[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2007305866A - 撮像素子および撮像素子の製造方法 - Google Patents

撮像素子および撮像素子の製造方法 Download PDF

Info

Publication number
JP2007305866A
JP2007305866A JP2006134027A JP2006134027A JP2007305866A JP 2007305866 A JP2007305866 A JP 2007305866A JP 2006134027 A JP2006134027 A JP 2006134027A JP 2006134027 A JP2006134027 A JP 2006134027A JP 2007305866 A JP2007305866 A JP 2007305866A
Authority
JP
Japan
Prior art keywords
groove
microlens
width
lens
lens material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006134027A
Other languages
English (en)
Other versions
JP4212605B2 (ja
Inventor
Takayuki Kawasaki
隆之 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2006134027A priority Critical patent/JP4212605B2/ja
Priority to KR1020087026566A priority patent/KR101053944B1/ko
Priority to PCT/JP2007/054273 priority patent/WO2007132583A1/ja
Priority to US12/298,967 priority patent/US20090261440A1/en
Priority to TW096115922A priority patent/TWI345829B/zh
Publication of JP2007305866A publication Critical patent/JP2007305866A/ja
Application granted granted Critical
Publication of JP4212605B2 publication Critical patent/JP4212605B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H01L27/14685
    • H01L27/146
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0018Reflow, i.e. characterized by the step of melting microstructures to form curved surfaces, e.g. manufacturing of moulds and surfaces for transfer etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • H01L27/14627

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

【課題】非レンズ領域を生じさせないマイクロレンズユニットおよび撮像素子を提供する。
【解決手段】マイクロレンズユニットMSUは、隆起部BGに支えられているマイクロレンズMS(凸レンズMS[BG])の周縁の少なくとも一部と溝部DHとを、平担化膜31の面内に対する垂直方向VVにおいて重ねている。
【選択図】図1

