one. Installed in the device.
In addition, as the rolling elements 5a and 5b in both rows, since the rolling resistance is small and inexpensive balls are used, increase in dynamic torque and price can be suppressed.
Furthermore, the rigidity of the wheel-supporting rolling bearing unit 1a can be increased, and even a large load can be accurately measured.

[実施の形態の第2例]
図2は、請求項2に対応する、本発明の実施の形態の第2例を示している。本例の場合には、静止側軌道輪である外輪3bの内周面の軸方向外寄り部分に、断面形状が円弧形である外輪軌道6cを形成している。これに対して、上記外輪3bの内周面の軸方向内寄り部分に、断面形状が直線形で部分円すい凹面状の外輪軌道6dを形成している。又、回転側軌道輪であるハブ4bの外周面の軸方向外寄り部分に、断面形状が円弧形である内輪軌道11cを形成している。これに対して、上記ハブ4bの外周面の軸方向内寄り部分に、断面形状が直線形で部分円すい凸面状の内輪軌道11dを形成している。そして、上記軸方向外寄り部分の外輪軌道6cと内輪軌道11cとの間に、それぞれが玉である複数個の転動体5c、5cを、転動自在に設けている。又、上記軸方向内寄り部分の外輪軌道6dと内輪軌道11dとの間に、それぞれが円すいころである複数個の転動体5d、5dを、転動自在に設けている。
[Second Example of Embodiment]
FIG. 2 shows a second example of an embodiment of the present invention corresponding to claim 2. In the case of this example, the outer ring raceway 6c having a circular cross section is formed in the axially outer portion of the inner peripheral surface of the outer ring 3b which is a stationary side raceway ring. On the other hand, an outer ring raceway 6d having a linear cross-sectional shape and a partially conical concave shape is formed in the axially inward portion of the inner peripheral surface of the outer ring 3b. Further, an inner ring raceway 11c having a circular arc shape in cross section is formed on the outer peripheral surface of the hub 4b that is the rotation side raceway in the axial direction. On the other hand, an inner ring raceway 11d having a straight cross-sectional shape and a partially conical surface is formed in the axially inward portion of the outer peripheral surface of the hub 4b. A plurality of rolling elements 5c and 5c, each of which is a ball, are provided between the outer ring raceway 6c and the inner ring raceway 11c at the outer side in the axial direction. Further, a plurality of rolling elements 5d and 5d, each of which is a tapered roller, are provided between the outer ring raceway 6d and the inner ring raceway 11d in the axially inward portion so as to be freely rollable.

この様な本例の場合には、軸方向内側の列の転動体5d、5dを円すいころとしている為、車輪支持用転がり軸受ユニット1b全体としての剛性を高くして、大きな荷重に就いても精度良く測定できる。又、軸方向内側の列の転動体5d、5dのピッチ円直径を大きくする事なく上記剛性を高くできるので、上記外輪3bを従来と同じ大きさの懸架装置に組み付けられる。更に、転がり抵抗が比較的大きく、且つ、比較的高価である円すいころを、軸方向内側の列にのみ設けている為、動トルク及び価格の増大を抑えられる。
尚、図2の例では、センサをエンコーダの外径側に配置しているが、エンコーダとセンサとを何れの側に配置するかは自由である。又、軸方向内向に作用するアキシアル荷重に対する剛性を高くすべく、図2とは逆に、軸方向外側の列の転動体を円すいころとし、同じく内側の転動体を玉とする事もできる。
In the case of this example, since the rolling elements 5d and 5d in the inner row in the axial direction are tapered rollers, the rigidity of the entire wheel support rolling bearing unit 1b is increased and a large load is applied. It can measure with high accuracy. Further, since the rigidity can be increased without increasing the pitch circle diameter of the rolling elements 5d and 5d in the inner row in the axial direction, the outer ring 3b can be assembled to a suspension device having the same size as the conventional one. Furthermore, since the tapered rollers having relatively high rolling resistance and relatively expensive are provided only in the inner row in the axial direction, increase in dynamic torque and price can be suppressed.
In the example of FIG. 2, the sensor is arranged on the outer diameter side of the encoder, but it is free to arrange the encoder and the sensor on which side. In order to increase the rigidity against the axial load acting inward in the axial direction, conversely to FIG. 2, the rolling elements in the outer row in the axial direction can be tapered rollers, and the inner rolling elements can also be used as balls.

