JP2007302916A - Method for recovering waste heat from tuyere in blast furnace, and tuyere for blowing air into blast furnace - Google Patents
Method for recovering waste heat from tuyere in blast furnace, and tuyere for blowing air into blast furnace Download PDFInfo
- Publication number
- JP2007302916A JP2007302916A JP2006129741A JP2006129741A JP2007302916A JP 2007302916 A JP2007302916 A JP 2007302916A JP 2006129741 A JP2006129741 A JP 2006129741A JP 2006129741 A JP2006129741 A JP 2006129741A JP 2007302916 A JP2007302916 A JP 2007302916A
- Authority
- JP
- Japan
- Prior art keywords
- tuyere
- blast furnace
- waste heat
- furnace
- blowing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007664 blowing Methods 0.000 title claims abstract description 35
- 239000002918 waste heat Substances 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 16
- 239000012530 fluid Substances 0.000 claims abstract description 22
- 238000011084 recovery Methods 0.000 claims description 11
- 238000001816 cooling Methods 0.000 abstract description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052799 carbon Inorganic materials 0.000 abstract description 5
- 239000000463 material Substances 0.000 description 21
- 239000000498 cooling water Substances 0.000 description 14
- 238000002485 combustion reaction Methods 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 239000000571 coke Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 239000000295 fuel oil Substances 0.000 description 4
- 239000002893 slag Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000003245 coal Substances 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- 150000002738 metalloids Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003949 liquefied natural gas Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Landscapes
- Blast Furnaces (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
Description
本発明は高炉におけるエネルギー回収方法に関し、羽口からの廃熱の回収方法および高炉送風用羽口に関する。 The present invention relates to an energy recovery method in a blast furnace, and relates to a method for recovering waste heat from a tuyere and a tuyere for blast furnace blowing.
近年、地球温暖化の懸念から二酸化炭素発生量の削減が製鉄業界においても最重要課題とされている。なかでも製鉄所で最も多量の炭素(石炭)を還元エネルギーと熱エネルギーとして使用する、高炉での炭素使用量削減が最も重要とされている。高炉はFe2O3である鉄鉱石を還元、溶融するプロセスであるから、純粋に還元と溶融に必要なエネルギーは熱力学的に一定である。炭素として投入されたエネルギーはそれ以外に、鉄以外の酸化物の還元(メタロイド還元)と溶融、スラグの溶融、炉頂上から排出されるカロリー含有ガス、および熱負荷(冷却水による廃熱)として使用される。このような高炉の物質と熱エネルギーの流れと、おおよその温度を模式的に図1に示す。図1において、高炉1の上部からコークス(C)、鉄鉱石(Fe2O3)、および焼結鉱(Fe2O3)が装入され、炉下部の羽口2から1200℃の熱風(O2含有ガス)が吹き込まれる。COおよびCO2からなるカロリー含有ガス3は100℃、溶銑(Fe)およびスラグ4は1500℃である。5は燃焼焦点であり2000℃である。炉体冷却における炉体上部廃熱がA、羽口冷却による羽口廃熱がB、炉体冷却における炉体下部廃熱がCである。
In recent years, the reduction of carbon dioxide generation has been considered the most important issue in the steel industry because of global warming concerns. In particular, reduction of carbon usage in the blast furnace, where the largest amount of carbon (coal) is used as reduction energy and heat energy at the steelworks, is regarded as the most important. Since the blast furnace is a process for reducing and melting iron ore, which is Fe 2 O 3 , the energy required for pure reduction and melting is thermodynamically constant. In addition to this, energy input as carbon is reduced as oxides other than iron (metalloid reduction) and melting, melting of slag, calorie-containing gas discharged from the top of the furnace, and heat load (waste heat from cooling water). used. Such a blast furnace material, the flow of thermal energy, and the approximate temperature are schematically shown in FIG. In FIG. 1, coke (C), iron ore (Fe 2 O 3 ), and sintered ore (Fe 2 O 3 ) are charged from the upper part of the