Description

本発明は、マイクロレンズを有するレンズ層を備える撮像素子に関するものである。詳説すると、マイクロレンズ(マイクロレンズアレイ)を有するマイクロレンズユニットと、それを備える撮像素子に関するものでもある。
以降に、図面を用いて背景技術を説明する。なお、図面によっては便宜上、部材番号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、理解を容易にすべくハッチングを省略している場合もある。
昨今の撮像素子の主流なタイプとしては、CCD(Charge Coupled Device)を用いたセンサ(CCDセンサと称す)やCMOS(Complementary Metal Oxide Semiconductor)を用いたセンサ(CMOSセンサと称す)等が挙げられる。そして、これらの撮像素子では、内部に有るフォトダイオードにて検出される光量が多いほど、撮像素子の感度(性能)が向上するので望ましい。
しかし、小型な撮像素子において、フォトダイオードの受光部分を広大化するには限界がある。そこで、光をフォトダイオードに集光させるマイクロレンズを備える撮像素子が考えられた。特に、低電圧で駆動し、駆動用周辺チップを一体化できる撮像素子は、種々開発されている(特許文献1等)。
一例を挙げると、図19の平面図・断面図(P−P’線矢視断面図)に示すような、2個のフォトダイオードpdに対して1個の電荷検出部(不図示)を有する撮像素子dseが開発されている(なお、破線gは1画素を示す区切り)。ただし、このような撮像素子dseでは、2個のフォトダイオードpdが比較的近づいた配置になる(フォトダイオードpdが近づき合う方向を便宜的に横方向hdと称するとともに、撮像素子dseの受光面内で横方向hdに垂直な方向を縦方向vdと称す)。
すると、フォトダイオードpdの受光面中心(白丸)と1画素のセル中心(黒丸)とが一致しない。そのため、マイクロレンズmsは、その面内中心(マイクロレンズ中心)とフォトダイオードpdの受光面中心とを一致させなくては、かかるフォトダイオードpdに光を導けないことになる(したがって、マイクロレンズ中心も符号は白丸)。
そこで、図19に示される撮像素子dseは、図20に示す3種類のスリット幅(d1・d2・d3)を有するマスクmkを用いて製造される。そこで、かかる製造方法を図21A〜図21Dを用いて詳説する。なお、図21A・図21Cは図19のP−P’線矢視断面図になっており、1画素面内における横方向hdに沿う撮像素子dseの断面図を示している。また、図21B・図21Dは図19のQ−Q’線矢視断面図であり、1画素面内における縦方向vdに沿う撮像素子dseの断面図を示している。
図21Aおよび図21Bに示すように、撮像素子dseには、フォトダイオードpdを含む基板111を有する基板ユニットscuが有る。そして、この基板ユニットscuに重なるように、平担化膜131が設けられ、さらに、マイクロレンズmsの材料となるレンズ材料膜132が設けられている(これらの平担化膜131とレンズ材料膜132とをマイクロレンズユニットと称す)。そして、このレンズ材料膜132は、マスクmkを介した露光の後に、現像されることで、溝(除去溝)jdを含むようになる(図21A・図21B参照)。そして、除去溝jdを有するレンズ材料膜132は、熱処理されることで、軟化および溶融する。そのため、レンズ材料膜132が除去溝jdに流れ込むようになり、マイクロレンズmsが生じるようになる(図21C・図21D参照)。
ただし、フォトダイオードpdの近づいた箇所に重なるように位置するレンズ材料膜132には、スリット幅d1を比較的短くすることで幅長の狭い除去溝jdを形成させている。そのため、横方向hdにおけるマイクロレンズmsの周縁が平坦化膜131の面よりも乖離してつながる(図21C参照)。
一方、1画素の縦方向vdにおけるレンズ材料膜132には、スリット幅d2を比較的長くすることで幅長の広い除去溝jdを形成させている。そのため、縦方向vdにおけるマイクロレンズmsの周縁が平担化膜131上で離間したままになる(図21D参照)。また、フォトダイオードpdが離間した箇所に重なるように位置するレンズ材料膜132にも、スリット幅d3を比較的長くすることで幅長の広い除去溝jdを形成させている。そのため、横方向hdにおけるマイクロレンズmsの周縁が平坦化膜131上で離間したままになる(図21C参照)。
つまり、この製造方法は、レンズ材料膜132の除去溝jdの幅長を変えることで、マイクロレンズmsの形状(すなわち曲率)を変えている。その結果、マイクロレンズmsは、図22に示すように、入射する光(一点鎖線矢印)を、効果的にフォトダイオードpdへと導ける。
しかしながら、マスクmkのスリット幅d1を狭めることで、フォトダイオードpdの近づいた箇所に重なって位置するマイクロレンズmsの曲率を変化させようとする場合、図23Aに示すように過剰にスリット幅d1が狭いと、レンズ材料膜132の除去溝jdが非常に狭くなる。すると、図23Bに示すようにフォトダイオードpdの近づいた箇所に重なって位置するマイクロレンズmsが平坦化し、集光機能を発揮しなくなる。
一方、マスクmkのスリット幅d3を広げることで、フォトダイオードpdが離間した箇所に重なって位置するマイクロレンズmsの曲率を変化させようとする場合、過剰にスリット幅d3が広いと、平坦化膜131上にマイクロレンズmsの存在しない部分(非レンズ領域na)が広がる。すると、この部分に入射してくる光がフォトダイオードpdに導かれにくくなり、撮像素子dseの感度低下につながる。つまり、レンズ材料膜132の除去溝jdのみに依存するマイクロレンズmsの曲率調整では、フォトダイオードpdに光を十分に集光できないマイクロレンズmsが生じやすい。
そこで、非レンズ領域naを生じさせない撮像素子dseおよびその製造方法も開発されている(特許文献2)。この特許文献2の製造方法は、図24A〜図24Gに示される。この製造方法は、まず、平坦化膜131に溝パターンptを有するレジスト膜133を設けるとともに(図24A参照)、エッチングすることで、溝パターンptに応じた溝部dhを平坦化膜131に形成させる(図24B参照;1回目のパターンニング)。
その後、この製造方法は、レジスト膜133を除去した後に、平坦化膜131上にレンズ材料膜132を設け、溝パターンptの幅長(すなわち溝部dhの幅長)よりも長い幅長のスリットstを有するマスクmkで露光する(図24C参照)。そのため、現像すると、平担化膜131の溝部dhに対応するように、レンズ材料膜132に除去溝jdが生じる(図24D参照;2回目のパターンニング)。
ただし、この除去溝jdは、スリットstの幅長(スリット幅)に起因して、溝部dhの幅長よりも長い幅長を有するようになる。すると、溝部dhの底からレンズ材料膜132の表面に至るまでの間に、溝部dhの側壁と平担化膜131の表面とから成る段差が生じる。そのため、レンズ材料膜132を軟化および溶融させた場合、流動化するレンズ材料膜132の動きは、段差と表面張力とによって規制される。その結果、図24Eに示すように、段差を周縁とするマイクロレンズ(主マイクロレンズ;凸レンズ)msが形成される。
ただし、図24Eに示す溝部dhが非レンズ領域になるのを防止すべく、新たなレンズ材料膜132を成膜した後にパターンニング(3回目のパターニング)することで、溝部dhにレンズ材料膜132を残すようにする(図24F参照)。すると、このレンズ材料膜132を軟化および溶融させれば、図24Gに示すように、溝部dhにもマイクロレンズ(副マイクロレンズ;凹レンズ)msが生じるようになる。したがって、この特許文献2の製造方法では、非レンズ領域を生じさせない撮像素子dseが完成することになる。
特開平10−70258号公報 特開2000−260970号公報
しかしながら、特許文献2の製造方法で作られるマイクロレンズユニットmsuの場合に、図25の断面図(R−R’線矢視断面図)に示すように、マイクロレンズ中心と、受光面中心(白丸)とを一致させるようにすると、フォトダイオードpdの比較的近づいた箇所に対応する溝部dhの溝幅が極めて狭くなる。そのため、この溝部dhにマイクロレンズを形成させることができない。その結果、非レンズ領域を有する撮像素子dseが完成してしまうおそれがある。
一方、図26の平面図・断面図(S−S’線矢視断面図)に示すように、マイクロレンズ中心と、セル中心(黒丸)とを一致させるようにすると、マイクロレンズ中心と受光面中心(白丸)とが一致しない。そのため、図27に示すように、マイクロレンズmsによって導かれる光がフォトダイオードpdの受光面中心に集光しにくい(集光先を所望の位置に特定できない)。
本発明は、上記の状況を鑑みてなされたものである。つまり、本発明の目的は、非レンズ領域の存在しないマイクロレンズユニットおよび撮像素子を提供することにあり、その目的を詳説すると、下記のようになる。
○非レンズ領域をなくし、さらに、集光先を特定できるように所望の曲率を有するマ イクロレンズを備えるマイクロレンズユニット等の提供
○所望の曲率設定に要するパラメータを増加させたマイクロレンズユニット等の提供
本発明は、基板に支えられる下地層の面内で隣り合うように形成されている隆起部および溝部に対し、マイクロレンズを備えるレンズ層を積層させているマイクロレンズユニットである。そして、かかるマイクロレンズユニットでは、隆起部に支えられているマイクロレンズの周縁の少なくとも一部と溝部とが、下地層の面内に対する垂直方向において重なっている。
このようなマイクロレンズユニットであれば、溝部に十分にレンズ層が充填する。そのため、溝部が極めて狭い溝幅であったしても、その溝部がマイクロレンズの存在しない領域(非レンズ領域)にはならない。
特に、溝部が複数形成されており、それらの溝部の溝幅に大小関係がある場合、溝幅の幅方向と下地層の面内に対する垂直方向とを含む断面において、溝部に隣り合う隆起部に支えられているマイクロレンズの周縁から基板に至るまでの間隔を乖離間隔とすると、乖離間隔同士は、溝幅の大小関係に相反する大小関係になっていると望ましい。すなわち、溝部の溝幅に大小関係があると、マイクロレンズの周縁の一部から基板に至るまでの乖離間隔は、大の溝幅の場合よりも小の溝幅の場合に長くなると望ましい。
このようになっていると、基準となる基板から異なる高さを有する周縁がマイクロレンズ内に存在することになり、マイクロレンズの曲面の曲率も複数存在するようになる。すると、それらの複数の曲率を利用して、マイクロレンズは光を所望の位置(受光部等)に導くことができる。
ただし、下地層において複数ある溝部の深さが、溝部の溝幅に応じて異なっていてもよい。また、溝部が複数形成されており、それらの溝部の深さに大小関係がある場合、溝幅の幅方向と下地層の面内に対する垂直方向とを含む断面において、溝部に隣り合う隆起部に支えられているマイクロレンズの周縁から基板に至るまでの間隔を乖離間隔とすると、乖離間隔同士は、溝部の深さの大小関係に相反する大小関係になっていても望ましい。
また、溝部が複数形成されており、それらの溝部の体積に大小関係がある場合、溝幅の幅方向と下地層の面内に対する垂直方向とを含む断面において、溝部に隣り合う隆起部に支えられているマイクロレンズの周縁から基板に至るまでの間隔を乖離間隔とすると、乖離間隔同士は、溝部の体積の大小関係に相反する大小関係になっていても望ましい。
なお、以上のようなマイクロレンズユニットと、隆起部に支えられるマイクロレンズ毎に応じた受光部と、を備える撮像素子も発明といえる。
そして、撮像素子では、溝幅の幅方向と下地層の面内に対する垂直方向とを含む断面において、隆起部に支えられるマイクロレンズに対応した画素毎の境界面から受光部までの間隔を隙間間隔とすると、隙間間隔同士に大小関係がある場合、乖離間隔同士は、隙間間隔同士の大小関係に相反する大小関係になっていると望ましい。
隙間間隔は、各画素に入射する光を受光部に向けて集光させる場合に要するマイクロレンズの屈折力(パワー)に関連してくる。そして、隙間間隔が比較的短い場合にはマイクロレンズは光を比較的弱く屈折させるだけでよいが、隙間間隔が比較的長い場合にはマイクロレンズは光を比較的強く屈折させなければならない。
一方、乖離間隔は、マイクロレンズの曲率に関連してくる。そして、マイクロレンズとしての芯厚が一定であり、乖離間隔が比較的大きいと弱い曲率の曲面(ローパワーの曲面)が形成され、乖離間隔が比較的小さいと強い曲率の曲面(ハイパワーの曲面)が形成される。
すると、隙間間隔同士を比較して大小関係がある場合に、乖離間隔同士が隙間間隔同士の大小関係に相反する大小関係になっていると、隙間間隔が比較的短い場合に乖離間隔が比較的大きくなり、光を弱く屈折するローパワーの曲面が形成され、隙間間隔が比較的長い場合に乖離間隔が比較的小さくなり、光を強く屈折するハイパワーの曲面が形成されることになる。したがって、かかるような撮像素子は、外部からの光を効果的に受光部に導ける。
また、溝幅を異にする複数の溝部が、溝幅の大小関係を交互に異ならせるようにして並列されていると望ましい。このようになっていれば、大の溝幅と小の溝幅とに隣り合う隆起部に支えられるレンズ層は、大の溝幅に依存する曲率と小の溝幅に依存する曲率を有するマイクロレンズになる。
その上、溝幅の大小関係を交互に異ならせるようにして並列している溝部の並列方向とは異なる方向(例えば、並列方向に対して垂直方向)に、さらに異なる溝幅を有する溝部を並列させていても望ましい。このようになっていれば、大の溝幅と小の溝幅とに隣り合う隆起部は、新たな別の溝幅にも隣接していることになるので、少なくとも3種の曲率を有するマイクロレンズが形成される。
また、溝幅を相異ならせる溝部を第1溝部および第2溝部とする場合、第1溝部が一方向に並列される一方、第2溝部が一方向とは異なる方向(例えば、一方向に対して直交方向)に並列されていると望ましい。このようになっていれば、マイクロレンズにおける例えば交差する方向毎において、異なる曲率が生じるようになる。つまり、交差方向毎に応じた曲率を有するマイクロレンズが形成される。
本発明によれば、下地層の溝部に必ずレンズ層が浸入するようになっているので、非レンズ領域が生じないマイクロレンズユニットになる。その上、形成されたマイクロレンズは、集光先を特定できるような所望の曲率を有するようになる。
[実施の形態1]
本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、図面によっては便宜上、部材番号等を省略する場合もあるが、かかる場合、他の図面を参照するものとする。また、理解を容易にすべくハッチングを省略している場合もある。
撮像素子の種類は、種々存在するが、主流な撮像素子としては、CMOS(Complementary Metal Oxide Semiconductor)を用いる撮像素子とCCD(Charge Coupled Device)を用いる撮像素子とが挙げられる。そして、図2は、CMOSを用いた撮像素子DVE(CMOSセンサDVE[CS])の平面図になっている。なお、図2における破線Gは1画素の区切りを示している。
〈1.CMOSを用いた撮像素子について〉
この図2に示すように、CMOSセンサDVE[CS]は、1画素に応じて1個のフォトダイオードPDを有している。また、CMOSセンサDVE[CS]は、フォトダイオードPDに外部光を集光させるマイクロレンズMSも有している(図2では不図示)。そこで、マイクロレンズMSの形状を理解しやすいように図示した図1Aおよび図1Bを用いて、このCMOSセンサDVE[CS]について説明する。