図示は省略するが、図1の構造と図2の構造とを組み合わせた状態で実施する事もできる。即ち、請求項3に記載した様に、軸方向外側の列の転動体を玉とし、軸方向内側の列の転動体を円すいころとし、軸方向外側の列の転動体(玉)のピッチ円直径を軸方向内側の列の転動体(円すいころ)のピッチ円直径よりも大きくする事もできる。この様な構成を採用すれば、車輪支持用転がり軸受ユニットの大型化、動トルクの増大、価格の増大を抑えつつ、車輪支持用転がり軸受ユニットの剛性をより向上させて、より大きな荷重を測定する事ができる。   Although illustration is omitted, the present invention can be implemented in a state where the structure of FIG. 1 and the structure of FIG. 2 are combined. That is, as described in claim 3, the rolling elements in the outer row in the axial direction are balls, the rolling elements in the inner row in the axial direction are tapered rollers, and the pitch circle of the rolling elements (balls) in the outer row in the axial direction. The diameter can be made larger than the pitch circle diameter of the rolling elements (tapered rollers) in the inner row in the axial direction. If such a configuration is adopted, the rigidity of the wheel bearing rolling bearing unit is improved and the larger load is measured while suppressing the increase in the size of the wheel bearing rolling bearing unit, the increase in dynamic torque, and the price. I can do it.

本発明の実施の形態の第1例を示す断面図。Sectional drawing which shows the 1st example of embodiment of this invention. 同第2例を示す断面図。Sectional drawing which shows the 2nd example. 先発明に係る車輪支持用転がり軸受ユニットの荷重測定装置の第1例の断面図。Sectional drawing of the 1st example of the load measuring apparatus of the rolling bearing unit for wheel support concerning a prior invention. この第1例に組み込むエンコーダの斜視図。The perspective view of the encoder built in this 1st example. 先発明に係る車輪支持用転がり軸受ユニットの荷重測定装置の第2例の断面図。Sectional drawing of the 2nd example of the load measuring apparatus of the rolling bearing unit for wheel support concerning a prior invention. この第2例に組み込むエンコーダの部分斜視図。The fragmentary perspective view of the encoder integrated in this 2nd example. 先発明に係る車輪支持用転がり軸受ユニットの荷重測定装置の第3例を示す断面図。Sectional drawing which shows the 3rd example of the load measuring apparatus of the rolling bearing unit for wheel support which concerns on a prior invention. この第3例に組み込むエンコーダの斜視図。The perspective view of the encoder incorporated in this 3rd example. 先発明に係る車輪支持用転がり軸受ユニットの荷重測定装置の第4例の断面図。Sectional drawing of the 4th example of the load measuring apparatus of the rolling bearing unit for wheel support concerning a prior invention. この第4例に組み込むエンコーダの断面図。Sectional drawing of the encoder integrated in this 4th example. 先発明に係る車輪支持用転がり軸受ユニットの荷重測定装置の第5例に組み込むエンコーダを軸方向から見た側面図。The side view which looked at the encoder integrated in the 5th example of the load measuring apparatus of the rolling bearing unit for wheel support concerning a prior invention from the axial direction. 車輪支持用転がり軸受ユニットの剛性が、荷重の測定範囲に及ぼす影響を説明する為の線図。The diagram for demonstrating the influence which the rigidity of the rolling bearing unit for wheel support has on the measurement range of a load.