上記のうちメタロイド還元とスラグの溶融は投入原料品質により量的に固定されるため制御は不可能である。また、炉頂上からのカロリー含有ガス3のエネルギーは工場内において、下工程において熱または電力として回収使用されているため、無駄とはなっていない上、削減は高炉にとっても下工程にとっても操業上の負担が大きい。よって、高炉におけるエネルギー使用量を削減するために、もっとも好ましいのは廃熱A、B、Cを回収することであると考えられる。炉体や羽口の冷却は、冷却水を用いて行なわれる(例えば、特許文献1参照。)。従って、廃熱A、B、Cを回収するためには、冷却後の冷却排水から熱回収を行なうことになる。
高炉は巨大な高温反応容器であり、熱風を吹き込む下部においては2000℃を超える場所も存在し、冷却による設備保護は不可欠である。高温の廃熱であれば蒸気回収が一般的であり、蒸気タービンを用いて電気としての回収も可能であるが、高炉の冷却水は水量は豊富であるもののセ氏数十度の低温排水であり、これらの手段による回収は現状では不可能である。低温排熱の回収方法も研究が進められているが、製鉄所ではコストやスペースなどの問題から実現性は低い。 The blast furnace is a huge high-temperature reaction vessel, and in the lower part where hot air is blown in, there are places where the temperature exceeds 2000 ° C., and it is essential to protect the equipment by cooling. Steam recovery is common for high-temperature waste heat, and it can also be recovered as electricity using a steam turbine, but the blast furnace cooling water is a low-temperature wastewater of tens of degrees Celsius, although the amount of water is abundant. Recovery by these means is not possible at present. Research is also progressing on the method for recovering low-temperature exhaust heat, but the feasibility is low at steelworks due to problems such as cost and space.
したがって本発明の目的は、このような従来技術の課題を解決し、高炉の冷却に用いられる廃熱を回収して、高炉操業で消費されるエネルギーを減少させて、これにより炭素の使用量を削減可能な、高炉における羽口からの廃熱の回収方法および廃熱の回収に用いるのに好適な高炉送風用羽口を提供することにある。 Therefore, the object of the present invention is to solve such problems of the prior art, recover waste heat used for cooling the blast furnace, and reduce the energy consumed in blast furnace operation, thereby reducing the amount of carbon used. It is an object of the present invention to provide a method for recovering waste heat from tuyere in a blast furnace and a tuyere for blast furnace blowing suitable for use in waste heat recovery.
本発明者らは高炉の廃熱の大部分は羽口冷却によるものであることを見出し、羽口における熱回収方法を検討し、高炉の羽口の本体内部に流体を通過させ、該流体を昇温させることで前記羽口の冷却を行ない、昇温された前記流体を高炉内に吹き込むことで熱回収を行なうことを特徴とする高炉における羽口からの廃熱の回収方法、および流体を通過させた後に高炉内に吹き込むための吹き込み通路を本体内部に有し、前記吹き込み通路がらせん状に形成されていることを特徴とする高炉送風用羽口の発明を完成させた。 The present inventors have found that most of the waste heat of the blast furnace is due to tuyere cooling, studied heat recovery methods at the tuyere, let the fluid pass inside the main body of the tuyere of the blast furnace, A method of recovering waste heat from a tuyere in a blast furnace, wherein the tuyere is cooled by raising the temperature and heat recovery is performed by blowing the heated fluid into the blast furnace, and a fluid The present invention of a tuyere for blast furnace blowing characterized in that it has a blowing passage for blowing into the blast furnace after passing through the inside of the main body, and the blowing passage is formed in a spiral shape.
本発明によれば、高炉における省エネルギーが可能となり、二酸化炭素発生量を削減できる。 According to the present invention, energy saving in a blast furnace is possible, and the amount of carbon dioxide generated can be reduced.