ただし、このCMOSセンサDVE[CS]は、2個のフォトダイオードPDに対して1個の電荷検出部(不図示)を有する。そのため、2個のフォトダイオードPDが比較的近づいた配置になる。そこで、フォトダイオードPD同士が近づき合う方向を便宜的に横方向HDと称するとともに、1画素面内で横方向HDに垂直な方向を縦方向VDと称す。
なお、1画素における横方向HDおよび縦方向VDの比率は1:1になっている。また、横方向HDにおいて、フォトダイオードPD同士が比較的近づいている箇所を箇所DN、フォトダイオードPD同士が比較的離れている箇所を箇所DWとする。また、縦方向VDにおけるフォトダイオードPD同士の離れている箇所を箇所DMとする。
そして、図1Aは図2のA−A’線矢視断面図であり、1画素面内における横方向HDに沿うCMOSセンサDVE[CS]の断面図を示している。一方、図1Bは図2のB−B’線矢視断面図であり、1画素面内における縦方向VDに沿うCMOSセンサDVE[CS]の断面図を示している。
〈1−1.CMOSを用いた撮像素子の構造について〉
図1Aおよび図1Bに示されるCMOSセンサDVE[CS]は、フォトダイオードPDを備える基板11を有する基板ユニット(基板構造)SCUと、マイクロレンズMSを支える平担化膜31を有するマイクロレンズユニット(複層構造)MSUと、を含んでいる。
《基板ユニットについて》
基板ユニットSCUは、基板11、フォトダイオードPD、トランジスタ、メタル配線層21、層間絶縁膜22(22a・22b・22c)、および離間絶縁膜23を含む。
基板11は、例えばシリコンから成る板状の半導体基板である。そして、この基板11には、例えばN型不純物層をイオン注入することにより、フォトダイオードPDが形成されている。なお、2個のフォトダイオードPDが比較的近づいた箇所には、不純物注入により分離層12が形成されることで、フォトダイオードPD同士の接触を防止している。
トランジスタは、例えば薄膜トランジスタ(Thin Film Transistor;TFT)であり、画素選択用のアクティブ素子(スイッチング素子)として、ソース電極13・ドレイン電極14・ゲート電極15を含んでいる。そして、ソース電極13およびドレイン電極14はヒ素等の不純物注入により形成され、ゲート電極15は、ポリシリコンまたは高融点金属のシリサイド等により形成されている。
なお、トランジスタは、2個のフォトダイオードPDが比較的離れた箇所に形成されている。ただし、そのトランジスタとフォトダイオードPDとの接触を防止すべく、両者(トランジスタとフォトダイオードPDと)の間にシリコン酸化膜層17が設けられている。
メタル配線層21は種々の電荷を伝達させるものであり、レイアウトの関係上、複層になっている。また、メタル配線層21間を絶縁するために、例えば、シリコン酸化膜やシリコン窒化膜から成る層間絶縁膜22が設けられている。なお、メタル配線層21が複層になっていることから、層間絶縁膜22(22a・22b・22c)も複層になっている。
離間絶縁膜23は、メタル配線層21を含む層間絶縁膜22とトランジスタとを乖離させる絶縁膜である。ただし、少なくとも1層の層間絶縁膜22には、コンタクト孔24が設けられ、ゲート電極15とメタル配線層21とを接続できるようにしている。
《マイクロレンズユニットについて》
マイクロレンズユニットMSUは、基板ユニットSCUに重なるように設けられており、平担化膜(下地層)31とレンズ材料膜(レンズ層)32とを含む。
平担化膜31は、最上の層間絶縁膜22cを覆うことで、平坦性を確保するものである。ただし、平担化膜31には、レンズ材料膜32が流入する溝部DHが設けられている。そして、この溝部DHが、レンズ材料膜32をマイクロレンズMSの形状を調整する場合に要するものになっている。
なお、カラー撮影に対応するCMOSセンサDVE[CS]の場合、平担化膜31内には、カラーフィルタ層が形成されるようになっている。また、平担化膜31の材料としては、非感光性のアクリル樹脂等である有機材料が挙げられる。
レンズ材料膜32は、マイクロレンズMSの原料となる膜である。そのため、レンズ材料膜32は、マイクロレンズMSの形状(例えば、凸状または凹状)になりやすい材料で形成されている。例えば熱を加えた場合に軟化および溶融することで、形状調整しやすい材料(レンズ材料)である。また、レンズ材料膜32に対して露光や現像することもあるので、感光性を有する材料であると望ましい。すると、レンズ材料膜32の材料の一例としては、感光性のアクリル樹脂の有機材料が挙げられる。
そして、マイクロレンズMSの形状は、溝部DHに対するレンズ材料膜32の流れ込み方等によって変化する(調整される)。特に、この流れ込み方等は、溝部DHの幅(溝幅)、溝部DHの深さ(溝深長)、あるいは溝部DHの体積によって変わってくる。したがって、溝部DHの幅、深さ、および体積の少なくとも1つを変化させることで、マイクロレンズMSの形状は変化するといえる(なお、マイクロレンズMSを有するようになったレンズ材料膜32をマイクロレンズアレイと称してもよい)。
そして、適切にマイクロレンズMSの形状(例えばレンズ面の曲率等)を決定すれば、図3Aおよび図3B(図1Aおよび図1Bに対応した光路図)に示すように、フォトダイオードPDの受光面に外部光(一点鎖線矢印)を導けるようになる(集光させることができる)。
〈1−2.CMOSを用いた撮像素子の製造方法について〉
ここで、CMOSセンサDVE[CS]の製造方法について図4A〜図4Fおよび図5A〜図5Fを用いて説明する。特に、平担化膜31に溝部DHを設けることで、所望の曲率を有するマイクロレンズMSを製造する製造方法である。そのため、基板ユニットSCUの製造工程は省略し、マイクロレンズユニットMSUの製造工程を重点的に説明していく。
なお、図4A〜図4Fは1画素面内における横方向HDに沿うCMOSセンサDVE[CS]の断面を示しており、図1Aに対応する。一方、図5A〜図5Fは、1画素面内における縦方向VDに沿うCMOSセンサDVE[CS]の断面を示しており、図1Bに対応する。
図4Aおよび図5Aは、基板ユニットSCUを示している。そして、図4Bおよび図5Bに示すように、この基板ユニットSCU(具体的には最上の層間絶縁膜22c)に対して、アクリル樹脂等をスピンコート等により吹き付け、さらに熱処理によって硬化させることで、平担化膜31が形成される[平担化膜形成工程]。
そして、平担化膜31に対して、感光性を有するアクリル樹脂等をスピンコート等により吹き付ける。すると、図4Cおよび図5Cに示すように、レンズ材料膜32が形成される[レンズ材料膜形成工程]。その後、図6に示すようなスリットSTを有するマスクMKを用いて、露光し、さらに現像を行う。すると、図4Dおよび図5Dに示すように、マスクMKのスリットSTの幅(スリット幅)に応じた溝(除去溝)JDが生じる[除去溝形成工程]。
なお、このマスクMKは、3種類のスリット幅D(D1<D2<D3)を有する。そして、横方向HDにおいて、フォトダイオードPDが比較的近づいた箇所(箇所DN)に重なって位置するレンズ材料膜32には、最も狭いスリット幅D1のスリットSTを通過する光が照射するようにする。また、横方向HDにおいて、フォトダイオードPDが比較的離れた箇所(箇所DW)に重なって位置するレンズ材料膜32には、最も広いスリット幅D3のスリットSTを通過する光が照射するようにする。
一方、縦方向VDにおいて、フォトダイオードPDが離れた箇所(箇所DM)に重なって位置するレンズ材料膜32には、スリット幅D2のスリットSTを通過する光が照射するようにする。そのため、このマスクMKは、横方向HDにおいて、異なるスリット幅(D1・D3)を有するスリットSTを含むとともに、スリット幅(D1・D3)の大小関係を交互に異ならせるように並列させている一方、縦方向VDでは、同じスリット幅D2を並列させている。
次に、除去溝JDの生じたレンズ材料膜32をパターンマスクとして、ドライエッチング等を行うと、図4Eおよび図5Eに示すように、除去溝JDの底に対応する平担化膜31が溶け、スリット幅D1・D2・D3に応じた溝幅D1’・D2’・D3’を有する溝部DH(DH1・DH2・DH3)が形成される[溝部形成工程]。
なお、溝部DHが形成されることによって、溝部DH以外の部分は隆起状になる。そこで、溝部DHに隣り合う隆起状の部分を隆起部BGと称する。すると、平担化膜31の面内には、隆起部BGおよび溝部DHが隣り合うように形成されたことになる。また、ドライエッチング等では、レンズ材料膜32も若干溶けることになる。そのため、レンズ材料膜32は、エッチングによる溶解分を考慮した膜厚を有するようになっている。
そして、平担化膜31およびレンズ材料膜32に溝(除去溝JDおよび溝部DH)が形成されている状態で、熱が加えられると(熱処理されると)、レンズ材料膜32が軟化および溶融しだし、溝部DHへ流れ込むようになる。すると、図4Fおよび図5Fに示すように、隆起部BGに支えられるレンズ材料膜32が溶け出し、レンズ形状が形成されてくる[マイクロレンズ形成工程]。
〈1−3.CMOSセンサでのマイクロレンズの形状について〉
ここで、マイクロレンズMSの形状(レンズ形状)について説明する。通常、レンズ材料膜32は、一定の粘度(0.005〜0.01Pa・s程度)を有しているために、溝部DHの底面における中心(例えば溝幅方向の中心)に向かって徐々に浸入していく。そのため、溝幅D’が比較的広い場合(例えば、溝幅D3’の溝部DH3の場合)、溝部DH3の底面における中心と、溝部DH3の底面における外縁(溝部DH3の側壁付近)とで、レンズ材料膜32の厚みが異なってくる。これは、比較的高い粘度のために、溝部DH3の底面における中心付近にレンズ材料が到達しにくいためである。
そこで、図1Aおよび図4Fに示す溝部DH3の底面における中心のレンズ材料膜32の厚みと、溝部DH3の底面における外縁のレンズ材料膜32の厚みとを比べてみると、中心のレンズ材料膜32の厚みは、外縁のレンズ材料膜32の厚みよりも薄くなる。すると、溝部DH3に流れ込んだレンズ材料膜32は、外部側(フォトダイオードPDに対して反対側)からみて窪んだ形状(すなわち横方向HDに沿った断面が凹形状)になる。
なお、隆起部BGに支えられているレンズ材料膜32は表面から軟化および溶融してくる。そのため隆起部BGに支えられるレンズ層の周縁(すなわち、除去溝JDの側壁;図4Eおよび図5E参照)が優先的に溝部DHに流れ込む。そこで、隆起部BGの面内における中心のレンズ材料膜32の厚みと、隆起部BGの面内における周縁のレンズ材料膜32の厚みとを比べてみると、中心のレンズ材料膜32の厚みは、周縁のレンズ材料膜32の厚みよりも厚くなる。すると、図1Aに示すように、隆起部BGに支えられているレンズ材料膜32は、外部側に向かって盛り上がった形状(すなわち横方向HDに沿った断面が凸形状)になる。
特に、比較的広い溝幅D3’のような溝部DH3で、流れ込むレンズ材料膜32の流入量が溝部DH3の体積を超えない場合、溝部DH3に流れ込んだレンズ材料膜32と、隆起部BGに支えられているレンズ材料膜32とは、隆起部BGの周縁で区切られるようになる。そのため、溝部DH3に近い隆起部BGに支えられるレンズ材料膜32の周縁は、隆起部BGの周縁と重なる。その結果、かかるレンズ材料膜32の周縁は、平担化膜31の面上(詳説すると隆起部BGの面上)と一致する。
一方、図1Aおよび図4Fに示すように、溝幅D’が比較的狭い場合(例えば、溝幅D1’の溝幅DH1の場合)、レンズ材料が溝部DH1の底面における中心に向かって徐々に浸入していくものの、溝部DH1に凹レンズは形成されない。なぜなら、溝部DH1の底面における中心にレンズ材料が到達しやすく、溝部DH1の底面における中心と外縁とのレンズ材料膜32の厚みに差異が生じにくいためである。ただし、除去溝JDの側壁のレンズ材料膜32は溝部DH1に流れ込むため、隆起部BGに支えられているレンズ材料膜32は、外部側からみて盛り上がった形状(すなわち横方向HDに沿った断面が凸形状)になる。
なお、図1Aおよび図4Fに示すように、溝幅D’が比較的狭く、レンズ材料膜32の流入量が溝部DHの体積よりも多い場合(例えば、溝幅D1’の溝幅DH1の場合)、溝部DH1からレンズ材料が溢れだす。すると、溝部DH1に流れ込んだレンズ材料膜32と、隆起部BGに支えられているレンズ材料膜32とは、隆起部BGの周縁で区切られない。つまり、溝部DH1から溢れだしたレンズ材料膜32のために、溝部DH1に近い隆起部BGに支えられるレンズ材料膜32の周縁は、隆起部BGの周縁と重ならず溝部DH1の底面における中心付近に重なるように位置し、さらに、隆起部BGの面上よりも乖離する。
また、図1Bおよび図5Fに示すように、溝幅D’が比較的狭く、レンズ材料の流入量が溝部DHの体積よりも多い場合(例えば、溝幅D2’の溝部DH2の場合)であっても、溝部DH2に凹レンズは形成されず、さらには、除去溝JDの側壁のレンズ材料膜32が溝部DH2に流れ込むため、隆起部BGに支えられているレンズ材料膜32は、外部側からみて盛り上がった形状(すなわち縦方向VDに沿った断面が凸形状)になる。
以上より、比較的広い溝幅D’を有する溝部DHのレンズ材料膜32は、横方向HDに沿う断面形状を凹にしたマイクロレンズMS(凹レンズMS[DH])になっているといえる(図1A参照)。一方、隆起部BGに支えられるレンズ材料膜32は、横方向HDおよび縦方向VDに沿う断面形状を凸にしたマイクロレンズMS(凸レンズMS[BG])になっているといえる(図1Aおよび図1B参照)。
ただし、凸レンズMS[BG]の周縁は、隆起部BG(ひいては基板11)の面上に対して異なる高さ(間隔)を有するようになっている。すなわち、溝部DH3に近い凸レンズMS[BG]の周縁は隆起部BGの面上に接し、溝部DH1に近い凸レンズMS[BG]の周縁は隆起部BGの面上から比較的大きく乖離し、溝部DH2に近い凸レンズMS[BG]の周縁は隆起部BGの面上から比較的小さく乖離する。
このように凸レンズMS[BG]としての厚み(マイクロレンズMSの面頂点から隆起部BGの面上までの高さ;芯厚)が一定であるにもかかわらず、周縁の厚みが異なっていると、凸レンズMS[BG]における曲率が種々存在することになる{すなわち、マイクロレンズMSが軸非対称な非球面(自由曲面)を有している;なお、軸とは隆起部BGの面内中心における垂直軸}。具体的には、溝部DH1・DH2・DH3に近い凸レンズMS[BG]の部分的な曲率(部分曲率)をRR1・RR2・RR3、とすると、「RR1<RR2<RR3」となる。
そのため、以上の製造方法では、平担化膜31に設けた溝部DHにレンズ材料膜32が流入することで、隆起部BG上に形成されるマイクロレンズMS(凸レンズMS[BG])の形状(特に曲率)が調整されるといえる。
また、溝部DHに形成されるマイクロレンズMS(凹レンズMS[DH])も、レンズ材料膜32の流入の仕方等{溝幅D’、溝部DHの深さ(溝深長)、あるいは溝部DHの体積に依存}によって曲率が調整されるともいえる。
〈2.CCDを用いた撮像素子について〉
続いて、CCDを用いた撮像素子(CCDセンサ)DVE[CC]について説明する。なお、CMOSセンサDVE[CS]で用いた部材と同様の機能を有する部材については、同一の符号を付記し、その説明を省略する。
図7に示すように、CCDセンサDVE[CC]は、1画素に応じて1個のフォトダイオードPDを有している。また、CCDセンサDVE[CC]は、フォトダイオードPDに外部光を集光させるマイクロレンズMSも有している(図7では不図示)。そこで、マイクロレンズMSの形状を理解しやすいように図示した図8Aおよび図8Bを用いて、このCCDセンサDVE[CC]について説明する。