符号の説明Explanation of symbols

1、1a、1b 車輪支持用転がり軸受ユニット
2 荷重測定装置
3、3a、3b 外輪
4、4a、4b ハブ
5、5a、5b、5c 転動体
6、6a、6b、6c、6d 外輪軌道
7 取付部
8 ハブ本体
9 内輪
10 取付フランジ
11、11a、11b、11c、11d 内輪軌道
12、12a、12b、12c、12d エンコーダ
13、13a、13b センサ
14a、14b、14c、14d、14e、14f 透孔
15 取付孔
16 カバー
17 センサホルダ
18 スプライン孔
19 凹部
20 凸部
21 リム部
22 円筒面部
DESCRIPTION OF SYMBOLS 1, 1a, 1b Rolling bearing unit for wheel support 2 Load measuring device 3, 3a, 3b Outer ring 4, 4a, 4b Hub 5, 5a, 5b, 5c Rolling element 6, 6a, 6b, 6c, 6d Outer ring raceway 7 Mounting part 8 Hub body 9 Inner ring 10 Mounting flange 11, 11a, 11b, 11c, 11d Inner ring raceway 12, 12a, 12b, 12c, 12d Encoder 13, 13a, 13b Sensor 14a, 14b, 14c, 14d, 14e, 14f Through hole 15 Mounting Hole 16 Cover 17 Sensor holder 18 Spline hole 19 Concave part 20 Convex part 21 Rim part 22 Cylindrical surface part

Claims (3)