高炉の炉体は内側から、耐火物、レンガ、冷却設備(ステーブ)となっている上、内壁にはコークス粉や亜鉛を主成分とした付着物層が形成されているため、炉体からの循環水を介した廃熱はその面積が大きい割には小さい。一方、羽口は面積的には小さいが、燃焼焦点(約2000℃)の極付近であり高温にさらされている。本発明者等が4000m3級の高炉で測定したところ、図2に示すように、炉体上部廃熱Aが34%、炉体下部廃熱Cが21%であり、羽口からの廃熱Bが全廃熱量の45%に達しており、廃熱の半分近くが羽口で発生していることが分かった。 The furnace body of the blast furnace consists of refractories, bricks, cooling equipment (stave) from the inside, and the inner wall is formed with a deposit layer mainly composed of coke powder and zinc. Waste heat via circulating water is small for its large area. On the other hand, although the tuyere is small in area, it is near the combustion focal point (about 2000 ° C.) and is exposed to high temperatures. As measured by a 4000 m 3 class blast furnace by the present inventors, as shown in FIG. 2, the furnace body upper waste heat A is 34%, the furnace body lower waste heat C is 21%, and the waste heat from the tuyere It was found that B reached 45% of the total waste heat and nearly half of the waste heat was generated at the tuyere.
対象が高温であるほど熱回収効率は高く、その意味でも羽口は有望な熱回収対象あることが推察される。羽口は高級消耗品とみなされおり、耐久性重視のため銅鋳物製で、内部を超高速で冷却水を循環させて使用している。そこで、本発明者らは、従来単なる耐久性重視であった羽口冷却設備を、熱回収源として見直し、効率的に熱回収を行うことを目標に開発を行った。 The higher the temperature of the target, the higher the heat recovery efficiency. In this sense, it is presumed that the tuyere is a promising heat recovery target. The tuyere is regarded as a high-grade consumable and is made of copper casting for durability, with cooling water circulating at an ultra-high speed inside. Therefore, the present inventors reviewed the tuyere cooling facility, which has traditionally focused on durability, as a heat recovery source, and developed it with the goal of efficiently recovering heat.
上記のように、通常の羽口冷却は水を用いて行われる。腐食防止のために薬液が使用される場合もあるが主成分は水である。大気圧での水の沸点は100℃であるため、冷却水はそれより十分に低い温度、例えば出側で60℃程度になるように大量に循環させる必要がある。万一、羽口内で冷却水が沸騰して気泡が発生すれば、比熱、熱伝導率ともに急減し、羽口が急激に溶損するためである。しかし高温の排水でなければ熱回収を行なうことは困難である。 As described above, normal tuyere cooling is performed using water. A chemical solution may be used to prevent corrosion, but the main component is water. Since the boiling point of water at atmospheric pressure is 100 ° C., it is necessary to circulate a large amount of cooling water so that the temperature is sufficiently lower than that, for example, about 60 ° C. on the outlet side. This is because if the cooling water boils in the tuyere and bubbles are generated, both the specific heat and the thermal conductivity are rapidly reduced, and the tuyere melts rapidly. However, it is difficult to recover heat unless the waste water is hot.