なお、図8Aは図7のC−C’線矢視断面であり、1画素面内における長手方向LDに沿うCCDセンサDVE[CC]の断面を示している。一方、図8Bは図7のD−D’線矢視断面図であり、1画素面内における短手方向SD(長手方向LDに対し垂直方向)に沿うCCDセンサDVE[CC]の断面を示している。また、当然に1画素における長手方向LDおよび短手方向SDの比率は1:1ではない。
〈2−1.CCDを用いた撮像素子の構造について〉
そして、図8Aおよび図8Bに示されるCCDセンサDVE[CC]は、フォトダイオードPDを備える基板11を有する基板ユニット(基板構造)SCUと、マイクロレンズMSを支える平担化膜31を有するマイクロレンズユニット(複層構造)MSUと、を含んでいる。
《基板ユニットについて》
基板ユニットSCUは、基板11、フォトダイオードPD、電荷転送路41、第1絶縁膜42、第1ゲート電極43a、第2ゲート電極43b、遮光膜44、下地絶縁膜45、および保護膜46、を含む。
基板11は、例えばシリコンから成る板状の半導体基板である。そして、この基板11には、例えばN型不純物層をイオン注入することにより、フォトダイオードPDが形成されている。このフォトダイオードPDは、CCDセンサDVE[CC]に進行してくる光(外部光)を受光し、その光を電荷に変換する。そして、変換された電荷は、電荷転送路(垂直転送CCD)41によって、不図示の出力回路に転送される。なお、電荷転送路41もN型不純物層をイオン注入することで形成されている。
第1絶縁膜42は、フォトダイオードPDおよび電荷転送路41を覆うようにして形成されている。そして、その第1絶縁膜42の内部には、フォトダイオードPDおよび電荷転送路41からの読み出しを行うための電界を与える2層のゲート電極43(第1ゲート電極43aおよび第2ゲート電極43b)が多結晶シリコン(ポリシリコン)で形成されている。したがって、第1絶縁膜42は、電荷転送路41と第1ゲート電極43aおよび第2ゲート電極43bとの絶縁性を確保している。
遮光膜44は、電荷転送路41等への外部光の入射を防止すべく、フォトダイオードPD以外の領域を覆うものである。そして、この遮光膜44は、反射性を有するタングステン等で形成されている。
下地絶縁膜45は、1画素のエリア(画素エリア)における周辺に位置するメタル配線層(不図示)の下地になるとともに、配線間を絶縁するものである。そして、この下地絶縁膜45は、熱を加えられると一定の流動性(メルト性)を発揮するBPSG(Boro-phospho silicate glass)等で形成されている。そのため、下地絶縁膜45は、シリコン酸化膜といえる。
保護膜46は、下地絶縁膜45上を覆うように形成されることで、下層を保護するものである。そして、この保護膜46は、例えば窒素ガスを用いたCVD(Chemical Vapor Deposition)等により形成される。そのため、保護膜46は、シリコン窒化膜といえる。
《マイクロレンズユニットについて》
マイクロレンズユニットMSUは、基板ユニットSCUに重なるように設けられており、平担化膜31とレンズ材料膜32とを含む。
平担化膜31は、ゲート電極43a・43b等に起因し凹凸を有するようになった保護膜46を覆うことで、その凹凸の影響を抑制するものである。ただし、平担化膜31には、CMOSセンサDVE[CS]同様に、レンズ材料膜32が流入する溝部DHが設けられている。
なお、カラー撮影に対応するCCDセンサDVE[CC]の場合、平担化膜31内には、カラーフィルタ層が形成されるようになっている。
レンズ材料膜32は、感光性のアクリル樹脂等である有機材料で形成されている。そのため、レンズ材料膜32に形成されるマイクロレンズMSの形状は、溝部DHに対するレンズ材料膜32の流れ込み方等によって変化する。すなわち、溝部DHの幅、深さ、および体積の少なくとも1つを変化させることで、マイクロレンズMSの形状は変化する。
なお、レンズ材料膜32は、CMOSセンサDVE[CS]の製造工程と同様に、ドライエッチング等される。そのため、レンズ材料膜32は、エッチングによる溶解分を考慮した膜厚を有するようになっている。
そして、適切にマイクロレンズMSの形状(例えばレンズ面の曲率等)を決定すれば、図9Aおよび図9B(図8Aおよび図8Bに対応する光路図)に示すように、フォトダイオードPDの受光面に外部光(一点鎖線矢印)を導けるようになる。
〈2−2.CCDを用いた撮像素子の製造方法について〉
ここで、CCDセンサDVE[CC]の製造方法について図10A〜図10Fおよび図11A〜図11Fを用いて説明する。なお、かかる説明においても、マイクロレンズユニットMSUの製造工程を重点的に説明していく。
なお、図10A〜図10Fは1画素面内における長手方向LDに沿うCCDセンサDVE[CC]の断面を示しており、図8Aに対応する。一方、図11A〜図11Fは、1画素面内における短手方向SDに沿うCCDセンサDVE[CC]の断面を示しており、図8Bに対応する。
図10Aおよび図11Aは、基板ユニットSCUを示している。そして、図10Bおよび図11Bに示すように、この基板ユニットSCU(具体的には保護膜46)に対して、アクリル樹脂等をスピンコート等により吹き付け、さらに熱処理によって硬化させることで、平担化膜31が形成される[平担化膜形成工程]。
そして、平担化膜31に対して、感光性を有するアクリル樹脂等をスピンコート等により吹き付ける。すると、図10Cおよび図11Cに示すように、レンズ材料膜32が形成される[レンズ材料膜形成工程]。その後、図12に示すようなスリットSTを有するマスクMKを用いて、露光し、さらに現像を行う。すると、図10Dおよび図11Dに示すように、マスクMKのスリットSTの幅(スリット幅)に応じた溝(除去溝)JDが生じる[除去溝形成工程]。
なお、このマスクMKでは、1画素の長手同士の間隔に対応するスリットSTの幅をスリット幅D4とし、1画素の短手同士の間隔に対応するスリットSTの幅をスリット幅D5とし、これらのスリット幅の関係をD4<D5としている。すると、このマスクMKは、スリット幅D4を有するスリットSTを一方向(長手方向LD)に並列させ、この一方向とは異なる方向(例えば一方向に対して垂直方向;短手方向SD)にスリット幅D5を有するスリットSTを並列させていることになる。
次に、除去溝JDの生じたレンズ材料膜32をパターンマスクとして、ドライエッチング等を行うと、図10Eおよび図11Eに示すように、除去溝JDの底に対応する平担化膜31が溶け、スリット幅D4・D5に応じた溝幅D4’・D5’を有する溝部DH(DH4・DH5)が形成される[溝部形成工程]。なお、CMOSセンサDVE[CS]同様、溝部DHが形成されることによって、溝部DH以外の部分は隆起状になる。そこで、溝部DHに隣り合う隆起状の部分を隆起部BGと称する。
そして、平担化膜31およびレンズ材料膜32に溝(除去溝JDおよび溝部DH)が形成されている状態で、熱が加えられると、レンズ材料膜32が軟化および溶融しだす。特に、レンズ材料膜32の除去溝JDの側壁が徐々に溝部DHへ流れ込むようになる。すると、図10Fおよび図11Fに示すように、隆起部BGに支えられるレンズ材料膜32の形状が変化する[マイクロレンズ形成工程]。
〈2−3.CCDセンサでのマイクロレンズの形状について〉
なお、CMOSセンサDVE[CS]の製造方法同様に、レンズ材料は溝部DHの底面における中心に向かって徐々に浸入していく。そのため、図8Aおよび図10Fに示すように、溝幅D’が比較的広い場合(例えば、溝幅D5’の溝部DH5の場合)、その溝部DH5内に凹状のマイクロレンズMS(凹レンズMS[DH])が形成される。つまり、溝部DH5内に流れ込んだレンズ材料膜32は、外部側からみて窪んだ形状(すなわち長手方向LDに沿った断面が凹形状)になる。
ただし、隆起部BGに支えられているレンズ材料膜32は、溝部DH5に流れるレンズ材料のために、外部側に向かって盛り上がった形状(すなわち長手方向LDに沿った断面が凸形状)になる。その上、比較的広い溝幅D5’のような溝部DH5で、流れ込むレンズ材料膜32の流入量が溝部DH5の体積を超えない場合、溝部DH5に近い隆起部BGに支えられるレンズ材料膜32の周縁は、隆起部BGの周縁と重なる。その結果、かかるレンズ材料膜32の周縁は、隆起部BGの面上と一致する。
一方、溝幅D’が比較的狭い場合(例えば、溝幅D4’の溝部DH4の場合)、隆起部BGに支えられるレンズ層の周縁(すなわち、除去溝JDの側壁)のレンズ材料膜32が溝部DH4に流れ込むことで、隆起部BGに支えられるレンズ材料膜32が凸状のマイクロレンズMS(凸レンズMS[BG])になる。
特に、図8Bおよび図11Fに示すように、溝幅D’が比較的狭く、レンズ材料の流入量が溝部DHの体積よりも多い場合(例えば、溝幅D4’の溝部DH4の場合)、溝部DH4からレンズ材料が溢れだすので、溝部DH4に近い隆起部BGに支えられるレンズ材料膜32の周縁は、隆起部BGの周縁と重ならず溝部DH4の底面における中心付近に重なるように位置し、さらに、隆起部BGの面上よりも乖離する。
以上のように、比較的広い溝幅D’有する溝部DHのレンズ材料膜32は、長手方向LDに沿う断面形状を凹にした凹レンズMS[DH]になっているといえる。一方、隆起部BGに支えられるレンズ材料膜32は、長手方向LDおよび短手方向SDに沿う断面形状を凸にした凸レンズMS[BG]になっているといえる。
ただし、長手方向LDに沿う断面での凸レンズMS[BG]の周縁は、隆起部BGの周縁と一致する。一方、短手方向SDに沿う断面での凸レンズMS[BG]の周縁は、隆起部BGの周縁と一致することなく溝部DHの底面における中心付近に重なるように位置し、さらに、隆起部BGの面上よりも乖離する。
つまり、凸レンズMS[BG]における長手方向LDと短手方向SDでの周縁は、隆起部BGの面上に対して異なる高さを有するようになる。そのため、凸レンズMS[BG]における長手方向LDと短手方向SDとの曲率は異なるようになる。つまり、凸レンズMS[BG]の周縁が、隆起部BGの面上に接するか否かで、方向毎に異なる曲率が生じる。
具体的には、溝部DH4・DH5に近いマイクロレンズMSの部分的な曲率をRR4、RR5、とすると、「RR4<RR5」となる。すなわち、凸レンズMS[BG]における長手方向LDの曲率(曲率RR5)は、凸レンズMS[BG]における短手方向SDにおける曲率(曲率RR4)よりも強くなる(隆起部BGに支えられるマイクロレンズMSは軸対称な非球面を有するといえる)。
そのため、以上の製造方法でも、平担化膜31に設けた溝部DHにレンズ材料膜32が流入することで、隆起部BG上に形成されるマイクロレンズMSの形状(特にマイクロレンズMSの曲率)は調整されるといえる。また、溝部DHに形成されるマイクロレンズMS(凹レンズMS[DH])も、レンズ材料の流入の仕方等(溝幅D’、溝部DHの深さ(溝深長)、あるいは溝部DHの体積に依存)によって曲率を調整されるといえる。
〈3.総括〉
《3−1.総括1》
以上のように、図1A・図1B並びに図8Bに示すように、マイクロレンズユニットMSUは、隆起部BGに支えられているマイクロレンズMS(凸レンズMS[BG])の周縁の少なくとも一部と溝部DHとを、平担化膜31の面内に対する垂直方向VVにおいて重ねている。
このようなマイクロレンズユニットMSUであれば、溝部DH(DH1・DH2・DH4)に重なるようにマイクロレンズMSの周縁が位置していることから、溝部DHに十分にレンズ材料膜32が充填する。そのため、例えば、溝部が極めて狭い溝幅であったしても、その溝部がマイクロレンズの存在しない領域(非レンズ領域)にはならない{なお、溝部DH3・DH5には凹レンズMS[DH]が存在するので、非レンズ領域ではない}。
その上、溝部DHにおける溝幅D’の幅方向と平担化膜31の面内に対する垂直方向VVとを含む断面において、隆起部BGに支えられているマイクロレンズMSの周縁から基板11に至るまでの間隔(乖離間隔E)が、溝部DHの溝幅D’に対応して変化している。
詳説すると、溝部DHが複数形成されており、それらの溝部DHの溝幅D’に大小関係がある場合、溝幅D’の幅方向と平担化膜31の面内に対する垂直方向VVとを含む断面において、溝部DHに隣り合う隆起部BGに支えられているマイクロレンズMSの周縁から基板11に至るまでの間隔を乖離間隔Eとすると、乖離間隔同士が、溝幅D’の大小関係に相反する大小関係になっている。
この関係の一例を図示すると、CMOSセンサDVE[CS]の場合、図13Aおよび図13B(図1Aおよび図1Bに対応する詳細な断面図)のようになる。これらの図に示すように、溝部DH1に隣り合う隆起部BGに支えられているマイクロレンズMSの周縁から基板11に至るまでの間隔を乖離間隔E1、溝部DH2に隣り合う隆起部BGに支えられているマイクロレンズMSの周縁から基板11に至るまでの間隔を乖離間隔E2とする場合、乖離間隔E1と乖離間隔E2との関係は、溝幅D’の大小関係(D1’<D2’)に相反し、「E1>E2」になっている。
また、図13Aに示すように、溝部DH1に隣り合う隆起部BGに支えられているマイクロレンズMSの周縁から基板11に至るまでの間隔を乖離間隔E1、溝部DH3に隣り合う隆起部BGに支えられているマイクロレンズMSの周縁から基板11に至るまでの間隔を乖離間隔E3とする場合、乖離間隔E1と乖離間隔E3との関係は、溝幅D’の大小関係(D1’<D3’)に相反し、「E1>E3」になっている。
その上、図13Aおよび図13Bに示すように、溝部DH2に隣り合う隆起部BGに支えられているマイクロレンズMSの周縁から基板11に至るまでの間隔を乖離間隔E2、溝部DH3に隣り合う隆起部BGに支えられているマイクロレンズMSの周縁から基板11に至るまでの間隔を乖離間隔E3とする場合、乖離間隔E2と乖離間隔E3との関係は、溝幅D’の大小関係(D2’<D3’)に相反し、「E2>E3」になっている。
また、CCDセンサDVE[CS]の場合では、図14Aおよび図14B(図8Aおよび図8Bに対応する詳細な断面図)のように図示される。これらの図に示すように、溝部DH4に隣り合う隆起部BGに支えられているマイクロレンズMSの周縁から基板11に至るまでの間隔を乖離間隔E4、溝部DH5に隣り合う隆起部BGに支えられているマイクロレンズMSの周縁から基板11に至るまでの間隔を乖離間隔E5とする場合、乖離間隔E4と乖離間隔E5との関係は、溝幅D’の大小関係(D4’<D5’)に相反し、「E4>E5」になっている。
このようになっていると、基準となる基板11から異なる高さを有する周縁がマイクロレンズMS内に存在することになる。すなわち、マイクロレンズMSとしての芯厚が一定であっても、マイクロレンズMSの周縁の箇所に応じた厚みには、複数種類の厚みが生じる。したがって、マイクロレンズMSの曲面内の曲率も複数存在するようになり、それらの複数の曲率を利用して、マイクロレンズMSは光を所望の位置(フォトダイオードPD)に導くことができる(例えば、図3A・図3B並びに図9A・図9B参照)。つまり、かかるマイクロレンズユニットMSUは所望の曲率を有しているといえる。
また、溝幅D’の幅方向と平担化膜31の面内に対する垂直方向VVと含む断面において、隆起部BGに支えられるマイクロレンズMSに対応した画素毎を区切る境界面(破線G)からフォトダイオードPDまでの間隔を隙間間隔Jとする。