車輪支持用転がり軸受ユニットと荷重測定装置とを備え、
このうちの車輪支持用転がり軸受ユニットは、使用状態で懸架装置に支持されて回転しない静止側軌道輪と、使用状態で、外周面の軸方向外端寄り部分に設けた取付フランジに車輪を結合固定し、この車輪と共に回転する回転側軌道輪と、これら回転側軌道輪と静止側軌道輪との互いに対向する周面に存在する、それぞれ複列の静止側軌道と回転側軌道との間に、両列同士の間で互いに逆方向の接触角を付与された状態で、両列毎にそれぞれ複数個ずつ設けられた転動体とを備えたものであり、
上記荷重測定装置は、上記回転側軌道輪又はこの回転側軌道輪に結合固定されてこの回転側軌道輪と共に回転及び変位する回転部材の一部に、この回転側軌道輪又はこの回転部材と同心に支持された、被検出面の特性を円周方向に関して交互に変化させたエンコーダと、その検出部をこの被検出面に対向させた状態で回転しない部分に支持され、この被検出面の特性変化に対応してその出力信号を変化させるセンサと、このセンサの出力信号に基づいて、上記静止側軌道輪と上記回転側軌道輪との間に加わる荷重を算出する演算器とを備えたものであり、上記被検出面の特性が円周方向に関して変化するパターンは、検出すべき上記荷重の作用方向に対応して、上記被検出面の幅方向に関して連続的に変化している
車輪支持用転がり軸受ユニットの荷重測定装置であって、
上記車輪支持用転がり軸受ユニットを構成する、複列にそれぞれ複数個ずつ配置された転動体が、何れも玉であり、軸方向外側の列の玉のピッチ円直径が、軸方向内側の列の玉のピッチ円直径よりも大きい
車輪支持用転がり軸受ユニットの荷重測定装置。
A wheel bearing rolling bearing unit and a load measuring device;
Of these, the rolling bearing unit for supporting the wheel couples the wheel to the stationary side bearing ring that is supported by the suspension device and does not rotate in use, and to the mounting flange provided near the axially outer end of the outer peripheral surface in use. The rotating side raceway that is fixed and rotated together with the wheel, and the rotation side raceway and the stationary side raceway that exist on the mutually opposing circumferential surfaces, between the double row stationary side raceway and the rotary side raceway, respectively. In a state where contact angles in opposite directions are given between the two rows, a plurality of rolling elements provided for each of the rows are provided.
The load measuring device is concentric with the rotating raceway or the rotating member on a part of a rotating member coupled and fixed to the rotating raceway or the rotating raceway and rotating and displacing with the rotating raceway. The characteristics of the surface to be detected are supported by the non-rotating part of the encoder, which is supported by the encoder with the characteristics of the surface to be detected alternately changed with respect to the circumferential direction, and the detection part facing the surface to be detected. A sensor that changes its output signal in response to a change, and an arithmetic unit that calculates the load applied between the stationary side raceway and the rotation side raceway based on the output signal of this sensor The pattern in which the characteristic of the detected surface changes in the circumferential direction is continuously changed in the width direction of the detected surface corresponding to the direction of action of the load to be detected. Rolling bearing uni Load measuring device,
A plurality of rolling elements arranged in a plurality of rows constituting the wheel support rolling bearing unit are all balls, and the pitch circle diameter of the balls in the axially outer row is equal to that in the axially inner row. Load measuring device for rolling bearing unit for wheel support larger than the pitch circle diameter of balls.
車輪支持用転がり軸受ユニットと荷重測定装置とを備え、
このうちの車輪支持用転がり軸受ユニットは、使用状態で懸架装置に支持されて回転しない静止側軌道輪と、使用状態で、外周面の軸方向外端寄り部分に設けた取付フランジに車輪を結合固定し、この車輪と共に回転する回転側軌道輪と、これら回転側軌道輪と静止側軌道輪との互いに対向する周面に存在する、それぞれ複列の静止側軌道と回転側軌道との間に、両列同士の間で互いに逆方向の接触角を付与された状態で、両列毎にそれぞれ複数個ずつ設けられた転動体とを備えたものであり、
上記荷重測定装置は、上記回転側軌道輪又はこの回転側軌道輪に結合固定されてこの回転側軌道輪と共に回転及び変位する回転部材の一部に、この回転側軌道輪又はこの回転部材と同心に支持された、被検出面の特性を円周方向に関して交互に変化させたエンコーダと、その検出部をこの被検出面に対向させた状態で回転しない部分に支持され、この被検出面の特性変化に対応してその出力信号を変化させるセンサと、このセンサの出力信号に基づいて、上記静止側軌道輪と上記回転側軌道輪との間に加わる荷重を算出する演算器とを備えたものであり、上記被検出面の特性が円周方向に関して変化するパターンは、検出すべき上記荷重の作用方向に対応して、上記被検出面の幅方向に関して連続的に変化している
車輪支持用転がり軸受ユニットの荷重測定装置であって、
上記車輪支持用転がり軸受ユニットを構成する、複列にそれぞれ複数個ずつ配置された転動体のうち、何れか一方の列の転動体が玉であり、他方の列の転動体が円すいころである
車輪支持用転がり軸受ユニットの荷重測定装置。
A wheel bearing rolling bearing unit and a load measuring device;
Of these, the rolling bearing unit for supporting the wheel couples the wheel to the stationary side bearing ring that is supported by the suspension device and does not rotate in use, and to the mounting flange provided near the axially outer end of the outer peripheral surface in use. The rotating side raceway that is fixed and rotated together with the wheel, and the rotation side raceway and the stationary side raceway that exist on the mutually opposing circumferential surfaces, between the double row stationary side raceway and the rotary side raceway, respectively. In a state where contact angles in opposite directions are given between the two rows, a plurality of rolling elements provided for each of the rows are provided.
The load measuring device is concentric with the rotating raceway or the rotating member on a part of a rotating member coupled and fixed to the rotating raceway or the rotating raceway and rotating and displacing with the rotating raceway. The characteristics of the surface to be detected are supported by the non-rotating part of the encoder, which is supported by the encoder with the characteristics of the surface to be detected alternately changed with respect to the circumferential direction, and the detection part facing the surface to be detected. A sensor that changes its output signal in response to a change, and an arithmetic unit that calculates the load applied between the stationary side raceway and the rotation side raceway based on the output signal of this sensor The pattern in which the characteristic of the detected surface changes in the circumferential direction is continuously changed in the width direction of the detected surface corresponding to the direction of action of the load to be detected. Rolling bearing uni Load measuring device,
Among the rolling elements arranged in a plurality of rows in the row supporting rolling bearing unit, the rolling elements in any one row are balls, and the rolling elements in the other row are tapered rollers. Load measuring device for wheel bearing rolling bearing unit.
軸方向外側の列の転動体が玉であり、軸方向内側の列の転動体が円すいころであり、軸方向外側の列の転動体のピッチ円直径が、軸方向内側の列の転動体のピッチ円直径よりも大きい、請求項2に記載した車輪支持用転がり軸受ユニットの荷重測定装置。   The rolling elements in the outer row in the axial direction are balls, the rolling elements in the inner row in the axial direction are tapered rollers, and the pitch circle diameter of the rolling elements in the outer row in the axial direction is equal to that of the rolling elements in the inner row in the axial direction. The load measuring device for a wheel bearing rolling bearing unit according to claim 2, wherein the load measuring device is larger than a pitch circle diameter.
JP2006136192A 2006-05-16 2006-05-16 Device for measuring load of rolling bearing unit for supporting wheel Pending JP2007309665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006136192A JP2007309665A (en) 2006-05-16 2006-05-16 Device for measuring load of rolling bearing unit for supporting wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006136192A JP2007309665A (en) 2006-05-16 2006-05-16 Device for measuring load of rolling bearing unit for supporting wheel