そこで本発明者らは、羽口の有する熱エネルギーを炉外に排出するのではなく、炉内に戻すことで廃熱を減らすことが可能となると考えた。通常の高炉操業において、羽口からは微粉炭等の還元材吹き込みが行なわれている。還元材は、通常は予熱されることは無く、吹き込みランスと呼ばれるパイプを介して羽口中央の空間部に吹き込まれ、熱風(銅融点1083℃と同程度の温度)と共に炉内に吹き込まれる。本発明者らは、還元材を羽口本体内部を通過させて昇温させ、これにより羽口の冷却を行ない、昇温された還元材を高炉内に吹き込むことで、羽口の冷却と同時に還元材の予熱が可能であることを見出した。つまり、炉内に吹き込む物質と熱交換することにより羽口を冷却すれば、羽口からの廃熱を回収して高炉で利用することとなり、結果として廃熱を減らすことが可能であることを見出し、本発明を完成したものである。即ち本発明は、高炉の羽口の本体内部に流体を通過させ、流体を昇温させることで羽口の冷却を行ない、昇温された流体を高炉内に吹き込むことを特徴とする高炉における羽口からの廃熱の回収方法である。 Therefore, the present inventors considered that it is possible to reduce waste heat by returning the thermal energy of the tuyere to the inside of the furnace instead of discharging it outside the furnace. In normal blast furnace operation, reducing materials such as pulverized coal are blown from the tuyere. The reducing material is not normally preheated, and is blown into the space at the center of the tuyere through a pipe called a blowing lance and blown into the furnace together with hot air (a temperature similar to the copper melting point of 1083 ° C.). The inventors raise the temperature of the reducing material through the inside of the tuyere body, thereby cooling the tuyere, and blowing the heated reducing material into the blast furnace to simultaneously cool the tuyere. We found that preheating of the reducing material is possible. In other words, if the tuyere is cooled by exchanging heat with the material blown into the furnace, the waste heat from the tuyere is recovered and used in the blast furnace, and as a result, it is possible to reduce the waste heat. The title and the present invention have been completed. That is, the present invention relates to a blast furnace in which a fluid is allowed to pass through the body of the tuyere of the blast furnace, the tuyere is cooled by raising the temperature of the fluid, and the heated fluid is blown into the blast furnace. This is a method for recovering waste heat from the mouth.
羽口を冷却後に、炉内に吹き込む物質としては流体を用いるものとする。通常高炉の羽口から炉内に吹き込まれる、還元材を吹き込み用流体として用いることが好ましい。還元材としては、重油、LNG、コークス炉副生ガス(COG)等の液体、気体の還元材の他に、固体還元材も好適に用いることができる。固体還元材である微粉炭やプラスチック粒状物等は、搬送ガスとして窒素等を用いることで、流体として高炉内に吹き込まれる。羽口の冷却には水冷を併用することが好ましい。この場合は、水は炉内に吹き込まれることなく、通常の冷却水として羽口内部を循環後に排出される。 A fluid is used as the material to be blown into the furnace after cooling the tuyere. It is preferable to use a reducing material that is normally blown into the furnace from the tuyere of the blast furnace as the blowing fluid. As the reducing material, in addition to liquid and gaseous reducing materials such as heavy oil, LNG, coke oven by-product gas (COG), etc., solid reducing materials can also be suitably used. The pulverized coal, plastic particulates, etc., which are solid reducing materials, are blown into the blast furnace as a fluid by using nitrogen or the like as a carrier gas. It is preferable to use water cooling in combination for cooling the tuyere. In this case, the water is discharged after being circulated through the tuyere as normal cooling water without being blown into the furnace.
次に、上記の高炉における羽口からの廃熱の回収方法の実施に用いると好適な羽口について説明する。 Next, a tuyere suitable for use in the implementation of the method for recovering waste heat from the tuyere in the blast furnace will be described.
本発明方法を実施する際には、例えば、流体を通過させた後に高炉内に吹き込むための吹き込み通路を本体内部に有し、吹き込み通路がらせん状に形成されていることを特徴とする高炉送風用羽口を用いることができる。 When carrying out the method of the present invention, for example, a blast furnace blower characterized in that it has a blow passage in the body for allowing the fluid to pass through and then blows into the blast furnace, and the blow passage is formed in a spiral shape. A tuyere can be used.