そして、この隙間間隔Jを例えば図3Aおよび図3Bを用いて説明すると、図3Aに示す溝部DH1に重なる画素毎の区切りGからフォトダイオードPDまでの隙間間隔がJ1、溝部DH3に重なる画素毎の区切りGからフォトダイオードPDまでの隙間間隔がJ3となり、図3Bに示す溝部DH2に重なる画素毎の区切りGからフォトダイオードPDまでの隙間間隔がJ2となる。そして、これらの隙間間隔J1・J2・J3では、J1<J2<J3の関係が成立する。
また、図9Aおよび図9Bを用いて説明すると、図9Aに示す溝部DH5に重なる画素毎の区切りGからフォトダイオードPDまでの隙間間隔がJ5となり、図9Bに示す溝部DH4に重なる画素毎の区切りGからフォトダイオードPDまでの隙間間隔がJ4となる。そして、これらの隙間間隔J4・J5では、J4<J5の関係が成立する。
そして、このような関係は、マイクロレンズMSのパワー(屈折力;焦点距離の逆数)にも関連してくる。なぜなら、隙間間隔Jが短い場合(例えばJ1)にはマイクロレンズMSは光を比較的弱く屈折させるだけでよいが、隙間間隔Jが長い場合(例えばJ2)にはマイクロレンズMSは光を比較的強く屈折させなければならないためである。そして、通常、マイクロレンズMSとしての芯厚が一定であり、マイクロレンズMSの周縁の厚みが厚いほど弱い曲率の曲面(ローパワーの曲面)が形成され、薄いほど強い曲率の曲面(ハイパワーの曲面)が形成される。すなわち、乖離間隔Eが大きければ(例えばE1;図13A参照)比較的弱い曲率の曲面が形成され、乖離間隔Eが小さければ(例えばE2;図13B参照)比較的強い曲率の曲面が形成されることになる。
すると、隙間間隔Jが比較的短い場合に乖離間隔Eが比較的大きければ、光を弱く屈折するローパワーの曲面が形成され、隙間間隔Jが比較的長い場合に乖離間隔Eが比較的小さければ、光を強く屈折するハイパワーの曲面が形成されることになる。したがって、隙間間隔同士を比較して大小関係がある場合(例えば、J1<J2<J3、J4<J5)、乖離間隔同士は、隙間間隔同士の大小関係に相反する大小関係になっていると望ましい(例えば、E1>E2>E3、E4>E5)。
ところで、マイクロレンズユニットMSUは、異なる溝幅D’を有する溝部DHを囲んで形成することで、隆起部BGを生じさせている。このようになっていれば、隆起部BGの周縁に隣接する溝部DHの溝幅D’に大小関係が生じることになるので、マイクロレンズMSの周縁の箇所に応じた厚みには、複数種類の厚みが生じる。その結果、複数の曲率を有するマイクロレンズMSが形成される。
例えば、図1Aおよび図1Bに示すCMOSセンサDVE[CS]の場合、マイクロレンズMSを支える隆起部BGの周縁には、溝幅D1’・D2’・D3’を有する溝部DH1・DH2・DH3が存在する。
特に、CMOSセンサDVE[CS]の場合、平担化膜31が、異なる溝幅D1’・D3’の大小関係を交互に異ならせるようにして溝部DH1・DH3を形成し、隆起部BGを生じさせている(図1A参照)。詳説すると、平担化膜31は、一方向(横方向HD)に沿って、溝幅D1’・D3’を有する溝部DH1・DH3を交互に異ならせるように形成し、他の方向(縦方向VD)に沿って、溝幅D2’を有する溝部DH2を形成させることで、隆起部BGを生じさせている(図1B参照)。
その結果、面内方向において対向しつつ、かつ相異なる溝幅D1’・D3’を有する溝部DH1・DH3に隆起部BGは隣接する。その上、隆起部BGは、面内方向においての溝部DH1・DH3対して傾斜(90度傾斜)し、かつ溝部DH1・DH3の溝幅D1’・D3’と異なる溝幅D2’を有する溝部DH2にも隣接することになる。
一方、図8Aおよび図8Bに示すCCDセンサDVE[CC]の場合、マイクロレンズMSを支える隆起部BGの周縁には、溝幅D4’・D5’を有する溝部DH4・DH5が存在する。
特に、CCDセンサDVE[CC]の場合、平担化膜31が、溝幅D4’を有する溝部DH4を一方向(短手方向SD)に沿って形成し(図8B参照)、かつ、この一方向とは異なる方向(長手方向LD)に沿って、溝幅D4’とは異なる溝幅D5’を有する溝部DH5を形成させることで、隆起部BGを生じさせている(図8A参照)。
その結果、面内方向において対向しつつ、かつ同じ溝幅を有する溝部(第1溝部)DH4と、面内方向において溝部DH4に対して傾斜(90度傾斜)し、かつ溝部DH4の溝幅D4’と異なる溝幅D5’を有する(第2溝部)溝部DH5とに、隆起部BGは隣接することになる。
そして、かかるように、隆起部BGに隣接する溝部DHの溝幅D’に大小関係があると、マイクロレンズMSの周縁から基板11に至るまでの乖離間隔Eは、大の溝幅D’の場合よりも小の溝幅D’の場合に長くなる。これは、溝幅D’が大きいほど、隆起部BGに支えられるレンズ材料膜32の周縁が、溝部DHに流れ込みやすいためである。
したがって、CMOSセンサDVE[CS]の場合、図13Aに示すように、小の溝幅D1’を有する溝部DH1に重なっている凸レンズMS[BG]の周縁と基板11との乖離間隔E1は、大の溝幅D3’を有する溝部DH3に重なっている凸レンズMS[BG]の周縁と基板11との乖離間隔E3よりも大きくなる。
すると、溝部DH1に重なっている部分の曲率(部分曲率RR1)と溝部DH3に重なっている部分の曲率(部分曲率RR3)とを比べてみると、部分曲率RR1のほうが、部分曲率RR3よりも弱くなる。したがって、マイクロレンズMSは、横方向HDにおいて異なる曲率(部分曲率RR1・部分曲率RR3)を有することになる。
また、図13Aおよび図13Bに示すように、小の溝幅D1’を有する溝部DH1に重なっている凸レンズMS[BG]の周縁と基板11との乖離間隔E1は、大の溝幅D2’を有する溝部DH2に重なっている凸レンズMS[BG]の周縁と基板11との乖離間隔E2よりも大きくなる。
すると、溝部DH1に重なっている部分の曲率(部分曲率RR1)と溝部DH2に重なっている部分の曲率(部分曲率RR2)とを比べてみると、部分曲率RR1のほうが、部分曲率RR2よりも弱くなる。したがって、マイクロレンズMSは、横方向HDおよび縦方向VDにおいて異なる曲率(部分曲率RR1・部分曲率RR2)を有することになる。
その結果、CMOSセンサDVE[CS]の場合、マイクロレンズMS(MS[BG])は、横方向HDに2種の曲率(部分曲率RR1・RR3)を有し、縦方向には1種の曲率(部分曲率RR2)を有する曲面を備えることになる。
一方、CCDセンサDVE[CC]の場合、図14Aおよび図14Bに示すように、小の溝幅D4’を有する溝部DH4に重なっている凸レンズMS[BG]の周縁と基板11との乖離間隔E4は、大の溝幅D5’を有する溝部DH5に重なっている凸レンズMS[BG]の周縁と基板11との乖離間隔E5よりも大きくなる。
すると、溝部DH4に重なっている部分の曲率(部分曲率RR4)と溝部DH5に重なっている部分の曲率(部分曲率RR5)とを比べてみると、部分曲率RR4のほうが、部分曲率RR5よりも弱くなる。したがって、マイクロレンズMSは、長手方向LDおよび短手方向SDにおいて異なる曲率(部分曲率RR4・部分曲率RR5)を有することになる。
なお、溝幅D’の大きさに限らず、溝部DHの深さまたは体積に依存して、隆起部BGに支えられるレンズ材料膜32の周縁が溝部DHに流れ込みやすさは変わる。したがって、溝部DHにおける溝幅D’の幅方向と平担化膜31の面内に対する垂直方向と含む断面において、マイクロレンズMSの周縁の一部から基板11に至るまでの乖離間隔Eが、溝部DHの深さに対応して変化しているマイクロレンズユニットも発明といえる。すると、隆起部BGが異なる深さを有する複数の溝部DHに隣接していると、複数の曲率を有するマイクロレンズMSが形成されることになる。
また、溝部DHにおける溝幅D’の幅方向と平担化膜31の面内に対する垂直方向とを含む断面において、マイクロレンズMSの周縁の一部から基板11に至るまでの乖離間隔Eが、溝部DHの体積に対応して変化しているマイクロレンズユニットも発明といえる。すると、隆起部BGが異なる体積を有する複数の溝部DHに隣接していると、複数の曲率を有するマイクロレンズMSが形成されることになる。
《3−2.総括2》
ところで、CMOSセンサDVE[CS]およびCCDセンサDVE[CC]には、マイクロレンズMSを有するレンズ材料膜32と、そのレンズ材料膜32を支持する平担化膜31とを含むマイクロレンズユニットMSUが存在する。そして、かかるマイクロレンズユニットMSUの製造方法では、下記のいくつかの製造工程が含まれる。
・レンズ材料膜形成工程 …平担化膜31にレンズ材料を塗布することで、レンズ材料
膜32を成膜させる工程。なお、平担化膜31は、基板ユ ニットSCUに支えられるようになっていることから、基 板ユニットSCUの主材ともいえる基板11に支えられて いると称してもよい。
・除去溝形成工程 …スリットSTを備えるマスクMKを介し、レンズ材料膜3 2を露光した後に現像することで、レンズ材料膜32の面 内に除去溝JDを形成させる工程。
・溝部形成工程 …除去溝JDの底に対応する平担化膜31をエッチングする
ことで、溝部DHを形成させる工程。
・マイクロレンズ形成工程…熱を加えることで、レンズ材料膜32を溶融させて平担化
膜31の溝部DHに流し込み、レンズ材料膜32にマイク
ロレンズMSを形成させる工程。この工程により、基板1
1に支えられる平担化膜31の面内に隣り合うように形成
されている隆起部BGおよび溝部DHに対し、マイクロレ
ンズを備えるレンズ材料膜32が積層することになる。
ここで、マイクロレンズ形成工程について特に説明する。マイクロレンズ形成工程は、熱によって(熱リフローによって)、レンズ材料膜32を軟化および溶融させることで、そのレンズ材料膜32に曲面を生じさせている。ただし、レンズ材料膜32の垂れ方または垂れる量等(流入の仕方または流入量;これらをプライマリファクターと称す)によって、マイクロレンズMSの形状が変化してくる。
そこで、マイクロレンズ形成工程は、プライマリファクターを調整すべく、平担化膜31の溝部DHにレンズ材料膜32の一部を流し込ませているといえる。すなわち、マイクロレンズ形成工程は、熱により隆起部BGに支えられるレンズ材料膜32を溶かし、溝部DHにレンズ材料膜32の一部を流し込むことで、隆起部BGに支えられるレンズ材料膜32の形状を変化させ、マイクロレンズMSを生じさせている。
特に、溝部DHを利用して、種々の形状のマイクロレンズMSを形成させている。例えば、凸レンズMS[BG]を形成のために、マイクロレンズ形成工程は、熱により優先して溶け出すレンズ材料膜32の表面であり、かつ、隆起部BGに支えられるレンズ材料膜32の周縁を平担化膜31の溝部DHに流し込ませることで、隆起部BGに支えられるレンズ材料膜32の周縁の厚みを、隆起部BGの面内中心のレンズ材料膜32の厚みよりも薄くしている。
このようにすれば、隆起部BGの周縁におけるレンズ材料膜32が比較的多量に溝部DHに流れ込む一方で、隆起部BGの面内における中心のレンズ材料膜32は溝部DHに流れ込まないことになっているので、隆起部BG上に凸レンズMS[BG]が生じる。
そして、特に、隆起部BGの面内における中心と周縁とでのレンズ材料膜32の厚みに差異を調整すべく(すなわち、凸レンズMS[BG]の曲率を調整すべく)、平担化膜31において複数ある溝部DHの溝幅D’が、複数種類存在するようになっていると望ましい。
例えば、図1Aおよび図1Bに示すように、溝部DH1・DH2・DH3が等しい深さを有していても、溝幅D’に大小関係があるとする(D1’<D2’<D3’)。すると、比較的広い溝幅D’(例えばD3’)の場合、溝部DH3に隣り合う隆起部BGに支えられるレンズ材料膜32の一部は、溝部DH3に流れ込む。そのため、流れ込むレンズ材料膜32に起因し、隆起部BGに支えられているレンズ材料膜32は平面から曲面に変化する。すると、隆起部BG上にはマイクロレンズMSが生じ、そのマイクロレンズMSの周縁は、溝部DH3によって変化したプライマリファクターに起因した曲率(部分曲率RR3)を有するようになる。
また、比較的狭い溝幅D’(例えばD1’・D2’)の場合、徐々に浸入してくるレンズ材料は溝部DH1・DH2から溢れだすようになり、溝部DH1・DH2に凹レンズは生じない。ただし、溝部DH1・DH2から溢れだすものの、流動化したレンズ材料膜32に起因し、隆起部BGに支えられているレンズ材料膜32は平面から曲面に変化する。その結果、隆起部BG上にはマイクロレンズMSが生じ、そのマイクロレンズMSの周縁は、溝部DH1・DH2によって変化したプライマリファクターに起因した曲率(部分曲率RR1・曲率RR2)を有するようになる。
なお、比較的広い溝幅D’(例えばD3’)は、流れ込むレンズ材料膜32を溝部DH3の側壁をつたわせ、溝部DH3の底面における中心に向かうように浸入させ、底面の中心に滞留するレンズ材料膜32の厚みを、底面の外縁に滞留するレンズ材料膜32の厚みよりも薄くするように設定されている。
このようになっていれば、溝部DH3における底面の外縁にはレンズ材料膜32が比較的多量に付着する一方で、溝部DH3における底面の中心にはレンズ材料膜32が比較的少量しか付着しないことになるので、溝部DH3に凹状のマイクロレンズMS(凹レンズMS[DH])が生じる。すると、凹レンズMS[DH]は、溝部DH3によって変化したプライマリファクターに起因して形成されたといえる。
なお、図8Aおよび図8Bの場合も以上と同様といえる。すなわち、溝部DH4・DH5が等しい深さを有していても、溝幅D’に大小関係があれば(D4’<D5’)、比較的広い溝幅D’(例えばD5’)の場合、溝部DH5には凹状のマイクロレンズMS(凹レンズMS[DH])が形成される。なぜなら、溝部DH5の溝幅D5’も、流れ込むレンズ材料膜32を溝部DH5の側壁をつたわせ、溝部DH5の底面における中心に向かうように浸入させ、底面の中心に滞留するレンズ材料膜32の厚みを、底面の外縁に滞留するレンズ材料膜32の厚みよりも薄くするように設定されているためである。
そして、溝部DH5に流れ込むレンズ材料膜32に起因し、隆起部BGに支えられているレンズ材料膜32には凸レンズMS[BG]が生じ、その凸レンズMS[BG]の周縁は、溝部DH5によって変化したプライマリファクターに起因した曲率(部分曲率RR5)を有するようになる。
また、比較的狭い溝幅D’(例えばD4’)の場合、溝部DH4には凹レンズは生じないものの、流動化したレンズ材料に起因し、隆起部BGに支えられているレンズ材料膜32に凸レンズMS[BG]が生じる。そして、その凸レンズMS[BG]の周縁は、溝部DH4によって変化したプライマリファクターに起因した曲率(部分曲率RR4)を有するようになる。
以上から、溝部DHが、プライマリファクターを変化させるパラメータになっていることがわかる。したがって、マイクロレンズ形成工程は、マイクロレンズMSの形状調整(曲率調整)に新たなパラメータを提供したことになる。
なお、平担化膜31の溝部DHが、溝幅D’の大小関係を交互に異ならせるようにして並列していてもよい。例えば、図1AのCMOSセンサDVE[CS]のように、横方向HDに沿って溝部DH1と溝部DH3とが並列するようになっていてもよい。このようになっていれば、マイクロレンズMSは、横方向HDにおいて異なる曲率(部分曲率RR1・曲率RR3)を有することになる。
さらに、図1BのCMOSセンサDVE[CS]では、縦方向VDに沿って、溝部DH2が並列するようにもなっている。すると、マイクロレンズMSは、縦方向VDにおいて曲率(部分曲率RR2)を有することになる。その結果、CMOSセンサDVE[CS]におけるマイクロレンズMSは、様々な曲率(曲率RR1・曲率RR2・曲率RR3)の混在した曲面(自由曲面)を有することになる。