Publications (1)

Publication Number Publication Date
JP2007309665A true JP2007309665A (en) 2007-11-29

Family

ID=38842671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006136192A Pending JP2007309665A (en) 2006-05-16 2006-05-16 Device for measuring load of rolling bearing unit for supporting wheel

Country Status (1)

Country Link
JP (1) JP2007309665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509952A (en) * 2016-02-03 2016-04-20 中交一航局第二工程有限公司 Wire-cable tension real-time dynamic monitoring device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105509952A (en) * 2016-02-03 2016-04-20 中交一航局第二工程有限公司 Wire-cable tension real-time dynamic monitoring device and method

Similar Documents

Publication Publication Date Title
JP2004294414A (en) Load measuring device of roller bearing unit, and roller bearing unit for load measurement
JP4946177B2 (en) Rolling bearing unit with displacement measuring device and rolling bearing unit with load measuring device
JP2006337356A (en) Rolling bearing unit with displacement measuring instrument, and rolling bearing unit with load measuring instrument
JP2006317434A (en) Apparatus for measuring displacement and load of rolling bearing unit
JP4899722B2 (en) Rolling bearing unit with state quantity measuring device
JP2007210491A (en) Arithmetic unit and arithmetic network system for peripheral device of wheel
JP4957390B2 (en) Method for manufacturing rolling bearing unit with physical quantity measuring device
JP5092393B2 (en) Method for assembling state quantity measuring device for rolling bearing unit
JP2007309665A (en) Device for measuring load of rolling bearing unit for supporting wheel
JP2006242241A (en) Ball bearing unit
JP2005283323A (en) Load measuring instrument for roller bearing unit
JP2009019880A (en) State quantity measuring device for rolling bearing unit
JP4957259B2 (en) State quantity measuring device for rolling bearing units
JP2007309711A (en) Apparatus for measuring load of roll bearing unit, its manufacturing method, and manufacturing apparatus
JP4899612B2 (en) Load measuring device for rolling bearing units
JP4843958B2 (en) Load measuring device for rolling bearing units
JP2006201157A (en) Ball bearing unit having displacement measuring device, and ball bearing unit having load measuring device
JP4779544B2 (en) Air pressure abnormality judgment device
JP2008224397A (en) Load measuring device for roller bearing unit
JP4941140B2 (en) State quantity measuring device for rolling bearing units
JP2005291457A (en) Ball bearing unit
JP2009103549A (en) Device for measuring state of quantity of rolling bearing unit
JP2008122171A (en) Method of exchanging sensor of bearing unit with state quantity measuring device
JP2007085742A (en) Rolling bearing unit with load measuring device
JP2005091073A (en) Rotation speed detector and load measuring instrument for roller bearing unit