流体を羽口本体内部を通過させて昇温させ、昇温された流体を高炉内に吹き込む際に、羽口本体に炉内側と炉外側間を貫通した孔部である吹き込み通路を有し、該吹き込み通路が前記羽口中央の空間部(熱風吹き込み部)を芯とするコイル形状を形成しているような羽口を用いると、流体が羽口本体内部をらせん状に旋回した後に、高炉内に吹き込まれることになる。所定の吹き込み速度を維持し、流体と羽口との熱交換を行なう時間を十分に確保するためには、吹き込み通路が長いことが好ましく、このためには吹き込み通路を上記のようにらせん状とすることが適当である。 When the fluid is passed through the tuyere body to raise the temperature and the heated fluid is blown into the blast furnace, the tuyere body has a blowing passage that is a hole penetrating between the inside of the furnace and the outside of the furnace, When using a tuyere in which the blowing passage forms a coil shape with the space part (hot air blowing part) at the center of the tuyere as a core, the fluid turns spirally inside the tuyere body, and then the blast furnace Will be blown into. In order to maintain a predetermined blowing speed and to ensure a sufficient time for heat exchange between the fluid and the tuyere, it is preferable that the blowing passage is long, and for this purpose, the blowing passage is made spiral as described above. It is appropriate to do.
図3に示す羽口を用いて還元材の吹き込み試験を行なった。図3は送風方向に平行な方向での羽口の断面の概略図であり、羽口2の本体6内部にらせん状に旋回する吹き込み通路7が形成されている。8は冷却水路、9は羽口への還元材吹き込み用ランスである。
A reducing material blowing test was conducted using the tuyere shown in FIG. FIG. 3 is a schematic view of the cross section of the tuyere in a direction parallel to the blowing direction, and a blowing
還元材として、重油、LNG、COGをそれぞれ用いた。また比較のために、従来技術であるランスを用いた還元材吹き込み試験も行なった。 Heavy oil, LNG, and COG were used as reducing materials, respectively. For comparison, a reducing material blowing test using a conventional lance was also performed.
吹き込み試験は、高炉の羽口付近を模試可能な燃焼炉を用いて行った。燃焼炉の模式図を図4に示す。燃焼炉10の上部のコークス装入孔11からコークスを炉内に装入してコークス充填層12を形成した。羽口2に接続したブローパイプ13から1200℃の熱風を吹き込み、排ガス流出孔14から排ガスを流出させた。羽口の本体内部に形成した冷却水路8に冷却水を流すと共に、吹き込み通路入り側7aから重油、LNG、COGを羽口の本体内部に吹き込み、吹き込み通路出側7bから燃焼炉内に吹き込んだ。また、重油、LNG、COGをランス9を介して直接羽口中央の空間部に吹き込み、燃焼炉への単位時間当たりの吹き込み量が吹き込み通路を用いた場合と同量になるように熱風と共に燃焼炉内に吹き込んだ。
The blowing test was performed using a combustion furnace that can simulate the vicinity of the tuyere of the blast furnace. A schematic diagram of the combustion furnace is shown in FIG. Coke was charged into the furnace through a
ランスを介して還元材を燃焼炉内に吹き込んだ際には、羽口冷却水の入り側と出側の温度差は12.2℃であったが、羽口本体内部を通過させて還元材を燃焼炉内に吹き込んだ際には、羽口冷却水の入り側と出側の温度差は10.5℃まで低下した。 When the reducing material was blown into the combustion furnace through the lance, the temperature difference between the inlet side and the outlet side of the tuyere cooling water was 12.2 ° C. Was blown into the combustion furnace, the temperature difference between the inlet side and the outlet side of the tuyere cooling water decreased to 10.5 ° C.
冷却水の温度上昇の低下は、羽口からの廃熱となるはずであった熱の一部が還元材の予熱に有効に利用されたことを示すものであり、羽口からの廃熱は14%低下した。 The decrease in the temperature rise of the cooling water indicates that a part of the heat that should have become waste heat from the tuyere was effectively used for preheating the reducing material. It decreased by 14%.