また、図8Aおよび図8Bに示すDVE[CC]での平担化膜31のように、溝幅D4’・D5’を相異ならせた溝部DH4(第1溝部)・溝部DH5(第2溝部)が交差するように並んでいてもよい。すなわち、溝部DH4が一方向(短手方向SD沿って)に並列する一方、溝部DH5が一方向とは異なる方向(長手方向LDに沿って)に並列していてもよい。
このようになっていれば、溝部DH4・DH5に囲まれている隆起部BG上には、溝部DH4に起因した曲率(部分曲率RR4)と溝部DH5に起因した曲率(部分曲率RR5)を有するマイクロレンズMSが生じる。すなわち、マイクロレンズMSが、短手方向SDにおいて比較的弱い曲率(部分曲率RR4)、長手方向LDにおいて比較的強い曲率(曲率RR5)になった曲面を有することになる。
ただし、CMOSセンサDVE[CS]の断面を示す図15Aおよび図15B{図1Aおよび図1Bに対応}およびCCDセンサDVE[CC]の断面を示す図16Aおよび図16B{図8Aおよび図8Bに対応}に示すように、平担化膜31において複数ある溝部DHの深さKが、複数種類存在していてもよい。このようになっていれば、溝部DHに応じても、プライマリファクターを変化させることができるためである。
また、溝部DHの深さKは、同一の溝幅D’を有する複数の溝部DHにおいて異なっていてもよいし、図15A・図15B、並びに図16A・図16Bに示すように、溝部DHの異なる溝幅D’に応じて異なるようになっていてもよい(K1<K2<K3、K4<K5)。また、このようになっていれば、平担化膜31において複数ある溝部DHの体積は、複数種類存在しているともいえる。
なお、平担化膜31にある複数の溝部DHの溝幅D’に、複数種類が存在するようにするためには、除去溝形成行程で、複数種のスリット幅(D1〜D5)を有するスリットSTを備えるマスクMKを使用すればよい(図6および図12参照)。また、平担化膜31にある複数の溝部DHの深さに、複数種類の深さが存在するようにするためには、エッチングレートを溝部DHに応じて異ならせればよい。
[その他の実施の形態]
なお、本発明は上記の実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で、種々の変更が可能である。
例えば、CMOSセンサDVE[CS]およびCCDセンサDVE[CC]のマイクロレンズユニットMSUでは、凸レンズMS[BG]と凹レンズMS[DH]とが形成されている。ただし、凹レンズMS[DH]の曲面と凸レンズMS[BG]の曲面とは、ともに外部からの光をフォトダイオードPDに導くため、部分的に似通っている。
具体的には、溝部DH(DH3・DH5)の側壁近傍に生じる凸レンズMS[BG]と凹レンズMS[DH]との曲面の形状が類似するようになっている。そのため、溝部DHにおける底面の中心から外縁(溝部DHの側壁)までに対応する凹レンズMS[DH]の曲面が、凸レンズMS[BG]の曲面とつながっていると解釈してもよい(すなわち、凹レンズMS[DH]が凸レンズMS[BG]の裾野となっていると解釈してもよい)。
すると、溝部DHに隣り合う隆起部BGに支えられているマイクロレンズ(凸レンズMS[BG])の周縁が、凹レンズMS[DH]の中心にまで広がることになる。その結果、溝部DH3・DH5の凹レンズMS[DH]を裾野(凸レンズMS[DH]の曲面の底近傍)とする凸レンズMS[DH]の乖離間隔Eは、図13Aおよび図14Aのように示される。
すなわち、溝部DH3に隣り合う隆起部BGに支えられているマイクロレンズMSの周縁から基板11に至るまでの間隔(乖離間隔E3’)が、溝部DH3の底面から基板11に至るまでの間隔となり、溝部DH5に隣り合う隆起部BGに支えられているマイクロレンズMSの周縁から基板11に至るまでの間隔(乖離間隔E5’)が、溝部DH5の底面から基板11に至るまでの間隔となる。
すると、溝部DH3・5に隣り合う隆起部BGに支えられているマイクロレンズMSの周縁は、隆起部BGの周縁と重なっている場合でもよいし、溝部DHの底面における中心に重なっている場合であってもよいことになる。そのため、溝部DH3に隣り合う隆起部BGに支えられているマイクロレンズMSの周縁から基板11に至るまでの乖離間隔Eは、E3であってもE3’であってもよい。また、溝部DH5に隣り合う隆起部BGに支えられているマイクロレンズMSの周縁から基板11に至るまでの乖離間隔Eは、E5であってもE5’であってもよい。
なお、乖離間隔E3’・E5’と乖離間隔E3・E5とを比較してみると、「E3’>E3」、「E5’>E5」となる。そのため、乖離間隔Eと溝幅D’との関係は以下のように表現することもできる。
・溝幅D’の大小関係が「D1’<D3’」のとき、
乖離間隔Eの大小関係が「E1>E3’」
・溝幅D’の大小関係が「D2’<D3’」のとき、
乖離間隔Eの大小関係が「E2>E3’」
・溝幅D’の大小関係が「D4’<D5’」のとき、
乖離間隔Eの大小関係が「E4>E5’」
また、例えば、図17Aおよび図17B(図1Aおよび図1Bに対応)および図18Aおよび図18B(図8Aおよび図8Bに対応)に示すように、底面と開口面とで面積差を有する溝部DHが平担化膜31に形成されるようにしてもよい。そして、このようなテーパ状の溝部(テーパ溝部)DHは、平担化膜31をエッチングする溝部形成行程において、等方性エッチングすれば形成される。すなわち、等方性エッチングで、レンズ材料膜32の除去溝JDの幅長よりも広く、かつ底面よりも広い開口面を有する溝部DHを形成すればよい。
このようにしておけば、溝部DHの開口面における周縁と隆起部BGに支えられるレンズ材料膜32の周縁とが重ならないようになり、さらに、溝部DHの開口面における周縁が隆起部BGの面内中心に向かって延び出る(延出する)ようになる。すると、隆起部BGに支えられるレンズ材料膜32の周縁が、マイクロレンズ形成工程で溶融すれば、即座に溝部DHに流れ込む。すなわち、確実にレンズ材料膜32が溝部DHに流れ込むようになる。
ところで、基板に支えられる下地層の面内に隣り合うように形成されている隆起部および溝部のうち、隆起部に支えられているレンズ層を用いてマイクロレンズを生じさせるマイクロレンズの製造方法を以下のように表現することもできる。すなわち、マイクロレンズの製造方法では、熱により隆起部に支えられるレンズ層を溶かし、溝部にレンズ層の一部を流し込むことで、隆起部に支えられるレンズ層の形状を変化させ、マイクロレンズを生じさせるマイクロレンズ形成工程が、少なくとも含まれているといえる。
このように、溝部にレンズ層が流れ込むと、隆起部に支えられている均一な厚みを有するレンズ層に厚みの差異が生じる。そして、このような差異が生じると、平面状のレンズ層に曲面(マイクロレンズ)が生ることになる。すると、溝部がマイクロレンズの形状設定のパラメータとして利用できることになる。
なお、マイクロレンズの一例である凸レンズは、マイクロレンズ形成工程で、熱により優先して溶け出すレンズ層の表面であり、かつ、隆起部に支えられるレンズ層の周縁を下地層の溝部に流し込ませることで、隆起部に支えられるレンズ層の周縁の厚みを、隆起部の面内中心のレンズ層の厚みよりも薄くすれば、隆起部上に形成される。
そして、マイクロレンズ形成工程では、下地層において複数ある溝部の溝幅が、複数種類に設定されていると望ましい。なぜなら、溝部の溝幅に応じてレンズ層の流れ込み方等が変化し、さらに、その変化に起因して種々の曲率を有するマイクロレンズが形成されるためである。
例えば、溝幅を異にする複数の溝部が、溝幅の大小関係を交互に異ならせるようにして並列されているとする。すると、大の溝幅と小の溝幅とに隣り合う隆起部に支えられるレンズ層は、大の溝幅に依存する曲率と小の溝幅に依存する曲率を有するマイクロレンズになる。
さらに、溝幅を異にする溝部が交互に並列する方向とは異なる方向(例えば、交互に並列する方向に対して垂直方向)に、さらに異なる溝幅を有する溝部を並列させているとする。すると、大の溝幅と小の溝幅とに隣り合う隆起部は、新たな別の溝幅にも隣接していることになるので、少なくとも3種の曲率を有するマイクロレンズが製造される。
また、溝幅を相異ならせる溝部を第1溝部および第2溝部とする場合、第1溝部が一方向に並列される一方、第2溝部が一方向とは異なる方向(例えば、一方向に対して直交方向)に並列されているとする。すると、マイクロレンズにおける例えば交差する方向毎において、異なる曲率が生じるようになる。つまり、交差方向毎に応じた曲率を有するマイクロレンズが製造される。
なお、マイクロレンズ形成工程では、溝部の溝幅が、流れ込むレンズ層を溝部の側壁をつたわせ、溝部の底面における中心に向かうように浸入させ、底面の中心に滞留するレンズ層の厚みを、底面の外縁に滞留するレンズ層の厚みよりも薄くするように設定されていても望ましい。このようになっていれば、かかる溝部には外部に向けて窪んだ(凹状の)マイクロレンズが生じるためである。
また、溝幅以外にも、溝部の深さや体積によっても、マイクロレンズの形状が変化する。そのため、下地層において複数ある溝部の深さが、複数種類に設定されていると望ましい。さらには、溝の深さが、溝部の溝幅に応じて異なっていても望ましい。また、下地層において複数ある溝部の体積が、複数種類に設定されていてもよいといえる。
なお、溝部の開口面における外縁を隆起部の面内中心に向かって延出させることで、開口面における外縁と隆起部に支えられるレンズ層の周縁とを重ならないようにしていると、隆起部に支えられているレンズ層が溝部に流れ落ちやすいため望ましいといえる。
ところで、生じるマイクロレンズMS(例えば、凸レンズ)はアレイ化していることから、少なくともマイクロレンズ形成工程を含むマイクロレンズの製造方法が、マイクロレンズアレイの製造方法と称されてもよい。また、マイクロレンズMSと平担化膜31とを有するマイクロレンズユニットの製造方法(ひいては撮像素子DVEの製造方法)でもマイクロレンズ形成工程は含まれる。すると、下記のように表現することもできる。
すなわち、マイクロレンズを有するレンズ材料膜と、そのレンズ材料膜を支持する平担化膜とを有するマイクロレンズユニットの製造方法は、平担化膜にレンズ材料膜を塗布することで、レンズ材料膜を成膜させるレンズ材料膜形成行程と、スリットを備えるマスクを介し、レンズ材料膜を露光した後に現像することで、レンズ材料膜の面内に除去溝を形成させる除去溝形成行程と、除去溝の底に対応する平担化膜をエッチングすることで、溝部を形成させる溝部形成行程と、熱を加えることで、レンズ材料膜を溶融させて平担化膜の溝部に流し込み、レンズ材料膜にマイクロレンズを形成させるマイクロレンズ形成行程と、を有する。
そして、除去溝形成行程では、複数種のスリット幅を有するスリットを備えるマスクを使用していると望ましい(図6および図12参照)。
また、除去溝形成行程では、マスクはスリット幅の大小関係を交互に異ならせるようにしてスリットを並列させていると望ましい(図6の横方向HD参照)。加えて、除去溝形成行程では、マスクがスリット幅の大小関係を交互にさせたスリットの並ぶ方向とは異なる方向に、さらに異なるスリット幅を有するスリットを並列させていてもよい(図6の横方向HDおよび縦方向VD参照)。
また、除去溝形成行程では、マスクは、第1スリット幅を有するスリットを一方向に並列させ、かつ、この一方向とは異なる方向に第1スリット幅とは異なる第2スリット幅を有するスリットを並列させていると望ましい(図12参照)。
また、溝部形成行程は、平坦化膜における複数の溝部の深さを異ならせていてもよい。その上、溝部形成行程は、複数の溝部において異なっている深さを、溝部の溝幅に応じて異ならせていてもよい(図15A・図15B並びに図16A・図16B参照)。また、溝部形成行程は、平担化膜における複数の溝部の体積を異ならせていてもよい(図1A・図1B並びに図8A・図8B参照)。
また、溝部形成行程は、等方性エッチングにより、レンズ材料膜の除去溝の幅長よりも広い溝幅を有する溝部を形成していてもよい(図17A・図17B並びに図18A・図18B参照)。
図1AはCMOSセンサを一方向からみた断面図であり、図1Bは一方向とは異なる方向からみたCMOSセンサの断面図である。 CMOSセンサの平面図である。 CMOSセンサにおける光路を示した光路図であり、図3Aは図1Aに対応し、図3Bは図1Bに対応する。 CMOSセンサにおけるマイクロレンズユニットの製造工程を示す断面図である。 図1とは異なる方向からみたCMOSセンサにおけるマイクロレンズユニットの製造工程の断面図である。 CMOSセンサおけるマイクロレンズユニットの製造工程で使用するマスクの平面図である。 CCDセンサの平面図である。 図8AはCCDセンサを一方向からみた断面図であり、図8Bは一方向とは異なる方向からみたCCDセンサの断面図である。 CCDセンサにおける光路を示した光路図であり、図9Aは図8Aに対応し、図9Bは図8Bに対応する。 CCDセンサにおけるマイクロレンズユニットの製造工程を示す断面図である。 図10とは異なる方向からみたCCDセンサにおけるマイクロレンズユニットの製造工程の断面図である。 CCDセンサおけるマイクロレンズユニットの製造工程で使用するマスクの平面図である。 図13Aは図1Aの詳細な断面図であり、図13Bは図1Bの詳細な断面図である。 図14Aは図8Aの詳細な断面図であり、図14Bは図8Bの詳細な断面図である。 図15Aは図1Aの別例を示す断面図であり、図15Bは図1Bの別例を示す断面図である。 図16Aは図8Aの別例を示す断面図であり、図16Bは図8Bの別例を示す断面図である。 図17Aは図1A・図15Aの別例を示す断面図であり、図17Bは図1B・図15Bの別例を示す断面図である。 図18Aは図8A・図16Aの別例を示す断面図であり、図18Bは図8B・図16Bの別例を示す断面図である。 従来の撮像素子の平面図および断面図である。 図19の撮像素子の製造工程で使用されるマスクの平面図である。 図19のマスクを用いた撮像素子の製造方法を示す断面図であり、図21A・図21Cは、撮像素子を一方向からみた断面図であり、図21B・図21Dは一方向とは異なる方向からみた撮像素子の断面図である。 図22Aは図21Cに示される撮像素子における光路を示す光路図であり、図22Bは図21Dに示される撮像素子における光路を示す光路図である。 図23Aは図19に示されるマスクのスリット幅d1を過剰に狭くして撮像素子を製造する工程を示す断面図であり、図23Bは製造された撮像素子の断面図である。 従来の撮像素子の製造方法を示す断面図であり、図24A〜図24Gは、製造の一工程を示す。 溝部にレンズ材料膜を流し込まない場合の撮像素子の平面図および断面図である。 図25とは異なる撮像素子の平面図および断面図である。 図26の撮像素子における光路図である。
符号の説明
11 基板
31 平担化膜(下地層)
32 レンズ材料膜(レンズ層)
PD フォトダイオード(受光部)
MS マイクロレンズ
BG 隆起部
DH 溝部
D’ 溝幅
JD 除去溝
MK マスク
ST スリット
D スリット幅
SCU 基板ユニット
MSU マイクロレンズユニット
DVE 撮像素子
DVE[CS] CMOSセンサ(撮像素子)
DVE[CC] CCDセンサ(撮像素子)
HD 横方向(一方向、または一方向とは異なる方向)
VD 縦方向(一方向とは異なる方向、または一方向)
LD 長手方向(一方向、または一方向とは異なる方向)
SD 短手方向(一方向とは異なる方向、または一方向)
VV 垂直方向
E 乖離間隔
J 隙間間隔

Claims (10)

  1. 基板に支えられる下地層の面内で隣り合うように形成されている隆起部および溝部に対し、マイクロレンズを備えるレンズ層を積層させているマイクロレンズユニットにあって、
    上記隆起部に支えられているマイクロレンズの周縁の少なくとも一部と溝部とが、下地層の面内に対する垂直方向において重なっているマイクロレンズユニット。
  2. 上記溝部が複数形成されており、それらの溝部の溝幅に大小関係がある場合、
    上記溝幅の幅方向と上記下地層の面内に対する垂直方向とを含む断面において、溝部に隣り合う上記隆起部に支えられているマイクロレンズの周縁から上記基板に至るまでの間隔を乖離間隔とすると、
    乖離間隔同士は、上記溝幅の大小関係に相反する大小関係になっている請求項1に記載のマイクロレンズユニット。
  3. 上記下地層において複数ある上記溝部の深さが、溝部の溝幅に応じて異なっている請求項2に記載のマイクロレンズユニット。
  4. 上記溝部が複数形成されており、それらの溝部の深さに大小関係がある場合、
    上記溝幅の幅方向と上記下地層の面内に対する垂直方向とを含む断面において、溝部に隣り合う上記隆起部に支えられているマイクロレンズの周縁から上記基板に至るまでの間隔を乖離間隔とすると、
    乖離間隔同士は、上記溝部の深さの大小関係に相反する大小関係になっている請求項1に記載のマイクロレンズユニット。
  5. 上記溝部が複数形成されており、それらの溝部の体積に大小関係がある場合、
    上記溝幅の幅方向と上記下地層の面内に対する垂直方向とを含む断面において、溝部に隣り合う上記隆起部に支えられているマイクロレンズの周縁から上記基板に至るまでの間隔を乖離間隔とすると、
    乖離間隔同士は、上記溝部の体積の大小関係に相反する大小関係になっている請求項1に記載のマイクロレンズユニット。
  6. 請求項1〜5のいずれか1項に記載のマイクロレンズユニットと、
    上記隆起部に支えられるマイクロレンズ毎に応じた受光部と、
    を備える撮像素子。
  7. 上記溝幅の幅方向と上記下地層の面内に対する垂直方向とを含む断面において、上記隆起部に支えられるマイクロレンズに対応した画素毎を区切る境界面から上記受光部までの間隔を隙間間隔とすると、
    隙間間隔同士に大小関係がある場合、
    上記乖離間隔同士は、隙間間隔同士の大小関係に相反する大小関係になっている請求項6に記載の撮像素子。
  8. 上記溝幅を異にする複数の溝部が、溝幅の大小関係を交互に異ならせるようにして並列されている請求項6または7に記載の撮像素子。
  9. 上記の溝幅の大小関係を交互に異ならせるようにして並列している溝部の並列方向とは異なる方向に、さらに異なる溝幅を有する溝部を並列させている請求項8の撮像素子。
  10. 上記溝幅を相異ならせる溝部を第1溝部および第2溝部とする場合、
    上記第1溝部が一方向に並列される一方、上記第2溝部が一方向とは異なる方向に並列されている請求項6または7に記載の撮像素子。
JP2006134027A 2006-05-12 2006-05-12 撮像素子および撮像素子の製造方法 Expired - Fee Related JP4212605B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006134027A JP4212605B2 (ja) 2006-05-12 2006-05-12 撮像素子および撮像素子の製造方法
KR1020087026566A KR101053944B1 (ko) 2006-05-12 2007-03-06 촬상 소자 및 촬상 소자의 제조방법
PCT/JP2007/054273 WO2007132583A1 (ja) 2006-05-12 2007-03-06 マイクロレンズユニットおよび撮像素子
US12/298,967 US20090261440A1 (en) 2006-05-12 2007-03-06 Microlens unit and image sensor
TW096115922A TWI345829B (en) 2006-05-12 2007-05-04 Image sensor and manufacturing method of image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006134027A JP4212605B2 (ja) 2006-05-12 2006-05-12 撮像素子および撮像素子の製造方法