なお、図3では吹き込み通路7を羽口2の外筒側に設けた例を示しているが、内筒側であってもかまわない。
Although FIG. 3 shows an example in which the
1 高炉
2 羽口
3 カロリー含有ガス
4 溶銑、スラグ
5 燃焼焦点
6 本体
7 吹き込み通路
8 冷却水路
9 還元材吹き込み用ランス
10 燃焼炉
11 コークス装入孔
12 コークス充填層
13 ブローパイプ
14 排ガス流出孔
A 炉体上部廃熱
B 羽口廃熱
C 炉体下部廃熱
DESCRIPTION OF
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006129741A JP2007302916A (en) | 2006-05-09 | 2006-05-09 | Method for recovering waste heat from tuyere in blast furnace, and tuyere for blowing air into blast furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006129741A JP2007302916A (en) | 2006-05-09 | 2006-05-09 | Method for recovering waste heat from tuyere in blast furnace, and tuyere for blowing air into blast furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007302916A true JP2007302916A (en) | 2007-11-22 |
Family
ID=38837094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006129741A Pending JP2007302916A (en) | 2006-05-09 | 2006-05-09 | Method for recovering waste heat from tuyere in blast furnace, and tuyere for blowing air into blast furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007302916A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102021256A (en) * | 2010-12-29 | 2011-04-20 | 北京京诚科林环保科技有限公司 | Blast furnace tuyere small set circulating cooling water system |
CN102181593A (en) * | 2011-05-17 | 2011-09-14 | 山西太钢不锈钢股份有限公司 | Method for judging damage of blast furnace tuyere small sleeve |
-
2006
- 2006-05-09 JP JP2006129741A patent/JP2007302916A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102021256A (en) * | 2010-12-29 | 2011-04-20 | 北京京诚科林环保科技有限公司 | Blast furnace tuyere small set circulating cooling water system |
CN102181593A (en) * | 2011-05-17 | 2011-09-14 | 山西太钢不锈钢股份有限公司 | Method for judging damage of blast furnace tuyere small sleeve |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220235426A1 (en) | Method and system for producing steel or molten-iron-containing materials with reduced emissions | |
CA2773589C (en) | Method for iron-making with full oxygen and hydrogen-rich gas and equipment thereof | |
US9605326B2 (en) | Method and system for operating a blast furnace with top-gas recycle and a fired tubular heater | |
US10451348B2 (en) | Smelting process and apparatus | |
KR20240041974A (en) | How to make iron melt | |
JP2007302916A (en) | Method for recovering waste heat from tuyere in blast furnace, and tuyere for blowing air into blast furnace | |
JP2007197803A (en) | Method for recovering waste heat from tuyere in blast furnace | |
Bauer et al. | The potential of thermophotovoltaic heat recovery for the UK industry | |
KR20130067346A (en) | Apparatus for recovering sensible heat and method thereof | |
Vatanakul et al. | Waste heat utilization to increase energy efficiency in the metals industry | |
KR20150004985A (en) | Method of Coke Dry Quenching by using Coke Oven Gas and Recycle Method of Syngas | |
CN117178064A (en) | Methods of operating electric arc furnaces, electric arc furnaces and steel plants | |
JP5860064B2 (en) | Method and apparatus for producing molten iron and steel | |
KR101356065B1 (en) | System for preheating pulverized coal | |
US20240327937A1 (en) | Processes and methods for the production of iron and steel | |
CN118326105A (en) | An internal heating gas-based metallurgical vertical furnace | |
CN118653026A (en) | A gas-based direct iron reduction process using an electric heating vertical furnace | |
CN118638979A (en) | A process for direct reduction of iron using full hydrogen in an electric vertical furnace | |
JP2025102916A (en) | Method and system for producing steel or molten iron-containing material with reduced emissions - Patents.com | |
Hattink et al. | Developments of the ULCOS low CO2 blast furnace process at the LKAB experimental BF in Luleå | |
KR101876263B1 (en) | Method for cokes dry quenching using carbon monooxide | |
Donawilz | The use of oxygen in modern steelmaking | |
JPH10332280A (en) | Cooling gas circulation type cooling structure and method of using the same | |
Smith et al. | The blast furnace by VAI UK |