Publications (2)

Publication Number Publication Date
JP2007305866A true JP2007305866A (ja) 2007-11-22
JP4212605B2 JP4212605B2 (ja) 2009-01-21

Family

ID=38693684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006134027A Expired - Fee Related JP4212605B2 (ja) 2006-05-12 2006-05-12 撮像素子および撮像素子の製造方法

Country Status (5)

Country Link
US (1) US20090261440A1 (ja)
JP (1) JP4212605B2 (ja)
KR (1) KR101053944B1 (ja)
TW (1) TWI345829B (ja)
WO (1) WO2007132583A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060198A (ja) * 2006-08-30 2008-03-13 Sony Corp 固体撮像装置の製造方法
JP2014212334A (ja) * 2014-06-25 2014-11-13 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法、電子機器
JP2022075462A (ja) * 2020-11-05 2022-05-18 采▲ぎょく▼科技股▲ふん▼有限公司 イメージセンサおよびその形成方法
JP2023053868A (ja) * 2021-10-01 2023-04-13 采▲ぎょく▼科技股▲ふん▼有限公司 イメージセンサ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5104036B2 (ja) 2007-05-24 2012-12-19 ソニー株式会社 固体撮像素子とその製造方法及び撮像装置
JP5487686B2 (ja) * 2009-03-31 2014-05-07 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法、及び電子機器
WO2011030413A1 (ja) * 2009-09-09 2011-03-17 株式会社 東芝 固体撮像装置およびその製造方法
JP5568934B2 (ja) 2009-09-29 2014-08-13 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法、電子機器、レンズアレイ
WO2011142065A1 (ja) * 2010-05-14 2011-11-17 パナソニック株式会社 固体撮像装置及びその製造方法
US8324701B2 (en) * 2010-07-16 2012-12-04 Visera Technologies Company Limited Image sensors
TWI734716B (zh) * 2015-11-13 2021-08-01 日商凸版印刷股份有限公司 固態攝影元件及其製造方法
US11477403B2 (en) * 2018-07-09 2022-10-18 Sony Semiconductor Solutions Corporation Imaging element and method for manufacturing imaging element

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948281A (en) * 1996-08-30 1999-09-07 Sony Corporation Microlens array and method of forming same and solid-state image pickup device and method of manufacturing same
JPH10173159A (ja) * 1996-12-09 1998-06-26 Matsushita Electron Corp 固体撮像素子およびその製造方法
JP4123667B2 (ja) * 2000-01-26 2008-07-23 凸版印刷株式会社 固体撮像素子の製造方法
US6639726B1 (en) * 2000-05-16 2003-10-28 Micron Technology, Inc. Microlenses with spacing elements to increase an effective use of substrate
US6979588B2 (en) * 2003-01-29 2005-12-27 Hynix Semiconductor Inc. Method for manufacturing CMOS image sensor having microlens therein with high photosensitivity
US6818934B1 (en) * 2003-06-24 2004-11-16 Omnivision International Holding Ltd Image sensor having micro-lens array separated with trench structures and method of making
JP2005115175A (ja) * 2003-10-09 2005-04-28 Nippon Telegr & Teleph Corp <Ntt> 2次元レンズアレイおよびその製造方法
JP2006145627A (ja) * 2004-11-16 2006-06-08 Sanyo Electric Co Ltd マイクロレンズの製造方法及び固体撮像素子の製造方法
US7446294B2 (en) * 2006-01-12 2008-11-04 Taiwan Semiconductor Manufacturing Company, Ltd. True color image by modified microlens array
KR100922925B1 (ko) * 2007-12-17 2009-10-22 주식회사 동부하이텍 이미지 센서의 제조 방법
US20100126583A1 (en) * 2008-11-25 2010-05-27 Jeongwoo Lee Thin film solar cell and method of manufacturing the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008060198A (ja) * 2006-08-30 2008-03-13 Sony Corp 固体撮像装置の製造方法
JP2014212334A (ja) * 2014-06-25 2014-11-13 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法、電子機器
JP2022075462A (ja) * 2020-11-05 2022-05-18 采▲ぎょく▼科技股▲ふん▼有限公司 イメージセンサおよびその形成方法
US11569291B2 (en) 2020-11-05 2023-01-31 Visera Technologies Company Limited Image sensor and method forming the same
JP7554698B2 (ja) 2020-11-05 2024-09-20 采▲ぎょく▼科技股▲ふん▼有限公司 イメージセンサおよびその形成方法
JP2023053868A (ja) * 2021-10-01 2023-04-13 采▲ぎょく▼科技股▲ふん▼有限公司 イメージセンサ
JP7442556B2 (ja) 2021-10-01 2024-03-04 采▲ぎょく▼科技股▲ふん▼有限公司 イメージセンサ

Also Published As

Publication number Publication date
US20090261440A1 (en) 2009-10-22
WO2007132583A1 (ja) 2007-11-22
KR20090005109A (ko) 2009-01-12
TW200810098A (en) 2008-02-16
JP4212605B2 (ja) 2009-01-21
TWI345829B (en) 2011-07-21
KR101053944B1 (ko) 2011-08-04

Similar Documents

Publication Publication Date Title
JP4212605B2 (ja) 撮像素子および撮像素子の製造方法
JP4212606B2 (ja) 撮像素子の製造方法
CN100468084C (zh) 制造微透镜、微透镜阵列和图像传感器的方法
US7777260B2 (en) Solid-state imaging device
US20100230583A1 (en) Solid state image pickup device, method of manufacturing the same, image pickup device, and electronic device
KR101176545B1 (ko) 마이크로 렌즈의 형성방법과 마이크로 렌즈를 포함한이미지 센서 및 그의 제조방법
US8754969B2 (en) Photoelectric conversion apparatus and method of manufacturing photoelectric conversion apparatus
JP2010062438A (ja) 固体撮像装置およびその設計方法
JP2006324675A (ja) ピクセルのアレイを含むセンサおよびピクセル・センサ・アレイのマイクロレンズ構造を製作する方法(ピクセル・センサ用の接触するマイクロレンズ構造および製作方法)
US7884397B2 (en) Solid-state image sensor and method for producing the same
JP2006054469A (ja) イメージセンサ
US8431425B2 (en) Method for fabricating image sensor with uniform photosensitizing sensitivity
JP3672663B2 (ja) 固体撮像装置及びその製造方法
US7713775B2 (en) CMOS image sensor
JP2007042801A (ja) 固体撮像装置の製造方法
JPH1070258A (ja) 固体撮像素子およびその製造方法
JP5166925B2 (ja) 固体撮像装置
JP2009272422A (ja) 光学半導体装置の製造方法
JP2006060250A (ja) 固体撮像装置とその製造方法
JP2005116841A (ja) 固体撮像装置およびその製造方法
JP2006060144A (ja) レンズアレイの製造方法および固体撮像装置の製造方法
JP2008078326A (ja) 固体撮像素子
JPH10229179A (ja) 電荷結合デバイス撮像素子およびその製造方法
JP2008263111A (ja) 固体撮像素子及びその製造方法
JP2006332407A (ja) 光学素子および光学素子の製造方法ならびに固体撮像素子

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees